Specializations of Jordan Superalgebras

Dedicated to R. V. Moody on his 60th birthday.

Consuelo Martínez and Efim Zelmanov

Abstract. In this paper we study specializations and one-sided bimodules of simple Jordan superalgebras.

Let F be a ground field of characteristic $\neq 2$. A (linear) Jordan algebra is a vector space J with a binary bilinear operation $(x, y) \rightarrow x y$ satisfying the following identities:
(J1) $x y=y x$;
(J2) $\left(x^{2} y\right) x=x^{2}(y x)$.
For an element $x \in J$ let $R(x)$ denote the right multiplication $R(x): a \rightarrow a x$ in J. If $x, y, z \in J$ then by $\{x, y, z\}$ we denote their Jordan triple product $\{x, y, z\}=$ $(x y) z+x(y z)-y(x z)$.

Examples of Jordan Algebras

(1) Let A be an associative algebra. The new operation $a \cdot b=\frac{1}{2}(a b+b a)$ defines a structure of a Jordan algebra on A. We will denote this Jordan algebra as $A^{(+)}$.
(2) Let $\star: A \rightarrow A$ be an involution on the algebra A, that is, $\left(a^{\star}\right)^{\star}=a,(a b)^{\star}=b^{\star} a^{\star}$. The subspace $H(A, \star)$ of symmetric elements is a subalgebra of $A^{(+)}$.
(3) Let V be a vector space over F with a nondegenerate symmetric bilinear form $\langle\rangle:, V \times V \rightarrow F$. The direct sum $F 1+V$ with the product $(\alpha 1+v)(\beta 1+w)=$ $(\alpha \beta+\langle v, w\rangle) 1+(\alpha w+\beta v)$ is a Jordan algebra.
(4) The algebra $\left.H_{3}(0)\right)$ of Hermitian 3×3 matrices over octonions with the operation $a \cdot b=\frac{1}{2}(a b+b a)$ is a Jordan algebra.
P. Jordan, J. von Neumann, E. Wigner [JNW] and A. Albert [A] showed that every simple finite dimensional Jordan algebra over an algebraically closed field is of one of the types (1)-(4).

A Jordan algebra J is called special if it is embeddable into an algebra of type $A^{(+)}$, where A is an associative algebra. Clearly the algebras of Examples (1)-(3) above are special. The algebra $\left.H_{3}(0)\right)$ is exceptional. A homomorphism $J \rightarrow A^{(+)}$is called a specialization of a Jordan algebra J. N. Jacobson [J] introduced the notion of a universal associative enveloping algebra $U=U(J)$ of a Jordan algebra J and showed that

[^0]the category of specializations of J is equivalent to the category of homomorphisms of the associative algebra $U(J)$.

Let V be a Jordan bimodule over the algebra J (see [J]). We call V a one-sided bimodule if $\{J, V, J\}=(0)$. In this case, the mapping $a \rightarrow 2 R_{V}(a) \in \operatorname{End}_{F} V$ is a specialization. The category of one-sided bimodules over J is equivalent to the category of right (left) $U(J)$-modules.
N. Jacobson [J] found universal associative enveloping algebras for all special simple finite dimensional Jordan algebras.

In this paper we study specializations and one-sided bimodules of Jordan superalgebras. Let's introduce the definitions.

By a superalgebra we mean a $\mathbb{Z} / 2 \mathbb{Z}$-graded algebra $A=A_{\overline{0}}+A_{\overline{1}}$. We define $|a|=0$ if $a \in A_{\overline{0}}$ and $|a|=1$ if $a \in A_{\overline{1}}$.

For instance, if V is a vector space of countable dimension, and $G(V)=G(V)_{\overline{0}}+$ $G(V)_{\overline{1}}$ is the Grassmann algebra over V, that is, the quotient of the tensor algebra over the ideal generated by the symmetric tensors, then $G(V)$ is a superalgebra. Its even part is the linear span of all products of even length and the odd part is the linear span of all products of odd length.

If A is a superalgebra, its Grassmann enveloping algebra is the subalgebra of $A \otimes$ $G(V)$ given by $G(A)=A_{\overline{0}} \otimes G(V)_{\overline{0}}+A_{\overline{1}} \otimes G(V)_{\overline{1}}$.

Let \mathcal{V} be a homogeneous variety of algebras, that is, a class of F-algebras satisfying a certain set of homogeneous identities and all their partial linearizations (see [ZSSS]).

Definition A superalgebra $A=A_{\overline{0}}+A_{\overline{1}}$ is called a \mathcal{V} superalgebra if $G(A) \in \mathcal{V}$.
C. T. C. Wall [W] showed that every simple finite-dimensional associative superalgebra over an algebraically closed field F is isomorphic to the superalgebra $M_{m, n}(F)=$ $\left\{\left(\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right), A \in M_{m}(F), D \in M_{n}(F)\right\}+\left\{\left(\begin{array}{cc}0 & B \\ C & 0\end{array}\right), B \in M_{m \times n}(F), C \in M_{n \times m}(F)\right\}$ or to the superalgebra $Q(n)=\left\{\left(\begin{array}{cc}A & 0 \\ 0 & A\end{array}\right), A \in M_{n}(F)\right\}+\left\{\left(\begin{array}{cc}0 & B \\ B & 0\end{array}\right), B \in M_{n}(F)\right\}$.

Jordan superalgebras were first studied by V. Kac [Ka2] and I. Kaplansky [Kp1], [Kp2]. In [Ka2] V. Kac (see also I. L. Kantor [K1], [K2]) classified simple finite dimensional Jordan superalgebras over an algebraically closed field of zero characteristic. In [RZ] this classification was extended to simple finite dimensional Jordan superalgebras, with semisimple even part, over characteristic $p>2$; a few new exceptional superalgebras in characteristic 3 were added to the list. In [MZ] the remaining case of Jordan superalgebras with nonsemisimple even part was tackled.

Let's consider the examples that arise in these classifications.
If $A=A_{\overline{0}}+A_{\overline{1}}$ is an associative superalgebra then the superalgebra $A^{(+)}$, with the new product $a \cdot b=\frac{1}{2}\left(a b+(-1)^{|a||b|} b a\right)$ is Jordan. This leads to two superalgebras

$$
\begin{align*}
& M_{m, n}^{(+)}(F), m \geq 1, n \geq 1 \tag{1}\\
& Q(n)^{(+)}, n \geq 2 \tag{2}
\end{align*}
$$

If A is an associative superalgebra and $\star: A \rightarrow A$ is a superinvolution, that is, $\left(a^{\star}\right)^{\star}=a,(a b)^{\star}=(-1)^{|a||b|} b^{\star} a^{\star}$, then $H(A, \star)=H\left(A_{\overline{0}}, \star\right)+H\left(A_{\overline{1}}, \star\right)$ is a subsuperalgebra of $A^{(+)}$. The following two subalgebras of $M_{m, n}^{(+)}$are of this type.
(3) $\operatorname{Osp}_{m, n}(F)$ if $n=2 k$ is even. The superalgebra consists of matrices $\left(\begin{array}{c}A \\ C \\ D\end{array}\right)$, where $A^{t}=A \in M_{m}(F), C=J^{-1} B^{t} \in M_{n \times m}(F), D=J^{-1} D^{t} J \in M_{n}(F)$, $J=\left(\begin{array}{cc}0 & I_{k} \\ -I_{k} & 0\end{array}\right)$;
(4) $P(n)=\left\{\left(\begin{array}{cc}A & B \\ C & D\end{array}\right), D=A^{t}, B^{t}=B, C^{t}=-C \in M_{n}(F)\right\}$;
(5) Let $V=V_{\overline{0}}+V_{\overline{1}}$ be a $\mathbb{Z} / 2 \mathbb{Z}$-graded vector space with a superform $\langle\rangle:, V \times$ $V \rightarrow F$ which is symmetric on $V_{\overline{0}}$, skewsymmetric in $V_{\overline{1}}$ and $\left\langle V_{\overline{0}}, V_{\overline{1}}\right\rangle=(0)=$ $\left\langle V_{\overline{1}}, V_{\overline{0}}\right\rangle$.
The superalgebra $J=F 1+V=\left(F 1+V_{\overline{0}}\right)+V_{\overline{1}}$ is Jordan.
(6) The 3-dimensional Kaplansky superalgebra, $K_{3}=F e+(F x+F y)$, with the multiplication $e^{2}=e, e x=\frac{1}{2} x, e y=\frac{1}{2} y,[x, y]=e$.
(7) The 1-parametric family of 4-dimensional superalgebras D_{t} is defined as $D_{t}=$ $\left(F e_{1}+F e_{2}\right)+(F x+F y)$ with the products: $e_{i}^{2}=e_{i}, e_{1} e_{2}=0, e_{i} x=\frac{1}{2} x, e_{i} y=\frac{1}{2} y$, $x y=e_{1}+t e_{2}, i=1,2$.
The superalgebra D_{t} is simple if $t \neq 0$. In the case $t=-1$, the superalgebra D_{-1} is isomorphic to $M_{1,1}(F)$.
(8) The 10-dimensional Kac superalgebra (see [Ka2]) has been proved to be exceptional in [MeZ]. In characteristic 3 this superalgebra is not simple. It has a subalgebra of dimension 9 that is simple and exceptional (Shestakov and Vaughan Lee). There are two more examples of simple Jordan superalgebras in ch $F=3$, both of them exceptional (see [RZ]).
(9) We will consider now Jordan superalgebras defined by a bracket.

If $A=A_{\overline{0}}+A_{\overline{1}}$ is an associative commutative superalgebra with a bracket on A, $\{\}:, A \times A \rightarrow A$, the Kantor double of $(A,\{\}$,$) is the superalgebra J=A+A x$ with the $\mathbb{Z} / 2 \mathbb{Z}$ gradation $J_{\overline{0}}=A_{\overline{0}}+A_{\overline{1}} x, J_{\overline{1}}=A_{\overline{1}}+A_{\overline{0}} x$ and the multiplication in J given by: $a(b x)=(a b) x,(b x) a=(-1)^{|a|}(b a) x,(a x)(b x)=(-1)^{|b|}\{a, b\}$, and the product (in J) of two elements of A is just the product of them in A. A bracket on A is called a Jordan bracket if the Kantor double $J(A,\{\}$,$) is a$ Jordan superalgebra. Every Poisson bracket is a Jordan bracket (see K2]).
(10) Let Z be a unital associative commutative algebra with a derivation $D: Z \rightarrow Z$. Consider the superalgebra $C K(Z, D)=A+M$, where $A=J_{\overline{0}}=Z+\sum_{i=1}^{3} w_{i} Z$, $M=J_{\overline{1}}=x Z+\sum_{i=1}^{3} x_{i} Z$ are free Z-modules of rank 4. The multiplication on A is Z-linear and $w_{i} w_{j}=0, i \neq j, w_{1}^{2}=w_{2}^{2}=1, w_{3}^{2}=-1$.

Denote $x_{i \times i}=0, x_{1 \times 2}=-x_{2 \times 1}=x_{3}, x_{1 \times 3}=-x_{3 \times 1}=x_{2},-x_{2 \times 3}=x_{3 \times 2}=x_{1}$.
The bimodule structure and the bracket on M are defined via the following tables:

	g	$w_{j} g$				
$x f$	$x(f g)$	$x_{j}\left(f g^{D}\right)$				
$x_{i} f$	$x_{i}(f g)$	$x_{i \times j}(f g)$	\quad		$x g$	$x_{j} g$
:---:	:---:	:---:				
$x f$	$f^{D} g-f g^{D}$	$-w_{j}(f g)$				
$x_{i} f$	$w_{i}(f g)$	0				

The superalgebra $C K(Z, D)$ is simple if and only if Z does not contain proper D-invariant ideals.

In [Ka2], [K1] it was shown that simple finite dimensional Jordan superalgebras over an algebraically closed field F of zero characteristic are those of examples (1)(8) and the Kantor double (example (9)) of the Grassmann algebra with the bracket $\{f, g\}=\sum(-1)^{|f|} \frac{\partial f}{\partial \xi_{i}} \frac{\partial g}{\partial \xi_{i}}$.

The examples (9), (10) are related to infinite dimensional superconformal Lie superalgebras (see [KL], [KMZ]). In particular, the superalgebras $C K(Z, D)$ correspond to an important superconformal algebra discovered in [CK] and [GLS].

In [MZ] it was shown that the only simple finite dimensional Jordan superalgebras over an algebraically closed field of characteristic $p>2$ with nonsemisimple even part are superalgebras (9), (10) built on truncated polynomials.

In Section 1 we discuss reflexive superalgebras (the generic case).
In Section 2 we show that the specialization σ of the Cheng-Kac superalgebra $C K(Z, D)$ constructed in [MSZ] is universal, $U(C K(Z, D)) \simeq M_{2,2}(W)$, where W is the Weyl algebra of differential operators on Z. The restriction of σ to the superalgebra $P(2)$ is the universal specialization of $P(2), U(P(2)) \simeq M_{2,2}(F[t])$.

In Section 3 we show that, for a D-simple algebra Z, the McCrimmon specialization of the Kantor double of the bracket of vector type is universal.

In Section 4 we construct the universal specialization of the superalgebra $M_{1,1}(F)$.
Finally, in Section 5, we describe all irreducible one-sided bimodules over a superalgebra $D(t), t \neq-1,0,1$.

In what follows the ground field F is assumed to be algebraically closed.

1 Reflexive Superalgebras

Let J be a special Jordan superalgebra. A specialization $u: J \rightarrow U$ into an associative algebra U is said to be universal if $U=\langle u(J)\rangle$ and for an arbitrary specialization $\varphi: J \rightarrow A$ there exists a homomorphism of associative algebras $\chi: U \rightarrow A$ such that $\varphi=\chi \cdot u$. The algebra U is called the universal associative enveloping algebra of J.

Exactly in the same way as for Jordan algebras (see [J]) one can show that an arbitrary special Jordan superalgebra has a unique universal specialization $u: J \rightarrow U$ which is an embedding. Moreover, the algebra U is equipped with a superinvolution * having all elements from $u(J)$ fixed, i.e., $u(J) \subseteq H(U, *)$.

Generally speaking, an identity in U is not assumed. However, if J is a unital (super)algebra then the identity of J is automatically an identity of U (see [J]).

We call a special Jordan superalgebra reflexive if $u(J)=H(U, *)$.
Theorem 1.1 All superalgebras of examples (1)-(4) are reflexive except the following ones: $M_{1,1}^{+}(F), \operatorname{Osp}(1,2) \simeq D(-2), P(2)$. Hence, $U\left(M_{m, n}^{(+)}(F)\right) \simeq M_{m, n}(F) \oplus M_{m, n}(F)$ for $(m, n) \neq(1,1) ; U\left(Q^{(+)}(n)\right)=Q(n) \oplus Q(n), n \geq 2 ; U(\operatorname{Osp}(m, n)) \simeq M_{m, n}(F)$, $(m, n) \neq(1,2) ; U(P(n)) \simeq M_{n, n}(F), n \geq 3$.

If A is an associative enveloping superalgebra of a special superalgebra J and $a_{1}, a_{2}, a_{3}, a_{4}$ are homogeneous elements from J then by a tetrad $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \in A$ we mean

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}=a_{1} a_{2} a_{3} a_{4}+(-1)^{\sum_{i<j}\left|a_{i}\right|\left|a_{j}\right|} a_{4} a_{3} a_{2} a_{1}
$$

A homogeneous element a of J is said to be a tetrad-eater if in any associative enveloping superalgebra of J any tetrad with a as one of its entries is necessarily an element of J. There exists an ideal T of the free Jordan algebra with the following property: for an arbitrary special Jordan algebra J, an arbitrary element from $T(J)$ is
a tetrad eater (see $[Z]$). If J is a simple special Jordan superalgebra and $T\left(J_{0}\right) \neq(0)$, then every element of J is a tetrad-eater. By P. Cohn's theorem (see [SSSZ], [C], [J]) in this case J is reflexive. If B is a Jordan algebra of capacity ≥ 3 then $T(B) \neq(0)$ (see $[Z])$. Hence the superalgebras $P(n), Q(n), n \geq 3$ are reflexive.

The remaining cases of Theorem 1.1 except $Q(2)$ follow from the following lemma that was proved in [RZ]:

Lemma 1.1 ([RZ]) If J is a finite-dimensional special simple Jordan superalgebra, $J_{\overline{0}}=J_{\overline{0}}^{\prime} \oplus J_{\overline{0}}^{\prime \prime}$ is semisimple and at least one of the summands is not F then J is reflexive.

Lemma 1.2 The superalgebra $Q(2)$ is reflexive.

Proof The even and the odd parts of $Q(2)$ can be identified with the matrix algebra. Let $e_{i j} \in Q(2)_{\overline{0}}$ and $\overline{e_{i j}} \in Q(2)_{\overline{1}}$ denote the images of the unit matrix $e_{i j}, Q(2)_{\overline{0}}=$ $\sum F e_{i j}, Q(2)_{\bar{i}}=\sum F \overline{e_{i j}}$.

Let U be the universal associative enveloping algebra of $Q(2)$, let \equiv denote the equality in U modulo $Q(2)$. We need to check that for arbitrary elements $x_{i} \in Q(2)$, $1 \leq i \leq 4$, the tetrad $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}=x_{1} x_{2} x_{3} x_{4}+(-1)^{\sum_{i<j}\left|x_{i}\right|\left|x_{j}\right|} x_{4} x_{3} x_{2} x_{1}$ lies in $Q(2)$ (see [C]).

We have $\{\ldots, x, y, \ldots\} \equiv-(-1)^{|x|}|y|\{\ldots, y, x, \ldots\}$ and $\{\ldots, x y, z, \ldots\} \equiv$ $\{\ldots, x, y z, \ldots\}+(-1)^{|x||y|}\{\ldots, y, x z, \ldots\}$ (see $[Z]$).

Now suppose that $x_{1}, x_{2}, x_{3}, x_{4} \in\left\{e_{i j}, \overline{e_{i j}}, 1 \leq i, j \leq 2\right\}$ and $0 \not \equiv\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.
(i) If $x_{1}=e_{11}$ or e_{22} then $x_{2}, x_{3}, x_{4} \in\left\{e_{12}, e_{21}, \overline{e_{12}}, \overline{e_{21}}\right\}$.

Indeed, $\left\{e_{11}, x_{2}, x_{3}, x_{4}\right\}=\left\{e_{11}^{2}, x_{2}, x_{3}, x_{4}\right\} \equiv\left\{e_{11}, 2 e_{11} x_{2}, x_{3}, x_{4}\right\}$, which implies that $x_{2}=2 e_{11} x_{2}$.

This takes care of the case when all four elements $x_{1}, x_{2}, x_{3}, x_{4}$ are even.
(ii) $\left\{\overline{e_{11}}, \overline{e_{22}}, \ldots\right\} \equiv 0$. Indeed,

$$
\left\{\overline{e_{11}}, \overline{e_{22}}, \ldots\right\}=\left\{e_{11} \overline{e_{11}}, \overline{e_{22}}, \ldots\right\} \equiv\left\{e_{11}, \overline{e_{11} e_{22}}, \ldots\right\}+\left\{\overline{e_{11}}, e_{11} \overline{e_{22}}, \ldots\right\}=0
$$

(iii) $\left\{e_{12}, \overline{e_{12}}, \ldots\right\} \equiv 0$. Indeed, $\overline{e_{12}}=2 e_{12} \overline{e_{22}}$. Hence, $\left\{e_{12}, \overline{e_{12}}, \ldots\right\}=$ $\left\{e_{12}, 2 e_{12} \overline{e_{22}}, \ldots\right\} \equiv\left\{e_{12}^{2}, \overline{e_{22}}, \ldots\right\}=0$.

This takes care of the case when x_{1}, x_{2}, x_{3} are even and x_{4} is odd.
Indeed, if the elements x_{1}, x_{2}, x_{3} are e_{11}, e_{12}, e_{21}, then all four possibilities for x_{4} are ruled out.
(iv) Fix elements $x_{2}, x_{3}, x_{4} \in J$. Suppose that $\left\{Q(2)_{0}, x_{2}, x_{3}, x_{4}\right\} \equiv$ (0) and $\left\{\overline{e_{11}}, x_{2}, x_{3}, x_{4}\right\} \equiv 0$. Then $\left\{Q(2), x_{2}, x_{3}, x_{4}\right\} \equiv(0)$. Indeed, the $Q(2)_{0}$-bimodule $Q(2)_{0}$ is irreducible. Hence it is sufficient to prove that for arbitrary elements $a_{1}, \ldots, a_{k} \in Q(2)_{0}$, we have $\left\{\overline{e_{11}} R\left(a_{1}\right) \cdots R\left(a_{k}\right), x_{2}, x_{3}, x_{4}\right\} \equiv 0$.

In $[Z]$ it was shown that for arbitrary homogenous elements x_{1}, x_{1}^{\prime} we have

$$
\left\{x_{1} x_{1}^{\prime}, x_{2}, x_{3}, x_{4}\right\} \equiv x_{1}\left\{x_{1}^{\prime}, x_{2}, x_{3}, x_{4}\right\}+(-1)^{\left|x_{1}\right|\left|x_{1}^{\prime}\right|} x_{1}^{\prime}\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}
$$

This implies the assertion.
Similarly, $\left\{Q(2)_{0}, x_{2}, x_{3}, x_{4}\right\} \equiv(0)$ and $\left\{\overline{e_{22}}, x_{2}, x_{3}, x_{4}\right\} \equiv 0$ imply $\left\{Q(2), x_{2}\right.$, $\left.x_{3}, x_{4}\right\} \equiv(0)$.

From (iv) it follows that if $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \not \equiv 0$, then for an arbitrary $i, 1 \leq i \leq 4$ we can assume that x_{i} is even or our choice of the elements $\overline{e_{11}}, \overline{e_{22}}$. In view of (ii) this finishes the proof of the lemma.

In next section we will see that the superalgebra $P(2)$ is not reflexive.

2 The Cheng-Kac Superalgebras and $P(2)$

Let Z be an associative commutative F-algebra with a derivation $D: Z \rightarrow Z$. Let $C K(Z, D)=\left(Z+\sum_{i=1}^{3} Z w_{i}\right)+\left(Z x+\sum_{j=1}^{3} Z x_{j}\right)$ be the Cheng-Kac superalgebra. The subsuperalgebra of $C K(Z, D)$ spanned over F by the elements $1, w_{1}, w_{2}, w_{3}, x, x_{1}, x_{2}$, x_{3} is isomorphic to $P(2)$.

Consider the associative Weyl algebra $W=\sum_{i \geq 0} Z t^{i}$ where the variable t commutes with a coefficient $a \in Z$ via $t a=D(a)+a t$.

In [MSZ] we found the following embedding of $C K(Z, D)$ into the associative superalgebra $M_{2,2}(W)=\left(\begin{array}{cc}M_{2}(W) & 0 \\ 0 & M_{2}(W)\end{array}\right)+\left(\begin{array}{cc}0 & M_{2}(W) \\ M_{2}(W) & 0\end{array}\right)$,

$$
\begin{aligned}
& \sigma(a)=\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & a & 0 \\
0 & 0 & 0 & a
\end{array}\right), \quad a \in Z ; \quad \sigma\left(w_{1}\right)=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \\
& \sigma\left(w_{2}\right)=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right), \quad \sigma\left(w_{3}\right)=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right) ; \\
& \sigma(x)=\left(\begin{array}{cccc}
0 & 0 & 0 & 2 D \\
0 & 0 & -2 D & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right), \quad \sigma\left(x_{1}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
& \sigma\left(x_{2}\right)=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad \sigma\left(x_{3}\right)=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Remark 2.1 The subsuperalgebra $Z+Z x$ of $C K(Z, D)$ is a Kantor double of vector type (see [Mc]). The embedding σ above extends the embedding of Kantor doubles of vector type found by McCrimmon in [Mc].

Theorem 2.1 The restriction of the embedding σ (see above) to $P(2)$ is a universal specialization; $U(P(2)) \simeq M_{2,2}(F[t])$, where $F[t]$ is a polynomial algebra in one variable.

Let K and H be the subspaces of skew-symmetric and symmetric 2×2 matrices over F respectively. Let $J=P(2), J_{\overline{0}}=M_{2}(F), J_{\overline{1}}=\bar{K}+\bar{H}$, where \bar{K} and \bar{H} are isomorphic copies of K and H. The multiplication of $J_{\overline{1}}$ by $J_{\overline{0}}$ and the bracket on $J_{\overline{1}}$ are defined via $a \cdot \bar{b}=\frac{1}{2}\left(\overline{a b+b a^{t}}\right)$ and $[\bar{b}, \bar{c}]=b c-c b \in J_{\overline{0}} ; a \in M_{2}(F), b, c \in K \cup H$.

Let $u: J \rightarrow U$ be the universal specialization of J. We will identify J with $u(J)$ and assume that $J \subseteq U$. The juxtaposition in the following lemma denotes multiplication in U.

Lemma 2.1

(1) $\bar{H} \bar{H}=(0)$,
(2) $\bar{H} \bar{K} \subseteq\left\langle J_{\overline{0}}\right\rangle$,
(3) $\bar{H}\left\langle J_{\overline{0}}\right\rangle=\overline{1}\left\langle J_{0}\right\rangle$.

Proof We have $[\bar{H}, \bar{H}]=(0)$. In particular, $\left[\overline{e_{11}}, \overline{e_{12}+e_{21}}\right]=0$.
If e is an idempotent in an associative algebra $R, a, b \in R$ and [eae, $e b(1-e)+$ $(1-e) b e]=0$, then $\operatorname{eaeb}(1-e)=(1-e)$ beae $=0$, which implies eae $(e b(1-e)+$ $(1-e) b e)=(e b(1-e)+(1-e) b e) e a e=0$.

Since the elements $\overline{e_{11}}$ and $\overline{e_{12}+e_{21}}$ lie in the corresponding Peirce components of U, we conclude that $\overline{e_{11}}\left(\overline{e_{12}+e_{21}}\right)=\left(\overline{e_{12}+e_{21}}\right) \overline{e_{11}}=0$.

To finish the proof we will need the following remark:
Remark 2.2 Let J be an arbitrary Jordan superalgebra and let A, B be two associative enveloping algebras of J. If x is an odd element of $J_{\overline{1}}$ and the square of x in A lies in the center of A, then the square of x in B also lies in the center of B. Indeed, for an arbitrary element $a \in J$ we have $a R_{J}(x) R_{J}(x)=\frac{1}{2}\left[a, x^{2}\right]$, where $R_{J}(x)$ denotes the operator of right Jordan multiplication in J.

The superalgebra $J=P(2)$ has an associative enveloping algebra $M_{2,2}(F)$, where the square of $\overline{e_{11}}$ is 0 .

Hence the square $\overline{e_{11}^{2}}$ in U lies in the center of U.
The element $\overline{e_{11}^{2}}$ lies in the 1-Peirce component $e_{11} U e_{11}$ of U; the element $e_{12}+e_{21}$ lies in the $\frac{1}{2}$-Peirce component $e_{11} U\left(-e_{11}\right)+\left(1-e_{11}\right) U e_{11}$. Hence $\overline{e_{11}^{2}}\left(e_{12}+e_{21}\right)=$ $\left(e_{12}+e_{21}\right) \frac{\overline{e_{11}^{2}}}{\text { implies }} \overline{e_{11}^{2}}\left(e_{12}+e_{21}\right)=0$. But $1=\left(e_{12}+e_{21}\right)^{2}$. We proved that $\overline{e_{11}^{2}}=0$.

Since, obviously, $\overline{e_{11} e_{22}}=0$, we conclude that $\overline{e_{11}} \bar{H}=(0)$.
The Jordan $J_{\overline{0}}$-bimodule \bar{H} is generated by the element $\overline{e_{11}}$.
This implies that $\bar{H} \subseteq\left\langle J_{\overline{0}}\right\rangle \overline{e_{11}}\left\langle J_{\overline{0}}\right\rangle, \bar{H} \bar{H} \subseteq\left\langle J_{\overline{0}}\right\rangle \overline{e_{11}}\left\langle J_{\overline{0}}\right\rangle \bar{H} \subseteq\left\langle J_{\overline{0}}\right\rangle \overline{e_{11}} \bar{H}\left\langle J_{\overline{0}}\right\rangle=(0)$.
We proved the assertion (1).
Let $x=\overline{e_{12}-e_{21}}$. If $a \in J_{\overline{0}}=M_{2}(F)$ and $\operatorname{tr}(a)=0$, then $a \cdot x=0$. In particular, if $a \in H$ and $\operatorname{tr}(a)=0$ then $a x+x a=0$. Now choose an arbitrary element $h \in H$ and consider $(a \cdot \bar{h}) x$. Clearly, $[a \cdot \bar{h}, x] \in J_{\overline{0}}$.

Furthermore, $(a \bar{h}+\bar{h} a) x+x(a \bar{h}+\bar{h} a)-\bar{h}(a x+x a)-(a x+x a) \bar{h}=a[\bar{h}, x]-[\bar{h}, x] a \in$ $\left\langle J_{\overline{0}}\right\rangle$. Hence $(a \cdot \bar{h}) x \in\left\langle J_{\overline{0}}\right\rangle$.

Denote $H^{0}=\{a \in H \mid \operatorname{tr}(a)=0\}$. We proved that $\left(H^{0} \cdot \bar{H}\right) x \subseteq\left\langle J_{\overline{0}}\right\rangle$. Now, notice that $\bar{h}=h \cdot \overline{1}$ for $h \in H$ and $\overline{1}=\left(e_{11}-e_{22}\right) \cdot \overline{e_{11}-e_{22}}$. Hence $\bar{H}=H^{0} \cdot \bar{H}$. This finishes the proof of (2).

Clearly $\bar{H}\left\langle J_{\overline{0}}\right\rangle=\overline{e_{11}}\left\langle J_{\overline{0}}\right\rangle+\overline{e_{22}}\left\langle J_{\overline{0}}\right\rangle+\left(\overline{e_{12}+e_{21}}\right)\left\langle J_{\overline{0}}\right\rangle$. But $\overline{e_{i i}}=\overline{1} e_{i i}$ since $\overline{1}=$ $\overline{e_{11}}+\overline{e_{22}}$ is the Peirce decomposition of $\overline{1}$ with respect to the idempotents e_{11}, e_{22}. Hence $\overline{e_{11}}\left\langle J_{\overline{0}}\right\rangle, \overline{e_{22}}\left\langle J_{\overline{0}}\right\rangle \subseteq \overline{1}\left\langle J_{\overline{0}}\right\rangle$.

Denote $s=e_{12}+e_{21}$. Then $\bar{s}=2\left(\overline{e_{11}} \cdot s\right)=s \overline{e_{11}}+\overline{e_{11}} s$.
Since $s^{2}=1$ it follows that $\overline{e_{11}}=s \overline{e_{11}} s s=\overline{e_{22}} s$.
Now we have $\bar{s}=s \overline{e_{11}}+\overline{e_{11}} s=\overline{e_{22}} s+\overline{e_{11}} s=\overline{1} s$. Lemma is proved.
Corollary 2.1 $U=\sum_{i \geq 0}\left\langle J_{0}\right\rangle x^{i}+\overline{1}\left\langle J_{\overline{0}}\right\rangle$.
Proof In an arbitrary product involving elements from $J_{\overline{0}}, \bar{H}, x$ we can use $J_{\overline{0}} \bar{H} \subseteq$ $\bar{H} J_{\overline{0}}+\bar{H}, x \bar{H} \subseteq \bar{H} x+J_{\overline{0}}$ to move all factors from \bar{H} to the left end.

If $a \in J_{\overline{0}}, \operatorname{tr}(a)=0$, then $a x+x a^{t}=0$. Hence in a product involving only elements from $J_{\overline{0}}$ and x we can move all x 's together. Now the result follows from Lemma 2.1.

Lemma 2.2 $\bar{H} x\left\langle J_{\overline{0}}\right\rangle \triangleleft\left\langle J_{\overline{0}}\right\rangle$.
Proof We need to show that $\bar{H} x\left\langle J_{\overline{0}}\right\rangle$ is a left ideal in $\left\langle J_{\overline{0}}\right\rangle$. Choose arbitrary elements $a \in J_{\overline{0}}, h \in H$. Then $a \bar{h} x=(a \bar{h}+\bar{h} a) x-\bar{h}(a x+x a)+\bar{h} x a \in \bar{H} x\left\langle J_{\overline{0}}\right\rangle$. Lemma is proved.

Lemma 2.3 The subalgebra of $M_{2,2}(W)$ generated by $\sigma(J)$ is $M_{2,2}(F[t])$.

Proof

Step $1\left\langle\sigma\left(w_{1}\right), \sigma\left(w_{2}\right), \sigma\left(w_{3}\right)\right\rangle=\left\{\left(\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right) ; a, b \in M_{2}(F)\right\}$. Indeed, $M_{2}(F)$ is generated by $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Hence $\left\langle\sigma\left(w_{1}\right), \sigma\left(w_{2}\right)\right\rangle=\left\{\left(\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right), a \in M_{2}(F)\right\}$.

It implies that

$$
\sigma\left(w_{3}\right)+\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & -2 & 0
\end{array}\right) \in\left\langle\sigma\left(w_{1}\right), \sigma\left(w_{2}\right), \sigma\left(w_{3}\right)\right\rangle
$$

Now

$$
\begin{aligned}
\left\{\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right) ; a \in M_{2}(F)\right\}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & -2 & 0
\end{array}\right) & =\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & b
\end{array}\right) ; b \in M_{2}(F)\right\} \\
& \subseteq\left\langle\sigma\left(w_{1}\right), \sigma\left(w_{2}\right), \sigma\left(w_{3}\right)\right\rangle
\end{aligned}
$$

which implies the result.

Step $2\left\langle\sigma\left(w_{1}\right), \sigma\left(w_{2}\right), \sigma\left(w_{3}\right), \sigma\left(x_{1}\right), \sigma\left(x_{2}\right), \sigma\left(x_{3}\right)\right\rangle=\left\{\left(\begin{array}{cc}a & c \\ 0 & b\end{array}\right) ; a, b, c \in M_{2}(F)\right\}$.
It suffices to notice that $\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right) \sigma\left(x_{3}\right)=\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right)$.
Step $3\langle\sigma(J)\rangle \supseteq M_{2,2}(F)$.
We have

$$
\sigma(x)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

and

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc}
a_{11} & a_{12} & 0 & 0 \\
a_{21} & a_{22} & 0 & 0 \\
0 & 0 & a_{11} & a_{12} \\
0 & 0 & a_{21} & a_{22}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-a_{21} & -a_{22} & 0 & 0 \\
a_{11} & a_{12} & 0 & 0
\end{array}\right),
$$

which implies that $\left\{\left(\begin{array}{cc}0 & 0 \\ d & 0\end{array}\right) ; d \in M_{2}(F)\right\} \subseteq\langle\sigma(J)\rangle$.
Step 4 We have $\frac{1}{2} e_{11} \sigma(x) e_{11}=e_{11}(t) \in\langle\sigma(J)\rangle$. Hence $M_{2,2}(F[t])=\left\langle\overline{M_{2,2}(F)}, e_{11}(t)\right\rangle$ $=\langle\sigma(J)\rangle$. Lemma is proved.

By the universal property of $u: J \rightarrow U$, there exists a unique homomorphism $\chi: U \rightarrow M_{2,2}(F[t])$ of associative superalgebras such that $\sigma=\chi \cdot u$.

Lemma 2.4 The restriction of χ to $\overline{1}\left\langle J_{\overline{0}}\right\rangle$ is an embedding.

Proof We have already proved that $\bar{H} x\left\langle J_{\overline{0}}\right\rangle$ is an ideal of $\left\langle J_{\overline{0}}\right\rangle$. Furthermore, this ideal is proper. Indeed, it is nonzero, since $\sigma(\bar{H}) \sigma(x) \neq(0)$ in $M_{4}(F[t])$,

$$
\sigma\left(x_{1}\right) \sigma(x)=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \neq 0
$$

Let's assume that the ideal $\bar{H} x\left\langle J_{\overline{0}}\right\rangle=\left\langle J_{\overline{0}}\right\rangle$. Then $\bar{H} \cdot \bar{H}=(0)$ implies $\bar{H}\left(\bar{H} x\left\langle J_{\overline{0}}\right\rangle\right)=$ (0) and therefore $\bar{H}=(0)$, the contradiction.

The dimension of the subalgebra $\left\langle J_{\overline{0}}\right\rangle$ of U is ≤ 8. By Step 1 of the proof of Lemma 2.3 we have $\left\langle J_{\overline{0}}\right\rangle \cong M_{2}(F) \oplus M_{2}(F)$. Hence $\bar{H} x\left\langle J_{\overline{0}}\right\rangle$ is a direct summand of $\left\langle J_{\overline{0}}\right\rangle$ of dimension 4. Let $\left\langle J_{\overline{0}}\right\rangle=\bar{H} x\left\langle J_{\overline{0}}\right\rangle \oplus L$, where $L \cong M_{2}(F)$.

Since $\overline{1}\left\langle J_{0}\right\rangle=\overline{1} \bar{H} x\left\langle J_{0}\right\rangle+\overline{1} L$ and $\overline{1} \bar{H}=$ (0) by Lemma 2.1 (1), it follows that $\operatorname{dim}_{F} \overline{1}\left\langle J_{\overline{0}}\right\rangle \leq 4$. Now it remains to notice that $\chi\left(\overline{1}\left\langle J_{\overline{0}}\right\rangle\right)=\sigma(\overline{1})\left\langle\sigma\left(J_{\overline{0}}\right)\right\rangle=\left\{\left(\begin{array}{c}0 \\ 0 \\ 0\end{array}\right)\right.$; $\left.a \in M_{2}(F)\right\}$ has dimension 4. Lemma is proved.

We have

$$
\begin{gathered}
\sigma(x)=\left(\begin{array}{cccc}
0 & 0 & 0 & 2 t \\
0 & 0 & -2 t & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right), \quad \sigma(x)^{2 k}=2^{k}\left(\begin{array}{cccc}
t^{k} & 0 & 0 & 0 \\
0 & t^{k} & 0 & 0 \\
0 & 0 & t^{k} & 0 \\
0 & 0 & 0 & t^{k}
\end{array}\right) \\
\sigma(x)^{2 k+1}=2^{k}\left(\begin{array}{cccc}
0 & 0 & 0 & 2 t^{k+1} \\
0 & 0 & -2 t^{k+1} & 0 \\
0 & -t^{k} & 0 & 0 \\
t^{k} & 0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Now we are ready to finish the proof of Theorem 2.1. Let $a=\sum u_{i} x^{i}+\overline{e_{11}} v+\overline{e_{22}} w \in$ $\operatorname{ker} \chi ; u_{i}, v, w \in\left\langle J_{\overline{0}}\right\rangle$. Let $\chi\left(u_{i}\right)=\left(\begin{array}{cc}a_{i}^{\prime} & 0 \\ 0 & a_{i}^{\prime \prime}\end{array}\right), \chi(v)=\left(\begin{array}{cc}b^{\prime} & 0 \\ 0 & b^{\prime \prime}\end{array}\right), \chi(w)=\left(\begin{array}{cc}c^{\prime} & 0 \\ 0 & c^{\prime \prime}\end{array}\right)$, where $a_{i}^{\prime}, a_{i}^{\prime \prime}, b^{\prime}, b^{\prime \prime}, c^{\prime}, c^{\prime \prime} \in M_{2}(F)$.

Then

$$
\begin{aligned}
\sum_{i} 2^{i}\left(\begin{array}{cc}
a_{2 i}^{\prime} & 0 \\
0 & a_{2 i}^{\prime \prime}
\end{array}\right) t^{i}+\sum 2^{i}\left(\begin{array}{cc}
a_{2 i+1}^{\prime} & 0 \\
0 & a_{2 i+1}^{\prime \prime}
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 0 & 2 t^{i+1} \\
0 & 0 & -2 t^{i+1} & 0 \\
0 & -t^{i} & 0 & 0 \\
t^{i} & 0 & 0 & 0
\end{array}\right) \\
+\left(\begin{array}{cc}
0 & e_{11} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
b^{\prime} & 0 \\
0 & b^{\prime \prime}
\end{array}\right)+\left(\begin{array}{cc}
0 & e_{22} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
c^{\prime} & 0 \\
0 & c^{\prime \prime}
\end{array}\right)=0
\end{aligned}
$$

which implies that $a_{2 i}^{\prime}=a_{2 i}^{\prime \prime}=a_{2 i+1}^{\prime}=a_{2 i+1}^{\prime \prime}=0$.
Hence $a=\overline{e_{11}} v+\overline{e_{22}} w \in \bar{H}\left\langle J_{\overline{0}}\right\rangle=\overline{1}\left\langle J_{\overline{0}}\right\rangle$.
By Lemma 2.4, $a=0$. Hence χ is an isomorphism. Theorem 2.1 is proved.

Theorem 2.2 The embedding σ is universal, that is, $U(C K(Z, D)) \cong M_{2,2}(W)$.
As above we will identify the Jordan superalgebra $J=C K(Z, D)$ with $u(J)$, i.e., we assume that $J=C K(Z, D) \subseteq U(J)=U$. The superalgebra J is generated by Z and by the superalgebra $\left\langle w_{i}, x, x_{j} ; 1 \leq i, j \leq 3\right\rangle \cong P(2)$. The multiplication in U will be denoted by juxtaposition.

By the universal property of u there exists a homomorphism $\chi: U \rightarrow M_{2,2}(W)$ of associative superalgebras such that $\sigma=\chi \cdot u$. By Theorem 2.2 the subalgebra generated by $P(2)$ in U is the universal associative enveloping algebra of $P(2)$ and $\chi:\langle P(2)\rangle \rightarrow M_{2,2}(F[t])$ is an isomorphism.

We have $\left\langle w_{1}, w_{2}, w_{3}, \bar{H}\right\rangle=\chi^{-1}\left\{\left(\begin{array}{cc}a & c \\ 0 & b\end{array}\right) ; a, b, c \in M_{2}(F)\right\}$ and

$$
\left\langle w_{1}, w_{2}, w_{3}, \bar{H}, \chi^{-1}\left(\begin{array}{cc}
0 & 0 \\
0 & I
\end{array}\right) x \chi^{-1}\left(\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right)\right\rangle=\chi^{-1}\left(M_{2,2}(F)\right) .
$$

Lemma 2.5 Z commutes with $\chi^{-1}\left(M_{2,2}(F)\right)$ in U.

Proof We only need to show that Z commutes with all generators of $\chi^{-1}\left(M_{2,2}(F)\right)$. Choose an arbitrary element $\alpha \in Z$. Then

$$
\begin{gathered}
\pm\left[\alpha, w_{i}\right]=\left[\left(\alpha w_{j}\right) \cdot w_{j}, w_{i}\right]=\left[w_{j}, \alpha w_{j} \cdot w_{i}\right]+\left[\alpha w_{j}, w_{j} \cdot w_{i}\right]=0 \quad \text { for } i \neq j ; \\
\pm\left[\alpha, x_{i}\right]=\left[\alpha w_{i} \cdot w_{i}, x_{i}\right]=\left[w_{i}, \alpha w_{i} \cdot x_{i}\right]+\left[\alpha w_{i}, w_{i} \cdot x_{i}\right]=0
\end{gathered}
$$

Finally, denote $E_{2}=\chi^{-1}\left(\left(\begin{array}{cc}0 & 0 \\ 0 & I\end{array}\right)\right), E_{1}=\chi^{-1}\left(\left(\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right)\right)$. By what we proved above, α commutes with E_{1}, E_{2}. We have $\left[\alpha, E_{2} x E_{1}\right]=E_{2}[\alpha, x] E_{1}$ and $[\alpha, x]=\left[\alpha w_{1} \cdot w_{1}, x\right]=$ $\left[w_{1}, \alpha w_{1} \cdot x\right]+\left[\alpha w_{1}, w_{1} \cdot x\right]$, where $w_{1} \cdot x=0, \alpha w_{1} \cdot x=x_{1} D(\alpha)$.

Since $\chi\left(w_{1}\right)=\left(\begin{array}{cc}* \\ 0 & 0\end{array}\right)$, from Theorem 2.1, it follows that w_{1} commutes with E_{1}, E_{2}. Hence $E_{2}\left[w_{1}, x_{1} \cdot D(\alpha)\right] E_{1}=\left[w_{1}, E_{2}\left(x_{1} \cdot D(\alpha)\right) E_{1}\right]$. The element $D(\alpha)$ lies in Z, hence commutes with E_{1}, E_{2}. Therefore $E_{2}\left(x_{1} \cdot D(\alpha)\right) E_{1}=E_{2} x_{1} E_{1} \cdot D(\alpha)$.

We have $\chi\left(x_{1}\right)=\left(\begin{array}{cc}0 & * \\ 0 & 0\end{array}\right)$. Hence, by Theorem 2.1, $E_{2} x_{1}=0$, and the lemma is proved.

Lemma 2.6 Arbitrary elements from Z commute in U.
Proof Let $\alpha, \beta \in Z, 1 \leq i \leq 3$. Let us show that $\left[\alpha \cdot w_{i}, \beta\right]=0$. Indeed, for $j \neq i$ we have $\pm\left[\alpha w_{i}, \beta\right]=\left[\alpha w_{i},\left(\beta w_{j}\right) w_{j}\right]=\left[\left(\alpha w_{i}\right) \cdot\left(\beta w_{j}\right), w_{j}\right]+\left[\alpha w_{i} \cdot w_{j}, \beta w_{j}\right]=0$.

Now $\alpha= \pm\left(\alpha w_{i}\right) \cdot w_{i}$. If β commutes with αw_{i} and with w_{i} then it commutes with α, and the lemma is proved.

Proof of Theorem 2.2 The algebra U is generated by $P(2)$ and Z. By Theorem 2.2, the subalgebra $\langle P(2)\rangle$ of U is generated by $\chi^{-1}\left(M_{2,2}(F)\right)$ and by x^{2}. We have $\left[Z, \chi^{-1}\left(M_{2,2}(F)\right)\right]=(0),\left[Z, x^{2}\right] \subseteq Z$ and $\left[\chi^{-1}\left(M_{2,2}(F)\right), x^{2}\right]=(0)$. Hence $U=\sum_{i \geq 0} \chi^{-1}\left(M_{2,2}(F)\right) Z\left(x^{2}\right)^{i}$, which easily implies that $\operatorname{Ker} \chi=(0)$. Theorem is proved.

3 Specializations of Kantor Doubles

Let $\Gamma=\Gamma_{\overline{0}}+\Gamma_{\overline{1}}$ be an arbitrary associative commutative superalgebra with a Jordan bracket $\{$,$\} . Then D(a)=\{a, 1\}$ is a derivation of Γ. The bracket is said to be of vector type if $\{a, b\}=D(a) b-a D(b)$.

In [Mc] it was proved that the Kantor double of a bracket of vector type is a special superalgebra. Furthermore, in [Mc], [K-Mc2] two important examples of classical and Grassmann Poisson brackets were analysed and it was shown that in both cases the Kantor doubles are exceptional.

The following proposition from [MSZ] completely determines which "superconformal" Kantor doubles (see [KMZ]) and which simple finite dimensional Kantor doubles (see [MZ]) are special.

Proposition 3.1 (see [MSZ]) Let $\Gamma=\Gamma_{\overline{0}}+\Gamma_{\overline{1}}$ be a finitely generated associative commutative superalgebra with a Jordan bracket $\{$,$\} such that the superalgebra J=$ $J(\Gamma,\{\}$,$) does not contain nonzero nilpotent ideals.$
(1) If $\Gamma_{\overline{1}} \Gamma_{\overline{1}} \neq(0)$, then the superalgebra J is exceptional.
(2) Suppose that either $\Gamma_{\overline{1}}=(0)$ or $\Gamma_{\overline{1}}$ contains an element ξ such that $\Gamma_{\overline{1}}=\Gamma_{\overline{0}} \xi$ and $\left\{\Gamma_{0}, \xi\right\}=(0),\{\xi, \xi\}=-1$. Then the superalgebra $J(\Gamma,\{\}$,$) is special if and$ only if the restriction of $\{$,$\} on \Gamma_{0}$ is of vector type.

Let $1 \in Z$ be an associative commutative algebra with a derivation $D: Z \rightarrow Z$ and the bracket of vector type $\{a, b\}=D(a) b-a D(b)$. The Kantor double $J(Z,\{\}$, is simple if and only if Z does not contain proper D-invariant ideals (see [K-Mc], [MZ]). Let $W=\sum_{i=0}^{\infty} Z t^{i}, t a=D(a)+a t, a \in Z$ be the Weyl algebra. We recall the McCrimmon specialization $m: J(Z,\{\},) \rightarrow M_{2}(W)$,

$$
m(a)=\left(\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right), \quad a \in Z ; \quad m(x)=\left(\begin{array}{cc}
0 & 2 t \\
-1 & 0
\end{array}\right)
$$

Theorem 3.1 Suppose that the algebra Z does not contain proper D-invariant ideals. Then the McCrimmon specialization is universal, that is, $U(J(Z,\{\}))=,M_{1,1}(W)$.

Remark 3.1 The assumption that Z does not contain proper D-invariant ideals is essential. Indeed, let $Z=F\left[t_{1}, t_{2}\right]$ be the algebra of polynomials in two variables, $D=0$. Let $u: Z \rightarrow U$ be the universal specialization of the Jordan algebra $Z^{(+)}$. The algebra U is not commutative (see [Jac]). Let J be the Kantor double of Z corresponding to the zero bracket, $J=Z+Z x$. Then the mapping $f: J \rightarrow M_{1,1}(U)$, $f(a)=\left(\begin{array}{cc}u(a) & 0 \\ 0 & u(a)\end{array}\right), a \in Z, f(x)=\left(\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right)$, is a specialization such that the images of t_{1}, t_{2} do not commute.

In what follows $J=J(Z,\{\}),, U=U(J)$, juxtaposition denotes the multiplication in U. We will identify elements from J with their images in U.

Lemma 3.1 Z is generated by $D(Z)$.
Proof Suppose that $D^{2} \neq 0$. The ideal $Z\left(D^{2}(Z)\right)$ is D-invariant, hence $Z=$ $Z\left(D^{2}(Z)\right) \subseteq D(Z D(Z))+D(Z) D(Z) \subseteq D(Z)+D(Z) D(Z)$.

Now suppose that $D^{2}=0$. Then for arbitrary elements $a, b \in Z$ we have $D^{2}(a b)=$ $D^{2}(a) b+a D^{2}(b)+2 D(a) D(b)$ which implies that $D(Z) D(Z)=(0)$. Now, $Z=Z D(Z)$, the contradiction.

Lemma 3.2 For arbitrary elements $a, b \in Z$ the commutator $[a, b]$ lies in the center of U.

Proof For an arbitrary element $c \in J$ we have $[c,[a, b]]=4 c D(a, b)=0$. Hence the commutator $[a, b]$ commutes with an arbitrary element from J. Now it suffices to note that the algebra U is generated by J.

Lemma 3.3 $[Z, Z]=(0)$.

Proof Let S denote the linear span of all elements $\left[\left[x^{2}, a\right], b\right] ; a, b \in Z$. By Lemma $3.2\left[\left[x^{2}, a\right], b\right]=\left[\left[x^{2}, b\right], a\right]$. Hence S is spanned by elements $\left[\left[x^{2}, a\right], a\right]$, $a \in Z$.

Let us show that for an arbitrary element $c \in Z, S c \subseteq S$. Indeed, $S \subseteq[Z, Z]$. By Lemma 3.2 S lies in the center of U. Hence $\left[\left[x^{2}, a\right], a\right] c=\left[\left[x^{2}, a\right], a\right] \cdot c=$ $\left[\left[x^{2}, a\right], a \cdot c\right]-\left[\left[x^{2}, a\right], c\right] \cdot a$. Now $\left[\left[x^{2}, a\right], c\right] \cdot a=\left[\left[x^{2}, c\right], a\right] \cdot a=\frac{1}{2}\left[\left[x^{2}, c\right], a^{2}\right] \in$ S.

Now let us show that $S D(Z)=(0)$. For an arbitrary element $c \in Z$ we have $D(c)=\{c, 1\}=\{c \cdot x, x\}=\frac{1}{2}\left[c, x^{2}\right]$.

If $s \in S$ then $s\left[c, x^{2}\right]=\left[s c, x^{2}\right]-\left[s, x^{2}\right] c=0$, since the elements s and $s c$ both lie in the center of U.

By Lemma 3.1 the identity 1 of the algebra U can be expressed as a linear combination of products of elements from $D(Z)$. Hence $S \cdot 1=(0)$ and $S=(0)$.

We proved that Z commutes with $\left[x^{2}, Z\right]=D(Z)$. By Lemma 3.1, $[Z, Z]=(0)$, and the lemma is proved.

Lemma 3.4 $[Z, x][Z, x]=(0)$.
Proof Choose an arbitrary element $a \in Z$. We have $\left[\left[x^{2}, a\right], a\right]=2[[x, a], a] \cdot x+$ $2[a, x]^{2}=0$, which implies that $[a, x]^{2}=0$. Hence for arbitrary elements $a, b \in Z$, $[a, x] \cdot[b, x]=0$.

Let us show that for arbitrary elements $a, b \in Z,[[[b, x], x], a]=0$.
Indeed, $[[b, x], x]=4 b \cdot x^{2}-(b \cdot x) \cdot x$. Now, $[(b \cdot x) \cdot x, a]=[b \cdot x, a \cdot x]+$ $[x, a \cdot(b \cdot x)]=\{b, a\}+[x,(a b) \cdot x]=D(b) a-b D(a)-D(a b)=-2 D(a) b$; and $\left[b \cdot x^{2}, a\right]=b \cdot\left[x^{2}, a\right]+x^{2} \cdot[b, a]=-2 D(a) b$.

Finally, $0=[[[a, b], x], x]=[[[a, x], x], b]+2[[a, x],[b, x]]+[a,[[b, x], x]]$ which implies $[[a, x],[b, x]]=(0)$. This finishes the proof of the lemma.

Lemma 3.5 If $a, b \in Z$ and $a D(b)=0$ then $a[b, x]=0$.
Proof Denote $s=a[b, x]$. We have $s x=a[b, x] x=a\left(\left[b, x^{2}\right]-x[b, x]\right)=$ $-a x[b, x]=-x a[b, x]-[a, x][b, x]=-x s$.

Hence, $\left[s, x^{2}\right]=0$.
For an arbitrary $c \in Z$ the element $s c=(a c)[b, x]$ is of the same type as s, hence $\left[s c, x^{2}\right]=0$.

Now, $s\left[c, x^{2}\right]=\left[s c, x^{2}\right]-\left[s, x^{2}\right] c=0$. We proved that $s D(Z)=(0)$. In the same way as in the proof of Lemma 3.3 this implies that $s=0$, and the lemma is proved.

By the universal property of the associative superalgebra U there exists a homomorphism $\chi: U \rightarrow M_{2}(W)$ such that $m=\chi \cdot u$. Recall that we identify J with $u(J) \subseteq U$ and therefore assume that $u(a)=a, a \in J$.

By Lemmas 3.3 and 3.4 an arbitrary element $\omega \in U_{\overline{0}}$ can be represented as

$$
\omega=\sum_{i} a_{i} x^{2 i}+\sum_{j} x^{2 j} b_{j} x\left[c_{j}, x\right],
$$

where $a_{i}, b_{j}, c_{j} \in Z$. We have

$$
\begin{aligned}
\chi(\omega)= & \sum_{i}(-2)^{i}\left(\begin{array}{cc}
a_{i} & 0 \\
0 & a_{i}
\end{array}\right)\left(\begin{array}{cc}
t^{i} & 0 \\
0 & t^{i}
\end{array}\right) \\
& +\sum_{j}(-2)^{j}\left(\begin{array}{cc}
t^{j} & 0 \\
0 & t^{j}
\end{array}\right)\left(\begin{array}{cc}
b_{j} & 0 \\
0 & b_{j}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & 2 D\left(c_{j}\right)
\end{array}\right) \\
= & \left(\begin{array}{cc}
\sum(-2)^{i} a_{i} t^{i} \\
0 & \sum(-2)^{i} a_{i} t^{i}+\sum(-2)^{j+1} t^{j} b_{j} D\left(c_{j}\right)
\end{array}\right) .
\end{aligned}
$$

If $\chi(\omega)=0$, then $a_{i}=b_{j} D\left(c_{j}\right)=0$ for all i, j. By Lemma 3.5 this implies that $\omega=0$.

An arbitrary element $\omega \in U_{1}$ can be represented as

$$
\omega=\sum_{i} x^{2 i+1} a_{i}+\sum_{j} x^{2 j} b_{j}\left[c_{j}, x\right] .
$$

We have

$$
\chi(\omega)=\left(\begin{array}{cc}
0 & \sum(-1)^{i} 2^{i+1} t^{i+1} a_{i}+\sum_{0}(-2)^{j+1} t^{j} b_{j} D\left(c_{j}\right) \\
\sum(-1)^{i+1} 2^{i} t^{i} a_{i} &
\end{array}\right)
$$

Again if $\chi(\omega)=0$ then $a_{i}=b_{j} D\left(c_{j}\right)=0$ which implies $\omega=0$.
It is easy to check that the image of m generates the whole algebra $M_{2}(W)$. Hence χ is an isomorphism. Theorem 3.1 is proved.

Now let us examine the case when $\Gamma_{\overline{0}}=Z$ is an associative commutative algebra with a derivation $D: Z \rightarrow Z ; \Gamma_{\overline{1}}=Z \xi,\{a, b\}=D(a) b-a D(b)$ for $a, b \in Z$, $\{Z, \xi\}=(0),\{\xi, \xi\}=-1$. Then the Kantor double $J=J(\Gamma,\{\}$,$) can be identified$ with the subsuperalgebra of $C K(Z, D)$ generated by Z, ω_{1}, x. If the algebra Z does not contain proper D-invariant ideals, then this subsuperalgebra is $J=Z+Z \omega_{1}+Z x_{1}+Z x$.

Theorem 3.2 Suppose that the algebra Z does not contain proper D-invariant ideals. Then, the restriction of the embedding $\sigma: C K(Z, D) \rightarrow M_{2,2}(W)$ to the superalgebra $J=Z+Z \omega_{1}+Z x_{1}+Z x$ is a universal specialization of $J ; U(J) \simeq M_{1,1}(W) \oplus M_{1,1}(W)$.

As always we identify the superalgebra J with its image in the universal associative enveloping superalgebra U.

Let $\langle Z, x\rangle$ denote the subsuperalgebra of U generated by Z, x.
Lemma 3.6 $U=\langle Z, x\rangle+\langle Z, x\rangle \omega_{1}$.
Proof For an arbitrary element $a \in Z$ we have $x\left(\omega_{1} a\right)=x_{1} D(a)$. Since $1 \in D(Z) Z$ it follows that x_{1} lies in the subalgebra generated by Z, ω_{1}, x. The element ω_{1} commutes with Z in U and anticommutes with x. This implies the lemma.

Let $\langle\sigma(Z), \sigma(x)\rangle$ be the subalgebra of $M_{4}(W)$ generated by $\sigma(Z), \sigma(x)$.

Lemma 3.7 If $A, B \in\langle\sigma(Z), \sigma(x)\rangle$ and $A+B \sigma\left(\omega_{1}\right)=0$, then $A=B=0$.
Proof We have $\sigma\left(\omega_{1}\right)=\left(\begin{array}{cc}-I & 0 \\ 0 & I\end{array}\right)$, where I is the identity matrix in $M_{2}(W)$. It is easy to see that $\langle\sigma(Z), \sigma(x)\rangle \subseteq\left\{\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) ; a, b \in M_{2}(W)\right\}$. Now

$$
\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)+\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right)\left(\begin{array}{cc}
-I & 0 \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
a-c & b+d \\
-b+d & a+c
\end{array}\right)=0
$$

implies that $a=b=c=d=0$. Lemma is proved.
Now we can finish the proof of Theorem 3.2. Indeed, the homomorphism σ : $\langle Z, x\rangle \rightarrow\langle\sigma(Z), \sigma(x)\rangle$ is an isomorphism, because $\langle Z, x\rangle \simeq M_{2}(W)$ is a simple algebra. This implies that $\sigma: U \rightarrow M_{4}(W)$ is an embedding.

$$
\langle\sigma(Z), \sigma(x)\rangle=\left\{\left.\left(\begin{array}{cccc}
\beta_{1} & 0 & 0 & \beta_{3} \\
0 & \beta_{2} & \beta_{4} & 0 \\
0 & -\beta_{3} & \beta_{1} & 0 \\
-\beta_{4} & 0 & 0 & \beta_{2}
\end{array}\right) \right\rvert\, \beta_{i} \in W\right\}, \quad \sigma\left(\omega_{1}\right)=\left(\begin{array}{cc}
-I & 0 \\
0 & I
\end{array}\right) .
$$

So

$$
\left\langle\sigma(Z), \sigma(x), \sigma\left(\omega_{1}\right)\right\rangle=\left\{\left.\left(\begin{array}{cccc}
\beta_{1} & 0 & 0 & \beta_{5} \\
0 & \beta_{2} & \beta_{6} & 0 \\
0 & \beta_{7} & \beta_{3} & 0 \\
\beta_{8} & 0 & 0 & \beta_{4}
\end{array}\right) \right\rvert\, \beta_{i} \in W, 1 \leq i \leq 8\right\}
$$

This superalgebra is isomorphic to $M_{2}(W) \oplus M_{2}(W)$, and the theorem is proved.

4 Specializations of $M_{1,1}(F)$

Denote $J=M_{1,1}(F), v=e_{22}-e_{11} \in J_{\overline{0}}, x=e_{12}, y=e_{21} \in J_{\overline{1}}$. The universal associative enveloping superalgebra U of J can be presented by generators v, x, y and relators $v^{2}-1=0, x v+v x=0, y v+v y=0, y x-x y-v=0$. Let $v<x<y$ and consider the lexicographic order on the set of words in v, x, y. Then the system of relators above is closed with respect to compositions (see [Be], [Bo]). Hence the system of irreducible words $x^{i} y^{j}, v x^{i} y^{j} ; i, j \geq 0$ is a Groebner-Shirshov basis of U.

By Remark 2.2, the squares x^{2}, y^{2} lie in the center of U. The algebra U is a free module over the central subalgebra $F\left[x^{2}, y^{2}\right]$ with free generators $1, x, y, x y, v, v x$, $v y, v x y$.

Consider the ring of polynomials and the field of rational functions in two variables, $F\left[z_{1}, z_{2}\right] \subseteq F\left(z_{1}, z_{2}\right)$. Let K be the quadratic extension of $F\left(z_{1}, z_{2}\right)$ generated by a root of the equation $a^{2}+a-z_{1} z_{2}=0$. Consider the subring $A=F\left[z_{1}, z_{2}\right]+F\left[z_{1}, z_{2}\right] a$ and the subspaces $M_{12}=F\left[z_{1}, z_{2}\right]+F\left[z_{1}, z_{2}\right] a^{-1} z_{2}, M_{21}=F\left[z_{1}, z_{2}\right] z_{1}+F\left[z_{1}, z_{2}\right] a$ of K. Then $\left(\begin{array}{cc}A & M_{12} \\ M_{21} & A\end{array}\right)$ is a subring of $M_{2}(K)$.

Let's consider the mapping $u: M_{1,1}(F) \rightarrow\left(\begin{array}{cc}A & M_{12} \\ M_{21} & A\end{array}\right)$,

$$
u\left(\left(\begin{array}{ll}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{array}\right)\right)=\left(\begin{array}{cc}
\alpha_{11} & \alpha_{12}+\alpha_{21} a^{-1} z_{2} \\
\alpha_{12} z_{1}+\alpha_{21} a & \alpha_{22}
\end{array}\right)
$$

A straightforward verification shows that u is a specialization of the Jordan superalgebra $J=M_{1,1}(F)$. Hence, it extends to a homomorphism $\chi: U \rightarrow\left(\begin{array}{cc}A & M_{12} \\ M_{21} & A\end{array}\right)$. Clearly, $\chi\left(x^{2}\right)=\left(\begin{array}{cc}z_{1} & 0 \\ 0 & z_{1}\end{array}\right), \chi\left(y^{2}\right)=\left(\begin{array}{cc}z_{2} & 0 \\ 0 & z_{2}\end{array}\right)$. Again the straightforward computation shows that the elements $1, \chi(x), \chi(y), \chi(x y), \chi(v), \chi(v x), \chi(v y), \chi(v x y)$ are free generators of the $F\left[z_{1}, z_{2}\right]$-module $\left(\begin{array}{cc}A & M_{12} \\ M_{21} & A\end{array}\right)$, which implies the following:

Theorem 4.1 $U\left(M_{1,1}(F)\right) \simeq\left(\begin{array}{cc}A & M_{12} \\ M_{21} & A\end{array}\right)$. The mapping

$$
u:\left(\begin{array}{ll}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{array}\right) \longrightarrow\left(\begin{array}{cc}
\alpha_{11} & \alpha_{12}+\alpha_{21} a^{-1} z_{2} \\
\alpha_{12} z_{1}+\alpha_{21} a & \alpha_{22}
\end{array}\right)
$$

is a universal specialization.

Remark 4.1 One sided finite dimensional Jordan bimodules over $M_{1,1}(F)$ are not necessarily completely reducible. Indeed, if I is an ideal of $F\left[z_{1}, z_{2}\right]$ then $\left(\begin{array}{cc}I+I a & I+I a-1 \\ I z_{1}+I a & I+I a\end{array}\right)$ is an ideal of $\left(\begin{array}{cc}A & M_{12} \\ M_{21} & A\end{array}\right)$. If the quotient $F\left[z_{1}, z_{2}\right] / I$ is finite-dimensional and not semisimple, then so is the quotient $\left(\begin{array}{cc}A & M_{12} \\ M_{21} & A\end{array}\right) /\left(\begin{array}{cc}I+I A & I+I a^{-1} z_{2} \\ I z_{1}+I a & I+I a\end{array}\right)$.

5 Specializations of Superalgebras $D(t)$

Let $t \in F$. Consider the 4-dimensional superalgebra $D(t), D(t)_{\overline{0}}=F e_{1}+F e_{2}, D(t)_{\overline{1}}=$ $F x+F y, e_{1}^{2}=e_{1}, e_{2}^{2}=e_{2}, e_{1} e_{2}=0, e_{i} x=\frac{1}{2} x, e_{i} y=\frac{1}{2} y, 1 \leq i \leq 2,[x, y]=e_{1}+t e_{2}$.

Clearly, $D(-1) \cong M_{1,1}(F), D(0) \cong K_{3} \oplus F 1, D(1)$ is a Jordan superalgebra of a superform.

We will start with the superalgebra K_{3}. Let $\operatorname{osp}(1,2)$ denote the Lie subsuperalgebra of $M_{1,2}(F)$ which consists of skewsymmetric elements with respect to the orthosympletic superinvolution. Let x, y be the standard basis of the odd part of $\operatorname{osp}(1,2)$.

As always $U(\operatorname{osp}(1,2))$ denotes the universal associative enveloping algebra of the Lie superalgebra $\operatorname{osp}(1,2)$. Let $U^{*}(\operatorname{osp}(1,2))$ be the ideal (of codimension one) of $U(\operatorname{osp}(1,2))$ generated by $\operatorname{osp}(1,2)$.

Theorem 5.1 (I. Shestakov [S1]) The universal enveloping algebra of K_{3} is isomorphic to $U^{*}(\operatorname{osp}(1,2)) / \operatorname{id}\left([x, y]^{2}-[x, y]\right)$, where $\operatorname{id}\left([x, y]^{2}-[x, y]\right)$ is the ideal of $U(\operatorname{osp}(1,2))$ generated by $[x, y]^{2}-[x, y]$.

Remark 5.1 The ideal U^{*} above appeared because we do not assume an identity in the enveloping algebra $U\left(K_{3}\right)$ of the Jordan superalgebra. The unital hull of $U\left(K_{3}\right)$ is, of course, isomorphic to $U(\operatorname{osp}(1,2)) / \operatorname{id}\left([x, y]^{2}-[x, y]\right)$.

Clearly, if ch $F=0$ then K_{3} does not have nonzero specializations that are finite dimensional algebras. If $\operatorname{ch} F=p>0$ then K_{3} has such specializations. For example, $K_{3} \subseteq C K\left(F\left[a \mid a^{p}=0\right], d / d a\right)$.

Theorem 5.2 (I. Shestakov [S1]) Let $t \neq-1,1$. Then the universal enveloping algebra of $D(t)$ is isomorphic to

$$
U(\operatorname{osp}(1,2)) / \operatorname{id}\left([x, y]^{2}-(1+t)[x, y]+t\right)
$$

Corollary 5.1 If ch $F=0$ then all finite dimensional one-sided bimodules over $D(t)$, $t \neq-1,1$, are completely reducible.

Indeed, it is known (see [Ka1]) that finite dimensional representations of the Lie superalgebra $\operatorname{osp}(1,2)$ are completely reducible.

From now on in this section we will assume that $t \neq-1,0,1$ and ch $F=0$.
We will classify irreducible finite-dimensional one-sided bimodules over $D(t)$.
Let $V=V_{\overline{0}}+V_{\overline{1}}$ be a finite dimensional irreducible right module over the associative superalgebra $U(D(t))$. We will identify elements from $D(t)$ with their right multiplications on V, i.e., $D(t) \subseteq \operatorname{End}_{F} V$.

Let us notice that $V_{\overline{0}} \neq(0)$. Otherwise, $V x=V y=(0)$, which implies that $V D(t)=(0)$, the contradiction.

Let $E=\frac{1}{1+t} x^{2}, F=-\frac{1}{1+t} y^{2}, H=-\frac{1}{1+t}(x y+y x)$.
It is easy to check that $[E, F]=H,[E, H]=-2 E,[F, H]=2 F$, i.e., the elements E, F, H span the Lie algebra sl ${ }_{2}$. The subspace $V_{\overline{0}} e_{i}$ is invariant under the sl_{2}.

Suppose that $V_{\overline{0}} e_{1} \neq(0)$. In the s_{2}-module $V_{\overline{0}} e_{1}$ choose a highest weight element $v \neq 0$, i.e., $v H=\lambda v, v F=0$.

Now we will consider an infinite dimensional Verma type module $\tilde{V}=\tilde{v} U(D(t))$, whose homomorphic image is V. The module \tilde{V} is defined by one generator \tilde{v} and the relations: $\tilde{v} H=\lambda \tilde{v}, \tilde{v} e_{1}=\tilde{v}, \tilde{v} y^{2}=0$.

From $\tilde{v} H=\lambda \tilde{v}$ it follows that $\tilde{v}(x y+y x)=-(t+1) \lambda \tilde{v}$. Taking into account that $x y=y x+e_{1}+t e_{2}$ we get $\tilde{v} y x=\alpha \tilde{v}$, where $\alpha=-\frac{1}{2}(1+(1+t) \lambda)$. Now $0=(\tilde{v} y x-\alpha \tilde{v}) y-\tilde{v} y\left(x y-y x-e_{1}-t e_{2}\right)=(t-\alpha) \tilde{v} y$. Hence $\alpha=t$ or $\tilde{v} y=0$.

Suppose that $\alpha=t$ or equivalently, $\lambda=\frac{-1-2 t}{1+t}$. Then the system of relators of $\tilde{V}: \tilde{v} e_{1}-\tilde{v}=0, \tilde{v} y^{2}=0, \tilde{v} y x-t \tilde{v}=0$ together with the system of relators of $D(t)$: $e_{1}^{2}-e_{1}=0, x e_{1}+e_{1} x-x=0, y e_{1}+e_{1} y-y=0, x y-y x-t-(1-t) e_{1}=0$ and the lexicographic order $e_{1}<y<x<v$ is closed with respect to compositions (see [Be], [Bo]). Hence the irreducible elements $\tilde{v}, \tilde{v} y, \tilde{v} x^{i}, i \geq 1$ form a basis of the module \tilde{V}. We will denote this module as $\tilde{V}_{1}(t)$.

If $\tilde{v} y=0$ then $\tilde{v} y x=\alpha \tilde{v}$ implies that $\alpha=0$, i.e., $\lambda=-\frac{1}{1+t}$. In this case the system of relators of \tilde{V} is: $\tilde{v} e_{1}-\tilde{v}=0, \tilde{v} y=0$. As above, this system, together with the system of relators of $D(t)$ (see above) and the lexicographic order, is closed with respect to compositions. Hence, the irreducible elements $\tilde{v}, \tilde{v} x^{i}, i \geq 1$ form a basis of \tilde{V}. We will refer to this module as $\tilde{V}_{2}(t)$.

Changing parity we get two new bimodules $\tilde{V}_{1}(t)^{\mathrm{op}}$ and $\tilde{V}_{2}(t)^{\mathrm{op}}$.
Each of these bimodules has a unique irreducible homomorphic image $V_{1}(t)$ or $V_{2}(t)$ or $V_{1}(t)^{\mathrm{op}}$ or $V_{2}(t)^{\mathrm{op}}$.

Coming back to the irreducible finite dimensional module V, if $V_{\overline{0}}=V_{\overline{0}} e_{1}$ and for a highest weight element v we have $v y \neq 0$ then $V \cong V_{1}(t)$. If $v y=0$, then $V \cong V_{2}(t)$. In case that $V_{\overline{0}}=V_{\overline{0}} e_{2}$ and for a highest weight element v we have $v y \neq 0$, then $V \cong V_{2}(t)^{\mathrm{op}}$. If $v y=0$, then $V \cong V_{1}(t)^{\mathrm{op}}$.

From the representation theory of sl_{2} it follows that $\operatorname{dim}_{F} V_{1}(t)<\infty$ if and only if $\lambda=m$, a nonnegative integer. Then $t=\frac{-1-m}{2+m}, \operatorname{dim}_{F} V_{1}(t)_{\overline{0}}=m+1, \operatorname{dim}_{F} V_{1}(t)_{\overline{1}}=$ $m+2$. Similarly, $\operatorname{dim}_{F} V_{2}(t)<\infty$ if and only if $\lambda=m$ a positive integer. Then $t=\frac{-1-m}{m}, \operatorname{dim}_{F} V_{2}(t)_{\overline{0}}=m+1, \operatorname{dim}_{F} V_{2}(t)_{\overline{1}}=m$.

For other values of t the module $\tilde{V}_{i}(t)$ is irreducible and the superalgebra $D(t)$ does not have nonzero finite dimensional specializations.

Theorem 5.3 If $t=-\frac{m}{m+1}, m \geq 1$, then $D(t)$ has two irreducible finite dimensional one sided bimodules $V_{1}(t)$ and $V_{1}(t)^{\mathrm{op}}$.

If $t=-\frac{m+1}{m}, m \geq 1$, then $D(t)$ has two irreducible finite dimensional one sided bimodules $V_{2}(t)$ and $V_{2}(t)^{\mathrm{op}}$.

If t can not be represented as $-\frac{m}{m+1}$ or $-\frac{m+1}{m}$, where m is a positive integer, then $D(t)$ does not have nonzero finite dimensional specializations.

Remark 5.2 If ch $F=p>2$ then for an arbitrary t the superalgebra $D(t)$ can be embedded into a finite dimensional associative superalgebra. It suffices to notice that $D(t) \subseteq C K\left(F\left[a \mid a^{p}=0\right], d / d a\right)$.

6 The Jordan Superalgebra of a Superform

Let $V=V_{\overline{0}}+V_{\overline{1}}$ be a $\mathbb{Z} / 2 \mathbb{Z}$-graded vector space, $\operatorname{dim} V_{\overline{0}}=m, \operatorname{dim} V_{\overline{1}}=2 n$; let $\langle\rangle:, V \times V \rightarrow F$ be a supersymmetric bilinear form on V. The universal associative enveloping algebra of the Jordan algebra $F 1+V_{\overline{0}}$ is the Clifford algebra $\mathrm{Cl}(m)=$ $\left\langle 1, e_{1}, \ldots, e_{m} \mid e_{i} e_{j}+e_{j} e_{i}=0, i \neq j, e_{i}^{2}=1\right\rangle$ (see [J]). Assuming the generators e_{1}, \ldots, e_{m} to be odd, we get a $\mathbb{Z} / 2 \mathbb{Z}$-gradation on $\mathrm{Cl}(m)$.

In $V_{\overline{1}}$ we can find a basis $v_{1}, w_{1}, \ldots, v_{n}, w_{n}$ such that $\left\langle v_{i}, w_{j}\right\rangle=\delta_{i j},\left\langle v_{i}, v_{j}\right\rangle=$ $\left\langle w_{i}, w_{j}\right\rangle=0$. Consider the Weyl algebra $W_{n}=\left\langle 1, x_{i}, y_{i}, 1 \leq i \leq n\right|\left[x_{i}, y_{j}\right]=$ $\left.\delta_{i j},\left[x_{i}, x_{j}\right]=\left[y_{i}, y_{j}\right]=0\right\rangle$. Assuming $x_{i}, y_{i}, 1 \leq i \leq n$ to be odd, we make W_{n} a superalgebra. The universal associative enveloping algebra of $F 1+V$ is isomorphic to the (super)tensor product $\mathrm{Cl}(m) \otimes_{F} W_{n}$.

References

[A] A. Albert, On certain algebra of quantum mechanics. Ann. of Math. (2) 35(1934), 65-73.
[Be] G. M. Bergman, The diamond lemma for ring theory. Advances in Math. (2) 29(1978), 178-218.
[Bo] L. A. Bokut, Unsolvability of the word problem and subalgebras of finitely presented Lie algebras. Izv. Akad. Nauk SSSR Ser. Mat. 36(1972), 1173-1219.
[C] P. M. Cohn, On homomorphic images of special Jordan algebras. Canad. J. Math. 6(1954), 253-264.
[CK] S. J. Cheng and V. Kac, A New $N=6$ superconformal algebra. Comm. Math. Phys. 186(1997), 219-231.
[GLS] P. Grozman, D. Leites and I. Shchepochkina, Lie superalgebras of string theories. hep-th 9702120.
[J] N. Jacobson, Structure and Representation of Jordan algebras. Amer. Math. Soc., Providence, RI, 1969.
[JNW] P. Jordan, J. von Newman and E. Wigner, On an algebraic generalization of the quantum mechanical formalism. Ann. of Math. (2) 36(1934), 29-64.
[Ka1] V. G. Kac, Lie Superalgebras. Advances in Math. 26(1977), 8-96.
[Ka2] , Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras. Comm. Algebra (13) 5(1977), 1375-1400.
[KL] V. G. Kac and J. W. van de Leur, On classification of superconformal algebras. In: Strings '88, World Sci. Publishing, Singapore, 1989, 77-106.
[KMZ] V. G. Kac, C. Martínez and E. Zelmanov, Graded simple Jordan superalgebras of growth one. Mem. Amer. Math. Soc. 150, 2001.
[K1] I. L. Kantor, Connection between Poisson brackets and Jordan and Lie superalgebras. In: Lie theory, differential equations and representation theory (Montreal, 1989), Univ. Montréal, Montréal, QC, 1990, 213-225.
[K2] , Jordan and Lie superalgebras defined by Poisson brackets. In: Algebra and Analysis (Tomsk, 1989), Amer. Math. Soc. Transl. Ser. 2 151, Amer. Math. Soc., Providence, RI, 1992, 55-80.
[K-Mc] D. King and K. McCrimmon, The Kantor construction of Jordan superalgebras. Comm. Algebra (1) 20(1992), 109-126.
[K-Mc2] \longrightarrow, The Kantor doubling process revisited. Comm. Algebra (1) 23(1995), 357-372.
[Kp1] I. Kaplansky, Superalgebras. Pacific J. Math. 86(1980), 93-98.
[Kp2] \longrightarrow Graded Jordan Algebras I. Preprint.
MSZ] C. Martínez, I. Shestakov and E. Zelmanov, Jordan algebras defined by brackets. J. London Math. Soc. (2) 64(2001), 357-368.
[MZ] C. Martínez and E. Zelmanov, Simple finite dimensional Jordan superalgebras of prime characteristic. J. Algebra 236(2001), 575-629.
[Mc] K. McCrimmon, Speciality and nonspeciality of two Jordan superalgebras. J. Algebra 149(1992), 326-351.
[MeZ] Y. Medvedev and E. Zelmanov, Some counterexamples in the theory of Jordan Algebras. In: Nonassociative Algebraic Models (Zaragoza, 1989), Nova Sci. Publ., Commack, NY, 1992, 1-16.
[RZ] M. Racine and E. Zelmanov, Classification of simple Jordan superalgebras with semisimple even part. J. Algebra, to appear.
[S1] I. Shestakov, Universal enveloping algebras of some Jordan superalgebras. Personal communication.
[Sh1] A. S. Shtern, Representations of an exceptional Jordan superalgebra. Funktsional. Anal. i Prilozhen 21(1987), 93-94.
[W] C. T. C. Wall, Graded Brauer groups. J. Reine Angew Math. 213(1964), 187-199.
[Z] E. Zelmanov, On prime Jordan Algebras II. Siberian Math. J. (1) 24(1983), 89-104.
[ZSSS] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov and A. I. Shirshov, Rings that are nearly associative. Academic Press, New York, 1982.

Departamento de Matemáticas
Universidad de Oviedo
C/ Calvo Sotelo, s/n
33007 Oviedo
Spain

Department of Mathematics
Yale University
New Haven, CT 06520
USA

[^0]: Received by the editors March 3, 2002.
 The first author was partially supported by BFM 2001-3239-C03-01 and FICYT PB-EXP01-33. The second author was partially supported by NSF grant DMS-0071834.

 AMS subject classification: Primary: 17C70; secondary: 17C25, 17C40.
 (C)Canadian Mathematical Society 2002.

