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Specializations of Jordan Superalgebras

Dedicated to R. V. Moody on his 60th birthday.

Consuelo Martı́nez and Efim Zelmanov

Abstract. In this paper we study specializations and one-sided bimodules of simple Jordan superalge-

bras.

Let F be a ground field of characteristic 6= 2. A (linear) Jordan algebra is a vector

space J with a binary bilinear operation (x, y) → xy satisfying the following identi-
ties:

(J1) xy = yx;

(J2) (x2 y)x = x2(yx).

For an element x ∈ J let R(x) denote the right multiplication R(x) : a → ax in

J. If x, y, z ∈ J then by {x, y, z} we denote their Jordan triple product {x, y, z} =
(xy)z + x(yz) − y(xz).

Examples of Jordan Algebras

(1) Let A be an associative algebra. The new operation a · b = 1
2
(ab + ba) defines a

structure of a Jordan algebra on A. We will denote this Jordan algebra as A(+).
(2) Let ? : A→ A be an involution on the algebra A, that is, (a?)? = a, (ab)? = b?a?.

The subspace H(A, ?) of symmetric elements is a subalgebra of A(+).
(3) Let V be a vector space over F with a nondegenerate symmetric bilinear form

〈 , 〉 : V ×V → F. The direct sum F1 + V with the product (α1 + v)(β1 + w) =
(αβ + 〈v,w〉)1 + (αw + βv) is a Jordan algebra.

(4) The algebra H3(O) of Hermitian 3× 3 matrices over octonions with the opera-
tion a · b = 1

2
(ab + ba) is a Jordan algebra.

P. Jordan, J. von Neumann, E. Wigner [JNW] and A. Albert [A] showed that every
simple finite dimensional Jordan algebra over an algebraically closed field is of one of
the types (1)–(4).

A Jordan algebra J is called special if it is embeddable into an algebra of type A(+),
where A is an associative algebra. Clearly the algebras of Examples (1)–(3) above are

special. The algebra H3(O) is exceptional. A homomorphism J → A(+) is called a
specialization of a Jordan algebra J. N. Jacobson [J] introduced the notion of a uni-
versal associative enveloping algebra U = U ( J) of a Jordan algebra J and showed that
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654 Consuelo Martı́nez and Efim Zelmanov

the category of specializations of J is equivalent to the category of homomorphisms
of the associative algebra U ( J).

Let V be a Jordan bimodule over the algebra J (see [J]). We call V a one-sided
bimodule if { J,V, J} = (0). In this case, the mapping a → 2RV (a) ∈ EndF V is
a specialization. The category of one-sided bimodules over J is equivalent to the

category of right (left) U ( J)-modules.

N. Jacobson [J] found universal associative enveloping algebras for all special sim-
ple finite dimensional Jordan algebras.

In this paper we study specializations and one-sided bimodules of Jordan super-
algebras. Let’s introduce the definitions.

By a superalgebra we mean a Z/2Z-graded algebra A = A0̄ +A1̄. We define |a| = 0
if a ∈ A0̄ and |a| = 1 if a ∈ A1̄.

For instance, if V is a vector space of countable dimension, and G(V ) = G(V )0̄ +
G(V )1̄ is the Grassmann algebra over V , that is, the quotient of the tensor algebra
over the ideal generated by the symmetric tensors, then G(V ) is a superalgebra. Its
even part is the linear span of all products of even length and the odd part is the linear

span of all products of odd length.

If A is a superalgebra, its Grassmann enveloping algebra is the subalgebra of A ⊗
G(V ) given by G(A) = A0̄ ⊗ G(V )0̄ + A1̄ ⊗ G(V )1̄.

Let V be a homogeneous variety of algebras, that is, a class of F-algebras satis-
fying a certain set of homogeneous identities and all their partial linearizations (see

[ZSSS]).

Definition A superalgebra A = A0̄ + A1̄ is called a V superalgebra if G(A) ∈ V.

C. T. C. Wall [W] showed that every simple finite-dimensional associative superal-
gebra over an algebraically closed field F is isomorphic to the superalgebra Mm,n(F) =
{(

A 0
0 D

)

, A ∈ Mm(F), D ∈ Mn(F)
}

+
{(

0 B
C 0

)

, B ∈ Mm×n(F), C ∈ Mn×m(F)
}

or to

the superalgebra Q(n) =
{(

A 0
0 A

)

, A ∈ Mn(F)
}

+
{(

0 B
B 0

)

, B ∈ Mn(F)
}

.

Jordan superalgebras were first studied by V. Kac [Ka2] and I. Kaplansky [Kp1],

[Kp2]. In [Ka2] V. Kac (see also I. L. Kantor [K1], [K2]) classified simple finite
dimensional Jordan superalgebras over an algebraically closed field of zero charac-
teristic. In [RZ] this classification was extended to simple finite dimensional Jordan
superalgebras, with semisimple even part, over characteristic p > 2; a few new excep-

tional superalgebras in characteristic 3 were added to the list. In [MZ] the remaining
case of Jordan superalgebras with nonsemisimple even part was tackled.

Let’s consider the examples that arise in these classifications.

If A = A0̄ + A1̄ is an associative superalgebra then the superalgebra A(+), with the
new product a · b = 1

2

(

ab + (−1)|a||b|ba
)

is Jordan. This leads to two superalgebras

(1) M(+)
m,n(F), m ≥ 1, n ≥ 1;

(2) Q(n)(+), n ≥ 2.

If A is an associative superalgebra and ? : A → A is a superinvolution, that is,
(a?)? = a, (ab)? = (−1)|a||b|b?a?, then H(A, ?) = H(A0̄, ?) + H(A1̄, ?) is a subsuper-
algebra of A(+). The following two subalgebras of M(+)

m,n are of this type.
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(3) Ospm,n(F) if n = 2k is even. The superalgebra consists of matrices
(

A B
C D

)

,

where At
= A ∈ Mm(F), C = J−1Bt ∈ Mn×m(F), D = J−1Dt J ∈ Mn(F),

J =
(

0 Ik

−Ik 0

)

;

(4) P(n) =
{(

A B
C D

)

, D = At , Bt
= B, Ct

= −C ∈ Mn(F)
}

;
(5) Let V = V 0̄ + V1̄ be a Z/2Z-graded vector space with a superform 〈 , 〉 : V ×

V → F which is symmetric on V 0̄, skewsymmetric in V 1̄ and 〈V 0̄,V1̄〉 = (0) =
〈V1̄,V0̄〉.
The superalgebra J = F1 + V = (F1 + V 0̄) + V1̄ is Jordan.

(6) The 3-dimensional Kaplansky superalgebra, K3 = Fe + (Fx + Fy), with the

multiplication e2
= e, ex = 1

2
x, ey = 1

2
y, [x, y] = e.

(7) The 1-parametric family of 4-dimensional superalgebras Dt is defined as Dt =

(Fe1 +Fe2)+(Fx +Fy) with the products: e2
i = ei , e1e2 = 0, eix =

1
2
x, ei y = 1

2
y,

xy = e1 + te2, i = 1, 2.

The superalgebra Dt is simple if t 6= 0. In the case t = −1, the superalgebra
D−1 is isomorphic to M1,1(F).

(8) The 10-dimensional Kac superalgebra (see [Ka2]) has been proved to be excep-
tional in [MeZ]. In characteristic 3 this superalgebra is not simple. It has a sub-

algebra of dimension 9 that is simple and exceptional (Shestakov and Vaughan
Lee). There are two more examples of simple Jordan superalgebras in ch F = 3,
both of them exceptional (see [RZ]).

(9) We will consider now Jordan superalgebras defined by a bracket.

If A = A0̄ + A1̄ is an associative commutative superalgebra with a bracket on A,
{ , } : A×A→ A, the Kantor double of (A, { , }) is the superalgebra J = A+Ax

with the Z/2Z gradation J0̄ = A0̄ + A1̄x, J1̄ = A1̄ + A0̄x and the multiplication
in J given by: a(bx) = (ab)x, (bx)a = (−1)|a|(ba)x, (ax)(bx) = (−1)|b|{a, b},
and the product (in J) of two elements of A is just the product of them in A.
A bracket on A is called a Jordan bracket if the Kantor double J(A, { , }) is a
Jordan superalgebra. Every Poisson bracket is a Jordan bracket (see K2]).

(10) Let Z be a unital associative commutative algebra with a derivation D : Z → Z.

Consider the superalgebra CK(Z,D) = A + M, where A = J0̄ = Z +
∑3

i=1 wiZ,

M = J1̄ = xZ +
∑3

i=1 xiZ are free Z-modules of rank 4. The multiplication on

A is Z-linear and wiw j = 0, i 6= j, w2
1 = w2

2 = 1, w2
3 = −1.

Denote xi×i = 0, x1×2 = −x2×1 = x3, x1×3 = −x3×1 = x2,−x2×3 = x3×2 = x1.
The bimodule structure and the bracket on M are defined via the following tables:

g w jg

x f x( f g) x j( f gD)

xi f xi( f g) xi× j ( f g)

xg x jg

x f f Dg − f gD −w j( f g)

xi f wi( f g) 0

The superalgebra CK(Z,D) is simple if and only if Z does not contain proper

D-invariant ideals.
In [Ka2], [K1] it was shown that simple finite dimensional Jordan superalgebras

over an algebraically closed field F of zero characteristic are those of examples (1)–
(8) and the Kantor double (example (9)) of the Grassmann algebra with the bracket

{ f , g} =
∑

(−1)| f | ∂ f
∂ξi

∂g
∂ξi

.
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The examples (9), (10) are related to infinite dimensional superconformal Lie su-
peralgebras (see [KL], [KMZ]). In particular, the superalgebrasCK(Z,D) correspond

to an important superconformal algebra discovered in [CK] and [GLS].

In [MZ] it was shown that the only simple finite dimensional Jordan superalgebras

over an algebraically closed field of characteristic p > 2 with nonsemisimple even
part are superalgebras (9), (10) built on truncated polynomials.

In Section 1 we discuss reflexive superalgebras (the generic case).

In Section 2 we show that the specialization σ of the Cheng-Kac superalgebra

CK(Z,D) constructed in [MSZ] is universal, U
(

CK(Z,D)
)

' M2,2(W ), where W is
the Weyl algebra of differential operators on Z. The restriction of σ to the superalge-
bra P(2) is the universal specialization of P(2), U

(

P(2)
)

' M2,2(F[t]).

In Section 3 we show that, for a D-simple algebra Z, the McCrimmon specializa-
tion of the Kantor double of the bracket of vector type is universal.

In Section 4 we construct the universal specialization of the superalgebra M1,1(F).

Finally, in Section 5, we describe all irreducible one-sided bimodules over a super-

algebra D(t), t 6= −1, 0, 1.

In what follows the ground field F is assumed to be algebraically closed.

1 Reflexive Superalgebras

Let J be a special Jordan superalgebra. A specialization u : J → U into an associative

algebra U is said to be universal if U = 〈u( J)〉 and for an arbitrary specialization
ϕ : J → A there exists a homomorphism of associative algebras χ : U → A such that
ϕ = χ · u. The algebra U is called the universal associative enveloping algebra of J.

Exactly in the same way as for Jordan algebras (see [J]) one can show that an
arbitrary special Jordan superalgebra has a unique universal specialization u : J → U

which is an embedding. Moreover, the algebra U is equipped with a superinvolution

∗ having all elements from u( J) fixed, i.e., u( J) ⊆ H(U , ∗).

Generally speaking, an identity in U is not assumed. However, if J is a unital

(super)algebra then the identity of J is automatically an identity of U (see [J]).

We call a special Jordan superalgebra reflexive if u( J) = H(U , ∗).

Theorem 1.1 All superalgebras of examples (1)–(4) are reflexive except the following

ones: M+
1,1(F), Osp(1, 2) ' D(−2), P(2). Hence, U

(

M(+)
m,n(F)

)

' Mm,n(F)⊕Mm,n(F)

for (m, n) 6= (1, 1); U
(

Q(+)(n)
)

= Q(n)⊕ Q(n), n ≥ 2; U
(

Osp(m, n)
)

' Mm,n(F),

(m, n) 6= (1, 2); U
(

P(n)
)

' Mn,n(F), n ≥ 3.

If A is an associative enveloping superalgebra of a special superalgebra J and
a1, a2, a3, a4 are homogeneous elements from J then by a tetrad {a1, a2, a3, a4} ∈ A

we mean

{a1, a2, a3, a4} = a1a2a3a4 + (−1)
∑

i< j |ai | |a j |a4a3a2a1.

A homogeneous element a of J is said to be a tetrad-eater if in any associative
enveloping superalgebra of J any tetrad with a as one of its entries is necessarily an
element of J. There exists an ideal T of the free Jordan algebra with the following
property: for an arbitrary special Jordan algebra J, an arbitrary element from T( J) is
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a tetrad eater (see [Z]). If J is a simple special Jordan superalgebra and T( J0) 6= (0),
then every element of J is a tetrad-eater. By P. Cohn’s theorem (see [SSSZ], [C], [J])

in this case J is reflexive. If B is a Jordan algebra of capacity≥ 3 then T(B) 6= (0) (see
[Z]). Hence the superalgebras P(n),Q(n), n ≥ 3 are reflexive.

The remaining cases of Theorem 1.1 except Q(2) follow from the following lemma
that was proved in [RZ]:

Lemma 1.1 ([RZ]) If J is a finite-dimensional special simple Jordan superalgebra,

J0̄ = J ′
0̄
⊕ J ′ ′

0̄
is semisimple and at least one of the summands is not F then J is re-

flexive.

Lemma 1.2 The superalgebra Q(2) is reflexive.

Proof The even and the odd parts of Q(2) can be identified with the matrix algebra.

Let ei j ∈ Q(2)0̄ and ei j ∈ Q(2)1̄ denote the images of the unit matrix ei j , Q(2)0̄ =
∑

Fei j , Q(2)1̄ =
∑

Fei j .

Let U be the universal associative enveloping algebra of Q(2), let ≡ denote the
equality in U modulo Q(2). We need to check that for arbitrary elements xi ∈ Q(2),

1 ≤ i ≤ 4, the tetrad {x1, x2, x3, x4} = x1x2x3x4 + (−1)
∑

i< j |xi | |x j |x4x3x2x1 lies in
Q(2) (see [C]).

We have {. . . , x, y, . . . } ≡ −(−1)|x| |y|{. . . , y, x, . . . } and {. . . , xy, z, . . . } ≡
{. . . , x, yz, . . . } + (−1)|x| |y|{. . . , y, xz, . . . } (see [Z]).

Now suppose that x1, x2, x3, x4 ∈ {ei j , ei j , 1 ≤ i, j ≤ 2} and 0 6≡ {x1, x2, x3, x4}.

(i) If x1 = e11 or e22 then x2, x3, x4 ∈ {e12, e21, e12, e21}.

Indeed, {e11, x2, x3, x4} = {e
2
11, x2, x3, x4} ≡ {e11, 2e11x2, x3, x4}, which implies that

x2 = 2e11x2.

This takes care of the case when all four elements x1, x2, x3, x4 are even.

(ii) {e11, e22, . . . } ≡ 0. Indeed,

{e11, e22, . . . } = {e11e11, e22, . . . } ≡ {e11, e11e22, . . . } + {e11, e11e22, . . . } = 0.

(iii) {e12, e12, . . . } ≡ 0. Indeed, e12 = 2e12e22. Hence, {e12, e12, . . . } =
{e12, 2e12e22, . . . } ≡ {e

2
12, e22, . . . } = 0.

This takes care of the case when x1, x2, x3 are even and x4 is odd.

Indeed, if the elements x1, x2, x3 are e11, e12, e21, then all four possibilities for x4 are
ruled out.

(iv) Fix elements x2, x3, x4 ∈ J. Suppose that {Q(2)0, x2, x3, x4} ≡ (0) and
{e11, x2, x3, x4} ≡ 0. Then {Q(2), x2, x3, x4} ≡ (0). Indeed, the Q(2)0-bimod-
ule Q(2)0 is irreducible. Hence it is sufficient to prove that for arbitrary ele-
ments a1, . . . , ak ∈ Q(2)0, we have {e11R(a1) · · ·R(ak), x2, x3, x4} ≡ 0.
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In [Z] it was shown that for arbitrary homogenous elements x1, x
′
1 we have

{x1x ′1, x2, x3, x4} ≡ x1{x
′
1, x2, x3, x4} + (−1)|x1| |x

′

1 |x ′1{x1, x2, x3, x4}.

This implies the assertion.

Similarly, {Q(2)0, x2, x3, x4} ≡ (0) and {e22, x2, x3, x4} ≡ 0 imply {Q(2), x2,
x3, x4} ≡ (0).

From (iv) it follows that if {x1, x2, x3, x4} 6≡ 0, then for an arbitrary i, 1 ≤ i ≤ 4
we can assume that xi is even or our choice of the elements e11, e22. In view of (ii) this
finishes the proof of the lemma.

In next section we will see that the superalgebra P(2) is not reflexive.

2 The Cheng-Kac Superalgebras and P(2)

Let Z be an associative commutative F-algebra with a derivation D : Z → Z. Let
CK(Z,D) = (Z +

∑3
i=1 Zwi) + (Zx +

∑3
j=1 Zx j) be the Cheng-Kac superalgebra. The

subsuperalgebra of CK(Z,D) spanned over F by the elements 1,w1,w2,w3, x, x1, x2,

x3 is isomorphic to P(2).

Consider the associative Weyl algebra W =
∑

i≥0 Zt i where the variable t com-
mutes with a coefficient a ∈ Z via ta = D(a) + at .

In [MSZ] we found the following embedding of CK(Z,D) into the associative
superalgebra M2,2(W ) =

(

M2(W ) 0
0 M2(W )

)

+
(

0 M2(W )
M2(W ) 0

)

,

σ(a) =









a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a









, a ∈ Z; σ(w1) =









−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1









,

σ(w2) =









0 1 0 0
1 0 0 0
0 0 0 1

0 0 1 0









, σ(w3) =









0 −1 0 0
1 0 0 0
0 0 0 1

0 0 −1 0









;

σ(x) =









0 0 0 2D

0 0 −2D 0

0 −1 0 0
1 0 0 0









, σ(x1) =









0 0 0 −1
0 0 −1 0

0 0 0 0
0 0 0 0









,

σ(x2) =









0 0 −1 0

0 0 0 1
0 0 0 0
0 0 0 0









, σ(x3) =









0 0 1 0

0 0 0 1
0 0 0 0
0 0 0 0









.

Remark 2.1 The subsuperalgebra Z + Zx of CK(Z,D) is a Kantor double of vector
type (see [Mc]). The embedding σ above extends the embedding of Kantor doubles
of vector type found by McCrimmon in [Mc].
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Theorem 2.1 The restriction of the embedding σ (see above) to P(2) is a universal spe-

cialization; U
(

P(2)
)

' M2,2(F[t]), where F[t] is a polynomial algebra in one variable.

Let K and H be the subspaces of skew-symmetric and symmetric 2 × 2 matrices
over F respectively. Let J = P(2), J0̄ = M2(F), J1̄ = K̄ + H̄, where K̄ and H̄ are
isomorphic copies of K and H. The multiplication of J1̄ by J0̄ and the bracket on J1̄

are defined via a · b̄ = 1
2
(ab + bat ) and [b̄, c̄] = bc−cb ∈ J0̄; a ∈ M2(F), b, c ∈ K∪H.

Let u : J → U be the universal specialization of J. We will identify J with u( J) and

assume that J ⊆ U . The juxtaposition in the following lemma denotes multiplication
in U .

Lemma 2.1

(1) H̄H̄ = (0),

(2) H̄K̄ ⊆ 〈 J0̄〉,
(3) H̄〈 J0̄〉 = 1̄〈 J0̄〉.

Proof We have [H̄, H̄] = (0). In particular, [e11, e12 + e21] = 0.

If e is an idempotent in an associative algebra R, a, b ∈ R and [eae, eb(1 − e) +
(1− e)be] = 0, then eaeb(1− e) = (1 − e)beae = 0, which implies eae

(

eb(1 − e) +

(1− e)be
)

=
(

eb(1− e) + (1− e)be
)

eae = 0.

Since the elements e11 and e12 + e21 lie in the corresponding Peirce components of

U , we conclude that e11(e12 + e21) = (e12 + e21)e11 = 0.

To finish the proof we will need the following remark:

Remark 2.2 Let J be an arbitrary Jordan superalgebra and let A, B be two associative

enveloping algebras of J. If x is an odd element of J1̄ and the square of x in A lies in
the center of A, then the square of x in B also lies in the center of B. Indeed, for an
arbitrary element a ∈ J we have aR J(x)R J(x) = 1

2
[a, x2], where R J(x) denotes the

operator of right Jordan multiplication in J.

The superalgebra J = P(2) has an associative enveloping algebra M2,2(F), where
the square of e11 is 0.

Hence the square e2
11 in U lies in the center of U .

The element e2
11 lies in the 1-Peirce component e11U e11 of U ; the element e12 + e21

lies in the 1
2
-Peirce component e11U (−e11) + (1 − e11)U e11. Hence e2

11(e12 + e21) =

(e12 + e21)e2
11 implies e2

11(e12 + e21) = 0. But 1 = (e12 + e21)2. We proved that e2
11 = 0.

Since, obviously, e11e22 = 0, we conclude that e11H̄ = (0).

The Jordan J0̄-bimodule H̄ is generated by the element e11.

This implies that H̄ ⊆ 〈 J0̄〉e11〈 J0̄〉, H̄H̄ ⊆ 〈 J0̄〉e11〈 J0̄〉H̄ ⊆ 〈 J0̄〉e11H̄〈 J0̄〉 = (0).

We proved the assertion (1).

Let x = e12 − e21. If a ∈ J0̄ = M2(F) and tr(a) = 0, then a · x = 0. In particular,
if a ∈ H and tr(a) = 0 then ax + xa = 0. Now choose an arbitrary element h ∈ H

and consider (a · h̄)x. Clearly, [a · h̄, x] ∈ J0̄.

Furthermore, (ah̄+h̄a)x+x(ah̄+h̄a)−h̄(ax+xa)−(ax+xa)h̄ = a[h̄, x]−[h̄, x]a ∈
〈 J0̄〉. Hence (a · h̄)x ∈ 〈 J0̄〉.
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Denote H0
= {a ∈ H | tr(a) = 0}. We proved that (H0 · H̄)x ⊆ 〈 J0̄〉. Now, notice

that h̄ = h · 1̄ for h ∈ H and 1̄ = (e11 − e22) · e11 − e22. Hence H̄ = H0 · H̄. This

finishes the proof of (2).

Clearly H̄〈 J0̄〉 = e11〈 J0̄〉 + e22〈 J0̄〉 + (e12 + e21)〈 J0̄〉. But eii = 1̄eii since 1̄ =
e11 + e22 is the Peirce decomposition of 1̄ with respect to the idempotents e11, e22.
Hence e11〈 J0̄〉, e22〈 J0̄〉 ⊆ 1̄〈 J0̄〉.

Denote s = e12 + e21. Then s̄ = 2(e11 · s) = se11 + e11s.

Since s2
= 1 it follows that se11 = se11ss = e22s.

Now we have s̄ = se11 + e11s = e22s + e11s = 1̄s. Lemma is proved.

Corollary 2.1 U =
∑

i≥0〈 J0̄〉x
i + 1̄〈 J0̄〉.

Proof In an arbitrary product involving elements from J0̄, H̄, x we can use J0̄H̄ ⊆
H̄ J0̄ + H̄, xH̄ ⊆ H̄x + J0̄ to move all factors from H̄ to the left end.

If a ∈ J0̄, tr(a) = 0, then ax+xat
= 0. Hence in a product involving only elements

from J0̄ and x we can move all x’s together. Now the result follows from Lemma 2.1.

Lemma 2.2 H̄x〈 J0̄〉 / 〈 J0̄〉.

Proof We need to show that H̄x〈 J0̄〉 is a left ideal in 〈 J0̄〉. Choose arbitrary elements

a ∈ J0̄, h ∈ H. Then ah̄x = (ah̄ + h̄a)x − h̄(ax + xa) + h̄xa ∈ H̄x〈 J0̄〉. Lemma is
proved.

Lemma 2.3 The subalgebra of M2,2(W ) generated by σ( J) is M2,2(F[t]).

Proof

Step 1 〈σ(w1), σ(w2), σ(w3)〉 =
{(

a 0
0 b

)

; a, b ∈ M2(F)
}

. Indeed, M2(F) is gener-

ated by
(

−1 0
0 1

)

,
(

0 1
1 0

)

. Hence 〈σ(w1), σ(w2)〉 =
{(

a 0
0 a

)

, a ∈ M2(F)
}

.

It implies that

σ(w3) +









0 −1 0 0
−1 0 0 0
0 0 0 −1

0 0 −1 0









=









0 0 0 0
0 0 0 0
0 0 0 2

0 0 −2 0









∈ 〈σ(w1), σ(w2), σ(w3)〉.

Now

{(

a 0

0 a

)

; a ∈ M2(F)

}









0 0 0 0
0 0 0 0

0 0 0 2
0 0 −2 0









=

{(

0 0

0 b

)

; b ∈ M2(F)

}

⊆ 〈σ(w1), σ(w2), σ(w3)〉,

which implies the result.
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Step 2 〈σ(w1), σ(w2), σ(w3), σ(x1), σ(x2), σ(x3)〉 =
{(

a c
0 b

)

; a, b, c ∈ M2(F)
}

.

It suffices to notice that
(

a 0
0 a

)

σ(x3) =
(

0 a
0 0

)

.

Step 3 〈σ( J)〉 ⊇ M2,2(F).

We have

σ(x)









1 0 0 0

0 1 0 0
0 0 0 0
0 0 0 0









=









0 0 0 0

0 0 0 0
0 −1 0 0
1 0 0 0









and









0 0 0 0
0 0 0 0
0 −1 0 0

1 0 0 0

















a11 a12 0 0
a21 a22 0 0
0 0 a11 a12

0 0 a21 a22









=









0 0 0 0
0 0 0 0
−a21 −a22 0 0

a11 a12 0 0









,

which implies that
{(

0 0
d 0

)

; d ∈ M2(F)
}

⊆ 〈σ( J)〉.

Step 4 We have 1
2
e11σ(x)e11 = e11(t) ∈ 〈σ( J)〉. Hence M2,2(F[t]) = 〈M2,2(F), e11(t)〉

= 〈σ( J)〉. Lemma is proved.

By the universal property of u : J → U , there exists a unique homomorphism
χ : U → M2,2(F[t]) of associative superalgebras such that σ = χ · u.

Lemma 2.4 The restriction of χ to 1̄〈 J0̄〉 is an embedding.

Proof We have already proved that H̄x〈 J0̄〉 is an ideal of 〈 J0̄〉. Furthermore, this ideal

is proper. Indeed, it is nonzero, since σ(H̄)σ(x) 6= (0) in M4(F[t]),

σ(x1)σ(x) =









−1 0 0 0
0 1 0 0
0 0 0 0

0 0 0 0









6= 0.

Let’s assume that the ideal H̄x〈 J0̄〉 = 〈 J0̄〉. Then H̄ ·H̄ = (0) implies H̄(H̄x〈 J0̄〉) =
(0) and therefore H̄ = (0), the contradiction.

The dimension of the subalgebra 〈 J0̄〉 of U is ≤ 8. By Step 1 of the proof of
Lemma 2.3 we have 〈 J0̄〉 ∼= M2(F) ⊕M2(F). Hence H̄x〈 J0̄〉 is a direct summand of

〈 J0̄〉 of dimension 4. Let 〈 J0̄〉 = H̄x〈 J0̄〉 ⊕ L, where L ∼= M2(F).

Since 1̄〈 J0̄〉 = 1̄H̄x〈 J0̄〉 + 1̄L and 1̄H̄ = (0) by Lemma 2.1 (1), it follows that
dimF 1̄〈 J0̄〉 ≤ 4. Now it remains to notice that χ(1̄〈 J0̄〉) = σ(1̄)〈σ( J0̄)〉 =

{(

0 a
0 0

)

;

a ∈ M2(F)
}

has dimension 4. Lemma is proved.
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We have

σ(x) =









0 0 0 2t

0 0 −2t 0
0 −1 0 0
1 0 0 0









, σ(x)2k
= 2k









tk 0 0 0

0 tk 0 0

0 0 tk 0

0 0 0 tk









,

σ(x)2k+1
= 2k









0 0 0 2tk+1

0 0 −2tk+1 0

0 −tk 0 0

tk 0 0 0









.

Now we are ready to finish the proof of Theorem 2.1. Let a =
∑

uix
i+e11v+e22w ∈

kerχ; ui , v,w ∈ 〈 J0̄〉. Let χ(ui) =
( a ′i 0

0 a ′′i

)

, χ(v) =
(

b ′ 0
0 b ′′

)

, χ(w) =
(

c ′ 0
0 c ′′

)

,

where a ′i , a
′′
i , b

′, b ′ ′, c ′, c ′ ′ ∈ M2(F).

Then

∑

i

2i

(

a ′2i 0
0 a ′ ′2i

)

t i +
∑

2i

(

a ′2i+1 0
0 a ′′2i+1

)









0 0 0 2t i+1

0 0 −2t i+1 0
0 −t i 0 0
t i 0 0 0









+

(

0 e11

0 0

)(

b ′ 0
0 b ′ ′

)

+

(

0 e22

0 0

)(

c ′ 0
0 c ′ ′

)

= 0,

which implies that a ′2i = a ′ ′2i = a ′2i+1 = a ′ ′2i+1 = 0.

Hence a = e11v + e22w ∈ H̄〈 J0̄〉 = 1̄〈 J0̄〉.

By Lemma 2.4, a = 0. Hence χ is an isomorphism. Theorem 2.1 is proved.

Theorem 2.2 The embedding σ is universal, that is, U
(

CK(Z,D)
)

∼= M2,2(W ).

As above we will identify the Jordan superalgebra J = CK(Z,D) with u( J), i.e., we
assume that J = CK(Z,D) ⊆ U ( J) = U . The superalgebra J is generated by Z and
by the superalgebra 〈wi, x, x j ; 1 ≤ i, j ≤ 3〉 ∼= P(2). The multiplication in U will be
denoted by juxtaposition.

By the universal property of u there exists a homomorphism χ : U → M2,2(W )

of associative superalgebras such that σ = χ · u. By Theorem 2.2 the subalgebra
generated by P(2) in U is the universal associative enveloping algebra of P(2) and
χ : 〈P(2)〉 → M2,2(F[t]) is an isomorphism.

We have 〈w1,w2,w3, H̄〉 = χ
−1
{(

a c
0 b

)

; a, b, c ∈ M2(F)
}

and

〈

w1,w2,w3, H̄, χ
−1

(

0 0
0 I

)

xχ−1

(

I 0
0 0

)〉

= χ−1
(

M2,2(F)
)

.

Lemma 2.5 Z commutes with χ−1
(

M2,2(F)
)

in U .
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Proof We only need to show that Z commutes with all generators of χ−1
(

M2,2(F)
)

.

Choose an arbitrary element α ∈ Z. Then

±[α,wi] = [(αw j) · w j ,wi] = [w j , αw j · wi] + [αw j ,w j · wi] = 0 for i 6= j;

±[α, xi] = [αwi · wi , xi] = [wi , αwi · xi] + [αwi ,wi · xi] = 0.

Finally, denote E2 = χ
−1
(

( 0 0
0 I )
)

, E1 = χ
−1
(

( I 0
0 0 )
)

. By what we proved above, α
commutes with E1, E2. We have [α, E2xE1] = E2[α, x]E1 and [α, x] = [αw1 ·w1, x] =
[w1, αw1 · x] + [αw1,w1 · x], where w1 · x = 0, αw1 · x = x1D(α).

Sinceχ(w1) =
(

∗ 0
0 ∗

)

, from Theorem 2.1, it follows that w1 commutes with E1, E2.

Hence E2[w1, x1 · D(α)]E1 =
[

w1, E2

(

x1 · D(α)
)

E1

]

. The element D(α) lies in Z,

hence commutes with E1, E2. Therefore E2

(

x1 · D(α)
)

E1 = E2x1E1 · D(α).

We have χ(x1) =
(

0 ∗
0 0

)

. Hence, by Theorem 2.1, E2x1 = 0, and the lemma is
proved.

Lemma 2.6 Arbitrary elements from Z commute in U .

Proof Let α, β ∈ Z, 1 ≤ i ≤ 3. Let us show that [α · wi , β] = 0. Indeed, for j 6= i

we have±[αwi , β] = [αwi , (βw j)w j] = [(αwi) · (βw j),w j] + [αwi · w j , βw j] = 0.

Now α = ±(αwi) · wi . If β commutes with αwi and with wi then it commutes
with α, and the lemma is proved.

Proof of Theorem 2.2 The algebra U is generated by P(2) and Z. By Theorem 2.2,

the subalgebra 〈P(2)〉 of U is generated by χ−1
(

M2,2(F)
)

and by x2. We have
[

Z, χ−1
(

M2,2(F)
)]

= (0), [Z, x2] ⊆ Z and
[

χ−1
(

M2,2(F)
)

, x2
]

= (0). Hence

U =
∑

i≥0 χ
−1
(

M2,2(F)
)

Z(x2)i , which easily implies that Ker χ = (0). Theorem is
proved.

3 Specializations of Kantor Doubles

Let Γ = Γ0̄ + Γ1̄ be an arbitrary associative commutative superalgebra with a Jordan
bracket { , }. Then D(a) = {a, 1} is a derivation of Γ. The bracket is said to be of

vector type if {a, b} = D(a)b− aD(b).

In [Mc] it was proved that the Kantor double of a bracket of vector type is a special
superalgebra. Furthermore, in [Mc], [K-Mc2] two important examples of classical
and Grassmann Poisson brackets were analysed and it was shown that in both cases

the Kantor doubles are exceptional.

The following proposition from [MSZ] completely determines which “supercon-
formal” Kantor doubles (see [KMZ]) and which simple finite dimensional Kantor
doubles (see [MZ]) are special.

Proposition 3.1 (see [MSZ]) Let Γ = Γ0̄ +Γ1̄ be a finitely generated associative com-

mutative superalgebra with a Jordan bracket { , } such that the superalgebra J =

J(Γ, { , }) does not contain nonzero nilpotent ideals.
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(1) If Γ1̄Γ1̄ 6= (0), then the superalgebra J is exceptional.

(2) Suppose that either Γ1̄ = (0) or Γ1̄ contains an element ξ such that Γ1̄ = Γ0̄ξ and

{Γ0, ξ} = (0), {ξ, ξ} = −1. Then the superalgebra J(Γ, { , }) is special if and

only if the restriction of { , } on Γ0 is of vector type.

Let 1 ∈ Z be an associative commutative algebra with a derivation D : Z → Z and
the bracket of vector type {a, b} = D(a)b − aD(b). The Kantor double J(Z, { , })
is simple if and only if Z does not contain proper D-invariant ideals (see [K-Mc],
[MZ]). Let W =

∑∞
i=0 Zt i , ta = D(a) + at , a ∈ Z be the Weyl algebra. We recall the

McCrimmon specialization m : J(Z, { , })→ M2(W ),

m(a) =

(

a 0

0 a

)

, a ∈ Z; m(x) =

(

0 2t

−1 0

)

.

Theorem 3.1 Suppose that the algebra Z does not contain proper D-invariant ideals.

Then the McCrimmon specialization is universal, that is, U
(

J(Z, { , })
)

= M1,1(W ).

Remark 3.1 The assumption that Z does not contain proper D-invariant ideals is
essential. Indeed, let Z = F[t1, t2] be the algebra of polynomials in two variables,
D = 0. Let u : Z → U be the universal specialization of the Jordan algebra Z (+).
The algebra U is not commutative (see [Jac]). Let J be the Kantor double of Z cor-

responding to the zero bracket, J = Z + Zx. Then the mapping f : J → M1,1(U ),

f (a) =
(

u(a) 0
0 u(a)

)

, a ∈ Z, f (x) =
(

0 1
0 0

)

, is a specialization such that the images of
t1, t2 do not commute.

In what follows J = J(Z, { , }), U = U ( J), juxtaposition denotes the multiplica-
tion in U . We will identify elements from J with their images in U .

Lemma 3.1 Z is generated by D(Z).

Proof Suppose that D2 6= 0. The ideal Z
(

D2(Z)
)

is D-invariant, hence Z =

Z
(

D2(Z)
)

⊆ D
(

ZD(Z)
)

+ D(Z)D(Z) ⊆ D(Z) + D(Z)D(Z).

Now suppose that D2
= 0. Then for arbitrary elements a, b ∈ Z we have D2(ab) =

D2(a)b+aD2(b)+2D(a)D(b) which implies that D(Z)D(Z) = (0). Now, Z = ZD(Z),
the contradiction.

Lemma 3.2 For arbitrary elements a, b ∈ Z the commutator [a, b] lies in the center

of U .

Proof For an arbitrary element c ∈ J we have
[

c, [a, b]
]

= 4cD(a, b) = 0. Hence
the commutator [a, b] commutes with an arbitrary element from J. Now it suffices
to note that the algebra U is generated by J.

Lemma 3.3 [Z,Z] = (0).
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Proof Let S denote the linear span of all elements
[

[x2, a], b
]

; a, b ∈ Z. By

Lemma 3.2
[

[x2, a], b
]

=
[

[x2, b], a
]

. Hence S is spanned by elements
[

[x2, a], a
]

,

a ∈ Z.

Let us show that for an arbitrary element c ∈ Z, Sc ⊆ S. Indeed, S ⊆ [Z,Z].
By Lemma 3.2 S lies in the center of U . Hence

[

[x2, a], a
]

c =
[

[x2, a], a
]

· c =
[

[x2, a], a·c
]

−
[

[x2, a], c
]

·a. Now
[

[x2, a], c
]

·a =
[

[x2, c], a
]

·a = 1
2

[

[x2, c], a2
]

∈
S.

Now let us show that SD(Z) = (0). For an arbitrary element c ∈ Z we have

D(c) = {c, 1} = {c · x, x} = 1
2
[c, x2].

If s ∈ S then s[c, x2] = [sc, x2] − [s, x2]c = 0, since the elements s and sc both lie
in the center of U .

By Lemma 3.1 the identity 1 of the algebra U can be expressed as a linear combi-
nation of products of elements from D(Z). Hence S · 1 = (0) and S = (0).

We proved that Z commutes with [x2,Z] = D(Z). By Lemma 3.1, [Z,Z] = (0),
and the lemma is proved.

Lemma 3.4 [Z, x][Z, x] = (0).

Proof Choose an arbitrary element a ∈ Z. We have
[

[x2, a], a
]

= 2
[

[x, a], a
]

· x +
2[a, x]2

= 0, which implies that [a, x]2
= 0. Hence for arbitrary elements a, b ∈ Z,

[a, x] · [b, x] = 0.

Let us show that for arbitrary elements a, b ∈ Z,
[

[

[b, x], x
]

, a
]

= 0.

Indeed,
[

[b, x], x
]

= 4b · x2 − (b · x) · x. Now, [(b · x) · x, a] = [b · x, a · x] +
[x, a · (b · x)] = {b, a} + [x, (ab) · x] = D(b)a − bD(a) − D(ab) = −2D(a)b; and
[b · x2, a] = b · [x2, a] + x2 · [b, a] = −2D(a)b.

Finally, 0 =
[

[

[a, b], x
]

, x
]

=

[

[

[a, x], x
]

, b
]

+2
[

[a, x], [b, x]
]

+
[

a,
[

[b, x], x
]

]

which implies
[

[a, x], [b, x]
]

= (0). This finishes the proof of the lemma.

Lemma 3.5 If a, b ∈ Z and aD(b) = 0 then a[b, x] = 0.

Proof Denote s = a[b, x]. We have sx = a[b, x]x = a([b, x2] − x[b, x]) =

−ax[b, x] = −xa[b, x]− [a, x][b, x] = −xs.

Hence, [s, x2] = 0.

For an arbitrary c ∈ Z the element sc = (ac)[b, x] is of the same type as s, hence
[sc, x2] = 0.

Now, s[c, x2] = [sc, x2] − [s, x2]c = 0. We proved that sD(Z) = (0). In the same
way as in the proof of Lemma 3.3 this implies that s = 0, and the lemma is proved.

By the universal property of the associative superalgebra U there exists a homo-
morphism χ : U → M2(W ) such that m = χ · u. Recall that we identify J with
u( J) ⊆ U and therefore assume that u(a) = a, a ∈ J.

By Lemmas 3.3 and 3.4 an arbitrary element ω ∈ U 0̄ can be represented as

ω =
∑

i

aix
2i +

∑

j

x2 jb jx[c j , x],
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where ai , b j , c j ∈ Z. We have

χ(ω) =
∑

i

(−2)i

(

ai 0

0 ai

)(

t i 0

0 t i

)

+
∑

j

(−2) j

(

t j 0
0 t j

)(

b j 0
0 b j

)(

0 0
0 2D(c j)

)

=

(
∑

(−2)iait
i 0

0
∑

(−2)iait
i +
∑

(−2) j+1t jb jD(c j)

)

.

If χ(ω) = 0, then ai = b jD(c j) = 0 for all i, j. By Lemma 3.5 this implies that
ω = 0.

An arbitrary element ω ∈ U1 can be represented as

ω =
∑

i

x2i+1ai +
∑

j

x2 jb j[c j , x].

We have

χ(ω) =

(

0
∑

(−1)i2i+1t i+1ai +
∑

(−2) j+1t jb jD(c j)
∑

(−1)i+12it iai 0

)

.

Again if χ(ω) = 0 then ai = b jD(c j) = 0 which implies ω = 0.

It is easy to check that the image of m generates the whole algebra M2(W ). Hence
χ is an isomorphism. Theorem 3.1 is proved.

Now let us examine the case when Γ0̄ = Z is an associative commutative algebra
with a derivation D : Z → Z; Γ1̄ = Zξ, {a, b} = D(a)b − aD(b) for a, b ∈ Z,

{Z, ξ} = (0), {ξ, ξ} = −1. Then the Kantor double J = J(Γ, { , }) can be identified
with the subsuperalgebra of CK(Z,D) generated by Z, ω1, x. If the algebra Z does not
contain proper D-invariant ideals, then this subsuperalgebra is J = Z+Zω1+Zx1+Zx.

Theorem 3.2 Suppose that the algebra Z does not contain proper D-invariant ideals.

Then, the restriction of the embedding σ : CK(Z,D) → M2,2(W ) to the superalgebra

J = Z +Zω1 +Zx1 +Zx is a universal specialization of J; U ( J) ' M1,1(W )⊕M1,1(W ).

As always we identify the superalgebra J with its image in the universal associative
enveloping superalgebra U .

Let 〈Z, x〉 denote the subsuperalgebra of U generated by Z, x.

Lemma 3.6 U = 〈Z, x〉 + 〈Z, x〉ω1.

Proof For an arbitrary element a ∈ Z we have x(ω1a) = x1D(a). Since 1 ∈ D(Z)Z it
follows that x1 lies in the subalgebra generated by Z, ω1, x. The element ω1 commutes

with Z in U and anticommutes with x. This implies the lemma.

Let 〈σ(Z), σ(x)〉 be the subalgebra of M4(W ) generated by σ(Z), σ(x).
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Lemma 3.7 If A,B ∈ 〈σ(Z), σ(x)〉 and A + Bσ(ω1) = 0, then A = B = 0.

Proof We have σ(ω1) =
(

−I 0
0 I

)

, where I is the identity matrix in M2(W ). It is easy

to see that 〈σ(Z), σ(x)〉 ⊆
{(

a b
−b a

)

; a, b ∈ M2(W )
}

. Now

(

a b

−b a

)

+

(

c d

−d c

)(

−I 0
0 I

)

=

(

a− c b + d

−b + d a + c

)

= 0

implies that a = b = c = d = 0. Lemma is proved.
Now we can finish the proof of Theorem 3.2. Indeed, the homomorphism σ :

〈Z, x〉 → 〈σ(Z), σ(x)〉 is an isomorphism, because 〈Z, x〉 ' M2(W ) is a simple
algebra. This implies that σ : U → M4(W ) is an embedding.

〈σ(Z), σ(x)〉 =























β1 0 0 β3

0 β2 β4 0
0 −β3 β1 0
−β4 0 0 β2









∣

∣

∣

∣

∣

βi ∈W















, σ(ω1) =

(

−I 0
0 I

)

.

So

〈σ(Z), σ(x), σ(ω1)〉 =























β1 0 0 β5

0 β2 β6 0
0 β7 β3 0
β8 0 0 β4









∣

∣

∣

∣

∣

βi ∈W, 1 ≤ i ≤ 8















.

This superalgebra is isomorphic to M2(W )⊕M2(W ), and the theorem is proved.

4 Specializations of M1,1(F)

Denote J = M1,1(F), v = e22 − e11 ∈ J0̄, x = e12, y = e21 ∈ J1̄. The universal
associative enveloping superalgebra U of J can be presented by generators v, x, y and

relators v2 − 1 = 0, xv + vx = 0, yv + vy = 0, yx − xy − v = 0. Let v < x < y

and consider the lexicographic order on the set of words in v, x, y. Then the system
of relators above is closed with respect to compositions (see [Be], [Bo]). Hence the
system of irreducible words xi y j , vxi y j ; i, j ≥ 0 is a Groebner-Shirshov basis of U .

By Remark 2.2, the squares x2, y2 lie in the center of U . The algebra U is a free
module over the central subalgebra F[x2, y2] with free generators 1, x, y, xy, v, vx,
vy, vxy.

Consider the ring of polynomials and the field of rational functions in two vari-

ables, F[z1, z2] ⊆ F(z1, z2). Let K be the quadratic extension of F(z1, z2) generated by
a root of the equation a2+a−z1z2 = 0. Consider the subring A = F[z1, z2]+F[z1, z2]a

and the subspaces M12 = F[z1, z2] + F[z1, z2]a−1z2, M21 = F[z1, z2]z1 + F[z1, z2]a of
K. Then

(

A M12

M21 A

)

is a subring of M2(K).

Let’s consider the mapping u : M1,1(F)→
(

A M12

M21 A

)

,

u

(

(

α11 α12

α21 α22

)

)

=

(

α11 α12 + α21a−1z2

α12z1 + α21a α22

)

.
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A straightforward verification shows that u is a specialization of the Jordan super-
algebra J = M1,1(F). Hence, it extends to a homomorphism χ : U →

(

A M12

M21 A

)

.

Clearly, χ(x2) =
(

z1 0
0 z1

)

, χ(y2) =
(

z2 0
0 z2

)

. Again the straightforward computation

shows that the elements 1, χ(x), χ(y), χ(xy), χ(v), χ(vx), χ(vy), χ(vxy) are free
generators of the F[z1, z2]-module

(

A M12

M21 A

)

, which implies the following:

Theorem 4.1 U
(

M1,1(F)
)

'
(

A M12

M21 A

)

. The mapping

u :

(

α11 α12

α21 α22

)

−→

(

α11 α12 + α21a−1z2

α12z1 + α21a α22

)

is a universal specialization.

Remark 4.1 One sided finite dimensional Jordan bimodules over M1,1(F) are
not necessarily completely reducible. Indeed, if I is an ideal of F[z1, z2] then
(

I+Ia I+Ia−1z2
Iz1+Ia I+Ia

)

is an ideal of
(

A M12

M21 A

)

. If the quotient F[z1, z2]/I is finite-dimen-

sional and not semisimple, then so is the quotient
(

A M12

M21 A

)

/
(

I+IA I+Ia−1z2
Iz1+Ia I+Ia

)

.

5 Specializations of Superalgebras D(t)

Let t ∈ F. Consider the 4-dimensional superalgebra D(t), D(t)0̄ = Fe1 + Fe2, D(t)1̄ =

Fx + Fy, e2
1 = e1, e2

2 = e2, e1e2 = 0, eix =
1
2
x, ei y = 1

2
y, 1 ≤ i ≤ 2, [x, y] = e1 + te2.

Clearly, D(−1) ∼= M1,1(F), D(0) ∼= K3 ⊕ F1, D(1) is a Jordan superalgebra of a
superform.

We will start with the superalgebra K3. Let osp(1, 2) denote the Lie subsuper-
algebra of M1,2(F) which consists of skewsymmetric elements with respect to the
orthosympletic superinvolution. Let x, y be the standard basis of the odd part of

osp(1, 2).

As always U
(

osp(1, 2)
)

denotes the universal associative enveloping algebra of

the Lie superalgebra osp(1, 2). Let U ∗
(

osp(1, 2)
)

be the ideal (of codimension one)

of U
(

osp(1, 2)
)

generated by osp(1, 2).

Theorem 5.1 (I. Shestakov [S1]) The universal enveloping algebra of K3 is isomor-

phic to U ∗
(

osp(1, 2)
)

/ id([x, y]2 − [x, y]), where id([x, y]2 − [x, y]) is the ideal of

U
(

osp(1, 2)
)

generated by [x, y]2 − [x, y].

Remark 5.1 The ideal U ∗ above appeared because we do not assume an identity in
the enveloping algebra U (K3) of the Jordan superalgebra. The unital hull of U (K3)
is, of course, isomorphic to U

(

osp(1, 2)
)

/ id([x, y]2 − [x, y]).

Clearly, if ch F = 0 then K3 does not have nonzero specializations that are finite
dimensional algebras. If ch F = p > 0 then K3 has such specializations. For example,
K3 ⊆ CK(F[a | ap

= 0], d/da).
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Theorem 5.2 (I. Shestakov [S1]) Let t 6= −1, 1. Then the universal enveloping alge-

bra of D(t) is isomorphic to

U
(

osp(1, 2)
)

/ id
(

[x, y]2 − (1 + t)[x, y] + t
)

.

Corollary 5.1 If ch F = 0 then all finite dimensional one-sided bimodules over D(t),

t 6= −1, 1, are completely reducible.

Indeed, it is known (see [Ka1]) that finite dimensional representations of the Lie
superalgebra osp(1, 2) are completely reducible.

From now on in this section we will assume that t 6= −1, 0, 1 and ch F = 0.

We will classify irreducible finite-dimensional one-sided bimodules over D(t).

Let V = V 0̄ + V1̄ be a finite dimensional irreducible right module over the asso-
ciative superalgebra U

(

D(t)
)

. We will identify elements from D(t) with their right
multiplications on V , i.e., D(t) ⊆ EndF V .

Let us notice that V 0̄ 6= (0). Otherwise, V x = V y = (0), which implies that

V D(t) = (0), the contradiction.

Let E = 1
1+t

x2, F = − 1
1+t

y2, H = − 1
1+t

(xy + yx).

It is easy to check that [E, F] = H, [E,H] = −2E, [F,H] = 2F, i.e., the elements

E, F, H span the Lie algebra sl2. The subspace V 0̄ei is invariant under the sl2.

Suppose that V 0̄e1 6= (0). In the sl2-module V 0̄e1 choose a highest weight element
v 6= 0, i.e., vH = λv, vF = 0.

Now we will consider an infinite dimensional Verma type module Ṽ = ṽU
(

D(t)
)

,
whose homomorphic image is V . The module Ṽ is defined by one generator ṽ and
the relations: ṽH = λṽ, ṽe1 = ṽ, ṽy2

= 0.

From ṽH = λṽ it follows that ṽ(xy + yx) = −(t + 1)λṽ. Taking into account
that xy = yx + e1 + te2 we get ṽyx = αṽ, where α = − 1

2

(

1 + (1 + t)λ
)

. Now

0 = (ṽyx − αṽ)y − ṽy(xy − yx − e1 − te2) = (t − α)ṽy. Hence α = t or ṽy = 0.

Suppose that α = t or equivalently, λ = −1−2t
1+t

. Then the system of relators of
Ṽ : ṽe1 − ṽ = 0, ṽy2

= 0, ṽyx − t ṽ = 0 together with the system of relators of D(t):
e2

1− e1 = 0, xe1 + e1x− x = 0, ye1 + e1 y− y = 0, xy− yx− t− (1− t)e1 = 0 and the
lexicographic order e1 < y < x < v is closed with respect to compositions (see [Be],

[Bo]). Hence the irreducible elements ṽ, ṽy, ṽxi , i ≥ 1 form a basis of the module Ṽ .
We will denote this module as Ṽ1(t).

If ṽy = 0 then ṽyx = αṽ implies that α = 0, i.e., λ = − 1
1+t

. In this case the
system of relators of Ṽ is: ṽe1 − ṽ = 0, ṽy = 0. As above, this system, together with
the system of relators of D(t) (see above) and the lexicographic order, is closed with
respect to compositions. Hence, the irreducible elements ṽ, ṽxi , i ≥ 1 form a basis of

Ṽ . We will refer to this module as Ṽ2(t).

Changing parity we get two new bimodules Ṽ1(t)op and Ṽ2(t)op .

Each of these bimodules has a unique irreducible homomorphic image V1(t) or
V2(t) or V1(t)op or V2(t)op .

Coming back to the irreducible finite dimensional module V , if V 0̄ = V0̄e1 and
for a highest weight element v we have vy 6= 0 then V ∼= V1(t). If vy = 0, then
V ∼= V2(t). In case that V 0̄ = V0̄e2 and for a highest weight element v we have
vy 6= 0, then V ∼= V2(t)op . If vy = 0, then V ∼= V1(t)op .
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From the representation theory of sl2 it follows that dimF V1(t) <∞ if and only if
λ = m, a nonnegative integer. Then t = −1−m

2+m
, dimF V1(t)0̄ = m + 1, dimF V1(t)1̄ =

m + 2. Similarly, dimF V2(t) < ∞ if and only if λ = m a positive integer. Then
t = −1−m

m
, dimF V2(t)0̄ = m + 1, dimF V2(t)1̄ = m.

For other values of t the module Ṽi(t) is irreducible and the superalgebra D(t)
does not have nonzero finite dimensional specializations.

Theorem 5.3 If t = − m
m+1

, m ≥ 1, then D(t) has two irreducible finite dimensional

one sided bimodules V1(t) and V1(t)op .

If t = −m+1
m

, m ≥ 1, then D(t) has two irreducible finite dimensional one sided

bimodules V2(t) and V2(t)op .

If t can not be represented as− m
m+1

or−m+1
m

, where m is a positive integer, then D(t)

does not have nonzero finite dimensional specializations.

Remark 5.2 If ch F = p > 2 then for an arbitrary t the superalgebra D(t) can be
embedded into a finite dimensional associative superalgebra. It suffices to notice that
D(t) ⊆ CK(F[a | ap

= 0], d/da).

6 The Jordan Superalgebra of a Superform

Let V = V 0̄ + V1̄ be a Z/2Z-graded vector space, dim V 0̄ = m, dimV 1̄ = 2n; let
〈 , 〉 : V ×V → F be a supersymmetric bilinear form on V . The universal associative

enveloping algebra of the Jordan algebra F1 + V 0̄ is the Clifford algebra Cl(m) =
〈1, e1, . . . , em | eie j + e jei = 0, i 6= j, e2

i = 1〉 (see [J]). Assuming the generators
e1, . . . , em to be odd, we get a Z/2Z-gradation on Cl(m).

In V1̄ we can find a basis v1,w1, . . . , vn,wn such that 〈vi ,w j〉 = δi j , 〈vi , v j〉 =
〈wi,w j〉 = 0. Consider the Weyl algebra Wn = 〈1, xi , yi , 1 ≤ i ≤ n | [xi , y j] =
δi j , [xi , x j] = [yi , y j] = 0〉. Assuming xi , yi , 1 ≤ i ≤ n to be odd, we make Wn a
superalgebra. The universal associative enveloping algebra of F1 + V is isomorphic

to the (super)tensor product Cl(m)⊗F Wn.
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