Geodesics on modular surfaces and continued fractions

R. MOECKEL
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

(Received 15 February 1982)

Abstract

A connection between the symbolic description of the geodesic flows on certain modular surfaces and the theory of continued fractions is developed. The well-known properties of these dynamical systems then lead to some new results about continued fractions.

Introduction

The modular group $\operatorname{Sl}(2, \mathbb{Z})$ acts on the complex plane as a group of fractional linear transformations via the correspondence

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \rightarrow \frac{a z+b}{c z+d}
$$

If G is the modular group or one of its subgroups, then the action of G preserves the rational numbers and divides them into interesting equivalence classes. For example, if $G=\Gamma(2)$, the principal congruence subgroup of level 2 , then there are three equivalence classes corresponding to the classification of rationals P / Q in lowest terms as odd/even, odd/odd, or even/odd.

If β is an irrational real number, then the continued fraction expansion of β leads to an infinite sequence of rational approximants P_{n} / Q_{n} which converge to β as n tends to infinity. The goal of this paper is to study the distribution of these approximants into the G-equivalence classes for typical irrationals β. The main result is proposition 2.1. One consequence of this result is that the three $\Gamma(2)$ equivalence classes occur with equal asymptotic frequency for almost every β.

The proof of proposition 2.1 depends on a connection between the theory of continued fractions and the behaviour of geodesics on the Riemann surface obtained from the upper half-plane by quotienting out the G-action. Such a connection was established in the case $G=\mathrm{Sl}(2, \mathbb{Z})$ in a classic paper of E. Artin [2]. In that investigation a central role was played by the tesselation of the upper half-plane induced by $\mathrm{Sl}(2, \mathbb{Z})$. A different tesselation, one more perfectly adapted to the theory of continued fractions, plays a role in our work (figure 3). The connection between this tesselation and continued fractions was known to G. Humbert as early as 1916 [7].

By means of this connection, number-theoretical results are found to be equivalent to results about the asymptotic behaviour of geodesics. In obtaining the latter, the ergodicity of the geodesic flow is used.

I wish to acknowledge helpful conversations with J. Moser and A. Good at ETH, Zürich. This paper was motivated by Sullivan's study of geodesic excursions on hyperbolic manifolds [9].

1. Geodesics on modular surfaces

Let $\mathscr{H}=\{x+i y \in \mathbb{C}: y>0\}$ with the Poincaré metric

$$
d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}
$$

We refer to [1], [6] and [8] for proofs of the following basic facts about the geometry of \mathscr{H}.

The group

$$
\mathrm{Sl}(2, \mathbb{R})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a d-b c=1 ; a, b, c, d \in \mathbb{R}\right\}
$$

acts on H via the correspondence sending the matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

to the fractional linear isometry

$$
z \rightarrow \frac{a z+b}{c z+d}
$$

This correspondence is a group homomorphism with kernel

$$
\pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Using this large isometry group one easily determines the geodesics in \mathscr{H}. The positive y-axis is a geodesic since the reflection $z \rightarrow-\bar{z}$ is an isometry and any other geodesic is the image of this one under a suitable fractional linear map, hence either another vertical line or a semicircle orthogonal to the real line. We will use the symbol $\gamma(\alpha, \beta)$, with $\alpha, \beta \in \mathbb{R} \cup \infty$, to denote the geodesic which tends to α in backward time and β in forward time (figure 1).

We are interested in the geodesic flow on $T_{1} \mathscr{H}$, the unit tangent bundle of \mathscr{H}. We describe points of $T_{1} \mathscr{H}$ by triples (x, y, θ) where θ denotes the angle which the unit tangent vector makes with the horizontal. The Poincaré metric induces a volume element on $T_{1} \mathscr{H}$ given by

$$
d \mu=\frac{|d x \wedge d y \wedge d \theta|}{y^{2}}
$$

This is preserved both by the geodesic flow and by the action of $\mathrm{Sl}(2, \mathbb{R})$. It will be useful later to introduce coordinates (α, β, s) on $T_{1} \mathscr{H}$ where $\gamma(\alpha, \beta)$ is the unique geodesic tangent to the unit vector (x, y, θ) and s denotes arclength along $\gamma(\alpha, \beta)$ (figure 1). A direct computation of the Jacobian of this coordinate change shows:

$$
\begin{equation*}
d \mu=\frac{2|d \alpha \wedge d \beta \wedge d s|}{(\alpha-\beta)^{2}} \tag{1.1}
\end{equation*}
$$

Figure 1.

We now consider the quotient space of \mathscr{H} by the action of a Fuchsian group, i.e. a discrete subgroup of $\mathrm{Sl}(2, \mathbb{R})$. We will summarize the basic properties below [8]. By a fundamental region for a Fuchsian group G we mean a subset of H which aside from possible identifications of boundary points, contains exactly one representative from each G-equivalence class. Such a region which is also a geodesic polygon is called a fundamental polygon. A basic result in the theory of Fuchsian groups is that such a polygon always exists. In fact, if z_{0} is any point of H not fixed by any element of G, the region

$$
\mathscr{P}=\left\{z \in \mathscr{H}: d\left(z, z_{0}\right)<d\left(g z, z_{0}\right) \forall g \in G \backslash I\right\}
$$

is the interior of a fundamental polygon. The collection of polygons $\{g(\mathscr{P}): g \in G\}$ gives a tesselation of \mathscr{H}. Using the fundamental polygon one can show that the quotient space \mathscr{H} / G is a manifold. Since G acts as a group of isometries, there is an induced metric on \mathscr{H} / G. The geodesics of this metric are just the images of geodesics in \mathscr{H}. Now the Poincaré metric has constant curvature -1 and so also the induced metric. We also get a volume element on $T_{1}(\mathscr{H} / G)$. If the total volume of $T_{1}(\mathscr{H} / G)$ is finite then it is well known that the geodesic flow is ergodic ($[1]$, [5], [6]). In fact, such flows were among the first ergodic dynamical systems known.

For applications to number theory it is natural to consider subgroups of the discrete group $\operatorname{Sl}(2, \mathbb{Z})$, the modular group. A fundamental quadrilateral 2 for $\mathrm{Sl}(2, \mathbb{Z})$ and the associated tesselation of H are depicted in figure 2 . We will use the symbol Γ for $\mathrm{Sl}(2, \mathbb{Z})$ from now on. The volume of $T_{1}(\mathscr{H} / \Gamma)$ is the same as that of $\left.T_{1}(\mathscr{H})\right|_{2}$ and it is finite in spite of the fact that \mathscr{Q} is not compact. If $G \subset \Gamma$ is a subgroup of finite index $[\Gamma: G]=n$, then there is a fundamental region for G made up of n copies of \mathscr{Q}. In fact let

$$
\Gamma=G S_{1}+\cdots+G S_{n}
$$

be a coset decomposition of Γ. Then

$$
S_{1}(\mathcal{Q}) \cup \cdots \cup S_{n}(\mathcal{Q})
$$

is a fundamental region for G. It follows that the volume of $T_{1}(\mathscr{H} / G)$ is also finite. The surfaces \mathscr{H} / G with G a subgroup of finite index in Γ will be called modular surfaces.

The most familiar subgroups of Γ are the principal congruence subgroups

$$
\Gamma(m)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma:\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod m\right\} .
$$

When $m=1$ the congruence condition is trivial and we find $\Gamma(1)=\Gamma$. More generally, a subgroup $G \subset \Gamma$ is called a congruence subgroup if $G \supset \Gamma(m)$ for some m. In this case there is a finite covering of \mathscr{K} / G by $\mathscr{H} / \Gamma(m)$ and for our purposes such a subgroup yields nothing new. We will have occasion to consider non-congruence subgroups in § 2.

If G is a subgroup of finite index in $\Gamma=\mathrm{Sl}(2, \mathbb{Z})$, then G preserves the rational numbers \mathbb{Q} splitting them inţo finitely many equivalence classes which we call G-cusps. It is possible to give the quotient space ($\mathscr{C} \cup \mathbb{Q}) / G$ the structure of a compact surface. Therefore \mathscr{H} / G is homeomorphic to a compact surface with finitely many points removed, one for each G-cusp. Cusps can be visualized as rational points in the boundary of a fundamental polygon of G. For $G=\Gamma$, every rational number is equivalent to ∞ (which we view as rational via $\infty=1 / 0$). Corresponding to this, ∞ is a boundary point of the fundamental quadrilateral 2. The surface \mathscr{H} / Γ is obtained by identifying the bounding geodesics of \mathscr{Q} in the obvious way. It is a sphere with a single point removed. The Poincaré metric gives the region near ∞ a cusp-like geometry.

We will now describe a tesselation of \mathscr{H} by geodesic triangles which will play a crucial role in connecting the dynamics to the number theory. By an elementary $e d g e$ we mean a geodesic $\gamma\left(P / Q, P^{\prime} / Q^{\prime}\right)$ whose rational endpoints satisfy $P Q^{\prime}-$ $P^{\prime} Q= \pm 1$. An elementary triangle is a triangle whose sides are elementary edges.

The half-plane \mathscr{H} is tesselated by elementary triangles (figure 3). To see this we first note the invariance of the collection of elementary edges under the action of Γ. The image of $\gamma\left(P / Q, P^{\prime} / Q^{\prime}\right)$ under the transformation

$$
z \rightarrow \frac{a z+b}{c z+d} \text { is } \gamma\left(\frac{a P+b Q}{c P+d Q}, \frac{a P^{\prime}+b Q^{\prime}}{c P^{\prime}+d Q^{\prime}}\right) .
$$

The numerators and denominators of the image rationals are the entries of

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
P & P^{\prime} \\
Q & Q^{\prime}
\end{array}\right)
$$

which has the same determinant as

$$
\left(\begin{array}{ll}
P & P^{\prime} \\
Q & Q^{\prime}
\end{array}\right)
$$

We also note that the triangle Δ with vertices 0,1 , and ∞ is an elementary triangle. since $\Delta \supset \mathscr{2}$, the fundamental region for Γ, every $z \in \mathscr{H}$ lies in the image of Δ under the action of some element of Γ, so the elementary triangles cover \mathscr{H}. Furthermore if two distinct elementary triangles contained z, then there would be another elementary triangle which intersected 2 . But this is not the case.

There is an interesting relationship between this tesselation and the Farey sequences. The Farey sequence of order n is just the collection of all rationals P / Q with $|P| \leq n$ and $|Q| \leq n$. For example, the non-negative entries of the first three sequences are:

$$
\begin{aligned}
& F_{1}: 0,1, \infty \\
& F_{2}: 0, \frac{1}{2}, 1,2, \infty \\
& F_{3}: 0, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1, \frac{3}{2}, 2,3, \infty .
\end{aligned}
$$

A basic property of the Farey sequences is the following: rationals $P / Q, P^{\prime} / Q^{\prime}$ are adjacent in the Farey sequence of order

$$
\max \left(|P|,|Q|,\left|P^{\prime}\right|,\left|Q^{\prime}\right|\right)
$$

if and only if $P Q^{\prime}-P^{\prime} Q= \pm 1$. For a proof see [4]. Because of this relationship we will refer to the tesselation described above as the Farey tesselation.

We will be interested in subgroups $G \subset \Gamma$ which have fundamental regions madeup of elementary triangles. Let S denote the matrix

$$
\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right) \in \Gamma .
$$

The corresponding fractional linear transformation has period three and maps Δ to itself. In fact,

$$
\Delta=\mathscr{Q} \cup S \mathscr{Q} \cup S^{2} \mathscr{Q}
$$

We call a subgroup $G \subset \Gamma$ admissible if $-I \in G,[\Gamma: G]<\infty$, and $S \notin \Gamma^{-1} G \Gamma$.
Proposition 1.1. If G is admissible, then there is a fundamental region for G composed of $\frac{1}{3}[\Gamma: G]$ elementary triangles.
Proof. Let $\Gamma=G S_{1}+\cdots+G S_{n}$ be a coset decomposition of Γ where $n=[\Gamma: G]$. We let S act on the cosets from the right. The cosets $G S_{j}, G S_{j} S$, and $G S S^{2}$ are distinct for $G S S^{a}=G S S^{b}$ implies $G=G S S^{b-a} S_{j}^{-1}$ and therefore $S^{b-a} \in \Gamma^{-1} G \Gamma$. By hypothesis we must have $a=b$. Thus we have a coset decomposition

$$
\Gamma=G \tilde{S}_{1}+G \tilde{S}_{1} S+G \tilde{S}_{1} S^{2}+\cdots+G \tilde{S}_{m}+G \tilde{S}_{m} S+G \tilde{S}_{m} S^{2}
$$

with $m=\frac{1}{3}[\Gamma: G]$. As we have already remarked,

$$
\tilde{S}_{1} \mathscr{Q} \cup \cdots \cup \tilde{S}_{m} S^{2} \mathscr{Q}
$$

is a fundamental region for G. But

$$
\tilde{S}_{j} \mathscr{Q} \cup \tilde{S}_{j} \mathcal{S} \mathscr{Q} \cup \tilde{S}_{j} \tilde{S}^{2} \mathscr{Q}=\tilde{S}_{j} \Delta
$$

is an elementary triangle.
If G is admissible, the Farey tesselation induces a tesselation of \mathscr{H} / G by $\frac{1}{3}[\Gamma: G]$ geodesic triangles with vertices at the cusps. If C is a cusp we write $w(C)$ for the number of triangles with vertex C and call $w(C)$ the width of the cusp. If a single triangle has two vertices at C, it contributes two to the width.

Proposition 1.2. If G is a normal subgroup then every cusp has the same width.
Proof. The number of G-inequivalent elementary triangles with vertex ∞ is just the smallest integer k such that the matrix

$$
\left(\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right)
$$

corresponding to the translation $z \rightarrow z+k$, is an element of G. So $w(\infty)=k$. To determine $w(C)$ where C is the cusp of P / Q we map P / Q to ∞ with a fractional linear map corresponding to a matrix $T \in \Gamma$. Then $w(C)$ is the smallest k^{\prime} such that

$$
\left(\begin{array}{cc}
1 & k^{\prime} \\
0 & 1
\end{array}\right) \in T G T^{-1}
$$

Since G is normal, $T G T^{-1}=G$ and $w(C)=w(\infty)$ for every C.
Figures 4 and 5 depict the tesselation of \mathscr{H} / G for $G=\Gamma(2)$ and $G=\Gamma(3)$. In figure 4 the tesselation consists of just two triangles (front and back) and we have shown a geodesic beginning an excursion.

Figure 4

Figure 5

2. Continued fractions

We recall some elementary facts about the continued fraction expansion of real numbers [4].

Let $b_{0}, b_{1}, b_{2}, \ldots$ be a sequence of integers with $b_{n}>0$ for $n \geq 1$. Let $\left[b_{0}, \ldots, b_{n}\right]$ denote the expression:

and define $\left[b_{0}, b_{1}, b_{2}, \ldots\right]=\lim _{n \rightarrow \infty}\left[b_{0}, \ldots, b_{n}\right]$. The limit exists and gives an irrational number β. Conversely every irrational β has a unique expansion

$$
\beta=\left[b_{0}, b_{1}, b_{2}, \ldots\right] .
$$

Every rational has a similar finite expansion unique except for the fact that

$$
\left[b_{0}, \ldots, b_{n}\right]=\left[b_{0}, \ldots, b_{n}-1,1\right]
$$

for $b_{n}>1$. The integer b_{n} is called the n 'th partial quotient of β and the rational number $\left[b_{0}, \ldots, b_{n}\right]$ is called the n 'th approximant to β. If we write the n 'th approximant as P_{n} / Q_{n} with P_{n} and Q_{n} relatively prime integers, and if we normalize so that for positive rationals we have $P_{n}>0, Q_{n}>0$ and for negative rationals $P_{n}<0, Q_{n}>0$, then the following remarkable recursion formulae hold:

$$
\left.\begin{array}{l}
P_{n+1}=b_{n+1} P_{n}+P_{n-1}, \tag{2.1}\\
Q_{n+1}=b_{n+1} Q_{n}+Q_{n-1} .
\end{array}\right\}
$$

They continue to hold if we make the conventions $P_{-1}=1$ and $Q_{-1}=0$ under which the -1 st approximant is ∞.

We can now state our main result. Recall from § 1 that a subgroup G of $\Gamma=\operatorname{Sl}(2, \mathbb{Z})$ partitions the rational numbers into equivalence classes called G-cusps.

Proposition 2.1. Let G be an admissible subgroup of Γ and let C be a G-cusp. For almost every real number β, the rational approximants P_{n} / Q_{n} are in C with asymptotic frequency $w(C) /[\Gamma: G]$, where $w(C)$ is the width of the cusp. If G is a normal subgroup, each cusp occurs with the same asymptotic frequency for almost every β.

By asymptotic frequency we mean

$$
\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{n \leq N: P_{n} / Q_{n} \in C\right\}\right| .
$$

Before giving the proof we consider several particular subgroups G.
Under the action of

$$
G=\Gamma(2)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma:\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \boxminus\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod 2\right\}
$$

two rationals in lowest terms P / Q and P^{\prime} / Q^{\prime} are equivalent if and only if $P \equiv$ $P^{\prime} \bmod 2$ and $Q \equiv Q^{\prime} \bmod 2$. To see this we associate to a rational P / Q the integer vector

$$
\binom{P}{Q} .
$$

Then the image of P / Q under

$$
\frac{a z+b}{c z+d}
$$

is associated to

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{P}{Q}
$$

which is congruent to

$$
\binom{P}{Q} \bmod 2 \text { if }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma(2)
$$

On the other hand we can show that P / Q is $\Gamma(2)$-equivalent to one of $0 / 1,1 / 1$ or $1 / 0$. For example, if P / Q is of type odd/even we can find a fractional linear map

$$
\frac{a z+b}{c z+d}
$$

taking $\infty=1 / 0$ to P / Q with

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma(2)
$$

This amounts to producing integers b and d such that

$$
\left(\begin{array}{ll}
P & b \\
Q & d
\end{array}\right) \in \Gamma(2) .
$$

But since P and Q are relatively prime there exist b^{\prime} and d^{\prime} with $P d^{\prime}-Q b^{\prime}=1$. Reducing mod 2 we find that d is odd. The integers $b^{\prime}+k P$ and $d^{\prime}+k Q$ work just as well and it is easily arranged that $b=b^{\prime}+k P$ be even and $d=d^{\prime}+k Q$ odd. Using proposition 2.1 and the fact that $\Gamma(2)$ is normal in Γ we find that for almost every β the approximants P_{n} / Q_{n} are types odd/even, odd/odd and even/odd with asymptotic frequency $\frac{1}{3}$. As an example, we offer the golden ratio

$$
1+\sqrt{ } 5 / 2=[1,1,1, \ldots]
$$

whose approximants $1 / 0,1 / 1,2 / 1,3 / 2,5 / 3,8 / 5, \ldots$ are quotients of successive Fibonacci numbers and alternate among the three types. On the other hand,

$$
1+\sqrt{ } 2=[2,2,2, \ldots]
$$

has approximants $1 / 0,2 / 1,5 / 2,12 / 5,29 / 12,70 / 29, \ldots$ which are never of type odd/odd.

If $G=\Gamma(m), m>2$, we find P / Q equivalent to P^{\prime} / Q^{\prime} if and only if

$$
\binom{P}{Q} \equiv \pm\binom{ P^{\prime}}{Q^{\prime}} \bmod m
$$

The numbers of cusps is therefore one-half the number of pairs (k, k^{\prime}) with $k, k^{\prime} \in\{1,2, \ldots, m\}$ and $g c d\left(k, k^{\prime}, m\right)=1$. A rather lengthy computation shows that there are

$$
\frac{1}{2} m^{2} \prod_{\rho \mid m} \frac{\rho^{2}-1}{\rho^{2}}
$$

cusps where the product is over primes dividing m. Since $\Gamma(m)$ is normal, each. cusp occurs with frequency

$$
\frac{2}{m^{2}} \prod_{\rho \mid m} \frac{\rho^{2}}{\rho^{2}-1}
$$

among the rational approximants of almost every β. For example, when $m=3$ there are four cusps represented by $0 / 1,1 / 1,1 / 0,1 / 2$ each occurring with frequency $1 / 4$. The plus or minus sign involved in determining the equivalence classes is natural since when classifying numerators and denominators $\bmod m$ we should not distinguish between P / Q and $-P /-Q$.
As a final example we consider the non-congruence subgroups discovered by Fricke [3]. For each integer $m \geq 1$ we have a subgroup $G_{m} \subset \Gamma(2)$, the principal congruence subgroup of level 2. G_{m} is normal in Γ and has index $6 m^{2}$. Furthermore $-I \in G_{m}$ and $S \notin G_{m}$ so G_{m} is admissible. The cusp width at ∞ (and hence at every cusp) is $2 m$, so there are $3 m$ cusps. To describe these we introduce continued fractions of the form:

with a_{j} positive or negative even integers, with the possible exception of a_{n} which may be odd. We will use the symbol $\left\langle a_{0}, \ldots, a_{n}\right\rangle$ for an expansion of the form (2.2). Each rational P / Q of type ∞ (odd/even) has a unique expansion $\left\langle a_{0}, \ldots, a_{2 n+1}\right.$) and $a_{2 n+1}$ is even. A rational of type 0 (even/odd) has a unique expansion $\left\langle a_{0}, \ldots, a_{2 n}\right\rangle$ with $a_{2 n}$ even. For rationals of type 1 (odd/odd) the last partial quotient is odd and this leads to infinitely many expansions

$$
\left\langle a_{0}, \ldots, a_{n}\right\rangle=\left\langle a_{0}, \ldots, a_{n}+1,2,2, \ldots, 2,1\right\rangle .
$$

We now define an index:

$$
I(P / Q)= \begin{cases}a_{1}+a_{3}+\cdots+a_{2 n+1} & \text { if type } \infty, \\ a_{0}+a_{2}+\cdots+a_{2 n} & \text { if type } 0, \\ a_{0}-a_{1}+a_{2}-\cdots \pm a_{n} & \text { if type } 1 .\end{cases}
$$

Note that the type 1 index does not depend on which expansion is used. The index of a type 0 or ∞ rational is even while the index of a type 1 rational is odd. The group G_{M} classifies the indices modulo $2 m$. More precisely, the 3 m cusps are just the sets

$$
S_{x, k}=\{P / Q: P / Q \text { is of type } \mathscr{\&}, I(P / Q) \equiv k \bmod 2 m\}
$$

where for $\mathscr{E}=0$ or ∞,

$$
k \in\{2,4, \ldots, 2 m\}
$$

and for $\mathscr{E}=1$,

$$
k \in\{1,3, \ldots, 2 m-1\}
$$

According to proposition 2.1, each class occurs with frequency $1 / 3 m$ among the rational approximants of almost every real number. From this it follows that the set

$$
T_{k}=\{P / Q: I(P / Q) \equiv k \bmod 2 m\}
$$

occurs with frequency $\frac{1}{3} m$ if k is odd and $\frac{2}{3} m$ if k is even.

3. Proof of proposition 2.1

We will establish a connection between the behaviour of a geodesic $\gamma(\alpha, \beta)$ in \mathscr{H} and the continued fraction expansions of α and β.

A geodesic is cut by the elementary edges into a collection of segments, each of which joins two edges having a common vertex. We call this common vertex the rational number associated to the segment. A maximal sequence of successive segments each associated to the rational P / Q will be called an excursion into the cusp at P / Q, and the number of segments in an excursion will be called its size. Figure 6 shows an excursion of size 3 into the cusp at ∞. A segment such that the preceding segment is associated to a different rational will be called an initial segment. Clearly every excursion begins with such a segment.

From now on we restrict attention to geodesics $\gamma(\alpha, \beta)$ with $\alpha \in[-1,0)$ and $\beta \in(1, \infty)$. Such a geodesic crosses the elementary edge $\gamma(0, \infty)$ and begins an excursion into the cusp at ∞ there. We consider this the 0 'th excursion along the geodesic and we want to describe the whole sequence of excursions. To this end
we expand β as $\left[b_{0}, b_{1}, b_{2}, \ldots\right]$ and set

$$
\left[b_{0}, \ldots, b_{n}\right]=P_{n} / Q_{n}
$$

Proposition 3.1. The n 'th excursion along $\gamma(\alpha, \beta)$ is into the cusp at P_{n-1} / Q_{n-1} and is of size b_{n}.

Proof. Clearly the 0 'th excursion is into the cusp at $\infty=1 / 0=P_{-1} / Q_{-1}$ and is of size $b_{0}=[\beta]$ (see figure 6).

We shall need a somewhat larger class of isometries of \mathscr{H} than that provided by $\mathrm{Sl}(2, \mathbb{R})$. If

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

has determinant -1 we associate to it the conjugate fractional linear map

$$
z \rightarrow \frac{a \bar{z}+b}{c \bar{z}+d}
$$

which is an isometry of \mathscr{H}. If $a, b, c, d \in \mathbb{Z}$ such a map also preserves the elementary edges and so the Farey tesselation.

We apply

$$
T z=\frac{1}{z-b_{0}}
$$

T maps $\gamma(\alpha, \beta)$ to $\gamma(T \alpha, T \beta)$. But

$$
T \beta=\left[b_{1}, b_{2}, \ldots\right]
$$

If $-\alpha \in(0,1]$ is expanded $\left[0, a_{1}, a_{2}, \ldots\right]$ we find

$$
T \alpha=-\left[0, b_{0}, a_{1}, a_{2}, \ldots\right] .
$$

Now since T preserves the Farey tesselation, it takes excursions to excursions. The 0 'th excursion maps to an excursion into $T(1 / 0)=T(\infty)=0$. It follows (figure 7) that T maps the first excursion to an excursion into ∞ of size $[T \beta]=b_{1}$. Therefore the first excursion must have been into the cusp

$$
T^{-1} \infty=b_{0}=P_{0} / Q_{0}
$$

as required.
For the inductive step we assume that the first n excursions were into the appropriate cusps. We apply

$$
T_{n} z=\frac{1}{\bar{z}-b_{n}} \circ \frac{1}{\bar{z}-b_{n-1}} \circ \cdots \circ \frac{1}{\bar{z}-b_{0}},
$$

which a computation using the recursion formula shows to be just

$$
\frac{-Q_{n-1} \bar{z}+P_{n-1}}{Q_{n} \bar{z}-P_{n}} \text { if } n \text { is even }
$$

and

$$
\frac{-Q_{n-1} z+P_{n-1}}{Q_{n} z-P_{n-1}} \text { if } n \text { is odd. }
$$

Figure 7

We have

$$
\begin{gathered}
T_{n} \beta=\left[b_{n+1}, b_{n+2}, \ldots\right], \quad T_{n} \alpha=-\left[0, b_{n}, \ldots, b_{0}, a_{1}, a_{2}, \ldots\right], \\
T_{n}\left(P_{n-1} / Q_{n-1}\right)=0 \quad \text { and } \quad T_{n}^{-1}(\infty)=P_{n} / Q_{n} .
\end{gathered}
$$

Proceeding as before we conclude that the $(n+1)$ 'th excursion is of size b_{n+1} and is into the cusp

$$
T_{n}^{-1}(\infty)=P_{n} / Q_{n}
$$

If G is an admissible subgroup of Γ, we have seen that the Farey tesselation of \mathscr{H} induces a tesselation of the surface \mathscr{H} / G. We can define segments with respect to this tesselation for geodesics $\gamma(s)$ in \mathscr{H} / G. Each segment is associated to a G-cusp. If $\gamma(\alpha, \beta)$ is a geodesic in \mathscr{H} its image in \mathscr{H} / G is a geodesic, $\gamma(s)$, and a segment of $\gamma(\alpha, \beta)$ associated to P / Q maps to a segment of $\gamma(s)$ associated to the cusp containing P / Q. We define excursions and initial segments for geodesics in \mathscr{H} / G to be images of excursions and initial segments in \mathscr{H}. It may happen that an initial segment in \mathscr{H} / G is associated to the same G-cusp as the preceding segment since different rational numbers may map to the same cusp in \mathscr{H} / G.

It suffices to prove proposition 2.1 for almost every $\beta>1$. To see this note that since $[\Gamma: G]<\infty$ for admissible subgroups,

$$
\left(\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right) \in G
$$

for some $k>0$. Then the approximants P_{n} / Q_{n} of β are in a cusp C if and only if the approximants $P_{n} / Q_{n}+k$ of $\beta+k$ are in C. It is therefore sufficient to consider β in any interval of length k.

By proposition 3.1 the rational approximants P_{n} / Q_{n} to β will be in a G-cusp C with asymptotic frequency ν if and only if the image of $\gamma(\alpha, \beta)$ in \mathscr{C} / G makes excursions into C with asymptotic frequency ν, for all $\alpha \in[-1,0)$ Using formula
(1.1) it follows easily that a set of β 's of positive Lebesgue measure corresponds to a set of geodesics in $T_{1}(\mathscr{H} / G)$ of positive μ-measure. Consequently we need only prove:

Proposition 3.2. Almost every geodesic in \mathscr{H} / G makes excursions into a cusp C with asymptotic frequency $w(C) /[\Gamma: G]$.
Proof. Fix a triangle Δ^{\prime} of the tesselation of \mathscr{H} / G which has C as a vertex. We will ${ }^{-}$ define a function $f_{\left(C, \Delta^{\prime}\right)}$ on $T_{1}(\mathscr{H} / G)$ such that

$$
\int_{0}^{s} f_{\left(C, \Delta^{\prime}\right)}(\gamma(s)) d s
$$

counts the number of initial segments along $\gamma(s)$ which lie in Δ^{\prime}, are associated to C and occur during the time interval $[0, S]$. If distinct vertices of Δ^{\prime} meet at C, we define separate functions.

Now $\left.T_{1} \mathscr{H} / G\right)$ may be viewed as $T_{1} \mathscr{H}$ restricted to a fundamental region for G, and Δ^{\prime} may be viewed as an elementary triangle of the fundamental region. Using the coordinates (x, y, θ) on $T_{1} \mathscr{H}$ we define:

$$
f_{\left(c, \Delta^{\prime}\right)}(x, y, \theta)= \begin{cases}1 / \sigma & \text { if }(x, y, \theta) \text { lies on an initial segment of } \\ \text { arclength } \sigma \text { in } \Delta^{\prime}, \text { associated to } C \\ 0 & \text { otherwise } .\end{cases}
$$

Clearly the integral of $f_{\left(\mathcal{C}, \Delta^{\prime}\right)}$ with respect to arclength over such an initial segment gives 1 , so the function does count initial segments.
In order to use the ergodicity of the geodesic flow we must show that $f_{\left(C, \Delta^{\prime}\right)}$ is μ-integrable. To evaluate

$$
\int_{T_{1}(x / G)} f_{\left(c, \Delta^{\prime}\right)} d \mu
$$

we note that we may assume that $\Delta^{\prime}=\Delta$ and that $C=\infty$ for otherwise we can find an element of $S I(2, \mathbb{Z})$ which takes Δ^{\prime} to Δ and C to ∞ while preserving initial segments, their arclengths, and the measure μ.
The segment preceding an initial segment in Δ associated to ∞ is associated to either 0 or to 1 . If we integrate only over the former type we will get one-half the total integral. Initial segments of this type are of the form $\gamma(\alpha, \beta) \cap \Delta$ where $\alpha \in[-1,0)$ and $\beta \in(1, \infty)$ (figure 6). Using formula (1.1) we find

$$
\begin{aligned}
\frac{1}{2} \int_{T_{1}(x / G)} f_{\left(C, s^{\prime}\right)} d \mu & =\int_{1}^{\infty} d \beta \int_{-1}^{0} \frac{2 d \alpha}{(\alpha-\beta)^{2}} \int_{\gamma(\alpha, \beta) \cap \Delta} \frac{1}{\sigma} d s \\
& =2 \ln 2<\infty
\end{aligned}
$$

since the innermost integral gives 1.
Now let $N_{C}(\gamma, S)$ be the number of excursions into C along $\gamma(s)$ begun during $[0, S]$ and let $N(\gamma, S)$ be the total number of excursions begun. Then the asymptotic

frequency of excursions into C is:

$$
\begin{aligned}
\lim _{s \rightarrow \infty} \frac{N_{C}(\gamma, S)}{N(\gamma, S)} & =\lim _{s \rightarrow \infty} \frac{\sum_{\Delta^{\prime}} \int_{0}^{s} f\left(C, \Delta^{\prime}\right)(\gamma(s)) d s}{\sum_{C} \sum_{\Delta^{\prime}} \int_{0}^{s} f\left(C, \Delta^{\prime}\right)(\gamma(s)) d s} \\
& =\frac{4 \ln 2 w(C)}{4 \ln 2 \sum_{C} w(C)}=\frac{w(C)}{[\Gamma: G]}
\end{aligned}
$$

for almost every γ.

REFERENCES

[1] V. Arnold. Ergodic Problems of Classical Mechanics, Appendices 20, 21. Benjamin: Reading, Ma, 1968.
[2] E. Artin. Ein Mechanisches System mit quasiergodischen Bahnen. Abh. Math. Sem. Hamb. 3 (1924), 170-175.
[3] R. Fricke. Über die Substitutionsgruppen, welche zu den aus dem Legendre'schen Integralmodul $k^{2}(\omega)$ gezogenen Wurzeln gehören. Math. Ann. 28 (1887), 99-118.
[4] G. H. Hardy \& E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, 1960.
[5] G. Hedlund. A Metrically Transitive Group Defined by the Modular Group. Amer. J. Math. 57 (1935), 668-678.
[6] E. Hopf. Ergodentheorie, chapter V. Springer: Berlin, 1937.
[7] G. Humbert. Sur les fractions continues et les formes quadratiques binaire indéfinies. C.R. Acad. Sci. Paris. 162 (1916), 23-26.
[8] J. Lehner. A Short Course in Automorphic Functions. Holt, Rinehart, and Winston, New York, 1966.
[9] D. Sullivan. Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics. (Preprint.)

