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ABSTRACT. The problems of dynamics of extended bodies in metric theories of gravity 
are reviewed. In a first approach towards the relativistic description of the Earth 's rota-
tional motion the post - Newtonian treatment of the free precession of a pseudo - rigid 
and axially symmetric model Earth is presented. Definitions of angular momentum, 
pseudo - rigidity, the corotating frame, tensor of inertia and axial symmetry of the 
rotating body are based upon the choice of the standard post - Newtonian (PN) coor-
dinates and the full PN energy momentum complex. In this framework, the relation 
between angular momentum and angular (coordinate) velocity is obtained. Since the 
PN Euler equations for the angular velocity here formally take their usual Newtonian 
form it is concluded that apart from PN modifications (renormalizations) of the inertia 
tensor, the rotational motion of our pseudo - rigid and axially symmetric model Earth 
essentially is "Newtonian". 

1. INTRODUCTION 

Seventy years now have passed since Einstein's paper on the foundations of Gen-
eral Relativity appeared in the literature but there is no satisfactory and practicable 
description of the motion of extended bodies in Einstein's theory of gravity yet. 

The full problem of dynamics of extended bodies in Einstein's theory of gravity is 
summarized in Fig. l , which arose out of a discussion with Prof. J. Ehlers. The starting 
points of theoretical considerations are: (I) Einstein's field equations for the metric 
tensor g, (II) equations of state specifying a model of matter and (III) a certain set of 
boundary conditions such as e.g. asymptotic flatness for g or no incoming gravitational 
radiation. If the model of matter is compatible with the field equations all information 
about the dynamics of matter is embodied in the local equations of motion as given by 
the vanishing of the divergence of the energy momentum tensor 

νμτ
μν = 0 (1) 

The metric tensor g appears explicitly in (1); therefore it is called an equation of motion 
of the first kind (Ehlers). Expressing the metric tensor in terms of matter variables is 
still an unsolved problem of Einstein's theory of gravity. 

In the Newtonian framework one successfully proceeds with the introduction of col-
lective variables such as centres of mass, mass multipole moments, angular and trans-
lational momenta etc. and derives global equations of motion for the momentum and 
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angular momentum vector where the Newtonian potential can be expressed in terms of 
the multipole moments of the sources. Such an equation of motion is called to be of the 
second kind. Dixon (1979) has characterized the steps that are necessary to generalize 
this Newtonian route to the full Einstein theory: 

i) suitable choice of a representative point (mass centre) within each body 
ii) derivation of a momentum - velocity relation 

iii) evaluation of the total force and torque exerted on an extended body in a gravita-
tional field 

iv) characterization of the self - field 
v) evaluation of the self - force and self - torque 

vi) determination of the external field in terms of matter variables (multipole moments) 
of the field - generating bodies 

Whereas most of the steps (especially ii) are conceptually trivial in Newtonian space -
time they are highly problematic in a relativistically curved space - time; the separation 
of the total field into an external and a self - part (iv) and especially the determination 
of the gravitational field in terms of matter variables of the sources seems to be an 
almost hopeless task at present. This situation is characterized by question marks in 
Fig. l . Dixon (1979) (see also Ehlers and Rudolph 1977) has solved the first three parts 
i)-iii) of the whole problem in an exact way (i.e. without resorting to approximation 
schemes) and in terms of geometrical (i.e. coordinate independent) quantities. However, 
the complexity in the construction of dynamical quantities such as momentum vector, 
angular momentum tensor and reduced mass multipole moments is so enormous that 
so far no application of Dixon's theory exists in the literature even for simple external 
fields and it is not very likely that much progress will be achieved here in the near 
future. 

The other route, which is usually chosen in the literature, selects a certain set of 
coordinates from the beginning by requiring a certain gauge condition. If the coordi-
nates are chosen it is not difficult to formulate some approximation scheme e.g. for 
slow motion and weak fields and to express the components of the metric tensor ρ μ ι / as 
functionals of matter variables such as density of mass, pressure etc. Inserting these 
function als in equation (1) leads to the local equations of motion of the second kind. 
For the (parametrized) post - Newtonian treatment the equations of motion are given 
by eqs. (39.46) and (39.47) of Misner et al. (1973). Then one can introduce a set of 
collective variables like e.g. momentum vector and angular momentum tensor with com-
ponents ρ*1 and 3μυ', according to the set of coordinates chosen. In the post - Newtonian 
framework one usually defines these quantities by: 

where the integrals are taken over a spacelike hypersurface as given by the post - New-
tonian 3 + 1 split of space - time into space and time and Θμι/ is the energy momentum 
complex. From the form of eqs. (2) and (3) it is obvious that these definitions depend 
upon the the chosen (PN) gauge and orientation of spacelike hypersurfaces though these 
quantities define vectors and tensors w.r.t. a restricted set of coordinate transforma-
tions. Besides this, the quantities ρ μ and 3μν defined in such a way can be interpreted 

(2) 

and 

(3) 
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as momentum and angular momentum only in the asymptotic regime (r —• co) where 
space - time is sufficiently flat. These expressions for momentum and angular mo-
mentum clearly have the great advantage tha t their evaluation is simple in the PN 
framework, whereas the corresponding geometric quantities as given by Dixon (1979) 
involve e.g. knowledge of the world function and derivatives thereof (see e.g Synge 1966) 
which for concrete problems will not be easy to obtain. The non - geometric character 
of collective variables generally presents no difficulty in principle, since they are not 
directly observable. On the other hand it is clear that such a theory of "chrono - geo-
metrical corrections" (to the Newtonian theory) only makes sense if the observables are 
described by scalars in the full geometrical sense e.g. in the frame of tetrad formalism 
of reference frames. Such an introduction of collective variables finally allows to deduce 
the desired global equations of the second kind where the last step requires a tedious 
piece of work. 

For the translational motion in the (parametrized) post - Newtonian scheme this 
has been done e.g by Will (1981) who neglects higher multipole moments of the bodies 
and their intrinsic angular momenta and assumes the whole system to be secularly 
stationary, a condition that has been further analyzed in detail by Spyrou (1978). For 
the full post - Newtonian formalism the global equations of the second kind (including 
e.g. tidal effects) for translational motion have not been written down. 

The situation is even worse for rotational motion where PN - results are known only 
for very special cases (e.g. Barker and O'Connell 1975, Börner et al. 1975, Caporali 
1979). Clearly, much work will have to be done in the near future to obtain the desired 
global PN - equations of translational and rotational motion in their complete form and 
to assess the magnitudes of the various "PN - corrections" to Newtonian dynamics. 

In the following we will concentrate upon the free precession of some (almost) axially 
symmetric body (Earth) in the post - Newtonian framework. Our considerations were 
motivated by a paper presented by Fukushima (1986) which we found to contain some 
subtle flaws that are corrected in this article. For example he neglected contributions of 
the gravitational field to momentum and angular momentum which is correct only for 
the linearized theory that will fail for the treatment of the Earth 's rotation (see Misner 
et al. 1973, Chapter 19.1). 

2. POST - NEWTONIAN FREE PRECESSION OF A PSEUDO - RIGID AND AX-
IALLY SYMMETRIC MODEL EARTH 

Let us consider the free precession of a single body in the Einstein post - Newtonian 
framework and choose the origin of our PN - frame at the centre of mass Ζ (Will 1981) of 
the body. The angular momentum tensor w.r.t. an asymptotic observer is then given by 
expression (3) which is is a conserved quantity provided the energy momentum complex 

is symmetrical, which is the case if ίμν denotes the Landau - Lifshitz complex; 
g = detect, = - 1 - 4Ï7/C 2, where U is the Newtonian potential. If constant - time 
hy persurf aces are chosen, eq. (3) can be written as 

which is time independent if the matter distribution is confined to a compact support. 
The angular momentum tensor defines the corresponding vector by 

(4) 

(5) 
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where η**"* is the completely antisymmetric tensor with 

η0123 = V0123 = - v 7 ^ 

and uK denotes the four - velocity of an observer resting in the asymptotic flat regime. 
This implies that uK = (c,0) and since u < rJ

t r = 0 (J* is purely spacelike in our frame) we 
see that J° = 0 and 

(7) 

with Cijk = 1. (Since all further calculations are done w.r.t. the asymptotic observer, we 
will no longer distinguish between lower and upper spacelike indices.) 

The relevant space - time components of the energy momentum tensor and complex 
are given by Will (1981): 

T° = pic2 + Π + ν2 + 2*7)- + pih— (8a) 
c c 

t » = — ( 3 1 ^ , 0 + SUjV^) (86) 
l_ 

4TTCV 

where ρ is the matter density, Π the internal energy, pth the components of the stress 
tensor ρ (pressure p= l/3Tr(pik)) and 

Η 
| x - x ' | 

Inserting eqs. (8) and g = —1 — AU/c2 into expression (7) yields: 

„2 

with 

y i x - x f 

We now introduce a system of coordinates rotating w.r.t. our PN - rest - frame with 
angular velocity ft in which the coordinate velocity written in Euclidean vector space 
notation takes the form 

ν = ν - ίί χ χ 

and require ν ' = 0 for all mass elements of the rotating body. This requirement general-
izes in a coordinate dependent way the notion of rigidity in the Newtonian framework 
and leads to the Newtonian equilibrium condition 

i y p = \7[U + 1(Ω χ χ ) 2 ] - Ω χ χ (10) 
Ρ 2 

One possible solution of this relation reads (Fukushima 1986): 
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β = const pik 

_ (p[U+^fïXX)*] i: 

(no summation over i and k). 
If we furthermore assume the body to be axially symmetric in the sense tha t all 

integrals which are odd in the spatial coordinates χ or y vanish in the corotating frame, 
we are left with: 

1 ' ' θ2 ι /Ι_Γ>2 ι / i _ o 2 \ - ^ ' 
Γ = ΑΩΧ + -^(Aiül + Λ2Ω* + Λ3Ω;)Ω« - ^Ω,,Ω, (11α) 

J* = ΛΩ ν + — (Λ 2Ω
2 + Αχ Ω2 -Η Λ 3 Ω

2 )Ω ν + ^ Ω Χ Ω Ζ (116) 

Jz = ΟΩ ζ + ^ [Λ 3 (Ω 2 + Ω 2) + <73Ω
2]Ω* - ^ ( Ω ν Ω * - ΩΧΩ„) (11c) 

where 

Αι = | ( / i i + 2 / i s + J 3 s ) Α 2 = ^ ( 3 / 1 2 + 2 J 1 3 + / 3 3 ) = Αχ Αζ = | ( / U + / M + 4/u) 

Cz = 3(In + J12 ) D = \ (/w - /is ) iy = ^ /w W * * d 3 s 

(no summation over equal indices), f 
We find that the Euler equations of torque free rotation in the corotating frame 

dJ/dt + Ω χ J = 0 (as in the Newtonian case) are satisfied up to post - Newtonian order 
by the Newtonian solution for the Poinsot motion of a "rigid and axially symmetric" 
body with modified moments of inertia A and C 

Â = a + ±(Arnl + A3aD - £ 

c = c + ±(A3nl + c n î ) -

We therefore see that the free precession of such a body is essentially "Newtonian" 
(for a similar result for strongly gravitating and slowly rotating bodies see Thorne and 
Gürsel 1983). 

f The main discrepancy between our results and those obtained by Fukushima (1986) 
arises from computational errors preventing him to derive Αχ = Αι for the axially sym-
metric case with the consequence that the solution for Ω is completely altered. 

, = k 

Φ* 
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