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Abstract The famous five halves theorem of Boardman states that, if T : Mm → Mm is a smooth
involution defined on a non-bounding closed smooth m-dimensional manifold Mm (m > 1) and if

F =
n⋃

j=0

F j (n � m)

is the fixed-point set of T , where F j denotes the union of those components of F having dimension j,
then 2m � 5n. If the dimension m is written as m = 5k − c, where k � 1 and 0 � c < 5, the theorem
states that the dimension n of the fixed submanifold is at least β(m), where β(m) = 2k if c = 0, 1, 2 and
β(m) = 2k −1 if c = 3, 4. In this paper, we give, for each m > 1, the equivariant cobordism classification
of involutions (Mm, T ), for which the fixed submanifold F attains the minimal dimension β(m).

Keywords: five halves theorem; involution; fixed-point data; equivariant cobordism class;
Stiefel–Whitney class; characteristic number
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1. Introduction

Throughout this paper Mm denotes a closed smooth m-dimensional manifold and
T : Mm → Mm is a smooth involution on Mm with fixed subset F expressed as a
union of submanifolds

F =
m⋃

j=0

F j ,

where F j denotes the union of those components of F having dimension j. We write ηj

for the (m − j)-dimensional normal bundle of F j in Mm. The list ((F j , ηj))m
j=0, in which

we may omit the jth term if F j = ∅, is referred to as the fixed-point data of (Mm, T ).
The famous five halves theorem of Boardman, see [1], asserts that if Mm is non-

bounding and F j is empty for j > n, where n � m, then m � 5
2n. For fixed n, this

gives an upper bound on the dimension m, namely, if n = 2k is even (k � 1), then
m � 5k, and if n = 2k − 1 is odd (k � 1), then m � 5k − 3. Furthermore, these bounds
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are best possible: Boardman exhibited, for each n � 1, examples of involutions (Mm, T )
with Mm non-bounding and m attaining the maximal value allowed by the theorem. A
strengthened version of Boardman’s result was obtained in [4] by Stong and Kosniowski,
who established the same conclusion under the weaker hypothesis that (Mm, T ) is a non-
bounding involution. Since the equivariant cobordism class of (Mm, T ) is determined by
the cobordism class of the normal bundle of F in Mm (see [3]), this implies, in particular,
that if at least one F j is non-bounding, then 2m � 5n.

Kosniowski and Stong also gave, in [4], an improvement of the theorem when F = Fn

has constant dimension n: if (Mm, T ) is a non-bounding involution, then m � 2n. For
each fixed n, with the exception of the dimensions n = 1 and n = 3, the maximal
value m = 2n is achieved by taking the involution (Fn × Fn, T ), where Fn is any
non-bounding n-dimensional manifold and T is the twist involution T (x, y) = (y, x).
Moreover, Kosniowski and Stong showed that every example is of this form up to Z2-
equivariant cobordism: if m = 2n and F j = ∅ for j �= n, then (Mm, T ) is equivariantly
cobordant to (Fn × Fn, twist). From a different perspective, we can fix the dimension m

and look at the least value of n satisfying the condition m � 2n, that is, n = k if m is
written as 2k or 2k−1, with k � 1. For even m = 2k, the result of Kosniowski and Stong
gives the equivariant cobordism classification of involutions (Mm, T ) with fixed-point set
of constant dimension n = k as the group {[(F k × F k, twist)] : [F k] ∈ Nk} ∼= Nk, where,
as usual, Nk is the k-dimensional unoriented cobordism group. For odd m = 2k − 1, the
corresponding, more complicated, classification was given by Stong in [8].

Motivated by these results, we obtain, for each m � 1, the cobordism classification of
involutions (Mm, T ) such that the top-dimensional component of the fixed subset F has
the least value n satisfying Boardman’s condition 2m � 5n.

Definition 1.1. We denote by N Z2
m the unoriented cobordism group of pairs (Mm, T ),

where Mm is a closed smooth m-dimensional manifold and T is a smooth involution
defined on Mm. In terms of the notation for the fixed subset introduced above, we define
(N Z2

m )(n), for 0 � n � m, to be the subgroup of N Z2
m consisting of those cobordism

classes [(Mm, T )] such that ηj bounds as a bundle for j > n. (From the proof of the
Conner–Floyd exact sequence of [3], every element of (N Z2

m )(n) can be represented by a
pair (Mm, T ) such that F j is empty for j > n.)

With this terminology, we can state a weak form of our main result.

Theorem 1.2. Write m = 5k − c, where k � 1 and 0 � c � 4, and set β(m) = 2k

if c = 0, 1, 2 and β(m) = 2k − 1 if c = 3, 4. Then, (N Z2
m )(n) = 0 if n < β(m) and the

dimension dim (N Z2
m )(β(m)) is given, according to the values of c, by

c = 0: 1,

c = 1: 3 if k = 1, 4 if k � 2,

c = 2: 1 if k = 1, 9 if k = 2, 12 if k = 3, 13 if k � 4,

c = 3: 1,

c = 4: 0 if k = 1, 4 if k = 2, 6 if k � 3.

https://doi.org/10.1017/S0013091513000400 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000400


Limiting cases of Boardman’s five halves theorem 725

Moreover, multiplication by the generator b of (N Z2
5 )(2) defines an injective map

b· : (N Z2
m )(β(m)) → (N Z2

m+5)
(β(m)+2),

which is an isomorphism for all but finitely many dimensions m, namely, 1, 3, 4, 6, 8, 13.

Note that the cases c = 0 and c = 3 of the theorem say that the maximal examples of
Boardman (for (m, n) = (5k, 2k) and (5k − 3, 2k − 1)) are unique up to cobordism.

In § 3, we establish a more precise classification theorem, in which we give explicit bases
for the vector spaces (N Z2

m )(β(m)). Our strategy consists in first showing that a suitable
extension of the argument used by Kosniowski and Stong in [4] to prove the stronger
Boardman Theorem can be used to show that, in the relevant dimensions (n � β(m)),
few characteristic numbers can be non-zero. This will give bounds for the Z2-dimensions.
The argument is then completed by constructing sets of linearly independent cobordism
classes of involutions realizing these bounds.

2. Preliminaries

In this section, we review various standard results and notation that we need for the
proof of the classification theorem. Unoriented bordism theory is denoted by N∗(−),
with coefficient ring N∗, so that, in particular, Nn(BO(k)) is the cobordism group of
k-dimensional real vector bundles over closed n-dimensional manifolds.

The Z2-equivariant bordism group N Z2
m is described in terms of non-equivariant bor-

dism by the fundamental Conner–Floyd exact sequence [3]

0 → N Z2
m →

⊕
0�j�m

Nj(BO(m − j)) ∂m−−→ Nm−1(BO(1)) → 0,

which maps the cobordism class of the involution (Mm, T ) to the cobordism class of its
fixed-point data ([F j , ηj ]). The boundary map ∂m assigns to [F j , ηj ] the class of the real
projective space bundle RP (ηj) over F j with the classifying map of the Hopf line bundle
λ → RP (ηj).

Lemma 2.1. For 0 � n � m, the group (N Z2
m )(n) can be identified with the kernel of

the restricted boundary map

∂m| :
⊕

0�j�n

Nj(BO(m − j)) → Nm−1(BO(1)).

Proof. This follows at once from the Conner–Floyd sequence. �

If (M, T ) and (M ′, T ′) are involutions, (M, T ) × (M ′, T ′) means the involution on
M ×M ′ given by (x, y) �→ (T (x), T ′(y)). This product induces on N Z2

∗ =
⊕

m�0 N Z2
m the

structure of a graded algebra over N∗. If Fn is the top-dimensional component of the
fixed-point set of (M, T ), with normal bundle ηn → Fn, and (F ′)n′

is the top-dimensional
component of the fixed-point set of (M ′, T ′), with normal bundle η′

n′ → (F ′)n′
, then the

top-dimensional component of the fixed-point set of (M, T ) × (M ′, T ′) is Fn × (F ′)n′
,
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with normal bundle ηn × η′
n′ . At the group level, the product maps (N Z2

m )(n) × (N Z2
m′ )(n

′)

into (N Z2
m+m′)(n+n′). In other words, the filtration of N Z2

∗ is compatible with the ring
structure.

Set

Mm =
m⊕

j=0

Nj(BO(m − j)) and M∗ =
⊕
m�0

Mm.

Then, M∗ has the structure of a graded commutative algebra over N∗ with identity the
zero bundle over a point; the multiplication is induced by the usual product of bundles
(ξ → N) × (ξ′ → N ′) = (ξ × ξ′ → N × N ′). We filter M∗ by setting

M(n)
m =

n⊕
j=0

Nj(BO(m − j))

for 0 � n � m. Thus, N Z2
∗ is included by the Conner–Floyd sequence as a subring of

M∗ and (N Z2
m )(n) ⊆ M(n)

m . The calculation of the ring M∗ is recalled in the next lemma,
in which the canonical line bundle over the n-dimensional real projective space RPn is
denoted by λn (with the convention that λ0 is R over a point).

Proposition 2.2 (see [2, Lemma 25.1, §25] and [7, Proposition 3.16]). As
an N∗-algebra, M∗ is a polynomial algebra with a generator in each Mm, m > 0.
For each m > 0, the generator can be chosen to be the class of λm−1 → RPm−1 in
Nm−1(BO(1)) ⊆ Mm.

We next look at the detection of cobordism classes by characteristic numbers. Consider
a decreasing list of positive integers ω = (i1, i2, . . . , is), i1 � i2 � · · · � is. We set
|ω| = i1 + i2 + · · · + is and say that ω = (i1, i2, . . . , is) is non-dyadic if none of the it is
of the form 2p − 1.

For k � s, let sω(X1, X2, . . . , Xk) ∈ Z2[X1, . . . , Xk] be the smallest symmetric poly-
nomial in variables X1, . . . , Xk containing the monomial Xi1

1 Xi2
2 · · ·Xis

s . More precisely,
in terms of the action of the symmetric group Sk on Z2[X1, . . . , Xk], we have that

sω(X1, . . . , Xk) =
∑

σSk(ω)∈Sk/Sk(ω)

σ(Xi1
1 · · ·Xis

s ),

where Sk(ω) is the stabilizer of Xi1
1 · · ·Xis

s . Given a k-dimensional real vector bundle ξ

over a closed n-manifold N with tangent bundle TN , we denote by sω(ξ) ∈ H |ω|(N, Z2)
the cohomology class obtained from sω(X1, X2, . . . , Xk) by replacing the rth elementary
symmetric function in the variables Xj by the Stiefel–Whitney class wr(ξ). We allow
the (non-dyadic) empty list ω∅ (s = 0), with |ω∅| = 0 and sω∅(ξ) = 1. Then, the
cobordism class of (N, ξ) in Nn(BO(k)) is determined by the modulo 2 integers obtained
by evaluating the n-dimensional Z2-cohomology classes of the form sω(TN)sω′(ξ), with
|ω| + |ω′| = n and ω non-dyadic, on the fundamental homology class [N ] ∈ Hn(N, Z2).
We also need the following.
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Lemma 2.3 (see [4, p. 316]). The map

[N, ξ] �→ (sω(TN)sω′(ξ ⊕ TN)[N ]) : Nn(BO(k)) → Nn(BO(∞)) →
⊕

(ω,ω′)

Z2,

where the sum is over the pairs (ω, ω′) with the decreasing lists ω, ω′ satisfying |ω|+|ω′| =
n and ω non-dyadic, is injective.

Corollary 2.4. Suppose that (N Z2
m )(n−1) = 0. Then, the composition [(Mm, T )] �→

(sω(T (Fn))sω′(ηn ⊕ T (Fn))[Fn]):

(N Z2
m )(n) → Nn(BO(m − n)) →

⊕
(ω,ω′)

Z2,

summed over lists with ω non-dyadic and |ω| + |ω′| = n, is injective.

Proof. This is immediate from Lemmas 2.1 and 2.3, since the map
⊕

0�j�n−1

Nj(BO(m − j)) → Nm−1(BO(1))

is injective. �

We have the following key result of Kosniowski and Stong.

Proposition 2.5 (see [4]). Consider an involution (Mm, T ) with fixed-point data
((F j , ηj), j = 0, 1, . . . ), and suppose that [(Mm, T )] ∈ (N Z2

m )(n). Let f(X1, . . . , Xm) ∈
Z2[X1, . . . , Xm] be a symmetric polynomial in m variables, of degree at most m, and
write φ(M) ∈ H∗(M ; Z2) for the class obtained from f(X1, . . . , Xm) by substituting
the Stiefel–Whitney class wr(TM) for the rth elementary symmetric function in the Xi.
Then,

φ(M)[M ] =
n∑

j=0

ψj(F j , ηj)[F j ],

where ψj(F j , ηj) is obtained from the formal power series

gj(Y1, . . . , Ym−j , Z1, . . . , Zj) =
( m−j∏

i=1

(1+Yi+Y 2
i +· · · )

)
f(1+Y1, . . . , 1+Ym−j , Z1, . . . , Zj)

in Z2[[Y1, . . . , Ym−j , Z1, . . . , Zj ]] by replacing the rth symmetric polynomial in the Yi by
wr(ηj) and the rth symmetric function in the Zi by wr(T (F j)).

Proof. This follows directly from the main theorem of Kosniowski and Stong [4, § 1].
We have just rewritten (1 + Yi)−1 as 1 + Yi + Y 2

i + · · · and omitted the terms for j > n,
because (F j , ηj) is a boundary for j > n. �
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3. The classification theorem

Let (Mm, T ) represent an element of (N Z2
m )(n). Consider decreasing lists ω = (i1, . . . , is)

and ω′ = (j1, . . . , jt), with |ω| + |ω′| = n and ω non-dyadic. Following the proof of
Boardman’s theorem given by Kosniowski and Stong, we apply Proposition 2.5 to the
polynomial

f(X1, . . . , Xm) = pω(X1, . . . , Xm) · qω′(X1, . . . , Xm),

where

pω(X1, . . . , Xm) =
∑

σSm(ω)∈Sm/Sm(ω)

σ((1 + X1)i1+1Xi1
1 · · · (1 + Xs)is+1Xis

s ),

qω′(X1, . . . , Xm) =
∑

σSm(ω′)∈Sm/Sm(ω′)

σ((1 + X1)j1Xj1
1 · · · (1 + Xt)jtXjt

t ).

We assume that the degree of f(X1, . . . , Xm) satisfies the condition s+2|ω|+2|ω′| < m,
so φ(M)[M ] = 0.

One checks that gj(Y1, . . . , Ym−j , Z1, . . . , Zj) has no homogeneous term of degree less
than or equal to j if j < n (because if we substitute either 1+Y or Z for X in X(1+X),
we get Y (1+Y ) or Z(1+Z), so the degree of a homogeneous term is at least |ω|+|ω′| = n)
and that

gn(Y1, . . . , Ym−n, Z1, . . . , Zn)

= sω(Z1, . . . , Zn) · sω′(Y1, . . . , Ym−n, Z1, . . . , Zn) + higher terms

(because pω(1+Y1, . . . , 1+Ym−n, Z1, . . . , Zn) is equal to sω(Z1, . . . , Zn)+terms of degree
greater than |ω| and qω′(1 + Y1, . . . , 1 + Ym−n, Z1, . . . , Zn) is sω′(Y1, . . . , Zn) + terms of
degree greater than |ω′|). Hence, ψj(F j , ηj)[F j ] = 0 if j < n and ψn(Fn, ηn)[Fn] =
sω(T (Fn))sω′(ηn ⊕ T (Fn))[Fn]. We have thus proved the following.

Lemma 3.1. Suppose that [(Mm, T )] ∈ (N Z2
m )(n). If ω = (i1, . . . , is) and ω′ =

(j1, . . . , jt) are decreasing lists with n = |ω| + |ω′| and ω non-dyadic, then

sω(T (Fn)) · sω′(ηn ⊕ T (Fn))[Fn] = 0,

provided that s + 2n < m.

In other words, the possible non-zero characteristic numbers appearing in Corollary 2.4
are given by the condition s + 2n � m, which leaves few such numbers for values of m

and n such that n � β(m) (where β(m) is defined as in Theorem 1.2). We consider
the different congruence classes of m modulo 5, writing m = 5k − c, where k � 1. It is
convenient to write 2i for a string 2, . . . , 2 of length i with each entry equal to 2.

c = 0. If n < 2k, then all (ω, ω′) satisfy s + 2n < m. If n = 2k, then only ω = (2k),
ω′ = ω∅ does not satisfy the condition.
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c = 1. If n < 2k, then all (ω, ω′) satisfy s + 2n < m. If n = 2k, then several cases must
be excluded, namely (ω, ω′) = ((2k), ω∅), ((2k−1), (2)), ((2k−1), (1, 1)) and, if k � 2,
((4, 2k−2), ω∅).

c = 2. If n < 2k, then all (ω, ω′) satisfy s + 2n < m. If n = 2k, then the exclu-
sions are (ω, ω′) = ((2k), ω∅), ((2k−1), (2)), ((2k−1), (1, 1)) and, if k � 2, ((2k−2), (4)),
((2k−2), (3, 1)), ((2k−2), (2, 2)), ((2k−2), (2, 1, 1)), ((2k−2), (1, 1, 1, 1)), ((4, 2k−2), ω∅)
and, if k � 3, ((4, 2k−3), (2)), ((4, 2k−3), (1, 1)), ((5, 2k−3), (1)) and, if k � 4,
((4, 4, 2k−4), ω∅).

c = 3. If n < 2k − 1, then all (ω, ω′) satisfy s + 2n < m. If n = 2k − 1, then only
ω = (2k), ω′ = (1) does not.

c = 4. If n < 2k − 1, then all (ω, ω′) satisfy s + 2n < m. If n = 2k − 1, then the
excluded cases, if k � 2, are (ω, ω′) = ((2k−1), (1)), ((2k−2), (3)), ((2k−2), (2, 1)),
((2k−2), (1, 1, 1)) and, if k � 3, ((4, 2k−3), (1)), ((5, 2k−3), ω∅).

This establishes that (N Z2
m )(n) = 0 if n < β(m) and that the dimension of (N Z2

m )(β(m))

is bounded above by the dimensions claimed in Theorem 1.2, with the exception of the
elementary special cases m = 1, when N Z2

1 = 0, and m = 3, when (N Z2
3 )(1) = 0 and

dim (N Z2
3 )(2) = 1.

The next task is to construct sets of linearly independent cobordism classes of involu-
tions realizing the above bounds. The one-dimensional trivial vector bundle over a space
N will be denoted by R → N . For a vector bundle ξ → N and a natural number p � 1,
we write that pξ → N for the Whitney sum of p copies of ξ.

We need the following construction of Conner (see [2]). For a given involution (Mm, T )
with fixed-point data (F j , ηj)n

j=0, the involution

Γ (M, T ) = ((S1 × M)/(z, x) ∼ (−z, Tx), τ),

where S1 ⊆ C is the 1-sphere and τ is the involution induced by (z, x) �→ (z̄, x), has
fixed-point data ((F j , ηj ⊕ R)n

j=0, (M, R)). On cobordism classes this construction gives
an operation [(M, T )] �→ [Γ (M, T )], which we write as γ : N Z2

m → N Z2
m+1. If M is a (non-

equivariant) boundary, then γ[M, T ] ∈ (N Z2
m+1)

(n). We can iterate this procedure. From
the five halves theorem, if (M, T ) is not a boundary, there will be a greatest natural
number r � 1 (with 2r � 5n − 2m) such that γr[M, T ] ∈ (N Z2

m+r)
(n).

We begin the definition of the generating classes. The basic one-dimensional represen-
tation R of Z2 with the involution −1 will be written as L. Given a finite-dimensional
R-vector space V with a Euclidean inner product, we write λV for the Hopf bundle
over the associated real projective space P (V ) and λ⊥

V for its orthogonal complement in
the trivial bundle P (V ) × V . For any m, n, with n � m � 2n + 1, set U = R

n+1 and
V = R

m−n. Then, P (U⊕L⊗V ) is a Z2-manifold with fixed-point data ((P (V ), (n+1)λV ),
(P (U), (m − n)λU )). We set

x(n)
m = [P (Rn+1 ⊕ L ⊗ R

m−n)] ∈ (N Z2
m )(n).

Further classes can be obtained by applying the operation γ.
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Lemma 3.2 (see [6]). Let m be odd and n be even, such that n < m < 2n + 1, and
let 2p be the highest power of 2 dividing 2n + 1 − m. Then, the greatest integer r such
that γr(x(n)

m ) lies in (N Z2
m+r)

(n) is equal to 2 if p = 1 and to 2p − 1 if p > 1.

In addition, we consider the involution (RPn × RPn, twist), with fixed-point data
(RPn, T (RPn)); we remark that, up to the Whitney sum with a trivial line bundle,
T (RPn) is equivalent to (n + 1)λn. Write

y
(n)
2n = [(RPn × RPn, twist)] ∈ (N Z2

2n )(n).

In [1], Boardman considered a family of Z2-manifolds H2i,2j , i < j, defined as follows.
Given four (finite-dimensional, Euclidean, non-zero) real vector spaces U , V , E and F ,
one can form the projective bundle P (λ⊥

U⊕L⊗V ⊕ E ⊕ L ⊗ F ) over the projective space
P (U ⊕ L ⊗ V ). This is a Z2-manifold with fixed subspace the disjoint union of the
projective bundles P (λ⊥

U ⊕ E) over P (U) and P (λ⊥
V ⊕ F ) over P (V ), P (V ⊕ F ) × P (U)

and P (U ⊕ E) × P (V ). The Z2-manifold H2i,2j , of dimension 2(i + j) − 1, is obtained by
taking U = R

i+1, V = R
i, E = F = R

j−i. We set

z
(5)
11 = [H4,8] ∈ (N Z2

11 )(5).

This completes the construction of the generators. One, which we now describe, has
special importance.

Definition 3.3. We call the element b = γ2(x(2)
3 ) ∈ (N Z2

5 )(2) the Boardman periodicity
class. It coincides with the class of the Z2-manifold H2,4 and restricts, by forgetting the
involution, to the generator of N5.

We can now state the classification theorem, from which Theorem 1.2 follows at once.

Theorem 3.4. For m > 1, written as m = 5k − c, where k � 1 and 0 � c < 5, the
Z2-vector space (N Z2

m )(β(m)) has a basis consisting of the following elements.

c = 0: if k � 1 bk,

c = 1: if k � 1 bk−1 · γ(x(2)
3 ), bk−1 · x

(2)
4 , bk−1 · y

(2)
4 ,

and, if k � 2, bk−2 · γ2(x(4)
7 ),

c = 2: if k � 1 bk−1 · x
(2)
3 ,

and, if k � 2, bk−2 · (x(2)
4 )2, bk−2 · (y(2)

4 )2, bk−2 · γ(x(2)
3 ) · x

(2)
4 , bk−2 · x

(3)
6 · x

(1)
2 ,

bk−2 · y
(4)
8 , bk−2 · γ3(x(4)

5 ), bk−2 · x
(4)
8 , bk−2 · γ(x(4)

7 ),

and, if k � 3, bk−3 · γ2(x(4)
7 ) · x

(2)
4 , bk−3 · γ2(x(4)

7 ) · y
(2)
4 , bk−3 · γ2(x(6)

11 ),

and, if k � 4, bk−4 · (γ2(x(4)
7 ))2,

c = 3: if k � 1 bk−1 · x
(1)
2 ,

c = 4: if k � 2 bk−2 · γ(x(2)
3 ) · x

(1)
2 , bk−2 · x

(2)
4 · x

(1)
2 , bk−2 · y

(2)
4 · x

(1)
2 , bk−2 · x

(3)
6 ,

and, if k � 3, bk−3 · γ2(x(4)
7 ) · x

(1)
2 , bk−3 · z

(5)
11 .
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Thus, the basis when c = 1 and k = 1 has three elements, the basis when c = 1 and
k � 2 has four elements, namely, the three listed for k � 1 and a fourth listed for k � 2,
and similarly for the other values of c.

Proof. We first recall the classical result of Thom [9], that N∗ =
⊕

m�0 Nm is a
graded polynomial algebra over Z2, with a generator in each dimension m that is not of
the form 2j − 1. In even dimensions, the generator can be chosen to be the class of the
real projective spaces RP 2j ; the generators in odd dimensions can be chosen to be the
classes of certain Dold manifolds.

Note that the class b is not a zero-divisor in N Z2
∗ , because the ring M∗ is polynomial

(or simply because its zero-dimensional fixed-point component is a point).
It is clear, from the compatibility of the filtration with the product in N Z2

∗ , that the
elements listed in each case belong to (N Z2

m )(n). Given the dimensional bounds already
obtained and the injectivity of multiplication by b, it remains to check linear independence
in the three cases m = 9, 11 and 18. This will follow from the fact that, as required by
Corollary 2.4, in each case the corresponding set of the cobordism classes of the top-
dimensional components of the fixed-point data is linearly independent. In principle, this
may be verified by a routine computation using characteristic classes, as in Corollary 2.4.
This is most easily carried out by calculating in the ring M∗ modulo terms of lower
filtration. For all the generators, except z

(5)
11 , the top component of the fixed-point set

is a real projective space, and some simplification can be achieved by using Lemma 3.5.
The classes [(RP 2, pλ2)], p = 1, 2, 3, are linearly independent in N2(BO) and [(RP 4, pλ4)],
p = 1, 3, 4, 5, are linearly independent in N4(BO). We omit the details. �

Lemma 3.5 (see [10]). Let n > 1 be even. Then, the subspace of Nn(BO) spanned
by the classes (RPn, η) as η ranges over all vector bundles on RPn is isomorphic to
H∗(RPn, Z2) under a correspondence taking (RPn, η) to the total Stiefel–Whitney class
(1, w1(η), . . . , wn(η)) of η.

Proof. This is established by calculating characteristic classes. Every bundle is stably
equivalent to qλn for some q � 1. Any characteristic number will be given by a numerical
polynomial in q of degree at most n. Such a polynomial is an integral linear combination
of the binomial coefficients

(
q
r

)
, r = 0, . . . , n, and these binomial coefficients arise from

the characteristic numbers (wn−r
1 (RPn)wr(qλn))[RPn]. �

Remark 3.6. The choice of specific generators in the classification theorem is fairly
arbitrary.

The calculations show that

y
(2)
4 = γ(x(2)

3 ) + (x(1)
2 )2,

y
(4)
8 = γ(x(4)

7 ) + (x(1)
2 )2γ(x(2)

3 ) + γ(x(2)
3 )2 + (x(2)

4 )2,

γ3(x(4)
5 ) = y

(4)
8 + (x(1)

2 )4,

so we could have avoided introducing the classes y
(n)
2n and γ3(x(4)

5 ).
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A (non-trivial) construction of Lü [5, § 2, Lemma 2.1] yields, as a special case, an
involution defined on an 11-dimensional manifold, Z11, whose fixed-point data is of the
form ((RP 1, λ1 ⊕ R

9), (P (1, 2), η5)), where P (1, 2) is the five-dimensional Dold manifold
(S1 ×CP 2)/(z, x) ∼ (−z, x̄). (Here CP 2 is the two-dimensional complex projective space
and x̄ is the complex conjugate of x ∈ CP 2.) We might have chosen to take z

(5)
11 to be

the class of Z11 instead of H4,8.
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28 (1954), 18–88.
10. B. F. Torrence, Bordism classes of vector bundles over real projective spaces, Proc.

Am. Math. Soc. 118 (1993), 963–969.

https://doi.org/10.1017/S0013091513000400 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000400

