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Let R be a strongly Z2-graded ring, and let C' be a bounded chain complex of
finitely generated free R-modules. The complex C'is R(g o)-finitely dominated, or of
type F'P over Rg,q), if it is chain homotopy equivalent to a bounded complex of
finitely generated projective R (g g)-modules. We show that this happens if and only
if C' becomes acyclic after taking tensor product with a certain eight rings of formal
power series, the graded analogues of classical NOVIKOV rings. This extends results
of RANICKI, QUINN and the first author on LAURENT polynomial rings in one and
two indeterminates.
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Part I. Finite domination over strongly Z?-graded rings

1. Introduction

Let L be a unital ring, and let K be a subring of L. A bounded chain complex C'
of (right) L-modules is K -finitely dominated if C, considered as a complex of K-
modules, is a retract up to homotopy of a bounded complex of finitely generated
free K-modules; this happens if and only if C' is homotopy equivalent, as a K-
module complex, to a bounded complex of finitely generated projective K-modules
[7, Proposition 3.2. (ii)]. The following result of RANICKI gives a complete
homological characterization of finite domination in an important special case:

THEOREM 1.1 RANICKI [8, THEOREM 2]. Let K be a unital ring, and let K[t,t71]
denote the LAURENT polynomial ring in the indeterminate t. Let C' be a bounded
chain complex of finitely generated free K|[t,t=1]-modules. The complex C is K-
finitely dominated if and only if both

C ® K@ 'Y)adC ® K(t)
K[t,t=1] K[t,t=1]
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Finite domination over strongly Z2-graded rings 1787

have vanishing homology in all degrees. Here we use the notation K ((t)) = K[[t]][t™]
for the ring of formal LAURENT series in t, and similarly K(t=1)) = K[t='][t]
stands for the ring of formal LAURENT series in t 1.

The cited paper [8] also contains a discussion of the relevance of finite domina-
tion in topology. The rings K (()) and K ((t~1)) are known as NOVIKOV rings. The
theorem can be formulated more succinctly: The chain complex C is K-finitely
dominated if and only if it has trivial NOVIKOV homology.

This result was extended by QUINN and the first author to LAURENT polyno-
mial rings in two variables; contrary to appearance, this is not a straight-forward
modification of the original result, introducing additional levels of complication in
homological algebra.

THEOREM 1.2 HUTTEMANN AND QUINN [3, THEOREM 1.1.2]. Let C be a bounded
chain complex of finitely generated free L-modules, where L = K[x,x= 1, y,y~!] is
a LAURENT polynomial ring in two variables over the unital ring K. The following
two statements are equivalent:

(1) The complex C is K-finitely dominated, i.e., C is homotopy equivalent, as
an K-module chain complex, to a bounded chain complex of finitely generated
projective K -modules.

(2) The eight chain complexes listed below are acyclic (all tensor products are
taken over L):

CoKlr, z '(y), CeKl, x‘ll((y‘l))} (1.12)

CoKly, y (=), CoKly y (=) '
CoK(z,y), CoK(z 'y ))} (1.1b)
CoK(z,y "), CoK(z"", y)

Here K((x,y) = K[z, y]|[1/zy] is a localization of the ring of formal power
series in x and y, and the other rings are defined analogously.

The authors of the present paper generalized theorem 1.1 in an entirely different
direction, exhibiting the graded structure of LAURENT polynomial rings as the
crucial property for setting up the theory.

THEOREM 1.3 HUTTEMANN AND STEERS [4, THEOREM 1.3]. Let R.[t,t7!] =
Drcz Br be a strongly Z-graded ring, and let C' be a bounded chain complex of
finitely generated free R.[t,t~']-modules. The complex C is Ry-finitely dominated
if and only if both

C ® RJ(t7Y) and C @ R.(t)
R.[t,t—1] R, [t,t—1]

have vanishing homology in all degrees. Here the rings
L) =U [ B and R.t)=]J [] Re
n=>0k<n n=20k>—n

are used as formal analogues of the usual NOVIKOV 1ings.
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The notion of a strongly graded ring will be discussed in detail below. In the first
instance, R = @, Ry is a Z-graded ring. The (usual) LAURENT polynomial ring
R[t,t!] has a Z-graded subring R, [t,t~!] with kth component the set of monomials
rpt? with 7, € Rg. In fact, we may identify R.[t,t~'] with R itself. In a similar
spirit, the NOvIKOV rings R((t~1)) and R((t)) have subrings R.((t~!)) and R.((t)
determined by the condition that the coefficient of t* be an element of Ry, for
any k € Z. It may be worth pointing out that these subrings do not contain the
indeterminate ¢, which should be considered a purely notational device.

2. The main theorem

In the present paper, we take the step to strongly Z2-graded rings, combining
ideas from both of the aforementioned publications [3] and [4]. Roughly speak-
ing, a bounded chain complex C of finitely generated free modules over a strongly
Z2-graded ring is finitely dominated over the degree-0 subring if and only if cer-
tain eight complexes induced from C' are acyclic. Indeed, from a Z2-graded ring
R =@,cz2 Ro we construct the following eight NOVIKOV-type rings:

Rz, 27w = [I B EReww

n=20y=>—n x€Z

Re, 2 v )= [] DB Re-vn

n20y=>—n x€Z

Ry, y =)= T[] PRew

n=20x>—n yez

Ry y @)= I BRww

n=20x>—n yez

Rz, )= [] Rew

n=20z,y=>—n

R(z,y )= J] Re-v

n=20x,y=>—n

R*((m_17 y_l)) = U H R(—z,—y)

n=20x,y>—n

Ry =U [I Reew

n>20x,y=>—n

Similar to notation used earlier, the symbols x and y do not stand for actual
indeterminates; they are purely notational devices, emphasizing a formal simi-
larity with LAURENT polynomial rings and their associated NOVIKOV rings. The
ring R, [z, 2~ "]((y)) is the subring of R[z, z~"|(y)) with elements 3, )72 Tap"y"
such that rqp € R(qp), and similar for the other seven cases. With this notational
camouflage, we obtain a perfect analogue of theorem 1.2:

THEOREM 2.1. Let R = D,,cz» Rr be a strongly Z2-graded ring, and let C be a
bounded chain complex of finitely generated free R-modules. The complex C' is
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Ro,0y-finitely dominated if and only if all of the eight complexes

C& Rz, () C& Rz, ()]

(2.2a)
C& Ry, y (@) , C& Ry, y (=)
and
COR(z,y), O Rzt y™h)
(2.2b)

CoR(ey), CoR(v)
have vanishing homology in all degrees.

Applications in Y-invariant theory

Let G be a group. Every character y: G — R to the additive group of the reals
determines a monoid G, = {g € G| x(g) = 0}. Now suppose C is a non-negatively
indexed chain complex of Z[G]-modules. Then C has, by restriction of scalars, the
structure of a Z[G,]-module chain complex. Following FARBER et.al. one defines
[2, Definition 9] the mth Y-invariant of C' as

I"(C) ={x # 0| C has finite m-type over Z[Gy]}/R4 ;

that is, ™ (C) is a quotient of the set of those non-trivial y for which there is a
chain complex C” consisting of finitely generated projective Z[G,]-modules, and
a Z[Gy]-linear chain map f: C' — C with f;: H;(C") — H;(C') an isomorphism
for i < m and an epimorphism for ¢ = m. Two different characters are identified in
the quotient precisely when they are positive real multiples of each other. The set
Y™ (C) can be used to detect whether C' is Z[N]-finitely dominated:

THEOREM 2.2 [2, Corollary 4]. Suppose that C' consists of finitely generated free
Z|G]-modules, and is such that C; = 0 whenever i > m. Let N be a normal sub-
group of G with ABELian quotient G/N. Then the Z|N]-module complex C is chain
homotopy equivalent to a bounded chain complex of finitely generated projective
Z[N]-modules concentrated in degrees < m if and only if the set ¥™(C') contains
the equivalence class of every non-trivial character of G that factorizes through G /N
(i.e., whose kernel contains N ).

For K a unital ring and a character xy: G — R we define the NOVIKOV ring
I?C?X: {f: G — K |VteR: # (supp(f)Nx (] — 00, 1)) < oo} ,

where supp(f) = f~1(K \ {0}), with multiplication given by the usual involution
product. Note that K[G] is a subring of K'G,,. Vanishing of Novikov homology, that

is, vanishing of homology with coefficients in the rings I?G\X, characterizes whether
C' is finitely dominated over K[N], provided G/N is free ABELian of finite rank:

THEOREM 2.3 SCHUTZ [10, Theorem 4.7]. Let C' be a bounded chain complex of
finitely generated free K[G]-modules. Suppose that N is a normal subgroup of G
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with quotient G/N = 7ZF a free ABELian group of finite rank. The complexr C is
K|[N]-finitely dominated if and only if for every non-zero character x: G — R

which is trivial on N the compler C @k|q [?CTX 1s acyclic.

The non-zero characters which are trivial on N correspond bijectively to non-
zero homomorphisms Z* = G/N — R, which in turn correspond bijectively to
elements of R¥ \ {0}; the set of equivalence classes of such characters thus forms
a sphere S*=! = (R \ {0}) /Ry of dimension k — 1. With this identification, the
Y-invariants ™ (C') and their analogues

S(C) = {[X] e k1| CKQ[@G] I?CTX is acyclic}

are subsets of S¥71. The two theorems assert that C' is K[N]-finitely dominated,
with the equivalent finite type complex concentrated in chain degrees < m in case
of the first theorem, if and only if ¥™(C) = S¥~1 or X/(C) = S*~1, respectively.
Even for k = 2, computation of X™(C') and >’ (C) a priori involves infinitely many
NOVIKOV rings.

Fixing a choice of isomorphism G /N = ZF gives a group epimorphism 7: G — ZF
with kernel N, which can be used to equip the group ring K[G] = ®pezk K [W—l(p)}
with the structure of a strongly Z*-graded ring as indicated. The subring of degree
0 elements is precisely K[N]. For k =2, this gives a large and natural class of
strongly Z2-graded rings to which our main theorem 2.1 applies, providing a char-
acterization of K[N]-finite domination of K[G]-module complexes involving eight
NovIKovV rings only. The four conditions (2.2a) occur already in theorem 2.3 (the
ring R.[y,y~t](x)), for example, arising as I?CTX for the character ¢ corresponding
to the point (1,0) € S1), but the four conditions (2.2b) are of a new type. The
special case of a product group G = N x Z?, with K[G] = K[N][z, 2%, y, y~!]
a LAURENT polynomial ring in two indeterminates, is the remit of the paper [3]
where the reader can find additional discussion and examples.

Applications in topology

A topological space Z is finite up to homotopy if and only if (i) it is finitely domi-
nated in the sense of being a retract up to homotopy of a finite CW complex, and
(ii) a certain K-theoretical obstruction vanishes, see theorem 2.5. The obstruction
is only defined if condition (i) is met. The results of [4] and of the present paper
yield algebraic criteria to verify condition (i) for important classes of topological
spaces, including regular covering spaces with deck transformation group Z or Z2.

Apart from their intrinsic interest, finiteness results of this type have manifold
applications in topology themselves. For example, for a closed manifold M to fibre
over S! it is necessary (but not sufficient) that its infinite cyclic covering M is
finitely dominated, cf. [9, §15]. Moreover, if M is finitely dominated and M has
dimension at least 6, a given 1-dimensional cohomology class & € H'(M, R) is rep-
resented by a non-singular closed 1-form provided its LATOUR obstruction 7(M, §),
which is defined if M is finitely dominated, vanishes, cf. [10].
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Homotopy finiteness and finite domination of topological spaces A connected CW-
complex X is homotopy finite if it is homotopy equivalent to a finite CW-complex.
We say that X is finitely dominated if it is a retract up to homotopy of a finite
connected CW-complex, that is, if and only if there exist maps s: X — K and
r: K — X with K a finite connected CW-complex such that r o s is homotopic to
idx. (This is condition (i) from above.)

Any homotopy finite space is finitely dominated, and any finitely dominated
space has a finitely presented fundamental group. The following two theorems,
going back to the work of Wall, are fundamental (see [8, §3] for a discussion):

THEOREM 2.4. A connected CW complex Z is finitely dominated if and only if
e the fundamental group m = 71(Z) is finitely presented, and

e the cellular chain complex C(Z) of the universal covering Z of Z (a complex
of free Z|n]-modules) is Z[r|-finitely dominated, that is, is chain homotopy
equivalent to a bounded complex D of finitely generated projective Z[m]-modules.

THEOREM 2.5. Let Z be a finitely dominated CW-complez, and let D be a bounded
chain complex of finitely generated projective Z[r]-modules homotopy equivalent to
C(Z), as described in theorem 2.4. Let [Z] = > rez(—1)*[Dy] denote the class of D
in Ko (Z[x]). The class [Z] does not depend on the choice of D, and is a finiteness
obstruction in the sense that Z is homotopy finite if and only if [Z] = 0.

This latter theorem is precisely condition (ii) from above.

Fundamental groups mapping surjectively onto Z Let X now be a finite connected
CW-complex with fundamental group G = 71 (X)), and suppose there is a surjective
group homomorphism h: G — Z with kernel 7. Then G is a semi-direct product
G = 7 x Z since h has a section. Let X be the covering space of X determined by
7; it has fundamental group 7. The universal covering space of X is the universal
cover X of X. We can apply the previous theorem to Z = X and Z = X to conclude
that the space X is finitely dominated if and only if 7 is finitely presented, and the
chain complex C(X) is Z[r]-finitely dominated.

As a first remark, we note that G = 7 x Z is a finitely presented group in this
situation since X is a finite CW-complex. If G = 7 X Z is a direct product, then
7 is a retract of G in the category of groups and hence is finitely presented itself.
This, however, does not hold in general for a semi-direct product G = 7 x Z. For
an explicit example, consider m = Z[3] with Z acting on 7 as "z = 2¥ - 2 whence

G=mxZ=(y z|zyz"" =y°)

is finitely presented, while 7 is not even finitely generated. This can be topologically
realized by taking X to be the mapping torus of the self map z +— 22 of S* C C
with X the canonical infinite cyclic cover, the dyadic solenoid [9, Remark 3.5 (ii)].

More in the spirit of the present paper is the observation that Z[G] is a strongly Z-
graded ring, with degree k component the free ABELian group with set of generators
h=1(k) C G. Thus, we can detect finite domination homologically, by combining the
above discussion with the main result of [4] (Theorem 1.3) as follows.
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We write R.[t,t7!] for the strongly Z-graded ring Z[G], and write
H,(X, R.(t*")) for the Novikov homology of X, the homology of the chain
complex C'(X) R, [t,t-1] R*((til)).

THEOREM 2.6. Let X be a finite connected CW-complex with fundamental group
G. Suppose there exists a surjective group homomorphism h: G — Z. Let X denote
the covering space of X determined by ker(h), and let R.[t,t~'] denote the ring
Z|G] equipped with the strong Z-grading induced by h.

(1) The space X is finitely dominated if and only if
e the group ker(h) is finitely presented, and

e X has trivial Novikov homology, H.(X, R.(t*')) = {0}.

(2) Suppose in addition that G = ker(h) x Z, and that h is the projection map
h =pry: G =ker(h) x Z — Z. In this case, ker(h) is finitely presented, and
the space X is finitely dominated if and only if H, (X, R, ((til))) 18 trivial.

Note that the group ring Z[G] is isomorphic, as a Zlker(h)]-ring, to a skew
LAURENT polynomial ring Z[ker(h)],[t,t71], with ¢ corresponding to 1€ Z C
ker(h) x Z and « determined by the action of Z on ker(h). If G = ker(h) x Z then
Z|G] = Z]ker(h)][t,t'] is a LAURENT polynomial ring in the usual sense.

Fundamental groups mapping surjectively onto Z?> Let X be a finite connected
CW-complex with fundamental group G = m1(X), and suppose there is a surjective
group homomorphism h: G — Z? with kernel 7. If h has a section, then G = 7 x Z?
is a semi-direct product, but in general G may have a more complicated structure.
Note that G is finitely presented but = may not be. If G = 7 x Z?2 is a direct product
(with h being the projection map), then r is finitely presented as well. On the other
hand, if G is a free group on two generators a and b, and h: G — Z? is the obvious
surjection, m = ker(h) is freely generated by the (infinitely many) commutators
[a™,b™] for non-zero exponents m and n; of course G can be realized topologically
by the figure-8 space X = S v S!.

Let X be the covering space of X determined by 7. The universal covering space
of X is the universal cover X of X, and its cellular chain complex C(X) is a
bounded complex of finitely generated free Z[G]-modules.

The homomorphism h endows Z[G] with the structure of a strongly Z?-graded
ring which we denote by R = R.[z,z~',y,y~!]. Thus, the eight NOVIKOV rings
listed in (2.1) are at our disposal. If S is any of these rings, we write H,(X,S) for
the homology of the chain complex C (X' ) ®@g S. Using the main result of the present
paper, theorem 2.1, we obtain the following characterization of finite domination
of the covering space determined by ker(h):

THEOREM 2.7. Let X be a finite connected CW-complex with fundamental group G.
Suppose there exists a surjective group homomorphism h: G — Z2. Let X denote
the covering space of X determined by ker(h), and let R = R.[r, 21, y,y~!] denote
the integral group ring Z|G] of G equipped with the strong Z*-grading induced
by h.
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(1) The space X is finitely dominated if and only if
e the group ker(h) is finitely presented, and

e X has trivial Novikov homology:

X, Rlz, 2~ )(y*™) = {0},
X, Rly, y~')(«*")) = {0}, (2.3)
H. (X, R(«™", y*1)) = {0}.

(2) Suppose in addition that G = ker(h) x Z2, and that h is the projection map
h = pry: G = ker(h) x Z? — Z2. In this case, ker(h) is finitely presented, and
the space X is finitely dominated if and only if X has trivial Novikov
homology as in (2.3).

Note that provided h has a section, the group ring Z[G] is isomor-
phic, as a Zlker(h)]-ring, to a skew LAURENT polynomial ring of the form
Zlker(h)]o[z, 271, y,y~1], with 2 and y corresponding to the generators of Z?2
and « determined by the action of Z? on ker(h). If G = ker(h) x Z?, then Z[G] =
Zlker(h)][x, 271, y,y~1] is a LAURENT polynomial ring in the usual sense. In general,
however, Z[G] is not a skew LAURENT polynomial ring.

An explicit algebraic example

The applications discussed so far feature strongly graded rings that are in fact
group rings, and hence specific examples of crossed products which are graded
rings having homogeneous units of all degrees. However, theorem 2.1 does not rely
on this feature. To illustrate the extent of the generalization achieved in this paper,
we describe a strongly Z2-graded ring K that is not a crossed product (and in
particular not a LAURENT polynomial ring), and a complex of finitely generated
free K-modules that is K (0,0)-finitely dominated by the above criterion.

Let K = Kla,b,c,d]/ab+ cd — 1; this is a strongly Z-graded ring if we let a,c
have degree 1 and b,d have degree —1. It is not a LAURENT polynomial ring, in
fact not a crossed product, since the only units in K are the elements of K* in
degree 0, as can be shown using ideas from GROBNER basis theory. In particular,
there is no unit in K.

The Z2-graded ring K= F®fo K, where K(kl) =K, %, K, can be seen to
be strongly graded as the necessary partitions of unity are present as in point (3)
of proposition 4.5. It is not a crossed product since, for example, there is no unit
in K(l,O) = Kl.

We will define a fourfold chain complex V' concentrated in degrees (€1, €2, €3,€4) €
74 with €; = 0,1. The entries are R, a free K-module of rank 1; the non-trivial
differentials are multiplication by

1 —a®1 in 1-direction,

1 — 1®c in 2-direction,
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1—d®1 in 3-direction,
1 — 1® bed in 4-direction.

That is, the map from position (1, e, €3,€4) to position (0, €q, €3, €4) is multiplica-
tion by 1 —a®1, the map from position (e1,1,€e3,€4) to position (eq,0, €3, €4) is
multiplication by 1 — 1® ¢, and so on.

The totalization C' of V' can be obtained by taking ‘iterated mapping cones’,
and up to isomorphism it does not matter in which order we choose the different
directions. Now the map 1 — a® 1 is an isomorphism with inverse

(l-a2l)'=1+a®1+d*@1+a*®@1+...

over the rings K, [y,y '](z)) and K, ((z,y*')), by the usual telescoping sum argu-
ment familiar from the geometric series. Note that the series defines an element in
each of these rings since a* ® 1 = (a® 1)* has degree (k,0). Thus, after tensoring
V' with one of these rings, the mapping cones in 1-direction will be acyclic, hence
the tensor product of C' with one of these rings will be acyclic.

Similarly, the map 1—1®bed is an isomorphism over K. [z,z~'|(y~') and

K. (2, y™1), with inverse
(1-1®bcd) ™t =1+ 1®@bed + 1 @(bed)? + 1 @(bed)® + . .. ;

this is an element of the rings in question since the degree of 1®(bed)* is (0, —k).
Consequently, after tensoring V' with one of these rings the mapping cones in 4-
direction will be acyclic, hence the tensor product of C with one of these rings
will be acyclic. The cases of 1 —1®c and 1 — d® 1 are similar, involving the rings
K.[z,27'((y) and K, (2%, y)) in the former case, the rings K[y, '](«~") and

K.(z~ty*) in the latter.

Structure of the paper

The paper can be seen as an amalgamation of the two publications [3] and [4],
combining the graded viewpoint of the latter with the elaborate homological algebra
of the former. Replacing central indeterminates by inherently non-commutative
structures is a non-trivial task, and it is rather surprising that with the right set-up
the overall pattern of proof remains virtually unchanged.

We start with recalling basic concepts from the theory of strongly graded rings.
The ‘if” implication of the main theorem is verified in part II, building on [4] and
[3]; the main point is to relate the given chain complex with a complex of diagrams
which are the analogues of well-known line bundles on the scheme P' x P!. Part III
focuses on the ‘only if” implication. The main technical device is the algebraic torus
(a ‘two-dimensional’ version of the algebraic mapping torus), and the MATHER
trick which allows to replace the complex C' with an algebraic torus of a complex
D consisting of finitely generated projective R(g )-modules.

3. Graded rings and Novikov rings

DEFINITION 3.1. A Z%-graded ring is a (unital) ring L equipped with a direct sum
decomposition into additive subgroups L = @Uezg Ly such that Lo L, C Lyy. for
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allo, 7 € 72, where L, L, consists of the finite sums of ring products xy with x € Ly
and y € L.. The summands L, are called the (homogeneous) components of L;
elements of L, are called homogeneous of degree o.

Relevant examples are the polynomial ring K[z, y] and the LAURENT polynomial
ring R = K[z, 271, y,y~!] in two variables, equipped with the usual Z?-grading by
the exponents of x and y, respectively; here K may be any unital ring. The main
difference between these examples, from the point of view taken in this paper, is
that the latter is strongly Z2-graded (definition 4.4) but the former is not.

From a unital ring R, for the moment not equipped with a grading, we can
construct various ‘NOVIKOV rings’ of formal LAURENT series as follows:

) = R|
) = R|
Rlz, 27 '(y™") = Rlz, =y~ [y
Rly, y (="") = Rly, y [z [«
R((x, y) = R[[z, y][(zy) "]
R(z~Y y™ ) = Rz, y~ ey
Rz, y~ ") = Rz, y "[(zy~") "]
Rzt y) = Rz, ylll(="1y) ]

Here x and y are central indeterminates which commute with each other, and
with the elements of R. The slightly informal notation S[z]][z~!] is meant to
denote the ring of formal power series in the indeterminate x with coefficients
in S, localized at the multiplicative system {z* |k > 0}.

Returning to the case of a Z2-graded ring R, we can introduce subrings of rings
of formal power or LAURENT series, denoted by adding the decoration ‘x’ as a
subscript to the ring R, consisting of those elements such that the coefficient of
Sy’ is an element of R(s,). The resulting unital subrings will not contain the
elements z and y as, for example, x = 1-x has coefficient 1 € R g ), whereas the
monomial x has degree (1,0). At this point, we may treat the ‘variables’ as a purely
notational device keeping track of degrees of various elements. As an illustration, we
put forward the ring R, [z, 27!, y,y 1] which has elements the finite sums of terms
rstx®y’, with s,t € Z and rs, € R(s+)- We may in fact identify this ring with the
(graded) ring R itself. When applied to the NOVIKOV rings listed above, we arrive
at the identifications listed in (2.1).

4. Partitions of unity and strongly graded rings

DEFINITION 4.1. Let S =@, .42 S5 be a Z2-graded unital ring. For p € Z?, an
finite sum expression of the form 1 =3 ujv; with uj € S, and v; € S_, is called
a partition of unity of type (p, —p).

By a straightforward computation, one can show:
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LEMMA 4.2. For p,p' € Z? let 1 = 2o ujvj and 1= 37, ujvy be partitions of unity
of type p and p', respectively. Then

1= Z Z(uju;)(vgvj)
ko J

is a partition of unity of type p + p'.

If S,5_, = S(0,0) then, since 1 € S0y, there exists a partition of unity of type
(p, —p). Conversely, if a partition of unity of type (p, —p) exists, then 1 € S,5_,
and thus S o) € S,5_, so that S0y = S,5,; this implies moreover

Sa = SUS(O,O) = SUSpS—p c So+pS—p - So-
so that S = S54,5_, for any o € 72, and similarly S, = SpSo—p-

PROPOSITION 4.3. Let R be a Z2-graded ring. Let \, p € 72 be such that there exists
a partition of unity 1 = Zj a;B; of type (A, —X). The multiplication map

Tap: By ® R, — Rxyp, 1Qyr— a2y

(0,0)

is an isomorphism of R g 0)-bimodules; its inverse can be written as

pA7p:7rglp:R>\+p—>R>\ ® R,, ZHZaj@)ﬂjz.

R0,0)
The map py,, does not depend on the choice of partition of unity.

Proof. The map my , is an R )-balanced, thus well-defined, R )-bimodule
homomorphism. Hence, it is enough to show that py ,, considered as a homo-
morphism of right R y-modules, is its inverse. For z € Ry, ,, we calculate

Ta,p O [x,p(2 E ajfBiz =2

so that my , o iy, is the identity map. Similarly, for z € Ry and y € R,, we have

firp © T (2 @y) = Zoo Biz)y = Bz @y =y
J

(since Bz € R(g,0)) so that uy , 0y, is the identity map. a

DEFINITION 4.4 DADE [1, §1):. A Z?-graded ring L = @D, cz2 Ly is called a strongly
Z2-graded ring if L.Ly = Ly for all k,\ € Z2.

The establishing example is the LAURENT polynomial ring in two variables, R =
Klz,z71, y,y~1]. This is a strongly Z2-graded ring when z and y are given degrees
(1,0) and (0, 1), respectively.

Using [1, Proposition 1.6] and lemma 4.2, one obtains the following characteri-
zation of strongly Z2-graded rings:
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Vg €t Ut
&) Er
Vbl €p Vbr

Figure 1. Labelling and orientation of the faces of the square S.

PROPOSITION 4.5. Let R be a Z*-graded ring. The following statements are
equivalent:

(1) The ring R is strongly graded.
(2) For every p € 72, there is at least one partition of unity of type (p, —p).

(3) There is at least one partition of unity of each of the types
i ((13 0)7 (71a 0)) and ((717 0)7 (la 0));

i ((Oa 1)7 (07 71)) and ((Oa 71)7 (Oa 1))
(4) For every p € Z*, we have L,L_, = Lo,0)-
COROLLARY 4.6. If L =D, oy Ly is strongly graded, then all L, are invertible

L o,0)-bimodules. In particular, the L, are finitely generated projective as right and
as left Lg,0)-modules.

Part II. Contractibility of Novikov homology implies finite domination

5. Rings and modules associated to faces of a square

We denote by the symbol & the set of non-empty faces of the polytope S = [—1,1] x
[~1,1] C R?, partially ordered by inclusion. In figure 1, we show our chosen labelling
and orientation of the faces (the orientations will be used later to define incidence
numbers).

With each face F' € &, we associate its barrier cone

Ty =cone{zr —ylz €S, ye F} CR?,

where cone (X) denotes the set of finite linear combinations of elements of X with
non-negative real coefficients. For example, T3, is the first quadrant and T, is the
left half-plane. Given a Z2-graded ring R = @ pez2 Bpy we let Ap = R, [Tr] denote
the subring of R = R.[z,x~!,y,y~!] consisting of elements with support in Tr;
explicitly,

Ap=R.[Tel= @ R,.

peTRFNZ2
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Thus, for example,

Ay, =R.T,,] =R. [x717y]7
Ael = R* [Tel] == R* [377%2!_1]7
AS = R* [TS} =R, [l’,l‘_l, y7y_1] =R

For k € Z, we introduce the R,[Tr]-bimodules

R.[kF + Tp] = b k.
o€ (kF4+Tr)NZ2

where kF +Tp = {kx +y|2z € F and y € Tp}. In different notation,

R, [kUbT + T'Ubr] = mikyikR* [1‘717 y] = xikyikAvbrv

R.[ke; + T, =z FR. [z, y,y7 Y] =axFA,,

R.[kS + Ts] = Rz, 2L y,y7Y] =R

As a final bit of notation for now, we let pr € F N Z? denote the barycentre of

F'. For example, p., = (0,1) and ps = (0,0). Then kF + Ty = kpr + Tr, and every
element o of kI + Tr can in fact be written in the form kpr + 7 for some 7 € Tk.
Also, given faces F' C @, the barrier cones satisfy T = Tr + R - (pg — pr) so that,
in particular, k(pe — pr) € Tc.

LEMMA 5.1. Let R be a strongly Z2-graded ring. For all k € Z and for all F,G € &
with F C G, the R.[Tr]-linear inclusion map ap g: RJ|kF + Tr] — R.[kG + T¢]
s such that its adjoint map

ok oo RuKF +Tp] %@]R*[TG]—>R*[IcG+Tg], r®s s
’ R.[Tr

is an tsomorphism.

Proof. Choose a partition of unity of type (kpp,—kpr), say 1= Zj u;jv; with
u; € Rpp, and vj € R_gyp,.. The map

Bra: RukG+Tg] — R.[kF +Tp] @ R.Ig], z+— Y uj@vm
R.[TF] J

is well-defined. First, u; has degree kpp € kF' C kF + Tp whence u; € R.[kF +
Tr]. Second, every element o of (kG + Tg) N Z? can be written in the form kpg + 7,
with 7 € Tg N Z2. Thus,

oc—kpr =kpeg +71—kpr =7+ k(peg —pr) € Tc .

It follows that for x € R.[kG + T, the product vz is an element of R, [T¢|. The
map [r ¢ is R.[T¢]-linear and satisfies aﬂﬂ’G o Br,q = id by direct calculation, using
1 =73, ujv;. We also have

Bric 0 oo (r®s) = fralrs) = D u; ®urs = Y ur®s=ros
j E

where the equality labelled (x) is true since v;r € R,[Tr] for any r € R, [kF + TF],
whence Bp g o ag,yg =id. O
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6. Cech complexes

Incidence numbers and Cech complexes

Suppose P is a poset equipped with a strictly increasing ‘rank’ function
tk: P— N={0,1,2,---}
and with a notion of ‘incidence numbers’
[, ]: PxP—1Z

satisfying the following conditions:

(DI1) [x:y] =0 unless x >y and rk(y) = rk(z) — 1.

(DI2) For all z < & with rk(z) = rk(z) — 2, the set

Pz<z)={yePlz<y<uz}
is finite, and

> lwiyl-ly:z]=0.

yEP(z<x)
(DI3) For x € P with rk(z) = 1, the set
P(<z)={yePly <z}

is finite, and

Z [z:y] = 0.

yeP(<x)

We can then associate a ‘CECH complex’ with a diagram of K-modules
(K a unital ring) indexed by P:

DEFINITION 6.1. Given diagram ®: P — K-Mod with structure maps ¢g y:
O, — O, define its CECH complex I'(®) =T'p(P) to be the chain complex
concentrated in non-positive degrees with chain modules

with differential induced by [x : ylpy,, for z > y.

It is easy to check that by virtue of (DI1) and (DI2), this is indeed a chain
complex. Condition (DI3) ensures that a cone M — ® on @, that is, a collection of
K-module maps k;: M — &, satisfying the compatibility condition s, = @z 4 ©
Ky, yields a chain complex

.= ]_—‘P(q)),l — Fp(q))o i M

with co-augmentation x induced by the maps k. for x € rk_l(O).
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Cech complexes of diagrams of chain complexes

The assignment ® — T'p(P) is in fact an exact functor from the category of P-
indexed diagrams of K-modules to the category of chain complexes of K-modules.
Hence, it can be prolongated, by levelwise application, to a functor I'p from the
category of P-indexed diagrams of K-module chain complexes to the category of
double chain complexes of K-modules. The resulting double complexes have rows
I'p(Cy), that is, T'p(C)st =T'p(Ct)s, and commuting differentials. By construc-
tion, I'p(C)s+ = 0 for s > 0. Passage to CECH complexes is homotopy invariant in
the following sense:

LEMMA 6.2. Let x: ® — ¥ be a natural transformation of functors &, ¥: P —
Ch(K-Mod). Suppose that for each p € P the component x,: ®, — ¥, is a quasi-
isomorphism. Suppose also that the rank function is bounded above. Then the
induced map of chain complexes

TotI'(x): Totl'(®) — Totl'(V)
is also a quasi-isomorphism.

Proof. This is a standard result, we include an elementary proof for convenience.
For p > 0 let T?, denote the horizontal truncation at —p of T'. That is, T?(®) is
defined to be the double chain complex that agrees with I'(®) in columns —p, —p +
1, .-+, 0, and is trivial otherwise. As the rank function is bounded above, I'? =T°
for sufficiently large p.

The obvious surjection I'?*1(®) — T'P(®), given by identity maps in horizontal
degrees —p and higher, has kernel the vertical chain complex

KP-H((I)) = @ @y,
zerk—1(p+1)

considered as a double chain complex concentrated in column —(p + 1). Its total-
ization is then the shift suspension K,11(®)[—p — 1] of the chain complex K. By
induction on p > 0, using the five lemma for ladder diagrams of long exact homology
sequences induced by the diagram of short exact sequences below,

0 — Kpi1(®)[—p — 1] — TotI?™!(®) — TotI'P(®) — 0

| l l

0 —> Kp1(¥)[—p — 1] — TotI?™(¥) — TotI?(¥) — 0

the induced maps TotI'?(y): TotI'?(®) — TotI'?(V) are seen to be quasi-
isomorphisms for all p € N. O
7. Quasi-coherent diagrams

As before, we denote by the symbol & the poset of non-empty faces of the square
S =[-1,1] x [-1,1]. For the purpose of taking CECH complexes, we equip & with
the rank function rk(F') = dim(F’), and the usual incidence numbers coming from
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Vtl,€t avtr,et
Mvtl R 7\ { €t Mvtr
avtl »€l aet 7S avtr ,Er
Oéel S aer S
Me M5 Mer
Qlblel oo’ Qlbrer
Vbl €D Qlbri€b
WVEE M < N vor

Figure 2. Quasi-coherent diagram.

the orientations indicated in figure 1. For example, [e, : vy:] = 1 and [e, : vy, ] = —1,
and [S : e7] = 1 for any decoration ? € {t,1,b,r}. Let R be a Z?-graded ring.

DEFINITION 7.1. A quasi-coherent diagram of modules is a functor
M:& — Rgo-Mod, F M

as depicted in figure 2. In addition, for each F, the entry MT is to be equipped with
a specified structure of an R.[Tr]-module, extending the given R o)-module struc-
ture. For an inclusion of faces F C G, we require the structure map of>¢: M¥F —s
ME to be R,[Tr]-linear, such that the adjoint map

af’G:MF ® R.Tg] — MY, mezw—al%m) o
R.[TF]

is an isomorphism of R.[Tg]|-modules. A quasi-coherent diagram of chain complezxes
18 a chain complex of quasi-coherent diagrams of modules.

We remark that a quasi-coherent diagram of chain complexes can be considered
as a functor defined on & with values in the category of chain complexes of R g )-
modules, subject to conditions as above specified levelwise. Moreover, any quasi-
coherent diagram of modules can be considered as a quasi-coherent diagram of
complexes concentrated in chain degree 0.

In case R is a LAURENT polynomial ring in two variables with coefficients in a
commutative ring K, a quasi-coherent diagram of modules is nothing but a quasi-
coherent sheaf of modules on the product Pk x PL of the projective line over Ry
with itself.

Given a Z?-graded ring R and k € Z, we denote by D(k) the diagram depicted
in figure 3.

The arrows are inclusion maps. For a strongly Z?-graded ring, this diagram is
quasi-coherent as the adjoint maps are isomorphisms in light of lemma 5.1. These
diagrams will play a central role later on. They are the analogues of certain line
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R, [kvy +T,,] R.[ke; + T,] R.[kvy +T,,.]
rkyR R, 2,y YRR, [z, x 1y~ Ry R, (o1 g1
R.[ke; +T.,] R.[kS + T4 R.[ke, +T.,]

c*R. [z, y,y~] Rz, x71 y,y7 1 rFR [z y,

R.[kvy + T,,] R.[key + T¢,] R [kvy, + Ty, ]
rry=F R, [z, Y] yFR, [z, 71,y arhy=FR, [z, y]

Figure 3. The quasi-coherent diagram D(k).

bundles on P}%(o.o) X ]P’}%(O 0 viz., the external tensor square of O(k). We thus are
led to expect the following calculation of its ‘global sections’ and (trivial) ‘higher

cohomology’ (note H_,I's = lim" as shown, e.g., in [5, Corollary 2.19]):

PROPOSITION 7.2. For k > 0, the complex

k
Ts(D(k) < € Ry <0

z,y=—k

is exact, where v is the diagonal embedding, induced from the inclusions of its source
into D(k)Y with v a vertex of S.
More explicitly, the sequence

0—Tes(D(k) , - Te(Dk) | L Te(DE), < P Ruy —0 (7.1)

15 exact.

Proof. The complex consists of Z2-graded Rg,0)-modules and degree-preserving
maps, so exactness can be checked in each degree separately. In degree (x,y) €
[—k, k]2, the complex is the dual of the augmented cellular chain complex of the
square (equipped with its obvious cellular structure), which is contractible, ten-
sored with R, .. For all other degrees (z,y), we see the dual of the cellular complex
associated to the complement of a visibility subcomplex of the boundary of S. In
either case, the resulting complex is acyclic. More details on the computation can
be found in the appendix of §2.5 in [6], for example. |
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8. Extending chain complexes of modules to quasi-coherent diagrams
of chain complexes

Suppose that M is a finitely generated free module over the Z?-graded ring R.
Then there exists a quasi-coherent diagram which has M as its middle entry. More
precisely, we fix an isomorphism between M and R", for some n > 0, and have
(D,, D(k))® =2 M for any k € Z. This shows that finitely generated free R-modules
can be extended to quasi-coherent diagrams. We need the following chain complex
version of this fact:

PROPOSITION 8.1. Let R be a Z2-graded ring, and let C be a bounded above chain
complex of finitely generated free R-modules. Then there exists a complex Y of
diagrams of the form @, D(k), for various r > 0, such that C = Y as R-module
complezxes. More precisely, suppose that C' is concentrated in degrees < t. There are
numbers

0<k <k <ka< ...

and numbers r, > 0, with r,, = 0 whenever C,, = 0, such that we can choose Y, =
@Tn D(ky,). If C is bounded, then so is Y. If the ring R is strongly Z*-graded, then
Y consists of quasi-coherent diagrams.

Proof. We identify the chain module C,, with R™, for suitable numbers r, > 0,
where r, = 0 if and only if C}, = 0; this amounts to choosing basis elements for the
free modules C),. The action of the differential C,, — C),_1 is then given by left
multiplication by a matrix D,, of size r,_ X r,, with entries in R.

Given a homogeneous non-zero element x € R4, we write a(z) = max(|s|, [t]);
we also agree a(0) = 0. For a general element x € R, let a(x) denote the maximum
of the values a(x;), where the z; are the homogeneous components of x. We denote
by a,, the maximum of the values a(x) where x varies over the entries of the matrix
D,,, with the convention that a,, = 0 if D,, is the empty matrix (i.e., if , =0 or
Tn—1 = 0)

Suppose that C' is concentrated in chain degrees < t. We set k, =0 for n > t,
and

t
k‘n: Z a;
Jj=n+1

for k < t. We then define the chain complex ) of quasi-coherent diagrams by setting
YV, = @Tn D(ky,); the differentials d,,: Y, — Y1 are given by left multiplication
by the matrix D,, in each component, so that

4z V5 = (D D))" 22 (P Dlkur))” = Vi,

Tn—1
(This is well defined: The numbers k, are chosen precisely to ensure that df

maps Y5 to Y ) As D,,_1-D, =0, we have d,_;0d, =0, and C = Y% by
construction.
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It was observed before that the diagrams D(k) are quasi-coherent if R is
strongly Z2-graded (this follows from lemma 5.1); hence ) consists of quasi-coherent
diagrams in this case. |

COROLLARY 8.2. Let R, C, Y, r,, and k,, be as in proposition 8.1, with C' bounded.
Then D =1im Y is a bounded complex of R o)-modules with chain modules

kn

D= @ Ruw)

z,y=—kn

If R is strongly Z*-graded, these Ro,0y-modules are finitely generated projective.
The natural map D — TotI's(Y) is a homotopy equivalence of R oy-module
complexes so that Tot T's (V) is Ro,0)-finitely dominated.

Proof. Consider the double complex concentrated in columns —2, —1, 0 and 1 with
nth row given by

kqn

Fe(Vn) = ( @ R(w,y))rn :

z,y=—kn

Column 1 is the chain complex lim ), see proposition 7.2, which consists of finitely
generated projective Ry o)-modules if R is strongly graded by corollary 4.6. As the
rows are exact (by proposition 7.2 again), standard homological algebra asserts that
the natural map lim Y — Tot T'(}) is a quasi-isomorphism. In the strongly graded
case, this is a homotopy equivalence (all complexes are bounded below and consist
of projective Rg n)-modules) so that Tot I'() is R(,0)-finitely dominated. |

9. Flags and stars, and their associated rings

DEFINITION 9.1. For F € &, define the star of F, denoted st(F), as the set of
faces of S that contain F; this is a sub-poset of &. Let N be the set of flags
in st(F); an element 7 = (Py, P1, -+, Px) of N is a strictly increasing sequence
PyCc P, C...C Py of faces of S with F C Py. We consider Nr as a poset with
order giwen by inclusion (or refinement) of flags, the smaller flag in the partial
order having fewer elements.

For each F' € G, we equip N with the rank function
rk(<P0; P17 ,Pk>) =k
and with standard simplicial incidence numbers: [r: o] = 0 unless the flag o is
obtained from 7 = (P, Pi, -, P;) by omitting the entry P;, in which case

[7: 0] = (—1)7. Whenever we form a CECH complex of a diagram indexed by N,
we will use these data.
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We now attach a ring A(Py, Py, -+, Pg) to each flag (Py, Py, ---, Py) of faces
in &, as follows:

Aver) = R, 9]

Alep) = R.fz, 27 '][y]

A(S) = Riz, 27y, y'|=R
Alvpl, ep) = R.(2)[y]

Ao, S) = Rz, y)

Aley, S) = R.fz, 27 (y)

Alvps e, S) = Ru((2)(v)

The effect of replacing ‘left’ by ‘right’ (i.e., replacing the subscript ‘I’ by ‘r’ through-
out) is to replace x by x~!, while replacing ‘bottom’ by ‘top’ (i.e., replacing the
subscript ‘b’ by ‘¢’ throughout) means replacing y by y~'. Swapping ‘bottom’ and
‘left’ amounts to swapping = with y, and swapping ‘top’ and ‘right’ results in 2"
and y~! swapping places. Thus, for example,

Afva, er) = Ru((y " )[2]  and  A{ver, er, S) = Ry )(27) -

By direct inspection, this collection of rings is seen to have the following
properties:

(1) If oC7, then A(o) C A(r). In particular, if Ser7, then R=
R.[z, 27t y,y~ 1] = A(S) is a subring of A(r).

(2) If 7 € N (i.e., if all faces in 7 contain F'), then Ap C A(7).
Fix F' € 6. The rings A(7) defined above fit into a commutative diagram
Ep: Np — Ap-Mod , 71— A(1)

of Ap-modules with structure maps given by inclusions. For F' = S, the diagram
Eg has a single entry indexed by the flag (S), and takes value A(S) = R there. For
F = ¢;, the left-hand edge of S, the diagram FE., looks like this:

-1 —1 -1 -1
Aler) Aler, S) A(S)
And finally, for F' = vy, the bottom left vertex of S, the diagram FE,,, is depicted

in figure 4.
We let T'n,. (Er) denote the CECH complex of Er. Considering Ap as a chain
complex concentrated in chain level 0, we have a chain map

& Ap — T (Er)

given by the diagonal embedding Ap — @~ A(G). This is indeed a chain map
thanks to property (DI3) of incidence numbers.

LEMMA 9.2. The map &F is a quasi-isomorphism of chain complexes of Ap-
modules.
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A<€l> A<6[,S> A<S>
R.ly,y="[[] R.ly,y~"]((@)) R. [z, x7l g,y
/
<Ubl> €1, >
R.((y)(«))
e N
A<Ubl7el> A(vbl,S) A(Gb,5>
R ((y))[[=] R.((z,y)) Rl 2= ((y))
N /
A<?Jbl, €p, >
7

R () ()

A<’Ubl> _ A<Ubl, €b> A<6b>
R,y R.((x)[[y] Rz, z~[ly]
Figure 4. The diagram FE,,, .

Proof. Note that for F' = S, there is actually nothing to show as the category Ny
has a single object; for F' = ¢;, the claim is equivalent to saying that the sequence

0— Rule gy Ry, y el @ Rl oy, )

Ry, y (@) — 0
is exact, and it is not too hard to see that it is actually split exactly as a sequence
of R(g,0)-modules. The case of F'=wv; a vertex is somewhat more demanding in
terms of book-keeping. Full details are worked out in the proof of Lemma 4.5.1
in [3], writing R.[z,271](y)) in place of R[z,z~!]((y)) (and similar for the other
rings); the proof carries over mutatis mutandis since the claim can be checked in
each degree separately. O

For faces G D F, let Eg denote the Np-indexed diagram which agrees with EG
on Ng, and 1s zero everywhere else. The obvious map of diagrams Fp — E
given by identities where possible, results in a map of chain complexes

I (Ep) — T (Bf) =T (Eq)

given by projecting away from all those summands in the source which involve
flags in Mp \ Ng. These maps are functorial on the poset & so that there results a
commutative diagram

E:6 — R(0,0)-Mod 5 F— FNF(EF) .
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PROPOSITION 9.3. The maps ¥ constructed above assemble to a natural transfor-
mation

¢&:D(0) — E.

Its components 1 Ap — Tnr,.(EF) are quasi-isomorphisms of complexes of Ap-
modules.

Proof. This is the content of lemma 9.2, together with the observation that the
maps £ are natural in F with respect to the structure maps in E. O

Given a flat Ap-module Mp, we thus obtain a quasi-isomorphism

o ideelr
X' Mp— Mp @ Ap 28 Mp @ Tnp(Ep) = Ta (Mp @ EF) ;

here Mr ®4, EFr stands for the pointwise tensor product of the module Mg with
the entries of the diagram Er. In other words, the sequence

0— Mp — FNF(MF;‘X) Er)o — Iy, (MF? Er)_1
F

F

— F_/\/F(MFE@ EF),Q — 0 (92)
F

is exact.
For M an arbitrary quasi-coherent diagram, we obtain a natural transformation

X:M-—-M @ D0)—M © E— M (9.3)
D(0) D(0)

where the target M’ is the diagram of chain complexes

M/Z FHFNF(MF;? E‘F)7
F

M ®po) D(0) denotes the pointwise tensor product

M ® D(0): F— Mp @ D(0)Y' = Mp ® Ap ,
D(0) AR Af

and M ®p oy E stands similarly for the pointwise tensor product of the diagrams
M and E. If moreover M is such that the entry Mg is a flat Ap-module, the
components of y are quasi-isomorphisms.

10. From trivial Novikov homology to finite domination

We will now prove the ‘if’ implication of theorem 2.1. So let R be a strongly Z2-
graded ring. Suppose that C' is a bounded complex of finitely generated free R-
modules, and further that the complexes listed in (2.2a) and (2.2b) are acyclic.
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In view of the assumed freeness of C, these eight complexes are then actually
contractible. They are of the form

C®Ale, S) and C® Av, S)
R R

where e and v denote an edge and a vertex of S, respectively. As tensor products
preserve contractions, it follows that for all eight maximal flags (v, e, S), for v a
vertex of S and e an edge incident to v, the complex

CRAv, e, Y ZCRAv,S) ® Alv,e, S) =0 (10.1)
R R A(v,S)

is contractible (and hence acyclic) as well.

Extend the complex C' to a complex of sheaves ): F +— Vg, which can be done
by proposition 8.1. In more detail, this means that we find a complex of sheaves
such that C is identified with }¥, and such that there is a quasi-isomorphism
limY — Tot I's () with R -finitely dominated source (corollary 8.2).

Let, for the moment, F' # () denote a fixed face of S. We observe that if F' # S,

Ve @ A(F, S) 2 YVp ® Ag ® A(F, S) = C®A(F, S) ~0 . (10.2)
Ar Ap 0 A " R

The isomorphism labelled (1) combines two facts: first, the entries of the complex
Y are quasi-coherent diagrams (proposition 8.1) so that Yr ®4, Ag = Y?; second,
by construction of ) there is an identification of VS with C.

If F =wv is a vertex and e D v an edge incident to e, we make use of (10.1) to
conclude similarly

Vo @ Alv, e, Y2V, @ Ag @ A{v, e, S) 2 C R A(v, e, S) ~0. (10.3)
A, Ay As R

For arbitrary F' # (), exactness of the sequence (9.2) implies that the double
complex

Yr — Tap (ng? Ep)

has exact rows (using the fact that Y consists of projective Ap-modules), so there
results a quasi-isomorphism

Tot(xF): YVr — TotI‘NF(nga Er).
F

We will now make use of the fact that some entries of the diagram Vr ®4, Er
are known to be acyclic. Let Zr denote the Np-indexed diagram which agrees
with Vp ®4, Er on those flags not containing S, and is zero elsewhere. Let Kp
denote the diagram which takes the value C at {S}, and is zero otherwise. The
obvious surjective map Vp ®a, Er — Zp @ K is a pointwise quasi-isomorphism,
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by (10.2) and (10.3), and hence induces a quasi-isomorphism

Tot Twr (Vi ® Ep) — TotTn, (Zr © Kp).
F

We compute further that the target of this map is
TotTprp (ZF) @ TotT ar (K ) = Tot Tarn (Zr) @ C.
In total, this yields a quasi-isomorphism
EF: Yp — Tot T, (Zr) ® C.

Allowing F' to vary again, and making use of the naturality of the constructions
above, we see that we obtain a natural quasi-isomorphism of diagrams

E:Y — TotI'n_,(Z()) ® con (C),
with the G-indexed diagram
Uny(Zo)): F = Tne(Zr)
and the constant diagram
con(C): F—C .

It follows that TotI's(Y), which is an R )-finitely dominated by corollary 8.2,
is quasi-isomorphic to

TotI's (Tot T (Z(—))) @ Tot I's (con (C)) .

The second summand is, in turn, quasi-isomorphic to C. (In effect, this is true since
the nerve of & is contractible; for a more explicit argument, observe that the double
complex

I's(con(C)) «— C

concentrated in columns —2, —1, 0 and 1 has acyclic rows so that its totalization
is acyclic. But the totalization is, up to isomorphism,the mapping cone of the
map C' — Tot I's (con (C)) which is thus a weak equivalence. See also [3, Lemma
4.6.4].)

Thus in the derived category of the ring Rg ), the complex C' is a retract of
TotI's(Y), and as both complexes are bounded and consist of projective R )-
modules, this makes C' a retract up to homotopy of TotI's()). As the latter is
Rg,0)-finitely dominated so is C, as was to be shown.
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Part III. Finite domination implies triviality of Novikov homology

11. Algebraic tori

DEFINITION 11.1. Let R = @, .52 Ro be a strongly Z2-graded unital ring. Given an
R-module M and an element p € 72, we define the map of right R-modules

Xor M @ R— M ® R, mQrw— mu; @ uir
g R0,0) Ro,0) zj: T

where 1 =73 ujv; is any partition of unity of type (—p, p).

The map x, is R(o,0)-balanced and independent of the choice of partition of unity
as its restriction to M ®Ro.0) R, can be re-written as

o~

M © R, M ® R, ® Ryyp—M ® R
R0,0) H—p,o+p R0,0) R0,0) w R0,0)

with p_p o4+, the R(gg)-bimodule isomorphism from proposition 4.3, and with
wm@e®y) = (mz)®y. In case M = R, the map x, is an R-bimodule homo-
morphism.

Of course x(o,0) = id. As X, does not depend on the choice of partition of unity,
lemma 4.2 implies:

COROLLARY 11.2. For all p,o € Z?, there are equalities of maps XpXo = Xpto =
XoXp- The maps x, are isomorphisms of R-modules with lel = X—p-

We can consider

M @ R=PM @ R,
R(o,0) pezz O

as a Z2-graded R-module. With respect to this grading, we observe:

LEMMA 11.3. The map x, maps homogeneous elements of degree o to homogeneous
elements of degree p+ o. For the homogeneous element m @ r of degree —p, the
formula x,(m®r) =mr®1 holds.

Let C be a chain complex of R-modules. Then x,, applied in each chain level,
defines a chain map

Xp:C ® R—C ® R.
Ro.0) R0.0

Let D be an additional R )-chain complex, let a: C'— D and #: D — C be
Rg,0)-linear chain maps, and let H: idg =~ Sa be a homotopy from Sa to id such
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that dH + Hd = Sa — id¢. Then the outer square in the diagram T'(«, 3; H)

id* 7a*X61 /8*

D ® R D ® R
Ro,0) R0,0)

id* —a*xe, B* T(Oé,ﬁ, H)

id"—a"xey 8"

D ® R —

R(0,0) id"—axe,

® R
R0,0)

(writing f* = f®id, for any map f) is homotopy commutative, with the diagonal
arrow recording a preferred homotopy of the two possible compositions. Note that
if fa =ide, we can choose H = 0 and in this case the outer squares of T'(a, 3;0)
commute by corollary 11.2.

DEFINITION 11.4. The algebraic torus %(a, B; H) is defined as the totalization of
the homotopy commutative diagram T (o, B; H). That is, T(a, B; H) is the complex
with chain modules

(o, B3 H),

:(Dn—Z & R)@(Dn—l b2 R)@(Dn—l & R)®(Dn & R)
R0.0) R0.,0) R0.0) R0.0)

and boundary ds(a.p;m) given by the following matriz:

d* 0 0 0
id* — a*xe, B* g 0 0
id* — a*xe, 0 0 —d* 0

o (Xer H* Xey — Xea H Xey)B* 1d" — axe, 5 —id" + a*xe, * d*
12. Canonical resolutions

Let C be a chain complex of R-modules. The commutative diagram

C® R0 o R

R0.0) Ro,0)
4y, id* —Xey T(id¢,idc;0)
id*—Xel
C @ R—=(C ® R
R 0,0 R0,0)

gives rise, via totalization, to the algebraic torus ¥(id¢,id¢;0). The R-module
structure map v: (x,7) — zr induces a map of R-module chain complexes

k: Z(ide,ide; 0) — C' .
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PROPOSITION 12.1 Canonical resolution. The map k is a quasi-isomorphism. If C
is a bounded below complex of projective R-modules, then k is a chain homotopy
equivalence.

In preparation of the proof, we note that T(id¢,id¢e;0) can be described as the
totalization (in the usual sense) of a double complex of the form

2
C®R—>(C® R) —C ® R. (12.1)
Ro0.0 Ro.0) Ro.0)

The R-module structure map v: (z,7) — xr of C' can be used to augment this to

the R-module double complex

2

0—-C ® R—><C ® R) —C ® RLC=o0. (12.2)
R0.0) R0.0) R0

We will consider a single row of this double complex, that is, a sequence of the

form

2
0—M ® RL(M ® R) PM 9 RLM—0 (12.3)
R 0,0 R0,0) R(0,0)

where M is a right R-module. Here the maps o and 3 are given by the matrices

_(id = xe, o Cia
a=([42%) wnd g (d v - xa)

LEMMA 12.2. The complex (12.3) is exact.

Proof. We allow M to be an arbitrary R o)-module initially. We have the direct
sum decomposition M ®g, , R = @(i,j) M ®p .o Rj; in fact, M®pg,, Ris a
Z2-graded R-module in this way. Any element z € M ® Reo.0) It can be expressed
uniquely in the form

z= E m;; where m;; € M ® R(i,j),
i,jE€Z R0

such that m; ; = 0 for almost all pairs (4, j). We say that z has x-amplitude in the
interval [a,b] if m; ; = 0 for ¢ ¢ [a, b]. The support of z is the (finite) set of all pairs
After these initial comments, we proceed to verify exactness of the sequence. We
remark first that v is surjective since v(p ® 1) = p. As a matter of fact, o(p) =p® 1
defines an R(g g)-linear section o of .
Next, we show that « is injective. Let z =}, ., m; j be an element of ker(«).
Since Xe, (mi,j) € M @Ry, o, R jr1), the equality

D (i = Xey (mig))
afz) = | <L =0
) D (Mg = Xea (i)
1,JEZL

implies, by considering the homogeneous component of degree (i, j) of the second
entry, that m;j — Xe,(mi;—1) = 0. If 2 # 0, there exists (¢,j) in the support of z
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such that m; ;1 = 0. For these indices, we have m; ; = Xe, (m4,j—1) = Xe,(0) =0,
a contradiction. This enforces z = 0 whence « is injective.

To show that im« = ker 3, we will take an element (21, 23) of ker 8 and show
that it can be reduced to 0 by subtracting a sequence of elements of im a C ker (.
This clearly implies that (z1,22) € im « as required.

So let (z1, 22) € ker 3, where

Z1 = E mi j and 29 = E Nij with My 5, Nij € MR® R(W)
ijEL ij€L @0

Choose integers a, b and k such that z; has z-amplitude in [a,k] and zo has
x-amplitude in [a, b]. If k > a, we define

u = ZX—Q (m;w-) eM ® R R with X—e; (mkyj) ceM ® R(k—l,j)a
jez R0,0) R0,0)

and set (2], z5) = (21, 22) — a(u). The (k, j)-homogeneous component of z] vanishes
by construction of u and corollary 11.2, so that z] has z-amplitude in [a, k — 1] while
the z-amplitude of z; remains in [a,b]. The element (z1,25) will be in im « if and
only if (21, 22) € im .

By iteration, we may thus assume that our initial pair (z1, z2) is such that the
z-amplitude of z; is in {a} = [a, a]. This actually necessitates zo = 0. To see this,
assume zz # 0. We can then choose (4, j) in the support of z5 (so that in particular
i > a) such that (i +1,j) is not in the support of 23, i.e., such that n;y1; =0.
Since (3(z1, z2) = 0 we have, by considering the homogeneous component of degree
(i+1,7), the equality

Mit1,j — Xes (Mit1,j-1) = Nit1,j + Xey (Nij) =0 .

But the first three terms vanish, by choice of ¢ and our hypothesis on 21, so that
Xei (ni,5) = 0 whence n; ; = 0, contradicting the choice of 1.

Thus, zo = 0. This in turn implies that 3(z1,0) = 0 so that mg ¢ — Xe, (Ma,e—1) =0
for any . If z; is non-zero, we let ¢ be minimal with mg ¢ # 0. Then mg,, =
Xes (Mar—1) = Xe, (0) =0, a contradiction. We conclude that (21,22) =0 € im«
as required.

To show im 3 = ker+, it is enough to produce an R gy-linear map

2
o: M ® R—>(M ® R)
R0.0) Ro,0)

such that By + oy =id, where o is the section of v given by o(p) =p®1. It is
enough to define ¢ on homogeneous primitive tensors + = m®r with r € R,, for
the various p € Z2.

o Ifa,b>0:

b a
p(z) = ( - Z X(0,—k) () Z X(—£,—b) (ff))
k=1 =1
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o Ifa,b<0:

[b[=1 la]-1

p(r) = ( kZ:O X(0,k)(2) ez:% X(z,|b\)($))

e [fa<Oandbd>0:

la]—1
p(r) = (— > Xo—k) () -y X(e,|b|)($))
k=1 £=0
e Ifa>0and b <0:
[b|—1 a
p(x) = ( D xomE@) D X(—e-w) (I)>
k=0 =1

In view of corollary 11.2, computing Sp(m®@r), for r € R a homogeneous ele-
ment of degree p, results in a telescoping sum simplifying to m®@r — x_,(m®r).
But x_,(m®r) =mr®1 by lemma 11.3 whence x_,(m®r) = oy(m®r) so By +
o = id as required. O

Proof of proposition 12.1. The map k is a quasi-isomorphism if and only if its map-
ping cone is acyclic. But this mapping cone is precisely the totalization of the double
complex (12.2). As it is concentrated in a finite vertical strip, and as its rows are
acyclic by lemma 12.2, the totalization is acyclic by standard results for double
complexes. 0

13. The Mather trick

Let C be a chain complex of R-modules, and let D be a chain complex of R g)-
modules. Suppose we have R g)-linear chain maps a: C — D and 3: D — C
and a chain homotopy H: idc ~ fa such that dH + Hd = Sa — ide. A calculation
shows:

LEMMA 13.1. The matriz

a* 0 0 0
—afu H* o 0 0
—a o H™ 0 a* 01"’
K afuoH* —a*uH®  oF

where we abbreviate
K =a"(mH pg — peH i )H*: C, @ R — Dyp2 @ R,
defines a chain map of algebraic tori

A: Z(ide,ide; 0) — (e, B3 H) . O
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THEOREM 13.2 MATHER trick. If the map « is a quasi-isomorphism, then C' is
quasi-isomorphic to T(«, 8; H). More precisely, the maps

C & T(ide,ide; 0) S (o, 55 H)
are quasi-isomorphism.

Proof. The map k is a quasi-isomorphism by lemma 12.1. The map A, defined in
lemma 13.1, is a quasi-isomorphism if « is since the representing matrix of A is lower
triangular with diagonal terms a*. Note that a* = a ®idpg is a quasi-isomorphism
since R is strongly graded and hence is a projective R g)-module. (]

14. Novikov homology

Let K be a Z?-graded R-module, with R a Z?-graded ring as usual. In analogy to
(2.1), we can define

Ko, 27w = I] DEew

n=>20y>—n x€Z

which is an R.[z,2~!]((y))-module in a natural way; similarly, we can define

E@@y=U [I Kew-

nz20z,y=>—n

which is an R, ((z,y))-module in a natural way; and so on.
For R-modules of the form K = M ®@pg,, R, with M an R -module, these
constructions are close to the usual induction functors; for example:

PROPOSITION 14.1. Let M be a right R o)-module. There is a natural map

Upy: M @ Ri(z,y) —(M @ R).(z v) .

R0,0) R0.0)

m®§ Ty E Mmryy
z,Yy z,Yy

which is an isomorphism if M is finitely presented.

Proof. This can be verified by standard techniques: establish the result for M =
R,y first (in which case it is trivial), extend to the case M = R?O 0) and then treat
the general case using a finite presentation of M. O

From now on, assume that C' is a bounded below complex of finitely generated
projective R-modules which is R oy-finitely dominated. Thus, we choose, once and
for all, a bounded complex of finitely generated projective Ry o)-modules D and
mutually inverse chain homotopy equivalences a: C — D and §: D — C, and a
chain homotopy H: id¢ ~ B« so that dH + Hd = fa — id¢.

The MATHER trick 13.2 guarantees that C' and T(«, 8; H) are quasi-isomorphic;
as both R-module complexes are bounded below and consist of projective
R-modules, they are in fact chain homotopy equivalent.
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LEMMA 14.2. The chain complex C @ R.((z,y)) is contractible.

Proof. By the previous remarks, it is enough to show that the chain complex

T, B; H) @r Ry ((z,y)) is acyclic. Recall that T(«, 5; H) is obtained from the dia-

gram T'(«, 3, H) by a totalization process, which commutes with induction. Thus,

we can realize ¥(«, 5; H) @ R« ((z,v)) by totalizing the following diagram:

id*—a*xe, B~
R0,0) R(0,0)

id”—a Xey 5° i —axe, 8°

D ® R.(=y) D @ R.(z,y)

*_ % *
R(0,0) id"—a%xe, 8 R(o,0)

(We have used implicitly that the two functors - ®pgg, R(z,y) and
- @R R®r Ri((7,y)) are naturally isomorphic.) By lemma 14.1, we can re-write
this further as the totalization of the diagram

D.((x,y))

id* —a*xe, B°
>

D.((x,y))

id"—a"xey 8"

/1/696* id*—a*xeq B*

T
5%

D@, y) ~g—rs De(@9) (14.1)

with maps suitably interpreted. To wit, an element z of D.((x,y)) (in some
fixed chain level) has the form z = Zaw?a 2y for some a € Z and certain z, , €
D ®p o Ry, and

(id" = 0" xe, 8)(2) = Y 2oy — OXer B (Z21)

z,yza

see lemma 11.3; similar formulae can be written out for the other maps.
The point is that the self-map id* — a*xe,8* of D.(=z,y)) is an isomorphism
with inverse given by the ‘geometric series’

P(z) =Y (a*xe8)"(2)
k>0

=z+a"x, 0 (2) + a"xe, 05" X, 07(2) + .. ..

This follows immediately from the usual telescoping sum argument, once it is under-
stood that the series actually defines a well-defined self-map of D, ((z,y)). But this is
the case because a*x., " maps an element of degree (x,y) to an element of degree
(z +1,y).
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It is now a matter of computation to verify that the matrix

0P 0 0
000 0
P=1o 0 0 -p (14.2)
000 0

almost defines a contraction of the totalization of (14.1), in the sense that dp + pd
is an automorphism ¢ (in each chain level)—in fact, ¢ is given by a triagonal
matrix with identity diagonal entries—where d denotes the boundary map of the
totalization. It follows that ¢~ 'p is a chain contraction as required. O

LEMMA 14.3. The complez C @ R.[y,y~'](z)) is contractible.

Proof. This is shown just like the previous lemma. It is enough to demonstrate
that the chain complex T (o, 3; H) @ g R.[y, y~*](x)) is acyclic; this complex can be
written, using a variant of lemma 14.1, as the totalization of the following diagram:

D.[y,y"1(x) D.ly,y (=)

id**a*Xelﬁ*
_—

id"—a ey B id"—axe, 8

Duly.y (@) arzr Dol (@) (14.3)

The self-map id* — a*xe,3* of Dily,y~t](z)) is an isomorphism with inverse
P(z) =3 k>0 (a*xelﬂ*)k(z); the matrix p from (14.2) is such that dp + pd is an
automorphism ¢ (in each chain level), where d denotes the boundary map of the
totalization. Consequently, ¢~ 'p is a chain contraction. O

Proof of only if in theorem 2.1. By lemma 14.2, the complex C ®p R.(xz,y)) is
acyclic. Replacing R by the strongly Z2-graded ring R with R(m’y) = R4y,
effectively substituting =% for x, gives that C @z R.((z,y) = C ®r R.(271,y))
is acyclic. The remaining cases of (1.1b) are dealt with by similar re-indexing.

By lemma 14.3, the complex C ® g R.[y,y~']((x)) is acyclic. Replacing R by the
strongly Z*-graded ring R with R, ,) = R(_s,,) gives that C ®z R.[y,y'](z) =
C®@r Ri[y,y~](z~1)) is acyclic. The other cases of (1.1a) are dealt with by using
R(w,y) = R(y’a:) and R(w’y) = R(,y,aj), respectively. U
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