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On the Theory of Continued Fractions.

(SECOND PAPER).

By Hariprapa Datra, Research Student, Edinburgh University.

(Read 10th November 1916. Received 28th February 1917.)

The present paper is a further contribution towards the object
defined in my former paper,* namely, to derive the principal
known results regarding Continued Fractions, and some new
theorems, by transforming the functions considered from infinite
series to Continued Fractions, by use of the theory of deter-
minants.

Part III.

In Part III. we shall show that the continued fractions given
by Gauss + and Heine } for the quotient of two hypergeometric or
generalised hypergeometric functions may be obtained by a direct
use of Heilermann’s § transformation.

* Proc. Edin. Math. Soc. 34 (1916), pp. 109-132,
1 Disquisitiones generales circa seriem infinitam 1+% F 2 PN .
Gesammelte Werke 3,
—¢%) (1-¢P
-¢ (-4

1 Untersuchungen iiber die Rethe 1+
(1-¢) 1-¢7)

fiir Math. 34,
§ Journal fiur Math, 33 (1845), p. 174.
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Heilermann’s formula may be stated thus:

Ag+ A e+ 4,27+ ...
By+B,x+ B,z*+ ...
by bz be

be converted into a

“If the quotient

continued fraction of the form T T 4ig , then the
elements of the continued fraction are
by=4,/B,
b = — A%—:l A2n
S VO W
b - _Am—z Aen-u
T By By,
where e.9. By = 4, 4, B, B
A, A, B, B,
4, 4, B, B
4, 0 0 B,
and Byya= 4, 4, 4, B, B, ”
4, A, A} B; B,
4, 4, 4, B, B,
4, 4, 0 B, B
4 0 0 0 B

These determinants are of the kind known as bigradients. It will
appear that in the present case they are all factorisable, a circum-
stance to which the success of the method is largely due.

By use of this transformation we shall now convert into
continued fractions the following expressions

(0) F(n, B+dy, y+d;, )+ F (o, B, v, )
(P) F(B+dyy y+ds, )+ F(B, v, x)

(@ F(o y+ds, @)+ F(a, v, @)

(R) F(y+d;, x)+F(y, x)

() F(o B+dy, 7, @)+ F (o B, 2)

(T) F(B+dy, 7, 2)+F(B, 7, %)
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where
of3 o(e+d) B(B+d;)
F(a,ﬁ,y,w)=1+mcm+ 3Ty (y+ ) Eat+...
F(%ﬁ+d,,y+d3,z)=1+%£([;_}_‘2’_3cx+_,.

O $(B+Ly+L g2+ (0B 7o)
(V) ¢(B+1, v+l 9,2)+¢(B 7 ¢ %)
(W) ¢(uy+1, ¢, 2)5¢ (%7, ¢ 2)

(X) ¢(r+1, ¢, 2)+¢ (7, ¢ @)

(Y) o&(x B+1, 9, 2) (e B, g, @)

(Z2) ¢B+L v q.2)+9(B 7, 0 %)

a
(@+g) O+
(1-9) (c+q")

In the above series some additional quantities such as the
@'s, b's, ¢’s and d’s have been introduced in order that we may
pass readily from one determinant to another; they are not
introduced, as might at first sight be supposed, for the purpose
of generalising the series or the determinants. The quantity ¢ in
the hypergeometric geries is introduced in order to effect simul
taneous changes, if necessary, in the series and in the continued
fractions without altering the values of .

The determinants will be denoted according to the titles of the
sections to which they belong, so that O, denotes the bigradient of
the (n + 1)® order occurring in section (0)

(0)-

On 0,,,, performing the operations

where b, By, x)=1+

(1) colg—col, =¢ o(d:p-dyy) col

y(y+d)

dy B - dyy)
l—coly —¢ BB EY) )0
Col; — Col, [ 7(7+d3) COly

d, B - dyy)
1= coly =¢ 2BE %Y )
col, -col; =¢ 7+ ) col,
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(B+d2) (ds“—dl‘)"‘dlds)
(y+ds) (y+2dy)
(B+dy) (dso. - dyy — dy ds)
(v +ds) (v +2dy)

we obtain as a co-factor the determinant

(2) coly-coly=¢ col,’

coly—coly =¢ coly’

| coly coly’ col, coly |.

1f in this determinant we put « ~d,, B ~d,, y—2d; fora, B, y
respectively, we obtain the determinant O,,,_,

= (=) [0 (o + )" (o + 2di)]
[(dy B - dyy)? (dy B - duy — dy du)? (dy B — dy y — 2y dy)]
B+ (B+20)] [dyo~dyy ~dy ) (dy o~ dyy = 2y dy)]
Yy +ds)’ (v + 2dp)* (v +3dy)° (y + 4dy)* (y + 5dy)

Similarly,

Ops=( = 0" [0 (o + d)* .. @+ (n — 1) di}]
[(dsp —dyy).. {ds B —dyy - (n-1)d, da}]
[(B+d)" (B+2d)" .. {B+(n-1)d,}]
[(dyo —dyy —dydo)*" ... {d,a.‘-d, y—(n-1)d,d;}]
Y (Y +d)" 7 (y + 24" {y + (20— 1) ds}
Ogu=c* ™ ar.. {o+(n = 1) di}]} [(ds B~ dyy)"...(ds B - day — nd, d5)]
[(ﬂ"‘d-z)n (B+”dz)] [(d,a. dyy - d. ds) Adso. - dy y —nd, dx)]
7"y + )™ (v + 2d5)" .. .(y + 2nd,)

Hence the elements of the continued fraction are determined by the
equations

b o BHnd)(dse—diy-nddy)
"7 (y+2ndy) {y+(2n - 1) ds}

b —c (o +ndy) (ds B - dyy ~ nd, dy)
PR (v + nd) {y + (2n+ 1) d)

(P). Here the results can be obtained from the corresponding
results of (0) by making =1, d,=0.

(@). Here 8=1,d,=0.
(R). Here a=8=1,d,=d,=0.
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Egx. If d;=1, y=}, and c=}, we see that

[~ %=

1
51
1
3r

b

#6587
1

1
7
1
5t
1
3
1 0 o

1
)
1
ryg _ 1
1
21
1
In this particular case

1
R, ,=(-1) 31, 572 (4n-8)2. (4n~1)

1
Baw= mp5m—s  (4n+1)’

(S). Here y=1,d,=0.
(7).
It may easily be shown that
cdo\* ., ed; \"*
Tm—1= ('-;i) Qz»—! or = (‘_y‘") Pan-z
da\" .,

22 Qs
Y

If in @',, we put o for B+d, and d;, for d,, we obtain @,,.
Thus we have

B ,3+”d2
b,,=cd, {y+(@n-2)d;} {y+(3n-1)d;}

 dB-dhy-(n-1)dd,
[y +@n - 1) dy] (v + 2ndy)"

).

On U,,, , performing the operations

and Ton=

b2n+l =

(1) col,-col =(a+q°‘) (cqp—bq7) col,
N e e+ )

oal, oo, _(a+4%) (g’ - bg") ool
(c+¢") (c + ¢™)
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(2) col, - col, = (6 +9°*) (cg® - ag?*Y)
2 -col/ =
(e+q™) (c+4™)

we obtain as a co-factor thé determinant
| coly coly |.

In this last determinant, if we put -1, 8-1,y-2 for o, B, ¥
respectively, we obtain 4,,, ,.

Upr=(~ 1)*[(@+¢%)...a +¢*"™ )]
[(cg® - bg")" (cg®** - bg**y ... (g™ — bg?+9)]

O+ b+ P )] [(eg® - ag™ ) (eg™ ™! - ag )
e+ e+ g™ (c+ g™ (e + ™)

Up=[(a+¢""...(a + qan—l)] [(cqﬂ ~bg")".. .(cqﬁ""‘" _ bgrem-e)]

" [(b+ qp“)"... b+ qﬁ+”)] [(cg® - ag?*)"...(cg* ™ - ag+-1)]
(€ +g") (c+ ™™ (c+ ™)™, (c +¢"*™)

giving

5 J0+E) (™ - ag™ )
on (c + q'y+a.._1) (c + q’Y+:n )

_(@+g™) (e~ bg¥)

"N e g axgin

(V). Here the results can be obtained from the corresponding
results of () by making
a=1 and ¢*=0.

(W). Here b=1, ¢f=0.
(X). Here a=b=1, ¢*=¢P=0.
(Y). Here c=1, ¢"=0.
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Z).
Here (%)
Zya= (= -0 [(b4 g5 L (b 49P4)]
[qnﬂ ("9'8 - BTyt (cqﬂ*"”“ ~gTt)]
q{("'l) Y+ ~2) (y+2)+...+ 1. (v+2n-4)}

(e+g")™ " (c+g )™ .. (e +g7+™*)

Zp= (=104 (b4 7y L (b 4¢P
(9™ (g - bg? 41y (cgP+™ — bg+2n3]
q{wy (n-1)(v+2) ... + 1. (y+2n-2)}

X ’
(c + q'))zu (c + q7+l)2u—1"_(c + q‘Yﬁu-x)

and so

by = — q‘Y+zn—z b+ qﬂh
(c + q7+2n—2)

cqp T pgT et
(c+g"+™ ) (c+q™*™)

b‘lﬂ+l _

Part IV.

In Part III. we have been dealing with the conversion of a

quotient
A+ 4, x+ 4,0 + ...
By+B,x+ B,x* + ...

into a continued fraction. We shall now examine the relation
which this bears to the continued fraction obtained jfrom the
quotient

(By+Bi*+ Byt +...) +x (Ao + 4, 22 + Ayt +...)
(Bo+ B, @+ Byc*+...)~x(do+ 4, P+ 4,24+ ...)

when we take the continued fraction for this quotient in the form

1 & = =
@G+ G+ A+ @+ ...
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It will be shown that the two continued fractions are closely
onnected : in fact, the elements of the latter continued fractions are

t=1; ay=~By24y; ay=-2; ay= -A’/24,; a,=2
Byn = — Qgpyo=2
A'2213—1 A2
U1 = =} T Cunia= —
wn= b g A T TER AL
where A’s are the same bigradients as those of Part III.

To establish this result, let the bigradients be denoted by A’’s,

80
4= 4, B, 4, B, B, -4, B, -4,
B, 4, B, 4, -4, B, -4, B
4, B, 4, B B -4, B, -4,
B, A4, B, 4, -4, B, -4, 4,
Al Bl Ao Bo Bo - Ao Bl - Al
B, 4, B 0 0 B, -4, B
4 B 0 0 0 0 B, -4,
B, 0 0 0 0 0 0 B,

If on this determinant we perform the operations
(1) colg+ col, =2 coly
col, + col, = 2 col,’
colg + col, = 2 coly
col; + col, = 2 col,/
(2) col, —coly ; coly—col,; coly —coly ; col, - coly,
we obtain another determinant whose columns with columns and
rows with rows can be interchanged in such a manner as to make

all the elements of the upper right hand quarter of the deter-
minant zeros.

A/=B,2*| 4, 4, B, A, A4, B, B, | =B,2'0,4,
4, 4, B, 4, 4, B, B,
4, 0 B, 4, 4, B, B,
4, 0 0 B,
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Ny=( = 1)" B, 2" A%, ,
Ny = B, 31 By, B,

Al ppyy=( = 1) B, 24 A1,
Npngs =By 241 0y, B, .

We know from Heilermann’s transformation that

Am?’l—l A”!ﬂ
S Ea by T

Ay Blsui
The rest follows easily.

If we make use of the results of section (RB), the quotient

becomes
F(y,ca®)+aF (y+1, e)
F(y,ex?)—aF (y + 1, eof)
+2n 1
and “4u+1="%7 y 5 Oguys = %7(7*’2"'*'1)'

Putting } for ¥ and -} for ¢, we obtain

coszteinx 1 2z z z z =z 2z =z
cosz—sinx 1 - 14+ 1+ 3—-1- 56+ 1+ 7-
wng= 2. % % ¥ ¥ 3 % 3 T =z 2 7
Pl 2+ 1+ 8- 1-8+1-7T-1-9+1+11-T-...

In connexion with the above result, we can establish a simple
rule for the extension of a continued fraction of the form

1l vy
o0+t ot oyt
namely, its extended form is

1 r x =z
g ~T~ W+ a4+ a,+ ...,

where Z=NY; Gp=—ap=1
Bgn 1= — Ogy 5 Gypy3 = Ogpyy

The 2n®™ convergent of the latter s the same as the n®
convergent of the former.

https://doi.org/10.1017/50013091500029680 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500029680

33

II. We shall next consider the fractions which are reciprocal
to those of Part III.
The quotient, when inverted, is
By+Bix+ B2+ ... |
A+ 4, 2+ dyg+ ...’

we shall suppose that it is converted into a continued fraction of
the same form as in Part III,, viz.

k bz ke
1+ 1 +1 +....

The elements of the continued fraction are

AH’H A"a.
k" A”u‘_z AU"--1
_ A"y, o A"a\-+1
k9w+1 - Anz._l A”h
where Apy=(-14,, ;.
And if in A", the 4’s and B's are interchanged, we obtain A,

‘We shall now consider some special cases.
(f) First, let us take for the 4’s and B's the following values
Ay=By=1
4,= !
nl(y+1)...(y+n)
_ 1
Tal(y+l)..(y+n-1)°

Then we can show that

kh__(n+l)(‘y+n) 1
- on(y+n-1) (y+2n-1)(y+2n+1)
k.= n(y+n-1) 1
T (a+l)(y+n) (y+2n) (y+2n+1)
1
k=l b=-3G+
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x?
g then we have

I y=4 and x= -
xe’+e—“ 1 22 2.3 1.1a? 38.522 2.3z 4.7a%

e_e= 1-30.10+5 +72.3 +9 +11(3.8)+ 13 +....

Hence
x? 622 2 1522 622 2822 1522

1
=T 4T.3-5-6.7-9-15.11- 18- 28.15-....
(9) Next we shall take for the 4’s and B’s the special values
B,=4,=1
p BB+ ... (B+n-1)
" ontly..(y+n-1)
4 =B+ ... (B+m)
" aly.(y+n-1)’

Then it can be shown that

ky, = B-y-n+l

" (y+2n-2) (y+2n-1)
ks = Btn

" (y+20-1) (y +2n)
F=1/y; k=1

In these two cases, viz. (/) and (g), as well as in many others, it
may be shown that if a function is converted into a continued

fraction of the form

1 oz o
141 +14+.... ()
and also of the form
kx kz
s s )

and if % is regarded as the first convergent of (1) and 1 as that

of (2), then the odd convergents of the one are equal to the
corresponding odd convergents of the other, while the even
convergents cannot be equal. This may conveniently be proved by
expressing the denominators and numerators of the convergents as

continuants.
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III. Finally, if the quotient

By+4y+ (B, +4)x+ (B, + 4;)a’ + ...
By—- 4o+ (B -A) 2+ (B - d;) 2 + ...

be converted into a continned fraction of the form

bz b=
1 1

L b2
b+ 1 + +...,

+

it is readily shown that

b =Bo‘Ao — _(Bx"Al) (Bo+4y) ~ (B, + 4,) (By — 4o)
*"Bi+4, ' (B, + 4,)°

and generally

Al’lg"‘_3 A’/’gﬂ
bﬂn= _AIII A"

n—2 2n—1

" r"e
b _ A s A
m+1 = T A 1

Ay A"

where A", =30, ; A" =24, +(-1)"4",).

If we consider the special case in which
Ay=B =1
1
*Toal(y+1) .. (y+n)
_ 1
Taly(y+l) L (y+n-1)’

4

we can show that

b YT+ (y+n) 1
T y+n(y+n-1) (y+2n-1)(y+2n)

b = y+n(y+n-1) 1

T y+(n+1) (y+n) (y+2n)(y+2n+1)
b,=0; and b—;
T MR TR G

+5 Vol. 35
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Putting - a?/4 for x, } for v, we get

1
h=-53
b __l+(r+1)(2n+1]) 1
R Py [y | {@n 1) (dn+1)
5 1+n(2n-1) 1
241 =

TTF@m+)@rrl) @n+1)dn+3)

sinx-xcosx

»
Hence Frrypr—— [*CrIL ()]
- 22 (1+2.3)2® (1+1.)a* (1+3.5)a* (1+2.8)a?
30+1.)- 6 - T(1+2.3) - 9 - N{1+3.5)-... -
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