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Abstract. A connection between the symbolic description of the geodesic flows on
certain modular surfaces and the theory of continued fractions is developed. The
well-known properties of these dynamical systems then lead to some new results
about continued fractions.

Introduction
The modular group SI (2, Z) acts on the complex plane as a group of fractional
linear transformations via the correspondence

/« bS
\c d)

az+b
cz+d'

If G is the modular group or one of its subgroups, then the action of G preserves
the rational numbers and divides them into interesting equivalence classes. For
example, if G = F(2), the principal congruence subgroup of level 2, then there are
three equivalence classes corresponding to the classification of rationals P/Q in
lowest terms as odd/even, odd/odd, or even/odd.

If @ is an irrational real number, then the continued fraction expansion of /3
leads to an infinite sequence of rational approximants PjQn which converge to (3
as n tends to infinity. The goal of this paper is to study the distribution of these
approximants into the G-equivalence classes for typical irrationals 0. The main
result is proposition 2.1. One consequence of this result is that the three I n -
equivalence classes occur with equal asymptotic frequency for almost every /3.

The proof of proposition 2.1 depends on a connection between the theory of
continued fractions and the behaviour of geodesies on the Riemann surface obtained
from the upper half-plane by quotienting out the G-action. Such a connection was
established in the case G - SI (2, Z) in a classic paper of E. Artin [2]. In that
investigation a central role was played by the tesselation of the upper half-plane
induced by SI (2, Z). A different tesselation, one more perfectly adapted to the
theory of continued fractions, plays a role in our work (figure 3). The connection
between this tesselation and continued fractions was known to G. Humbert as early
as 1916 [7].

By means of this connection, number-theoretical results are found to be
equivalent to results about the asymptotic behaviour of geodesies. In obtaining the
latter, the ergodicity of the geodesic flow is used.
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I wish to acknowledge helpful conversations with J. Moser and A. Good at ETH,
Zurich. This paper was motivated by Sullivan's study of geodesic excursions on
hyperbolic manifolds [9].

1. Geodesies on modular surfaces
Let #f = {* + iy e C: y > 0} with the Poincare metric

2 dx2+dy2

ds = 2 •
y

We refer to [1], [6] and [8] for proofs of the following basic facts about the geometry
of ST.

The group

S1(2,R) = I( J:ad-bc = l;a, b,c,deR\

acts on H via the correspondence sending the matrix

,a b\
\c d)

to the fractional linear isometry

az+b
z cz+d'

This correspondence is a group homomorphism with kernel

• c ?)•
Using this large isometry group one easily determines the geodesies in #?. The
positive y-axis is a geodesic since the reflection z-*—z is an isometry and any
other geodesic is the image of this one under a suitable fractional linear map, hence
either another vertical line or a semicircle orthogonal to the real line. We will use
the symbol y(a, /3), with a,(3 eR uoo, to denote the geodesic which tends to a in
backward time and /3 in forward time (figure 1).

We are interested in the geodesic flow on Tx2€t the unit tangent bundle of #f.
We describe points of T\<l€ by triples (JC, y, 9) where 9 denotes the angle which the
unit tangent vector makes with the horizontal. The Poincare metric induces a
volume element on T\3C given by

, \dx A dy A dO\
a ft = 2 •

y
This is preserved both by the geodesic flow and by the action of SI (2, R). It will
be useful later to introduce coordinates (a, /3, s) on T\26 where y(a, /3) is the unique
geodesic tangent to the unit vector (x, y, 9) and s denotes arclength along y(at (5)
(figure 1). A direct computation of the Jacobian of this coordinate change shows:
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FIGURE 1

We now consider the quotient space of $f by the action of a Fuchsian group,
i.e. a discrete subgroup of SI (2, U). We will summarize the basic properties below
[8]. By a fundamental region for a Fuchsian group G we mean a subset of H which
aside from possible identifications of boundary points, contains exactly one rep-
resentative from each Cr-equivalence class. Such a region which is also a geodesic
polygon is called a fundamental polygon. A basic result in the theory of Fuchsian
groups is that such a polygon always exists. In fact, if z0 is any point of H not fixed
by any element of G, the region

9 = {z e X: d(z, zQ) <d(gz, z0) Vg e G\I}

is the interior of a fundamental polygon. The collection of polygons {g(^):g 6 G}
gives a tesselation of #f. Using the fundamental polygon one can show that the
quotient space VtJG is a manifold. Since G acts as a group of isometries, there is
an induced metric on 2£/G. The geodesies of this metric are just the images of
geodesies in #f. Now the Poincare metric has constant curvature —1 and so also
the induced metric. We also get a volume element on T\($€IG). If the total volume
of Txffl/G) is finite then it is well known that the geodesic flow is ergodic ([1],
[5], [6]). In fact, such flows were among the first ergodic dynamical systems known.

For applications to number theory it is natural to consider subgroups of the
discrete group SI (2, Z), the modular group. A fundamental quadrilateral SI for
SI (2, Z) and the associated tesselation of H are depicted in figure 2. We will use
the symbol F for SI (2, Z) from now on. The volume of TX(JK/T) is the same as that
of 7*i(#f)|a and it is finite in spite of the fact that 9. is not compact. If G c f is a
subgroup of finite index [F: G] - n, then there is a fundamental region for G made
up of n copies of Si. In fact let

be a coset decomposition of F. Then
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FIGURE 2

is a fundamental region for G. It follows that the volume of T\ffl/G) is also finite.
The surfaces 9£/G with G a subgroup of finite index in F will be called modular
surfaces.

The most familiar subgroups of F are the principal congruence subgroups

™-{C X X 3-4
When m = 1 the congruence condition is trivial and we find F(l) = F. More generally,
a subgroup G c F is called a congruence subgroup if G => F(m) for some m. In this
case there is a finite covering of 2£/G by #f/F(/n) and for our purposes such a
subgroup yields nothing new. We will have occasion to consider non-congruence
subgroups in § 2.

If G is a subgroup of finite index in F = S1 (2, Z), then G preserves the rational
numbers Q splitting them into finitely many equivalence classes which we call
G-cusps. It is possible to give the quotient space (#fuQ)/G the structure of a
compact surface. Therefore 9P/G is homeomorphic to a compact surface with
finitely many points removed, one for each G-cusp. Cusps can be visualized as
rational points in the boundary of a fundamental polygon of G. For G = F, every
rational number is equivalent to co (which we view as rational via oo=l/0).
Corresponding to this, oo is a boundary point of the fundamental quadrilateral &.
The surface #f/F is obtained by identifying the bounding geodesies of 3. in the
obvious way. It is a sphere with a single point removed. The Poincare metric gives
the region near oo a cusp-like geometry.

We will now describe a tesselation of ${ by geodesic triangles which will play a
crucial role in connecting the dynamics to the number theory. By an elementary
edge we mean a geodesic y(P/Q,P'/Q') whose rational endpoints satisfy PQ'-
P'Q = ±1. An elementary triangle is a triangle whose sides are elementary edges.
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The half-plane #f is tesselated by elementary triangles (figure 3). To see this we
first note the invariance of the collection of elementary edges under the action of
T. The image of y(P/O, P'/Q') under the transformation

aP + bQ aP' + bQ'az+b
cz+d

The numerators and denominators of the image rationals are the entries of

b\fP P'
Q QC3(

which has the same determinant as

(P P'\
\Q or

We also note that the triangle A with vertices 0 ,1 , and oo is an elementary triangle,
since A=>i2, the fundamental region for F, every z e 2C lies in the image of A under
the action of some element of F, so the elementary triangles cover %. Furthermore
if two distinct elementary triangles contained z, then there would be another
elementary triangle which intersected 2.. But this is not the case.

There is an interesting relationship between this tesselation and the Farey
sequences. The Farey sequence of order n is just the collection of all rationals P/O
with \P\^n and |Q|:S/i. For example, the non-negative entries of the first three
sequences are:

F,:0, l.oo

F2:0,J, l,2,oo

F3:0,i,y, l,i,2,3,oo.
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A basic property of the Farey sequences is the following: rationals P/Q, P'/Q' are
adjacent in the Farey sequence of order

max (|F|, |O|, \P% \Q'\)

if and only if PQ'-P'Q = ±1. For a proof see [4]. Because of this relationship we
will refer to the tesselation described above as the Farey tesselation.

We will be interested in subgroups G <= F which have fundamental regions made'"""
up of elementary triangles. Let 5 denote the matrix

G :!)-r-
The corresponding fractional linear transformation has period three and maps A
to itself. In fact,

We call a subgroup G c F admissible if - / e G, [F:G]<oo, and S& T~lGT.

PROPOSITION 1.1. / / G is admissible, then there is a fundamental region for G
composed of \\T: G] elementary triangles.

Proof. Let r = GSH ^-GSn be a coset decomposition of F where n =[F:G].
We let S act on the cosets from the right. The cosets GSjf GSfr and GSfi2 are
distinct for GSjSa = GSiSb implies G = GS^b'aSJ1 and therefore Sb~aGT~lGT.
By hypothesis we must have a = b. Thus we have a coset decomposition

F = GSX + GSiS + GSiS2 + -" + GSm + GSmS + GSmS2

with m =3[F:G]. As we have already remarked,

is a fundamental region for G. But

is an elementary triangle. •

If G is admissible, the Farey tesselation induces a tesselation of 3€/G by 3[F:G]
geodesic triangles with vertices at the cusps. If C is a cusp we write w(C) for the
number of triangles with vertex C and call w(C) the width of the cusp. If a single
triangle has two vertices at C, it contributes two to the width.

PROPOSITION 1.2. IfGis a normal subgroup then every cusp has the same width.

Proof. The number of G-inequivalent elementary triangles with vertex co is just
the smallest integer k such that the matrix

/I *v

corresponding to the translation z-+z+k, is an element of G. So iv(co) = fc. To
determine w(C) where C is the cusp of P/Q we map P/Q to oo with a fractional
linear map corresponding to a matrix T 6 F. Then \v{C) is the smallest k' such that

/I * \
\0 1/

eTGT - i
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Since G is normal, TGT~l = G and w(C) = iv(oo) for every C. •
Figures 4 and 5 depict the tesselation of WIG for G = T(2) and G = T(3). In figure
4 the tesselation consists of just two triangles (front and back) and we have shown
a geodesic beginning an excursion.

FIGURE 4

FIGURE 5
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2. Con tin ued fractions
We recall some elementary facts about the continued fraction expansion of real
numbers [4].

Let b0, b\, bz,... be a sequence of integers with bn > 0 for n ^ 1. Let [b0,... ,bn]
denote the expression:

bQ+

and define [bo, b\, bz, • • .] = Hmn-.oo [bo,..., bn]. The limit exists and gives an
irrational number (3. Conversely every irrational /3 has a unique expansion

Every rational has a similar finite expansion unique except for the fact that

[b0,..., bn] = [bo,..., bn — 1,1]

for bn > 1. The integer bn is called the n'th partial quotient of p and the rational
number [Z>o, . . . , £„ ] is called the /j'th approximant to (3. If we write the /i'th
approximant as PjQn with Pn and Qn relatively prime integers, and if we normalize
so that for positive rationals we have Pn > 0, Qn > 0 and for negative rationals
Pn <0, Qn>0, then the following remarkable recursion formulae hold:

They continue to hold if we make the conventions P_i = 1 and Q-i = 0 under which
the —1st approximant is oo.

We can now state our main result. Recall from § 1 that a subgroup G of
F = SI (2, Z) partitions the rational numbers into equivalence classes called C?-cusps.

PROPOSITION 2.1. Let G be an admissible subgroup of V and let Cbe a G-cusp. For
almost every real number (3, the rational approximants PjQn are in C with asymptotic
frequency w(C)/[V:G], where w(C) is the width of the cusp. If G is a normal
subgroup, each cusp occurs with the same asymptotic frequency for almost every p.

By asymptotic frequency we mean

Before giving the proof we consider several particular subgroups G.
Under the action of

K ?
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two rationals in lowest terms P/Q and P'/Q' are equivalent if and only if P =
P' mod 2 and Q =2 Q' mod 2. To see this we associate to a rational P/Q the integer
vector

Then the image of P/Q under

az+b
cz+d

is associated to

b

d

which is congruent to

r b)(p)
\c dJXQJ

( o ) m o d 2 i f C
On the other hand we can show that P/Q is F(2)-equivalent to one of 0/1, 1/1
or 1/0. For example, if P/Q is of type odd/even we can find a fractional linear map

az+b
cz+d

taking 00 = 1/0 to P/Q with

C
This amounts to producing integers b and d such that

\Q d)
T(2).

But since P and Q are relatively prime there exist b' and d' with Pd'-Qb'= 1.
Reducing mod 2 we find that d is odd. The integers b' + kP and d' + kQ work just
as well and it is easily arranged that b = b' + kP be even and d = d' + kQ odd. Using
proposition 2.1 and the fact that T(2) is normal in Y we find that for almost every
/? the approximants Pn/Qn are types odd/even, odd/odd and even/odd with
asymptotic frequency 3. As an example, we offer the golden ratio

l+V5/2 = [1,1,1, . . . ]

whose approximants 1/0, 1/1, 2/1, 3/2, 5/3, 8 /5 , . . . are quotients of successive
Fibonacci numbers and alternate among the three types. On the other hand,

has approximants 1/0, 2/1, 5/2, 12/5, 29/12, 70/29, . . . which are never of type
odd/odd.

If G = r(m), m >2 , we find P/Q equivalent to P'/Q' if and only if

0--Q mod m.

https://doi.org/10.1017/S0143385700009585 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009585


78 R. Moeckel

The numbers of cusps is therefore one-half the number of pairs (k, k') with
ky k'e{l,2,..., m} and gcd(k, k't m) = 1. A rather lengthy computation shows that
there are

p|m

cusps where the product is over primes dividing m. Since F(m) is normal, each,
cusp occurs with frequency

m p\mp - I

among the rational approximants of almost every /3. For example, when m = 3
there are four cusps represented by 0/1, l / l , I/O, 1/2 each occurring with frequency
1/4. The plus or minus sign involved in determining the equivalence classes is
natural since when classifying numerators and denominators mod m we should not
distinguish between P/Q and -P/-Q.

As a final example we consider the non-congruence subgroups discovered by
Fricke [3]. For each integer m S: I we have a subgroup Gm <=• F(2), the principal
congruence subgroup of level 2. Gm is normal in F and has index 6m2. Furthermore
—/ e Gm and S& Gm so Gm is admissible. The cusp width at oo (and hence at every
cusp) is 2m, so there are 3m cusps. To describe these we introduce continued
fractions of the form:

I
a0

1

a2 - • • —

with at positive or negative even integers, with the possible exception of an which
may be odd. We will use the symbol (a0, ...,an) for an expansion of the form
(2.2). Each rational P/Q of type oo (odd/even) has a unique expansion
<ao,..., fl2n+i) and a2n+i is even. A rational of type 0 (even/odd) has a unique
expansion (a0,..., a2n) with a2n even. For rationals of type 1 (odd/odd) the last
partial quotient is odd and this leads to infinitely many expansions

(a 0 , . . . , an) = (da,..., an +1,2,2,..., 2,1).

We now define an index:

'ai + a3 + ' • • +«2«+i if type oo,
ao+a2 + '" + a2n if type 0,
.ao-ai+a2-" '±an if type 1.

Note that the type 1 index does not depend on which expansion is used. The index
of a type 0 or oo rational is even while the index of a type 1 rational is odd. The
group GM classifies the indices modulo 2m. More precisely, the 3m cusps are just
the sets

St.k={P/Q: P/Q is of type %,I(P/Q)~k mod 2m}
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ke {2,4, . . . ,2m}

where for # = 0 or oo,

and for £ = 1,

According to proposition 2.1, each class occurs with frequency l/3m among the
rational approximants of almost every real number. From this it follows that the set

Tk={P/Q:T(P/Q) = k mod2m}
occurs with frequency \m if k is odd and \m if k is even.

3. Proof of proposition 2.1
We will establish a connection between the behaviour of a geodesic y(a, (3) in $f
and the continued fraction expansions of a and /S.

A geodesic is cut by the elementary edges into a collection of segments, each of
which joins two edges having a common vertex. We call this common vertex the
rational number associated to the segment. A maximal sequence of successive
segments each associated to the rational P/Q will be called an excursion into the
cusp at P/Q, and the number of segments in an excursion will be called its size.
Figure 6 shows an excursion of size 3 into the cusp at oo. A segment such that the
preceding segment is associated to a different rational will be called an initial
segment. Clearly every excursion begins with such a segment.

- l

From now on we restrict attention to geodesies y(«, 0) with ae[—1,0) and
/3 e (1, oo). Such a geodesic crosses the elementary edge y(0, oo) and begins an
excursion into the cusp at oo there. We consider this the O'th excursion along the
geodesic and we want to describe the whole sequence of excursions. To this end
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we expand /? as [b0, bu b2i...] and set

[bo,...,bn] = PJQn.

PROPOSITION 3.1. The nUh excursion along y(a,/3) is into the cusp at Pn-\/Qn~\
and is of size bn.

Proof. Clearly the O'th excursion is into the cusp at 00= l /0 = P_i/Q_i and is of
size b0 = [0] (see figure 6).

We shall need a somewhat larger class of isometries of S€ than that provided by
SI (2, R). If

ta b\
\c d)

has determinant - 1 we associate to it the conjugate fractional linear map

az+b
Z~*cz+d

which is an isometry of #f. If ayb,c,deZ such a map also preserves the elementary
edges and so the Farey tesselation.

We apply

T maps y(a, (3) to y(7a, 7/9). But

If —a e (0,1] is expanded [0, «i, a2,...] we find

Ta = -[0, bo, fli. a2,...].
Now since T preserves the Farey tesselation, it takes excursions to excursions.
The O'th excursion maps to an excursion into r ( l / 0 ) = T(oo) = 0. It follows (figure
7) that T maps the first excursion to an excursion into 00 of size [7)3] = b\. Therefore
the first excursion must have been into the cusp

as required.
For the inductive step we assume that the first n excursions were into the

appropriate cusps. We apply

T l 1 1
z-bn z-bn-\ z-bo

which a computation using the recursion formula shows to be just

-Qn-\Z+Pn-i .
—— if n is even

OnZ-Pn
and

- Q n - i Z + P n - x . . . . .
—— if n i s o d d .

QP
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- l

We have

Tnp « [bn+lt bn+2,...], Tna = -[0, bn b0, au a2t...],
rn(Pn-i/On_i) = 0 and T~l (oo) = Pn/Qn.

Proceeding as before we conclude that the (n + l)'th excursion is of size bn+\ and
is into the cusp

7""1 (oo) = Pn/Qn. D

If G is an admissible subgroup of F, we have seen that the Farey tesselation of
#? induces a tesselation of the surface 9€/G. We can define segments with respect
to this tesselation for geodesies y(s) in 9€/G. Each segment is associated to a
G-cusp. If y(a,p) is a geodesic in #f its image in §€/G is a geodesic, y(s), and a
segment of y(a, p) associated to P/Q maps to a segment of y(s) associated to the
cusp containing P/C?. We define excursions and initial segments for geodesies in
2V/G to be images of excursions and initial segments in #f. It may happen that an
initial segment in W/G is associated to the same G-cusp as the preceding segment
since different rational numbers may map to the same cusp in %/G.

It suffices to prove proposition 2.1 for almost every p > 1. To see this note that
since [F: G]<oo for admissible subgroups,

0 1

for some k >0 . Then the approximants PjQn of p are in a cusp C if and only if
the approximants PjQn +k of p +k are in C. It is therefore sufficient to consider
p in any interval of length k.

By proposition 3.1 the rational approximants PjQn to p will be in a G-cusp C
with asymptotic frequency v if and only if the image of y(a, p) in %/G makes
excursions into C with asymptotic frequency *>, for all a € [ - l , 0 ) Using formula
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(1.1) it follows easily that a set of /3's of positive Lebesgue measure corresponds
to a set of geodesies in Tiffl/G) of positive ^-measure. Consequently we need
only prove:

PROPOSITION 3.2. Almost every geodesic in 2?/G makes excursions into a cusp C
with asymptotic frequency w(C)/[T:G].

Proof. Fix a triangle A' of the tesselation of 2C/G which has C as a vertex. We will
define a function /(C.A#) on T\{^CjG) such that

is
f(c.\')(y(s)) ds

counts the number of initial segments along y(s) which lie in A', are associated to
C and occur during the time interval [0, S], If distinct vertices of A' meet at C, we
define separate functions.

Now Ti(S€/G) may be viewed as T\9C restricted to a fundamental region for G,
and A' may be viewed as an elementary triangle of the fundamental region. Using
the coordinates (x, y, 6) on T\%€ we define:

I/a- if (x, y, 6) lies on an initial segment of
arclength cr in A', associated to C,

0 otherwise.

Clearly the integral of /<C,A') with respect to arclength over such an initial segment
gives 1, so the function does count initial segments.

In order to use the ergodicity of the geodesic flow we must show that f(c,x)ls

/x-integrable. To evaluate

/(C.A') dfJL
JTx(7C/G)

we note that we may assume that A' = A and that C = oo for otherwise we can find
an element of SI (2, Z) which takes A' to A and C to oo while preserving initial
segments, their arclengths, and the measure /x.

The segment preceding an initial segment in A associated to oo is associated to
either 0 or to 1. If we integrate only over the former type we will get one-half the
total integral. Initial segments of this type are of the form y(a,/3)nA where
a 6 [-1,0) and /3 e (1, oo) (figure 6). Using formula (1.1) we find

i fictndu = dp\ . a,2 ~ds

= 21n2<oo

since the innermost integral gives 1.
Now let Nc(y, S) be the number of excursions into C along y(s) begun during

[0,5] and let N(y, S) be the total number of excursions begun. Then the asymptotic
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frequency of excursions into C is:

A' Jo
Iim

' I I f ficjvMs))ds
C A' Jo

41n2»v(C) vv(C)
41n2I c w(C) [ r :G]

for almost every y. D
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