Canad. Math. Bull. Vol. 45 (4), 2002 pp. 653-671

Specializations of Jordan Superalgebras

Dedicated to R. V. Moody on his 60th birthday.

Consuelo Martínez and Efim Zelmanov

Abstract. In this paper we study specializations and one-sided bimodules of simple Jordan superalgebras.

Let *F* be a ground field of characteristic $\neq 2$. A (linear) Jordan algebra is a vector space *J* with a binary bilinear operation $(x, y) \rightarrow xy$ satisfying the following identities:

(J1) xy = yx;(J2) $(x^2y)x = x^2(yx).$

For an element $x \in J$ let R(x) denote the right multiplication R(x): $a \to ax$ in J. If $x, y, z \in J$ then by $\{x, y, z\}$ we denote their Jordan triple product $\{x, y, z\} = (xy)z + x(yz) - y(xz)$.

Examples of Jordan Algebras

- (1) Let *A* be an associative algebra. The new operation $a \cdot b = \frac{1}{2}(ab + ba)$ defines a structure of a Jordan algebra on *A*. We will denote this Jordan algebra as $A^{(+)}$.
- (2) Let $\star: A \to A$ be an involution on the algebra A, that is, $(a^*)^* = a$, $(ab)^* = b^*a^*$. The subspace $H(A, \star)$ of symmetric elements is a subalgebra of $A^{(+)}$.
- (3) Let *V* be a vector space over *F* with a nondegenerate symmetric bilinear form $\langle , \rangle : V \times V \to F$. The direct sum *F*1 + *V* with the product $(\alpha 1 + \nu)(\beta 1 + w) = (\alpha\beta + \langle \nu, w \rangle)1 + (\alpha w + \beta \nu)$ is a Jordan algebra.
- (4) The algebra H₃(𝔅) of Hermitian 3 × 3 matrices over octonions with the operation a ⋅ b = ¹/₂(ab + ba) is a Jordan algebra.

P. Jordan, J. von Neumann, E. Wigner [JNW] and A. Albert [A] showed that every simple finite dimensional Jordan algebra over an algebraically closed field is of one of the types (1)–(4).

A Jordan algebra *J* is called *special* if it is embeddable into an algebra of type $A^{(+)}$, where *A* is an associative algebra. Clearly the algebras of Examples (1)–(3) above are special. The algebra $H_3(\mathbb{O})$ is exceptional. A homomorphism $J \to A^{(+)}$ is called a *specialization* of a Jordan algebra *J*. N. Jacobson [J] introduced the notion of a universal associative enveloping algebra U = U(J) of a Jordan algebra *J* and showed that

Received by the editors March 3, 2002.

The first author was partially supported by BFM 2001-3239-C03-01 and FICYT PB-EXP01-33. The second author was partially supported by NSF grant DMS-0071834.

AMS subject classification: Primary: 17C70; secondary: 17C25, 17C40.

[©]Canadian Mathematical Society 2002.

the category of specializations of *J* is equivalent to the category of homomorphisms of the associative algebra U(J).

Let *V* be a Jordan bimodule over the algebra *J* (see [J]). We call *V* a one-sided bimodule if $\{J, V, J\} = (0)$. In this case, the mapping $a \rightarrow 2R_V(a) \in \text{End}_F V$ is a specialization. The category of one-sided bimodules over *J* is equivalent to the category of right (left) U(J)-modules.

N. Jacobson [J] found universal associative enveloping algebras for all special simple finite dimensional Jordan algebras.

In this paper we study specializations and one-sided bimodules of Jordan superalgebras. Let's introduce the definitions.

By a superalgebra we mean a $\mathbb{Z}/2\mathbb{Z}$ -graded algebra $A = A_{\bar{0}} + A_{\bar{1}}$. We define |a| = 0 if $a \in A_{\bar{0}}$ and |a| = 1 if $a \in A_{\bar{1}}$.

For instance, if *V* is a vector space of countable dimension, and $G(V) = G(V)_{0} + G(V)_{1}$ is the Grassmann algebra over *V*, that is, the quotient of the tensor algebra over the ideal generated by the symmetric tensors, then G(V) is a superalgebra. Its even part is the linear span of all products of even length and the odd part is the linear span of all products of odd length.

If *A* is a superalgebra, its *Grassmann enveloping algebra* is the subalgebra of $A \otimes G(V)$ given by $G(A) = A_{\bar{0}} \otimes G(V)_{\bar{0}} + A_{\bar{1}} \otimes G(V)_{\bar{1}}$.

Let \mathcal{V} be a homogeneous variety of algebras, that is, a class of *F*-algebras satisfying a certain set of homogeneous identities and all their partial linearizations (see [ZSSS]).

Definition A superalgebra $A = A_{\bar{0}} + A_{\bar{1}}$ is called a \mathcal{V} superalgebra if $G(A) \in \mathcal{V}$.

C. T. C. Wall [W] showed that every simple finite-dimensional associative superalgebra over an algebraically closed field *F* is isomorphic to the superalgebra $M_{m,n}(F) = \left\{ \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}, A \in M_m(F), D \in M_n(F) \right\} + \left\{ \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}, B \in M_{m \times n}(F), C \in M_{n \times m}(F) \right\}$ or to the superalgebra $Q(n) = \left\{ \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}, A \in M_n(F) \right\} + \left\{ \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix}, B \in M_n(F) \right\}$.

Jordan superalgebras were first studied by V. Kac [Ka2] and I. Kaplansky [Kp1], [Kp2]. In [Ka2] V. Kac (see also I. L. Kantor [K1], [K2]) classified simple finite dimensional Jordan superalgebras over an algebraically closed field of zero characteristic. In [RZ] this classification was extended to simple finite dimensional Jordan superalgebras, with semisimple even part, over characteristic p > 2; a few new exceptional superalgebras in characteristic 3 were added to the list. In [MZ] the remaining case of Jordan superalgebras with nonsemisimple even part was tackled.

Let's consider the examples that arise in these classifications.

If $A = A_0 + A_1$ is an associative superalgebra then the superalgebra $A^{(+)}$, with the new product $a \cdot b = \frac{1}{2} (ab + (-1)^{|a||b|} ba)$ is Jordan. This leads to two superalgebras

- (1) $M_{m,n}^{(+)}(F), m \ge 1, n \ge 1;$
- (2) $Q(n)^{(+)}, n \ge 2.$

If A is an associative superalgebra and $\star: A \to A$ is a superinvolution, that is, $(a^{\star})^{\star} = a, (ab)^{\star} = (-1)^{|a||b|} b^{\star} a^{\star}$, then $H(A, \star) = H(A_{\bar{0}}, \star) + H(A_{\bar{1}}, \star)$ is a subsuperalgebra of $A^{(+)}$. The following two subalgebras of $M_{m,n}^{(+)}$ are of this type.

- (3) Osp_{*m,n*}(*F*) if n = 2k is even. The superalgebra consists of matrices $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$, where $A^t = A \in M_m(F)$, $C = J^{-1}B^t \in M_{n \times m}(F)$, $D = J^{-1}D^t J \in M_n(F)$, $J = \begin{pmatrix} 0 & I_k \\ -I_k & 0 \end{pmatrix}$;
- (4) $P(n) = \left\{ \left(\begin{smallmatrix} A & B \\ C & D \end{smallmatrix} \right), D = A^t, B^t = B, C^t = -C \in M_n(F) \right\};$
- (5) Let $V = V_{\bar{0}} + V_{\bar{1}}$ be a $\mathbb{Z}/2\mathbb{Z}$ -graded vector space with a superform $\langle , \rangle : V \times V \to F$ which is symmetric on $V_{\bar{0}}$, skewsymmetric in $V_{\bar{1}}$ and $\langle V_{\bar{0}}, V_{\bar{1}} \rangle = (0) = \langle V_{\bar{1}}, V_{\bar{0}} \rangle$.

The superalgebra $J = F1 + V = (F1 + V_{\bar{0}}) + V_{\bar{1}}$ is Jordan.

- (6) The 3-dimensional Kaplansky superalgebra, $K_3 = Fe + (Fx + Fy)$, with the multiplication $e^2 = e$, $ex = \frac{1}{2}x$, $ey = \frac{1}{2}y$, [x, y] = e.
- (7) The 1-parametric family of 4-dimensional superalgebras D_t is defined as $D_t = (Fe_1 + Fe_2) + (Fx + Fy)$ with the products: $e_i^2 = e_i$, $e_1e_2 = 0$, $e_ix = \frac{1}{2}x$, $e_iy = \frac{1}{2}y$, $xy = e_1 + te_2$, i = 1, 2. The superalgebra D_t is simple if $t \neq 0$. In the case t = -1, the superalgebra

The superalgebra D_t is simple if $t \neq 0$. In the case t = -1, the superalgebra D_{-1} is isomorphic to $M_{1,1}(F)$.

- (8) The 10-dimensional Kac superalgebra (see [Ka2]) has been proved to be exceptional in [MeZ]. In characteristic 3 this superalgebra is not simple. It has a subalgebra of dimension 9 that is simple and exceptional (Shestakov and Vaughan Lee). There are two more examples of simple Jordan superalgebras in ch F = 3, both of them exceptional (see [RZ]).
- (9) We will consider now Jordan superalgebras defined by a bracket. If A = A₀ + A₁ is an associative commutative superalgebra with a bracket on A, {, }: A×A → A, the Kantor double of (A, {, }) is the superalgebra J = A+Ax with the Z/2Z gradation J₀ = A₀ + A₁x, J₁ = A₁ + A₀x and the multiplication in J given by: a(bx) = (ab)x, (bx)a = (-1)^{|a|}(ba)x, (ax)(bx) = (-1)^{|b|}{a, b}, and the product (in J) of two elements of A is just the product of them in A. A bracket on A is called a *Jordan bracket* if the Kantor double J(A, { , }) is a
- (10) Let Z be a unital associative commutative algebra with a derivation $D: Z \to Z$. Consider the superalgebra CK(Z, D) = A + M, where $A = J_{\bar{0}} = Z + \sum_{i=1}^{3} w_i Z$, $M = J_{\bar{1}} = xZ + \sum_{i=1}^{3} x_i Z$ are free Z-modules of rank 4. The multiplication on A is Z-linear and $w_i w_j = 0$, $i \neq j$, $w_1^2 = w_2^2 = 1$, $w_3^2 = -1$.

Jordan superalgebra. Every Poisson bracket is a Jordan bracket (see K2]).

Denote $x_{i \times i} = 0$, $x_{1 \times 2} = -x_{2 \times 1} = x_3$, $x_{1 \times 3} = -x_{3 \times 1} = x_2$, $-x_{2 \times 3} = x_{3 \times 2} = x_1$. The bimodule structure and the bracket on *M* are defined via the following tables:

	g	w _j g		xg	x _j g
xf	x(fg)	$x_j(fg^D)$	xf	$f^D g - f g^D$	$-w_j(fg)$
$x_i f$	$x_i(fg)$	$x_{i \times j}(fg)$	$x_i f$	$w_i(fg)$	0

The superalgebra CK(Z, D) is simple if and only if Z does not contain proper D-invariant ideals.

In [Ka2], [K1] it was shown that simple finite dimensional Jordan superalgebras over an algebraically closed field *F* of zero characteristic are those of examples (1)–(8) and the Kantor double (example (9)) of the Grassmann algebra with the bracket $\{f,g\} = \sum (-1)^{|f|} \frac{\partial f}{\partial \xi_i} \frac{\partial g}{\partial \xi_i}$.

The examples (9), (10) are related to infinite dimensional *superconformal* Lie superalgebras (see [KL], [KMZ]). In particular, the superalgebras CK(Z, D) correspond to an important superconformal algebra discovered in [CK] and [GLS].

In [MZ] it was shown that the only simple finite dimensional Jordan superalgebras over an algebraically closed field of characteristic p > 2 with nonsemisimple even part are superalgebras (9), (10) built on truncated polynomials.

In Section 1 we discuss reflexive superalgebras (the generic case).

In Section 2 we show that the specialization σ of the Cheng-Kac superalgebra CK(Z, D) constructed in [MSZ] is universal, $U(CK(Z, D)) \simeq M_{2,2}(W)$, where W is the Weyl algebra of differential operators on Z. The restriction of σ to the superalgebra P(2) is the universal specialization of $P(2), U(P(2)) \simeq M_{2,2}(F[t])$.

In Section 3 we show that, for a *D*-simple algebra *Z*, the McCrimmon specialization of the Kantor double of the bracket of vector type is universal.

In Section 4 we construct the universal specialization of the superalgebra $M_{1,1}(F)$. Finally, in Section 5, we describe all irreducible one-sided bimodules over a superalgebra D(t), $t \neq -1, 0, 1$.

In what follows the ground field *F* is assumed to be algebraically closed.

1 Reflexive Superalgebras

Let *J* be a special Jordan superalgebra. A specialization $u: J \to U$ into an associative algebra *U* is said to be universal if $U = \langle u(J) \rangle$ and for an arbitrary specialization $\varphi: J \to A$ there exists a homomorphism of associative algebras $\chi: U \to A$ such that $\varphi = \chi \cdot u$. The algebra *U* is called the universal associative enveloping algebra of *J*.

Exactly in the same way as for Jordan algebras (see [J]) one can show that an arbitrary special Jordan superalgebra has a unique universal specialization $u: J \to U$ which is an embedding. Moreover, the algebra U is equipped with a superinvolution * having all elements from u(J) fixed, *i.e.*, $u(J) \subseteq H(U, *)$.

Generally speaking, an identity in U is not assumed. However, if J is a unital (super)algebra then the identity of J is automatically an identity of U (see [J]).

We call a special Jordan superalgebra reflexive if u(J) = H(U, *).

Theorem 1.1 All superalgebras of examples (1)-(4) are reflexive except the following ones: $M_{1,1}^+(F)$, $Osp(1, 2) \simeq D(-2)$, P(2). Hence, $U(M_{m,n}^{(+)}(F)) \simeq M_{m,n}(F) \oplus M_{m,n}(F)$ for $(m, n) \neq (1, 1)$; $U(Q^{(+)}(n)) = Q(n) \oplus Q(n)$, $n \ge 2$; $U(Osp(m, n)) \simeq M_{m,n}(F)$, $(m, n) \neq (1, 2)$; $U(P(n)) \simeq M_{n,n}(F)$, $n \ge 3$.

If A is an associative enveloping superalgebra of a special superalgebra J and a_1, a_2, a_3, a_4 are homogeneous elements from J then by a tetrad $\{a_1, a_2, a_3, a_4\} \in A$ we mean

 $\{a_1, a_2, a_3, a_4\} = a_1 a_2 a_3 a_4 + (-1)^{\sum_{i < j} |a_i| |a_j|} a_4 a_3 a_2 a_1.$

A homogeneous element *a* of *J* is said to be a tetrad-eater if in any associative enveloping superalgebra of *J* any tetrad with *a* as one of its entries is necessarily an element of *J*. There exists an ideal *T* of the free Jordan algebra with the following property: for an arbitrary special Jordan algebra *J*, an arbitrary element from T(J) is

a tetrad eater (see [Z]). If *J* is a simple special Jordan superalgebra and $T(J_0) \neq (0)$, then every element of *J* is a tetrad-eater. By P. Cohn's theorem (see [SSSZ], [C], [J]) in this case *J* is reflexive. If *B* is a Jordan algebra of capacity ≥ 3 then $T(B) \neq (0)$ (see [Z]). Hence the superalgebras P(n), Q(n), $n \geq 3$ are reflexive.

The remaining cases of Theorem 1.1 except Q(2) follow from the following lemma that was proved in [RZ]:

Lemma 1.1 ([**RZ**]) If J is a finite-dimensional special simple Jordan superalgebra, $J_{\bar{0}} = J'_{\bar{0}} \oplus J''_{\bar{0}}$ is semisimple and at least one of the summands is not F then J is reflexive.

Lemma 1.2 The superalgebra Q(2) is reflexive.

Proof The even and the odd parts of Q(2) can be identified with the matrix algebra. Let $e_{ij} \in Q(2)_{\bar{0}}$ and $\overline{e_{ij}} \in Q(2)_{\bar{1}}$ denote the images of the unit matrix e_{ij} , $Q(2)_{\bar{0}} = \sum Fe_{ij}$, $Q(2)_{\bar{1}} = \sum Fe_{ij}$.

Let *U* be the universal associative enveloping algebra of *Q*(2), let \equiv denote the equality in *U* modulo *Q*(2). We need to check that for arbitrary elements $x_i \in Q(2)$, $1 \leq i \leq 4$, the tetrad $\{x_1, x_2, x_3, x_4\} = x_1 x_2 x_3 x_4 + (-1)^{\sum_{i < j} |x_i| |x_j|} x_4 x_3 x_2 x_1$ lies in *Q*(2) (see [C]).

We have $\{\ldots, x, y, \ldots\} \equiv -(-1)^{|x||y|} \{\ldots, y, x, \ldots\}$ and $\{\ldots, xy, z, \ldots\} \equiv \{\ldots, x, yz, \ldots\} + (-1)^{|x||y|} \{\ldots, y, xz, \ldots\}$ (see [Z]).

Now suppose that $x_1, x_2, x_3, x_4 \in \{e_{ij}, \overline{e_{ij}}, 1 \le i, j \le 2\}$ and $0 \not\equiv \{x_1, x_2, x_3, x_4\}$.

(i) If $x_1 = e_{11}$ or e_{22} then $x_2, x_3, x_4 \in \{e_{12}, e_{21}, \overline{e_{12}}, \overline{e_{21}}\}$.

Indeed, $\{e_{11}, x_2, x_3, x_4\} = \{e_{11}^2, x_2, x_3, x_4\} \equiv \{e_{11}, 2e_{11}x_2, x_3, x_4\}$, which implies that $x_2 = 2e_{11}x_2$.

This takes care of the case when all four elements x_1, x_2, x_3, x_4 are even.

(ii) $\{\overline{e_{11}}, \overline{e_{22}}, \dots\} \equiv 0$. Indeed,

 $\{\overline{e_{11}},\overline{e_{22}},\ldots\}=\{e_{11}\overline{e_{11}},\overline{e_{22}},\ldots\}\equiv\{e_{11},\overline{e_{11}}\overline{e_{22}},\ldots\}+\{\overline{e_{11}},e_{11}\overline{e_{22}},\ldots\}=0.$

(iii) $\{e_{12}, \overline{e_{12}}, \dots\} \equiv 0$. Indeed, $\overline{e_{12}} = 2e_{12}\overline{e_{22}}$. Hence, $\{e_{12}, \overline{e_{12}}, \dots\} = \{e_{12}, 2e_{12}\overline{e_{22}}, \dots\} \equiv \{e_{12}^2, \overline{e_{22}}, \dots\} = 0$.

This takes care of the case when x_1, x_2, x_3 are even and x_4 is odd.

Indeed, if the elements x_1 , x_2 , x_3 are e_{11} , e_{12} , e_{21} , then all four possibilities for x_4 are ruled out.

(iv) Fix elements $x_2, x_3, x_4 \in J$. Suppose that $\{Q(2)_0, x_2, x_3, x_4\} \equiv (0)$ and $\{\overline{e_{11}}, x_2, x_3, x_4\} \equiv 0$. Then $\{Q(2), x_2, x_3, x_4\} \equiv (0)$. Indeed, the $Q(2)_0$ -bimodule $Q(2)_0$ is irreducible. Hence it is sufficient to prove that for arbitrary elements $a_1, \ldots, a_k \in Q(2)_0$, we have $\{\overline{e_{11}}R(a_1)\cdots R(a_k), x_2, x_3, x_4\} \equiv 0$.

In [Z] it was shown that for arbitrary homogenous elements x_1, x'_1 we have

$$\{x_1x_1', x_2, x_3, x_4\} \equiv x_1\{x_1', x_2, x_3, x_4\} + (-1)^{|x_1||x_1'|}x_1'\{x_1, x_2, x_3, x_4\}.$$

This implies the assertion.

Similarly, $\{Q(2)_0, x_2, x_3, x_4\} \equiv (0)$ and $\{\overline{e_{22}}, x_2, x_3, x_4\} \equiv 0$ imply $\{Q(2), x_2, x_3, x_4\} \equiv (0)$.

From (iv) it follows that if $\{x_1, x_2, x_3, x_4\} \neq 0$, then for an arbitrary $i, 1 \leq i \leq 4$ we can assume that x_i is even or our choice of the elements $\overline{e_{11}}, \overline{e_{22}}$. In view of (ii) this finishes the proof of the lemma.

In next section we will see that the superalgebra P(2) is not reflexive.

2 The Cheng-Kac Superalgebras and *P*(2)

Let *Z* be an associative commutative *F*-algebra with a derivation *D*: $Z \to Z$. Let $CK(Z,D) = (Z + \sum_{i=1}^{3} Zw_i) + (Zx + \sum_{j=1}^{3} Zx_j)$ be the Cheng-Kac superalgebra. The subsuperalgebra of CK(Z,D) spanned over *F* by the elements 1, $w_1, w_2, w_3, x, x_1, x_2, x_3$ is isomorphic to *P*(2).

Consider the associative Weyl algebra $W = \sum_{i \ge 0} Zt^i$ where the variable *t* commutes with a coefficient $a \in Z$ via ta = D(a) + at.

In [MSZ] we found the following embedding of CK(Z, D) into the associative superalgebra $M_{2,2}(W) = \begin{pmatrix} M_2(W) & 0 \\ 0 & M_2(W) \end{pmatrix} + \begin{pmatrix} 0 & M_2(W) \\ M_2(W) & 0 \end{pmatrix}$,

Remark 2.1 The subsuperalgebra Z + Zx of CK(Z, D) is a Kantor double of vector type (see [Mc]). The embedding σ above extends the embedding of Kantor doubles of vector type found by McCrimmon in [Mc].

Theorem 2.1 The restriction of the embedding σ (see above) to P(2) is a universal specialization; $U(P(2)) \simeq M_{2,2}(F[t])$, where F[t] is a polynomial algebra in one variable.

Let *K* and *H* be the subspaces of skew-symmetric and symmetric 2 × 2 matrices over *F* respectively. Let J = P(2), $J_{\bar{0}} = M_2(F)$, $J_{\bar{1}} = \bar{K} + \bar{H}$, where \bar{K} and \bar{H} are isomorphic copies of *K* and *H*. The multiplication of $J_{\bar{1}}$ by $J_{\bar{0}}$ and the bracket on $J_{\bar{1}}$ are defined via $a \cdot \bar{b} = \frac{1}{2}(\overline{ab + ba^t})$ and $[\bar{b}, \bar{c}] = bc - cb \in J_{\bar{0}}$; $a \in M_2(F)$, $b, c \in K \cup H$.

Let $u: J \to U$ be the universal specialization of J. We will identify J with u(J) and assume that $J \subseteq U$. The juxtaposition in the following lemma denotes multiplication in U.

Lemma 2.1

(1) $\bar{H}\bar{H} = (0),$ (2) $\bar{H}\bar{K} \subseteq \langle J_{\bar{0}} \rangle,$ (3) $\bar{H} \langle J_{\bar{0}} \rangle = \bar{I} \langle J_{\bar{0}} \rangle.$

Proof We have $[\bar{H}, \bar{H}] = (0)$. In particular, $[\overline{e_{11}}, \overline{e_{12} + e_{21}}] = 0$.

If *e* is an idempotent in an associative algebra *R*, $a, b \in R$ and [eae, eb(1 - e) + (1 - e)be] = 0, then eaeb(1 - e) = (1 - e)beae = 0, which implies eae(eb(1 - e) + (1 - e)be) = (eb(1 - e) + (1 - e)be)eae = 0.

Since the elements $\overline{e_{11}}$ and $\overline{e_{12} + e_{21}}$ lie in the corresponding Peirce components of U, we conclude that $\overline{e_{11}(e_{12} + e_{21})} = (\overline{e_{12} + e_{21}})\overline{e_{11}} = 0$.

To finish the proof we will need the following remark:

Remark 2.2 Let *J* be an arbitrary Jordan superalgebra and let *A*, *B* be two associative enveloping algebras of *J*. If *x* is an odd element of $J_{\bar{1}}$ and the square of *x* in *A* lies in the center of *A*, then the square of *x* in *B* also lies in the center of *B*. Indeed, for an arbitrary element $a \in J$ we have $aR_J(x)R_J(x) = \frac{1}{2}[a, x^2]$, where $R_J(x)$ denotes the operator of right Jordan multiplication in *J*.

The superalgebra J = P(2) has an associative enveloping algebra $M_{2,2}(F)$, where the square of $\overline{e_{11}}$ is 0.

Hence the square $\overline{e_{11}^2}$ in U lies in the center of U.

The element $\overline{e_{11}^2}$ lies in the 1-Peirce component $e_{11}Ue_{11}$ of U; the element $e_{12} + e_{21}$ lies in the $\frac{1}{2}$ -Peirce component $e_{11}U(-e_{11}) + (1 - e_{11})Ue_{11}$. Hence $\overline{e_{11}^2}(e_{12} + e_{21}) = (e_{12} + e_{21})e_{11}^2$ implies $\overline{e_{11}^2}(e_{12} + e_{21}) = 0$. But $1 = (e_{12} + e_{21})^2$. We proved that $\overline{e_{11}^2} = 0$. Since, obviously, $\overline{e_{11}e_{22}} = 0$, we conclude that $\overline{e_{11}}\tilde{H} = (0)$.

The Jordan $J_{\bar{0}}$ -bimodule \bar{H} is generated by the element $\overline{e_{11}}$.

This implies that $\overline{H} \subseteq \langle J_{\bar{0}} \rangle \overline{e_{11}} \langle J_{\bar{0}} \rangle$, $\overline{H}\overline{H} \subseteq \langle J_{\bar{0}} \rangle \overline{e_{11}} \langle J_{\bar{0}} \rangle \overline{H} \subseteq \langle J_{\bar{0}} \rangle \overline{e_{11}} \overline{H} \langle J_{\bar{0}} \rangle = (0)$. We proved the assertion (1).

Let $x = \overline{e_{12} - e_{21}}$. If $a \in J_{\bar{0}} = M_2(F)$ and tr(a) = 0, then $a \cdot x = 0$. In particular, if $a \in H$ and tr(a) = 0 then ax + xa = 0. Now choose an arbitrary element $h \in H$ and consider $(a \cdot \bar{h})x$. Clearly, $[a \cdot \bar{h}, x] \in J_{\bar{0}}$.

Furthermore, $(a\bar{h}+\bar{h}a)x+x(a\bar{h}+\bar{h}a)-\bar{h}(ax+xa)-(ax+xa)\bar{h}=a[\bar{h},x]-[\bar{h},x]a\in \langle J_{\bar{0}}\rangle$. Hence $(a \cdot \bar{h})x \in \langle J_{\bar{0}}\rangle$.

Denote $H^0 = \{a \in H \mid \text{tr}(a) = 0\}$. We proved that $(H^0 \cdot \bar{H})x \subseteq \langle J_{\bar{0}} \rangle$. Now, notice that $\bar{h} = h \cdot \bar{1}$ for $h \in H$ and $\bar{1} = (e_{11} - e_{22}) \cdot \overline{e_{11} - e_{22}}$. Hence $\bar{H} = H^0 \cdot \bar{H}$. This finishes the proof of (2).

Clearly $\overline{H}\langle J_{\bar{0}} \rangle = \overline{e_{11}}\langle J_{\bar{0}} \rangle + \overline{e_{22}}\langle J_{\bar{0}} \rangle + (\overline{e_{12} + e_{21}})\langle J_{\bar{0}} \rangle$. But $\overline{e_{ii}} = \overline{1}e_{ii}$ since $\overline{1} = \overline{e_{11}} + \overline{e_{22}}$ is the Peirce decomposition of $\overline{1}$ with respect to the idempotents e_{11}, e_{22} . Hence $\overline{e_{11}}\langle J_{\bar{0}} \rangle, \overline{e_{22}}\langle J_{\bar{0}} \rangle \subseteq \overline{1}\langle J_{\bar{0}} \rangle$.

Denote $s = e_{12} + e_{21}$. Then $\overline{s} = 2(\overline{e_{11}} \cdot s) = s\overline{e_{11}} + \overline{e_{11}}s$. Since $s^2 = 1$ it follows that $s\overline{e_{11}} = s\overline{e_{11}}ss = \overline{e_{22}}s$. Now we have $\overline{s} = s\overline{e_{11}} + \overline{e_{11}}s = \overline{e_{22}}s + \overline{e_{11}}s = \overline{1}s$. Lemma is proved.

Corollary 2.1
$$U = \sum_{i>0} \langle J_{\bar{0}} \rangle x^i + \bar{1} \langle J_{\bar{0}} \rangle.$$

Proof In an arbitrary product involving elements from $J_{\bar{0}}$, \bar{H} , x we can use $J_{\bar{0}}\bar{H} \subseteq \bar{H}J_{\bar{0}} + \bar{H}$, $x\bar{H} \subseteq \bar{H}x + J_{\bar{0}}$ to move all factors from \bar{H} to the left end.

If $a \in J_0$, tr(a) = 0, then $ax + xa^t = 0$. Hence in a product involving only elements from J_0 and x we can move all x's together. Now the result follows from Lemma 2.1.

Lemma 2.2 $H\bar{x}\langle J_{\bar{0}}\rangle \triangleleft \langle J_{\bar{0}}\rangle$.

Proof We need to show that $\bar{H}x\langle J_{\bar{0}}\rangle$ is a left ideal in $\langle J_{\bar{0}}\rangle$. Choose arbitrary elements $a \in J_{\bar{0}}, h \in H$. Then $a\bar{h}x = (a\bar{h} + \bar{h}a)x - \bar{h}(ax + xa) + \bar{h}xa \in \bar{H}x\langle J_{\bar{0}}\rangle$. Lemma is proved.

Lemma 2.3 The subalgebra of $M_{2,2}(W)$ generated by $\sigma(J)$ is $M_{2,2}(F[t])$.

Proof

Step 1 $\langle \sigma(w_1), \sigma(w_2), \sigma(w_3) \rangle = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}; a, b \in M_2(F) \right\}$. Indeed, $M_2(F)$ is generated by $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Hence $\langle \sigma(w_1), \sigma(w_2) \rangle = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}, a \in M_2(F) \right\}$. It implies that

Now

which implies the result.

Step 2 $\langle \sigma(w_1), \sigma(w_2), \sigma(w_3), \sigma(x_1), \sigma(x_2), \sigma(x_3) \rangle = \left\{ \begin{pmatrix} a & c \\ 0 & b \end{pmatrix}; a, b, c \in M_2(F) \right\}.$ It suffices to notice that $\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \sigma(x_3) = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}.$

Step 3 $\langle \sigma(J) \rangle \supseteq M_{2,2}(F).$

We have

and

(0)	0	0	0)	(a_{11})	a_{12}	0	0 \		(0	0	0	0)	
0	0	0	0	<i>a</i> ₂₁	<i>a</i> ₂₂	0	0	_	0	0	0	0	,
0	-1	0	0	0	0	a_{11}	<i>a</i> ₁₂	_	$-a_{21}$	$-a_{22}$	0	0	
$\backslash 1$	0	0	0/	$\int 0$	0	a_{21}	a ₂₂ /		$\begin{pmatrix} 0\\ 0\\ -a_{21}\\ a_{11} \end{pmatrix}$	a_{12}	0	0/	

which implies that $\left\{ \left(\begin{smallmatrix} 0 & 0 \\ d & 0 \end{smallmatrix} \right); d \in M_2(F) \right\} \subseteq \langle \sigma(J) \rangle$.

Step 4 We have $\frac{1}{2}e_{11}\sigma(x)e_{11} = e_{11}(t) \in \langle \sigma(J) \rangle$. Hence $M_{2,2}(F[t]) = \langle \overline{M_{2,2}(F)}, e_{11}(t) \rangle = \langle \sigma(J) \rangle$. Lemma is proved.

By the universal property of $u: J \to U$, there exists a unique homomorphism $\chi: U \to M_{2,2}(F[t])$ of associative superalgebras such that $\sigma = \chi \cdot u$.

Lemma 2.4 The restriction of χ to $\overline{1}\langle J_{\overline{0}} \rangle$ is an embedding.

Proof We have already proved that $\bar{H}x\langle J_{\bar{0}}\rangle$ is an ideal of $\langle J_{\bar{0}}\rangle$. Furthermore, this ideal is proper. Indeed, it is nonzero, since $\sigma(\bar{H})\sigma(x) \neq (0)$ in $M_4(F[t])$,

Let's assume that the ideal $\bar{H}x\langle J_{\bar{0}}\rangle = \langle J_{\bar{0}}\rangle$. Then $\bar{H}\cdot\bar{H} = (0)$ implies $\bar{H}(\bar{H}x\langle J_{\bar{0}}\rangle) = (0)$ and therefore $\bar{H} = (0)$, the contradiction.

The dimension of the subalgebra $\langle J_{\bar{0}} \rangle$ of U is ≤ 8 . By Step 1 of the proof of Lemma 2.3 we have $\langle J_{\bar{0}} \rangle \cong M_2(F) \oplus M_2(F)$. Hence $\bar{H}x \langle J_{\bar{0}} \rangle$ is a direct summand of $\langle J_{\bar{0}} \rangle$ of dimension 4. Let $\langle J_{\bar{0}} \rangle = \bar{H}x \langle J_{\bar{0}} \rangle \oplus L$, where $L \cong M_2(F)$.

Since $\overline{1}\langle J_{\overline{0}} \rangle = \overline{1}Hx\langle J_{\overline{0}} \rangle + \overline{1}L$ and $\overline{1}H = (0)$ by Lemma 2.1 (1), it follows that $\dim_F \overline{1}\langle J_{\overline{0}} \rangle \leq 4$. Now it remains to notice that $\chi(\overline{1}\langle J_{\overline{0}} \rangle) = \sigma(\overline{1})\langle \sigma(J_{\overline{0}}) \rangle = \left\{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}; a \in M_2(F) \right\}$ has dimension 4. Lemma is proved.

We have

$$\sigma(x) = \begin{pmatrix} 0 & 0 & 0 & 2t \\ 0 & 0 & -2t & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \quad \sigma(x)^{2k} = 2^k \begin{pmatrix} t^k & 0 & 0 & 0 \\ 0 & t^k & 0 & 0 \\ 0 & 0 & t^k & 0 \\ 0 & 0 & 0 & t^k \end{pmatrix},$$
$$\sigma(x)^{2k+1} = 2^k \begin{pmatrix} 0 & 0 & 0 & 2t^{k+1} \\ 0 & 0 & -2t^{k+1} & 0 \\ 0 & -t^k & 0 & 0 \\ t^k & 0 & 0 & 0 \end{pmatrix}.$$

Now we are ready to finish the proof of Theorem 2.1. Let $a = \sum u_i x^i + \overline{e_{11}}v + \overline{e_{22}}w \in ker \chi$; $u_i, v, w \in \langle J_0 \rangle$. Let $\chi(u_i) = \begin{pmatrix} a'_i & 0 \\ 0 & a''_i \end{pmatrix}$, $\chi(v) = \begin{pmatrix} b' & 0 \\ 0 & b'' \end{pmatrix}$, $\chi(w) = \begin{pmatrix} c' & 0 \\ 0 & c'' \end{pmatrix}$, where $a'_i, a''_i, b', b'', c', c'' \in M_2(F)$.

Then

$$\begin{split} \sum_{i} 2^{i} \begin{pmatrix} a'_{2i} & 0\\ 0 & a''_{2i} \end{pmatrix} t^{i} + \sum_{i} 2^{i} \begin{pmatrix} a'_{2i+1} & 0\\ 0 & a''_{2i+1} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 2t^{i+1}\\ 0 & 0 & -2t^{i+1} & 0\\ 0 & -t^{i} & 0 & 0\\ t^{i} & 0 & 0 & 0 \end{pmatrix} \\ & + \begin{pmatrix} 0 & e_{11}\\ 0 & 0 \end{pmatrix} \begin{pmatrix} b' & 0\\ 0 & b'' \end{pmatrix} + \begin{pmatrix} 0 & e_{22}\\ 0 & 0 \end{pmatrix} \begin{pmatrix} c' & 0\\ 0 & c'' \end{pmatrix} = 0, \end{split}$$

which implies that $a'_{2i} = a''_{2i} = a'_{2i+1} = a''_{2i+1} = 0$.

Hence $a = \overline{e_{11}}v + \overline{e_{22}}w \in \overline{H}\langle J_{\overline{0}} \rangle = \overline{1}\langle J_{\overline{0}} \rangle.$

By Lemma 2.4, a = 0. Hence χ is an isomorphism. Theorem 2.1 is proved.

Theorem 2.2 The embedding σ is universal, that is, $U(CK(Z,D)) \cong M_{2,2}(W)$.

As above we will identify the Jordan superalgebra J = CK(Z, D) with u(J), *i.e.*, we assume that $J = CK(Z, D) \subseteq U(J) = U$. The superalgebra J is generated by Z and by the superalgebra $\langle w_i, x, x_j; 1 \leq i, j \leq 3 \rangle \cong P(2)$. The multiplication in U will be denoted by juxtaposition.

By the universal property of *u* there exists a homomorphism $\chi: U \to M_{2,2}(W)$ of associative superalgebras such that $\sigma = \chi \cdot u$. By Theorem 2.2 the subalgebra generated by P(2) in *U* is the universal associative enveloping algebra of P(2) and $\chi: \langle P(2) \rangle \to M_{2,2}(F[t])$ is an isomorphism.

We have $\langle w_1, w_2, w_3, \overline{H} \rangle = \chi^{-1} \left\{ \left(\begin{smallmatrix} a & c \\ 0 & b \end{smallmatrix} \right); a, b, c \in M_2(F) \right\}$ and

$$\left\langle w_1, w_2, w_3, \bar{H}, \chi^{-1} \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix} x \chi^{-1} \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \right\rangle = \chi^{-1} \left(M_{2,2}(F) \right).$$

Lemma 2.5 Z commutes with $\chi^{-1}(M_{2,2}(F))$ in U.

Proof We only need to show that *Z* commutes with all generators of $\chi^{-1}(M_{2,2}(F))$. Choose an arbitrary element $\alpha \in Z$. Then

$$\pm[\alpha, w_i] = [(\alpha w_j) \cdot w_j, w_i] = [w_j, \alpha w_j \cdot w_i] + [\alpha w_j, w_j \cdot w_i] = 0 \quad \text{for } i \neq j;$$

$$\pm[\alpha, x_i] = [\alpha w_i \cdot w_i, x_i] = [w_i, \alpha w_i \cdot x_i] + [\alpha w_i, w_i \cdot x_i] = 0.$$

Finally, denote $E_2 = \chi^{-1} \left(\begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix} \right)$, $E_1 = \chi^{-1} \left(\begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \right)$. By what we proved above, α commutes with E_1, E_2 . We have $[\alpha, E_2 x E_1] = E_2[\alpha, x] E_1$ and $[\alpha, x] = [\alpha w_1 \cdot w_1, x] = [w_1, \alpha w_1 \cdot x] + [\alpha w_1, w_1 \cdot x]$, where $w_1 \cdot x = 0$, $\alpha w_1 \cdot x = x_1 D(\alpha)$.

Since $\chi(w_1) = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}$, from Theorem 2.1, it follows that w_1 commutes with E_1, E_2 . Hence $E_2[w_1, x_1 \cdot D(\alpha)]E_1 = \begin{bmatrix} w_1, E_2(x_1 \cdot D(\alpha))E_1 \end{bmatrix}$. The element $D(\alpha)$ lies in Z, hence commutes with E_1, E_2 . Therefore $E_2(x_1 \cdot D(\alpha))E_1 = E_2x_1E_1 \cdot D(\alpha)$.

We have $\chi(x_1) = \begin{pmatrix} 0 & * \\ 0 & 0 \end{pmatrix}$. Hence, by Theorem 2.1, $E_2 x_1 = 0$, and the lemma is proved.

Lemma 2.6 Arbitrary elements from Z commute in U.

Proof Let $\alpha, \beta \in Z$, $1 \le i \le 3$. Let us show that $[\alpha \cdot w_i, \beta] = 0$. Indeed, for $j \ne i$ we have $\pm [\alpha w_i, \beta] = [\alpha w_i, (\beta w_j) w_j] = [(\alpha w_i) \cdot (\beta w_j), w_j] + [\alpha w_i \cdot w_j, \beta w_j] = 0$. Now $\alpha = \pm (\alpha w_i) \cdot w_i$. If β commutes with αw_i and with w_i then it commutes with α , and the lemma is proved.

Proof of Theorem 2.2 The algebra *U* is generated by *P*(2) and *Z*. By Theorem 2.2, the subalgebra $\langle P(2) \rangle$ of *U* is generated by $\chi^{-1}(M_{2,2}(F))$ and by x^2 . We have $[Z, \chi^{-1}(M_{2,2}(F))] = (0), [Z, x^2] \subseteq Z$ and $[\chi^{-1}(M_{2,2}(F)), x^2] = (0)$. Hence $U = \sum_{i\geq 0} \chi^{-1}(M_{2,2}(F)) Z(x^2)^i$, which easily implies that Ker $\chi = (0)$. Theorem is proved.

3 Specializations of Kantor Doubles

Let $\Gamma = \Gamma_{\bar{0}} + \Gamma_{\bar{1}}$ be an arbitrary associative commutative superalgebra with a Jordan bracket $\{, \}$. Then $D(a) = \{a, 1\}$ is a derivation of Γ . The bracket is said to be of vector type if $\{a, b\} = D(a)b - aD(b)$.

In [Mc] it was proved that the Kantor double of a bracket of vector type is a special superalgebra. Furthermore, in [Mc], [K-Mc2] two important examples of classical and Grassmann Poisson brackets were analysed and it was shown that in both cases the Kantor doubles are exceptional.

The following proposition from [MSZ] completely determines which "superconformal" Kantor doubles (see [KMZ]) and which simple finite dimensional Kantor doubles (see [MZ]) are special.

Proposition 3.1 (see [MSZ]) Let $\Gamma = \Gamma_{\bar{0}} + \Gamma_{\bar{1}}$ be a finitely generated associative commutative superalgebra with a Jordan bracket $\{, \}$ such that the superalgebra $J = J(\Gamma, \{, \})$ does not contain nonzero nilpotent ideals.

- (1) If $\Gamma_{\bar{1}}\Gamma_{\bar{1}} \neq (0)$, then the superalgebra J is exceptional.
- (2) Suppose that either $\Gamma_{\bar{1}} = (0)$ or $\Gamma_{\bar{1}}$ contains an element ξ such that $\Gamma_{\bar{1}} = \Gamma_{\bar{0}}\xi$ and $\{\Gamma_0, \xi\} = (0), \{\xi, \xi\} = -1$. Then the superalgebra $J(\Gamma, \{, \})$ is special if and only if the restriction of $\{, \}$ on Γ_0 is of vector type.

Let $1 \in Z$ be an associative commutative algebra with a derivation $D: Z \to Z$ and the bracket of vector type $\{a, b\} = D(a)b - aD(b)$. The Kantor double $J(Z, \{, \})$ is simple if and only if Z does not contain proper *D*-invariant ideals (see [K-Mc], [MZ]). Let $W = \sum_{i=0}^{\infty} Zt^i$, ta = D(a) + at, $a \in Z$ be the Weyl algebra. We recall the McCrimmon specialization $m: J(Z, \{, \}) \to M_2(W)$,

$$m(a) = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}, \quad a \in Z; \qquad m(x) = \begin{pmatrix} 0 & 2t \\ -1 & 0 \end{pmatrix}.$$

Theorem 3.1 Suppose that the algebra Z does not contain proper D-invariant ideals. Then the McCrimmon specialization is universal, that is, $U(J(Z, \{,\})) = M_{1,1}(W)$.

Remark 3.1 The assumption that Z does not contain proper D-invariant ideals is essential. Indeed, let $Z = F[t_1, t_2]$ be the algebra of polynomials in two variables, D = 0. Let $u: Z \to U$ be the universal specialization of the Jordan algebra $Z^{(+)}$. The algebra U is not commutative (see [Jac]). Let J be the Kantor double of Z corresponding to the zero bracket, J = Z + Zx. Then the mapping $f: J \to M_{1,1}(U)$, $f(a) = \begin{pmatrix} u(a) & 0 \\ 0 & u(a) \end{pmatrix}$, $a \in Z$, $f(x) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, is a specialization such that the images of t_1, t_2 do not commute.

In what follows $J = J(Z, \{, \}), U = U(J)$, juxtaposition denotes the multiplication in *U*. We will identify elements from *J* with their images in *U*.

Lemma 3.1 Z is generated by D(Z).

Proof Suppose that $D^2 \neq 0$. The ideal $Z(D^2(Z))$ is *D*-invariant, hence $Z = Z(D^2(Z)) \subseteq D(ZD(Z)) + D(Z)D(Z) \subseteq D(Z) + D(Z)D(Z)$.

Now suppose that $D^2 = 0$. Then for arbitrary elements $a, b \in Z$ we have $D^2(ab) = D^2(a)b + aD^2(b) + 2D(a)D(b)$ which implies that D(Z)D(Z) = (0). Now, Z = ZD(Z), the contradiction.

Lemma 3.2 For arbitrary elements $a, b \in Z$ the commutator [a, b] lies in the center of U.

Proof For an arbitrary element $c \in J$ we have $\lfloor c, [a, b] \rfloor = 4cD(a, b) = 0$. Hence the commutator [a, b] commutes with an arbitrary element from *J*. Now it suffices to note that the algebra *U* is generated by *J*.

Lemma 3.3 [Z, Z] = (0).

Proof Let *S* denote the linear span of all elements $[[x^2, a], b]$; $a, b \in Z$. By Lemma 3.2 $[[x^2, a], b] = [[x^2, b], a]$. Hence *S* is spanned by elements $[[x^2, a], a]$, $a \in Z$.

Let us show that for an arbitrary element $c \in Z$, $Sc \subseteq S$. Indeed, $S \subseteq [Z,Z]$. By Lemma 3.2 *S* lies in the center of *U*. Hence $[[x^2, a], a]c = [[x^2, a], a] \cdot c = [[x^2, a], a \cdot c] - [[x^2, a], c] \cdot a$. Now $[[x^2, a], c] \cdot a = [[x^2, c], a] \cdot a = \frac{1}{2} [[x^2, c], a^2] \in S$.

Now let us show that SD(Z) = (0). For an arbitrary element $c \in Z$ we have $D(c) = \{c, 1\} = \{c \cdot x, x\} = \frac{1}{2}[c, x^2].$

If $s \in S$ then $s[c, x^2] = [sc, x^2] - [s, x^2]c = 0$, since the elements *s* and *sc* both lie in the center of *U*.

By Lemma 3.1 the identity 1 of the algebra *U* can be expressed as a linear combination of products of elements from D(Z). Hence $S \cdot 1 = (0)$ and S = (0).

We proved that Z commutes with $[x^2, Z] = D(Z)$. By Lemma 3.1, [Z, Z] = (0), and the lemma is proved.

Lemma 3.4 [Z, x][Z, x] = (0).

Proof Choose an arbitrary element $a \in Z$. We have $[[x^2, a], a] = 2[[x, a], a] \cdot x + 2[a, x]^2 = 0$, which implies that $[a, x]^2 = 0$. Hence for arbitrary elements $a, b \in Z$, $[a, x] \cdot [b, x] = 0$.

Let us show that for arbitrary elements $a, b \in Z$, $\left[[b, x], x \right], a = 0$.

Indeed, $[[b,x],x] = 4b \cdot x^2 - (b \cdot x) \cdot x$. Now, $[(b \cdot x) \cdot x, a] = [b \cdot x, a \cdot x] + [x, a \cdot (b \cdot x)] = \{b, a\} + [x, (ab) \cdot x] = D(b)a - bD(a) - D(ab) = -2D(a)b$; and $[b \cdot x^2, a] = b \cdot [x^2, a] + x^2 \cdot [b, a] = -2D(a)b$.

Finally,
$$0 = \left\lfloor \left[[a, b], x \right], x \right\rfloor = \left\lfloor \left[[a, x], x \right], b \right\rfloor + 2 \left[[a, x], [b, x] \right] + \left\lfloor a, \left[[b, x], x \right\rfloor \right\rfloor$$

which implies $\left[[a, x], [b, x] \right] = (0)$. This finishes the proof of the lemma.

Lemma 3.5 If $a, b \in Z$ and aD(b) = 0 then a[b, x] = 0.

Proof Denote s = a[b, x]. We have $sx = a[b, x]x = a([b, x^2] - x[b, x]) = -ax[b, x] = -xa[b, x] - [a, x][b, x] = -xs$.

Hence, $[s, x^2] = 0$.

For an arbitrary $c \in Z$ the element sc = (ac)[b, x] is of the same type as *s*, hence $[sc, x^2] = 0$.

Now, $s[c, x^2] = [sc, x^2] - [s, x^2]c = 0$. We proved that sD(Z) = (0). In the same way as in the proof of Lemma 3.3 this implies that s = 0, and the lemma is proved.

By the universal property of the associative superalgebra U there exists a homomorphism $\chi: U \to M_2(W)$ such that $m = \chi \cdot u$. Recall that we identify J with $u(J) \subseteq U$ and therefore assume that $u(a) = a, a \in J$.

By Lemmas 3.3 and 3.4 an arbitrary element $\omega \in U_{\bar{0}}$ can be represented as

$$\omega = \sum_i a_i x^{2i} + \sum_j x^{2j} b_j x[c_j, x],$$

where $a_i, b_j, c_j \in Z$. We have

$$\begin{split} \chi(\omega) &= \sum_{i} (-2)^{i} \begin{pmatrix} a_{i} & 0\\ 0 & a_{i} \end{pmatrix} \begin{pmatrix} t^{i} & 0\\ 0 & t^{i} \end{pmatrix} \\ &+ \sum_{j} (-2)^{j} \begin{pmatrix} t^{j} & 0\\ 0 & t^{j} \end{pmatrix} \begin{pmatrix} b_{j} & 0\\ 0 & b_{j} \end{pmatrix} \begin{pmatrix} 0 & 0\\ 0 & 2D(c_{j}) \end{pmatrix} \\ &= \begin{pmatrix} \sum (-2)^{i} a_{i} t^{i} & 0\\ 0 & \sum (-2)^{i} a_{i} t^{i} + \sum (-2)^{j+1} t^{j} b_{j} D(c_{j}) \end{pmatrix} \end{split}$$

If $\chi(\omega) = 0$, then $a_i = b_j D(c_j) = 0$ for all i, j. By Lemma 3.5 this implies that $\omega = 0$.

An arbitrary element $\omega \in U_1$ can be represented as

$$\omega = \sum_{i} x^{2i+1} a_i + \sum_{j} x^{2j} b_j [c_j, x].$$

We have

$$\chi(\omega) = \begin{pmatrix} 0 & \sum (-1)^{i} 2^{i+1} t^{i+1} a_i + \sum (-2)^{j+1} t^j b_j D(c_j) \\ \sum (-1)^{i+1} 2^i t^i a_i & 0 \end{pmatrix}.$$

Again if $\chi(\omega) = 0$ then $a_i = b_j D(c_j) = 0$ which implies $\omega = 0$.

It is easy to check that the image of *m* generates the whole algebra $M_2(W)$. Hence χ is an isomorphism. Theorem 3.1 is proved.

Now let us examine the case when $\Gamma_{\bar{0}} = Z$ is an associative commutative algebra with a derivation $D: Z \to Z$; $\Gamma_{\bar{1}} = Z\xi$, $\{a, b\} = D(a)b - aD(b)$ for $a, b \in Z$, $\{Z, \xi\} = (0), \{\xi, \xi\} = -1$. Then the Kantor double $J = J(\Gamma, \{, \})$ can be identified with the subsuperalgebra of CK(Z, D) generated by Z, ω_1, x . If the algebra Z does not contain proper D-invariant ideals, then this subsuperalgebra is $J = Z + Z\omega_1 + Zx_1 + Zx$.

Theorem 3.2 Suppose that the algebra Z does not contain proper D-invariant ideals. Then, the restriction of the embedding $\sigma: CK(Z,D) \to M_{2,2}(W)$ to the superalgebra $J = Z + Z\omega_1 + Zx_1 + Zx$ is a universal specialization of $J; U(J) \simeq M_{1,1}(W) \oplus M_{1,1}(W)$.

As always we identify the superalgebra J with its image in the universal associative enveloping superalgebra U.

Let $\langle Z, x \rangle$ denote the subsuperalgebra of *U* generated by *Z*, *x*.

Lemma 3.6 $U = \langle Z, x \rangle + \langle Z, x \rangle \omega_1$.

Proof For an arbitrary element $a \in Z$ we have $x(\omega_1 a) = x_1 D(a)$. Since $1 \in D(Z)Z$ it follows that x_1 lies in the subalgebra generated by Z, ω_1, x . The element ω_1 commutes with Z in U and anticommutes with x. This implies the lemma.

Let $\langle \sigma(Z), \sigma(x) \rangle$ be the subalgebra of $M_4(W)$ generated by $\sigma(Z), \sigma(x)$.

Lemma 3.7 If $A, B \in \langle \sigma(Z), \sigma(x) \rangle$ and $A + B\sigma(\omega_1) = 0$, then A = B = 0.

Proof We have $\sigma(\omega_1) = \begin{pmatrix} -I & 0 \\ 0 & I \end{pmatrix}$, where *I* is the identity matrix in $M_2(W)$. It is easy to see that $\langle \sigma(Z), \sigma(x) \rangle \subseteq \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix}; a, b \in M_2(W) \right\}$. Now

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} \begin{pmatrix} -I & 0 \\ 0 & I \end{pmatrix} = \begin{pmatrix} a-c & b+d \\ -b+d & a+c \end{pmatrix} = 0$$

implies that a = b = c = d = 0. Lemma is proved.

Now we can finish the proof of Theorem 3.2. Indeed, the homomorphism σ : $\langle Z, x \rangle \rightarrow \langle \sigma(Z), \sigma(x) \rangle$ is an isomorphism, because $\langle Z, x \rangle \simeq M_2(W)$ is a simple algebra. This implies that $\sigma: U \rightarrow M_4(W)$ is an embedding.

$$\langle \sigma(Z), \sigma(x) \rangle = \left\{ \begin{pmatrix} \beta_1 & 0 & 0 & \beta_3 \\ 0 & \beta_2 & \beta_4 & 0 \\ 0 & -\beta_3 & \beta_1 & 0 \\ -\beta_4 & 0 & 0 & \beta_2 \end{pmatrix} \middle| \beta_i \in W \right\}, \quad \sigma(\omega_1) = \begin{pmatrix} -I & 0 \\ 0 & I \end{pmatrix}.$$

So

$$\langle \sigma(Z), \sigma(x), \sigma(\omega_1) \rangle = \left\{ \begin{pmatrix} eta_1 & 0 & 0 & eta_5 \\ 0 & eta_2 & eta_6 & 0 \\ 0 & eta_7 & eta_3 & 0 \\ eta_8 & 0 & 0 & eta_4 \end{pmatrix} \ \bigg| \ eta_i \in W, 1 \le i \le 8
ight\}.$$

This superalgebra is isomorphic to $M_2(W) \oplus M_2(W)$, and the theorem is proved.

4 Specializations of *M*_{1,1}(*F*)

Denote $J = M_{1,1}(F)$, $v = e_{22} - e_{11} \in J_0$, $x = e_{12}$, $y = e_{21} \in J_1$. The universal associative enveloping superalgebra U of J can be presented by generators v, x, y and relators $v^2 - 1 = 0$, xv + vx = 0, yv + vy = 0, yx - xy - v = 0. Let v < x < y and consider the lexicographic order on the set of words in v, x, y. Then the system of relators above is closed with respect to compositions (see [Be], [Bo]). Hence the system of irreducible words $x^i y^j$, $vx^i y^j$; $i, j \ge 0$ is a Groebner-Shirshov basis of U.

By Remark 2.2, the squares x^2 , y^2 lie in the center of *U*. The algebra *U* is a free module over the central subalgebra $F[x^2, y^2]$ with free generators 1, *x*, *y*, *xy*, *v*, *vx*, *vy*, *vxy*.

Consider the ring of polynomials and the field of rational functions in two variables, $F[z_1, z_2] \subseteq F(z_1, z_2)$. Let K be the quadratic extension of $F(z_1, z_2)$ generated by a root of the equation $a^2 + a - z_1 z_2 = 0$. Consider the subring $A = F[z_1, z_2] + F[z_1, z_2]a$ and the subspaces $M_{12} = F[z_1, z_2] + F[z_1, z_2]a^{-1}z_2$, $M_{21} = F[z_1, z_2]z_1 + F[z_1, z_2]a$ of K. Then $\begin{pmatrix} A & M_{12} \\ M_{21} & A \end{pmatrix}$ is a subring of $M_2(K)$.

Let's consider the mapping $u: M_{1,1}(F) \rightarrow \begin{pmatrix} A & M_{12} \\ M_{21} & A \end{pmatrix}$,

$$u\left(\begin{pmatrix}\alpha_{11} & \alpha_{12}\\ \alpha_{21} & \alpha_{22}\end{pmatrix}\right) = \begin{pmatrix}\alpha_{11} & \alpha_{12} + \alpha_{21}a^{-1}z_2\\ \alpha_{12}z_1 + \alpha_{21}a & \alpha_{22}\end{pmatrix}.$$

A straightforward verification shows that u is a specialization of the Jordan superalgebra $J = M_{1,1}(F)$. Hence, it extends to a homomorphism $\chi: U \to \begin{pmatrix} A & M_{12} \\ M_{21} & A \end{pmatrix}$. Clearly, $\chi(x^2) = \begin{pmatrix} z_1 & 0 \\ 0 & z_1 \end{pmatrix}$, $\chi(y^2) = \begin{pmatrix} z_2 & 0 \\ 0 & z_2 \end{pmatrix}$. Again the straightforward computation shows that the elements 1, $\chi(x)$, $\chi(y)$, $\chi(xy)$, $\chi(v)$, $\chi(vx)$, $\chi(vy)$, $\chi(vy)$, $\chi(vxy)$ are free generators of the $F[z_1, z_2]$ -module $\begin{pmatrix} A & M_{12} \\ M_{21} & A \end{pmatrix}$, which implies the following:

Theorem 4.1 $U(M_{1,1}(F)) \simeq \begin{pmatrix} A & M_{12} \\ M_{21} & A \end{pmatrix}$. The mapping

$$u: \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \longrightarrow \begin{pmatrix} \alpha_{11} & \alpha_{12} + \alpha_{21}a^{-1}z_2 \\ \alpha_{12}z_1 + \alpha_{21}a & \alpha_{22} \end{pmatrix}$$

is a universal specialization.

Remark 4.1 One sided finite dimensional Jordan bimodules over $M_{1,1}(F)$ are not necessarily completely reducible. Indeed, if *I* is an ideal of $F[z_1, z_2]$ then $\begin{pmatrix} I+Ia & I+Ia^{-1}z_2 \\ Iz_1+Ia & I+Ia \end{pmatrix}$ is an ideal of $\begin{pmatrix} A & M_{12} \\ M_{21} & A \end{pmatrix}$. If the quotient $F[z_1, z_2]/I$ is finite-dimensional and not semisimple, then so is the quotient $\begin{pmatrix} A & M_{12} \\ M_{21} & A \end{pmatrix} / \begin{pmatrix} I+IA & I+Ia^{-1}z_2 \\ Iz_1+Ia & I+Ia \end{pmatrix}$.

5 Specializations of Superalgebras D(t)

Let $t \in F$. Consider the 4-dimensional superalgebra D(t), $D(t)_{\bar{0}} = Fe_1 + Fe_2$, $D(t)_{\bar{1}} = Fx + Fy$, $e_1^2 = e_1$, $e_2^2 = e_2$, $e_1e_2 = 0$, $e_ix = \frac{1}{2}x$, $e_iy = \frac{1}{2}y$, $1 \le i \le 2$, $[x, y] = e_1 + te_2$. Clearly, $D(-1) \cong M_{1,1}(F)$, $D(0) \cong K_3 \oplus F1$, D(1) is a Jordan superalgebra of a superform.

We will start with the superalgebra K_3 . Let osp(1, 2) denote the Lie subsuperalgebra of $M_{1,2}(F)$ which consists of skewsymmetric elements with respect to the orthosympletic superinvolution. Let x, y be the standard basis of the odd part of osp(1, 2).

As always U(osp(1,2)) denotes the universal associative enveloping algebra of the Lie superalgebra osp(1,2). Let $U^*(osp(1,2))$ be the ideal (of codimension one) of U(osp(1,2)) generated by osp(1,2).

Theorem 5.1 (I. Shestakov [S1]) The universal enveloping algebra of K_3 is isomorphic to $U^*(\operatorname{osp}(1,2)) / \operatorname{id}([x,y]^2 - [x,y])$, where $\operatorname{id}([x,y]^2 - [x,y])$ is the ideal of $U(\operatorname{osp}(1,2))$ generated by $[x,y]^2 - [x,y]$.

Remark 5.1 The ideal U^* above appeared because we do not assume an identity in the enveloping algebra $U(K_3)$ of the Jordan superalgebra. The unital hull of $U(K_3)$ is, of course, isomorphic to $U(\operatorname{osp}(1,2)) / \operatorname{id}([x, y]^2 - [x, y])$.

Clearly, if ch F = 0 then K_3 does not have nonzero specializations that are finite dimensional algebras. If ch F = p > 0 then K_3 has such specializations. For example, $K_3 \subseteq CK(F[a \mid a^p = 0], d/da)$.

Theorem 5.2 (I. Shestakov [S1]) Let $t \neq -1, 1$. Then the universal enveloping algebra of D(t) is isomorphic to

$$U(osp(1,2))/id([x,y]^2 - (1+t)[x,y] + t)$$
.

Corollary 5.1 If ch F = 0 then all finite dimensional one-sided bimodules over D(t), $t \neq -1, 1$, are completely reducible.

Indeed, it is known (see [Ka1]) that finite dimensional representations of the Lie superalgebra osp(1, 2) are completely reducible.

From now on in this section we will assume that $t \neq -1, 0, 1$ and ch F = 0.

We will classify irreducible finite-dimensional one-sided bimodules over D(t).

Let $V = V_{\bar{0}} + V_{\bar{1}}$ be a finite dimensional irreducible right module over the associative superalgebra U(D(t)). We will identify elements from D(t) with their right multiplications on V, *i.e.*, $D(t) \subseteq \operatorname{End}_F V$.

Let us notice that $V_{\bar{0}} \neq (0)$. Otherwise, Vx = Vy = (0), which implies that VD(t) = (0), the contradiction.

Let $E = \frac{1}{1+t}x^2$, $F = -\frac{1}{1+t}y^2$, $H = -\frac{1}{1+t}(xy + yx)$. It is easy to check that [E, F] = H, [E, H] = -2E, [F, H] = 2F, *i.e.*, the elements *E*, *F*, *H* span the Lie algebra sl_2 . The subspace $V_{\bar{0}}e_i$ is invariant under the sl_2 .

Suppose that $V_{\bar{0}}e_1 \neq (0)$. In the sl₂-module $V_{\bar{0}}e_1$ choose a highest weight element $v \neq 0$, *i.e.*, $vH = \lambda v$, vF = 0.

Now we will consider an infinite dimensional Verma type module $\tilde{V} = \tilde{v}U(D(t))$, whose homomorphic image is V. The module \tilde{V} is defined by one generator \tilde{v} and the relations: $\tilde{v}H = \lambda \tilde{v}, \, \tilde{v}e_1 = \tilde{v}, \, \tilde{v}y^2 = 0.$

From $\tilde{\nu}H = \lambda \tilde{\nu}$ it follows that $\tilde{\nu}(xy + yx) = -(t+1)\lambda \tilde{\nu}$. Taking into account that $xy = yx + e_1 + te_2$ we get $\tilde{v}yx = \alpha \tilde{v}$, where $\alpha = -\frac{1}{2}(1 + (1 + t)\lambda)$. Now

 $0 = (\tilde{v}yx - \alpha \tilde{v})y - \tilde{v}y(xy - yx - e_1 - te_2) = (t - \alpha)\tilde{v}y.$ Hence $\alpha = t$ or $\tilde{v}y = 0.$ Suppose that $\alpha = t$ or equivalently, $\lambda = \frac{-1-2t}{1+t}$. Then the system of relators of \tilde{V} : $\tilde{v}e_1 - \tilde{v} = 0$, $\tilde{v}y^2 = 0$, $\tilde{v}yx - t\tilde{v} = 0$ together with the system of relators of D(t): $e_1^2 - e_1 = 0$, $xe_1 + e_1x - x = 0$, $ye_1 + e_1y - y = 0$, $xy - yx - t - (1 - t)e_1 = 0$ and the lexicographic order $e_1 < y < x < v$ is closed with respect to compositions (see [Be], [Bo]). Hence the irreducible elements $\tilde{v}, \tilde{v}v, \tilde{v}x^i, i \ge 1$ form a basis of the module \tilde{V} . We will denote this module as $\tilde{V}_1(t)$.

If $\tilde{v}y = 0$ then $\tilde{v}yx = \alpha \tilde{v}$ implies that $\alpha = 0$, *i.e.*, $\lambda = -\frac{1}{1+t}$. In this case the system of relators of \tilde{V} is: $\tilde{v}e_1 - \tilde{v} = 0$, $\tilde{v}y = 0$. As above, this system, together with the system of relators of D(t) (see above) and the lexicographic order, is closed with respect to compositions. Hence, the irreducible elements $\tilde{v}, \tilde{v}x^i, i \geq 1$ form a basis of \tilde{V} . We will refer to this module as $\tilde{V}_2(t)$.

Changing parity we get two new bimodules $\tilde{V}_1(t)^{\text{op}}$ and $\tilde{V}_2(t)^{\text{op}}$.

Each of these bimodules has a unique irreducible homomorphic image $V_1(t)$ or $V_2(t)$ or $V_1(t)^{\text{op}}$ or $V_2(t)^{\text{op}}$.

Coming back to the irreducible finite dimensional module V, if $V_{\bar{0}} = V_{\bar{0}}e_1$ and for a highest weight element v we have $vy \neq 0$ then $V \cong V_1(t)$. If vy = 0, then $V \cong V_2(t)$. In case that $V_{\bar{0}} = V_{\bar{0}}e_2$ and for a highest weight element v we have $vy \neq 0$, then $V \cong V_2(t)^{\text{op}}$. If vy = 0, then $V \cong V_1(t)^{\text{op}}$.

From the representation theory of sl_2 it follows that $\dim_F V_1(t) < \infty$ if and only if $\lambda = m$, a nonnegative integer. Then $t = \frac{-1-m}{2+m}$, $\dim_F V_1(t)_{\bar{0}} = m+1$, $\dim_F V_1(t)_{\bar{1}} = m+2$. Similarly, $\dim_F V_2(t) < \infty$ if and only if $\lambda = m$ a positive integer. Then $t = \frac{-1-m}{m}$, $\dim_F V_2(t)_{\bar{0}} = m+1$, $\dim_F V_2(t)_{\bar{1}} = m$.

For other values of t the module $\tilde{V}_i(t)$ is irreducible and the superalgebra D(t) does not have nonzero finite dimensional specializations.

Theorem 5.3 If $t = -\frac{m}{m+1}$, $m \ge 1$, then D(t) has two irreducible finite dimensional one sided bimodules $V_1(t)$ and $V_1(t)^{\text{op}}$.

If $t = -\frac{m+1}{m}$, $m \ge 1$, then D(t) has two irreducible finite dimensional one sided bimodules $V_2(t)$ and $V_2(t)^{\text{op}}$.

If t can not be represented as $-\frac{m}{m+1}$ or $-\frac{m+1}{m}$, where m is a positive integer, then D(t) does not have nonzero finite dimensional specializations.

Remark 5.2 If ch F = p > 2 then for an arbitrary *t* the superalgebra D(t) can be embedded into a finite dimensional associative superalgebra. It suffices to notice that $D(t) \subseteq CK(F[a \mid a^p = 0], d/da)$.

6 The Jordan Superalgebra of a Superform

Let $V = V_{\bar{0}} + V_{\bar{1}}$ be a $\mathbb{Z}/2\mathbb{Z}$ -graded vector space, dim $V_{\bar{0}} = m$, dim $V_{\bar{1}} = 2n$; let $\langle , \rangle : V \times V \to F$ be a supersymmetric bilinear form on V. The universal associative enveloping algebra of the Jordan algebra $F1 + V_{\bar{0}}$ is the Clifford algebra $Cl(m) = \langle 1, e_1, \ldots, e_m | e_i e_j + e_j e_i = 0, i \neq j, e_i^2 = 1 \rangle$ (see [J]). Assuming the generators e_1, \ldots, e_m to be odd, we get a $\mathbb{Z}/2\mathbb{Z}$ -gradation on Cl(m).

In $V_{\bar{1}}$ we can find a basis $v_1, w_1, \ldots, v_n, w_n$ such that $\langle v_i, w_j \rangle = \delta_{ij}, \langle v_i, v_j \rangle = \langle w_i, w_j \rangle = 0$. Consider the Weyl algebra $W_n = \langle 1, x_i, y_i, 1 \le i \le n | [x_i, y_j] = \delta_{ij}, [x_i, x_j] = [y_i, y_j] = 0 \rangle$. Assuming $x_i, y_i, 1 \le i \le n$ to be odd, we make W_n a superalgebra. The universal associative enveloping algebra of F1 + V is isomorphic to the (super)tensor product $Cl(m) \otimes_F W_n$.

References

- [A] A. Albert, On certain algebra of quantum mechanics. Ann. of Math. (2) 35(1934), 65–73.
- [Be] G. M. Bergman, *The diamond lemma for ring theory*. Advances in Math. (2) **29**(1978), 178–218.
- [Bo] L. A. Bokut, Unsolvability of the word problem and subalgebras of finitely presented Lie algebras. Izv. Akad. Nauk SSSR Ser. Mat. 36(1972), 1173–1219.
- [C] P. M. Cohn, On homomorphic images of special Jordan algebras. Canad. J. Math. 6(1954), 253–264.
- [CK] S. J. Cheng and V. Kac, *A New N* = 6 *superconformal algebra*. Comm. Math. Phys. **186**(1997), 219–231.
- [GLS] P. Grozman, D. Leites and I. Shchepochkina, *Lie superalgebras of string theories*. hep-th 9702120.
- [J] N. Jacobson, Structure and Representation of Jordan algebras. Amer. Math. Soc., Providence, RI, 1969.
- [JNW] P. Jordan, J. von Newman and E. Wigner, *On an algebraic generalization of the quantum mechanical formalism*. Ann. of Math. (2) **36**(1934), 29–64.
- [Ka1] V. G. Kac, *Lie Superalgebras*. Advances in Math. **26**(1977), 8–96.

[Ka2] Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras. Comm. Algebra (13) 5(1977), 1375–1400. [KL] V. G. Kac and J. W. van de Leur, On classification of superconformal algebras. In: Strings '88, World Sci. Publishing, Singapore, 1989, 77–106. [KMZ] V. G. Kac, C. Martínez and E. Zelmanov, Graded simple Jordan superalgebras of growth one. Mem. Amer. Math. Soc. 150, 2001. [K1] I. L. Kantor, Connection between Poisson brackets and Jordan and Lie superalgebras. In: Lie theory, differential equations and representation theory (Montreal, 1989), Univ. Montréal, Montréal, QC, 1990, 213-225. [K2] Jordan and Lie superalgebras defined by Poisson brackets. In: Algebra and Analysis (Tomsk, 1989), Amer. Math. Soc. Transl. Ser. 2 151, Amer. Math. Soc., Providence, RI, 1992, 55-80 [K-Mc] D. King and K. McCrimmon, The Kantor construction of Jordan superalgebras. Comm. Algebra (1) **20**(1992), 109–126. [K-Mc2] , The Kantor doubling process revisited. Comm. Algebra (1) 23(1995), 357-372. [Kp1] I. Kaplansky, Superalgebras. Pacific J. Math. 86(1980), 93-98. [Kp2] Graded Jordan Algebras I. Preprint. [MSZ] C. Martínez, I. Shestakov and E. Zelmanov, Jordan algebras defined by brackets. J. London Math. Soc. (2) 64(2001), 357-368. C. Martínez and E. Zelmanov, Simple finite dimensional Jordan superalgebras of prime [MZ]characteristic. J. Algebra 236(2001), 575-629. [Mc] K. McCrimmon, Speciality and nonspeciality of two Jordan superalgebras. J. Algebra 149(1992), 326-351. [MeZ] Y. Medvedev and E. Zelmanov, Some counterexamples in the theory of Jordan Algebras. In: Nonassociative Algebraic Models (Zaragoza, 1989), Nova Sci. Publ., Commack, NY, 1992, 1-16. [RZ] M. Racine and E. Zelmanov, Classification of simple Jordan superalgebras with semisimple even part. J. Algebra, to appear. [S1] I. Shestakov, Universal enveloping algebras of some Jordan superalgebras. Personal communication. [Sh1] A. S. Shtern, Representations of an exceptional Jordan superalgebra. Funktsional. Anal. i Prilozhen 21(1987), 93–94. [W] C. T. C. Wall, Graded Brauer groups. J. Reine Angew Math. 213(1964), 187–199. E. Zelmanov, On prime Jordan Algebras II. Siberian Math. J. (1) 24(1983), 89-104. [Z] [ZSSS] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov and A. I. Shirshov, Rings that are nearly associative. Academic Press, New York, 1982.

Departamento de Matemáticas Universidad de Oviedo C/ Calvo Sotelo, s/n 33007 Oviedo Spain Department of Mathematics Yale University New Haven, CT 06520 USA