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Abstract

In this article, a novel drive mode, “intelligent vehicle drive mode” (IVDM), was proposed, which augments the
vehicle engine performance in real-time. This drivemode predicts the driver behavior vector (DBV), which optimizes
the vehicle engine performance, and themetric of optimal vehicle engine performancewas defined using the elements
of engine operating point (EOP) and heating ventilation and air conditioning system (HVAC). Deep learning
(DL) models were developed by mapping the vehicle level vectors (VLV) with EOP and HVAC parameters, and
the trained functions were utilized to predict the future states of DBV reflecting augmented vehicle engine
performance. The iterative analysis was performed by empirically estimating the future states of VLVin the allowable
range of DBV and was fed into the DL model to predict the performance vectors. The defined vehicle engine
performance metric was applied to the predicted vectors, and thus optimal DBV is the instantaneous output of the
IVDM. The analytical and validation techniques were developed using field data obtained from General Motors Inc.,
Warren, Michigan. Finally, the proposed concept was quantified by analyzing the instantaneous engine efficiency
(IEE) and smoothness measure of the instantaneous engine map (IEM).

Impact Statement

Vehicle drive modes were developed to augment the rider’s comfort, safety and reduce fuel consumption. In
this research, a novel “intelligent vehicle drive mode” (IVDM) was proposed, embedded with the function-
ality of obliging the driver’s command in all scenarios and predicting the driver behaviour vector (DBV) for
future time steps to enhance the vehicle engine performance without increasing the time of trip traversal.
IVDM can be activated as a stand-alone application or in conjunction with any other drive modes,
accommodating a vehicle speed >25 MPH on a regular terrain profile. The IVDM is most applicable to
the vehicles built-in with advanced infotainment and connectivity features, and could potentially emerge as a
new feature of the automotive system.

1. Introduction

The first commercial automobile developed by Karl Benz in 1886 consists of less than 100 components
and not more than 10 features (Dietsche and Kuhlgatz, 2014). In the current scenario of the automotive
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industry, the advancement of vehicle technology has reached the extent of integrating more than 5,000
components supported by 100 features (Sturgeon et al., 2009). All the features developed either enhance
the efficiency of the vehicle (e.g., fuel economy drive mode) or augment the human driving experience
(e.g., HVAC), which includes safety (e.g., adaptive cruise control (ACC), lane centering, and auto
braking) (Zoepf, 2011). The functionality of these features in real-time is automated and integrated into
the vehicle, generally categorized into three elements (none, limited, and bounded) user intervention. The
first type would include features that function automatically without driver influence (automatic trans-
mission), whereas the second category accommodates limited user intervention that requires drivers’
commands to activate (drive modes). The third element shall take up the driver inputs of activation and
magnitudes to function, for example, cabin air temperature (CAT), ACC set speed (Zoepf and Heywood,
2012; Chau et al., 2017). Among these features, the vehicle drive mode plays a prominent role in
enhancing driving behavior.

In the latest automotive system, 20 drive modes were developed that allow the user to activate in real-
time, as shown in Table 1. When deployed, all the modes are integrated and adapt changes to the vehicle
functionality, but none intervenes with the driver behavior vector (DBV) (speed, longitudinal acceleration
[LOT], lateral acceleration [LAT], yaw rate [YAR], and cabin air temperature [CAT]). The DBV is the
user’s prerogative in real-time, and it is known that DBV holds more than a 30% share in affecting vehicle
engine performance (Boggio-Marzet et al., 2021). Hence, in this research, a novel “intelligent vehicle
drive mode” (IVDM) was proposed, which correlates to type 3 feature, which predicts the DBV by
obliging the user’s command and inputs in real-time to augment the vehicle engine performance. The
multiparametric optimization problem was addressed by utilizing the concepts of feature development,
deep learning (DL), and optimization criteria (Kolachalama and Malik, 2021). The following article is
organized as follows: The feature requirements of IVDMwere proposed in Section 2, Section 3 discusses
the methodology of real-time data retrieval, and Section 4 defines the metric for vehicle engine
performance. The development of DL models was discussed in Section 5, and the prediction of DBV,
including the fail-safe algorithm, was presented in Section 6. The results, discussion, and quantifying the
performance of the developed concepts are detailed in Sections 7 and 8. Finally, the conclusions were
drawn, and future work of this research was outlined.

2. Functionality of IVDM

The core functionality of the intelligent vehicle drive mode (IVDM) is to predict the driver behaviour
vector (DBV) in real-time, reflecting optimal vehicle engine performance. The DBVwas categorized into
three main elements whose magnitudes are the user’s choice: speeding behavior (speed, LOT), steering
behavior (LAT, YAR), and CAT as shown in Figure 1. In this section, the feature requirements of IVDM
were discussed.

• IVDM could be triggered as a stand-alone application or with any integrated drive mode.
• IVDM applies to speeds >25miles per hour (MPH) and does not relate to parking lots, critical zones,
or traffic congestion. The critical zones include construction, accident, or school areas.

• IVDM is most applicable to any vehicle with built-in advanced driver assistance (ADAS), info-
tainment, and connectivity (AICON) features (e.g., Cadillac vehicles with super and ultra-cruise
features).

• IVDM activates the ACC feature to provide controlled LOT and augmented safety to the vehicle.
• IVDM predicts (Adaptive cruise control set speed profile [ACCSSP], cabin air temperature set
profile [CATSP]) by optimizing (Engine operating point [EOP], Cabin air temperature operating
point [CATOP]), and estimates [LAT, YAR] by assuming ideal steering behavior (ISB). The details
of optimal [EOP, CATOP] and ISB were discussed in Section 4.

• Finally, IVDM predicts the DBV in real-time to augment vehicle engine performance. The default
time period and range of predicting [ACCSSP, CATSP] = [10 s, 1,000 m] and (allowable vehicle
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Table 1. Vehicle drive modes—Integrated vehicle system.

Vehicle drive mode Functionality

All-wheel drive The All-wheel drive mode provides torque to all four axles and assists traction
control, suitable for snow driving (Goodarzi and Esmailzadeh, 2007)

Baja The Baja mode is activated explicitly during vehicle traversal over desert sand
and can accommodate deflated tires to obtain more turnover stability
(Sharma et al., 2015)

Crab The crab mode is activated for rear-steer vehicles to accommodate lateral shifts
for speeds under <25 MPH (Cariou et al., 2008)

Custom The custom mode is limited to the vehicles equipped to sense the terrain (e.g.,
Cadillac [V] and Corvette [Z]) and allow the user to input the desired
behavior

Economy/DFM/AFM The fuel economy mode is driven by controlled or reduced acceleration and
deactivates the ignition for one or more cylinders to reduce the fuel
consumption

Fleet The fleet mode is equipped with infotainment and connectivity features
applicable to autonomous, connected vehicles (Baldacci et al., 2008)

Hill descent This mode is activated automatically when the vehicle encounters a downslope
of more than four% and provides controlled deceleration while traversing
sudden slopes (Paul et al., 2016)

Hold The hold mode is more applicable to hybrid and electric vehicles (e.g., Chevy
volt), which retains the battery’s state. This feature assists the vehicle to use
the battery power optimally, especially when the battery charge is at a higher
limit (Chau et al., 2016)

Mountain Mountain mode is similar to the hill descent mode, which provides stability and
controlled acceleration on the contrast while climbing uphill (Slope > 14%)
(Paul et al., 2016)

Off-road The off-road mode is commonly used for rugged navigation, resulting in poor
surface contact and low traction (Taghavifar and Mardani, 2017)

Personal The personal drive mode integrated into the vehicle system allows the driver to
set the maximum allowable speed and teen driver limitations (Davis, 2019)

Power The powermode produces higher torque by accommodating necessary changes
in real-time, including reducing the ride height (Zhang and Mi, 2011)

Shuttle Shuttlemode ismost applicable to the transit vehicles used for delivery (Chen et
al., 2019)

Snow/Ice This mode is activated in real-time to provide intelligent traction control for
slippery roads and augments the safety of the vehicle system

Sport The sport mode provides higher torque and throttle response, robust
suspension, and stiffer steering, which provides additional stability (Melman
et al., 2021)

Stealth The stealth mode activation is not advisable for inexperienced and low
confident drivers. This mode reduces the level of interior illumination to
assist night driving (Zou et al., 2012)

Terrain/Crawl The terrain mode is activated for uneven surfaces to improve traction, stability,
and control vehicle traverse (Taghavifar and Mardani, 2017)

Tour/Normal The touring mode is activated under normal driving conditions, which can
function with All-wheel drive and fuel economy modes to optimize the
vehicle performance (Lairenlakpam et al., 2018)

Continued
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speeds [AVS], allowable vehicle cabin air temperatures [AVC]), whose details were discussed in
Section 6.

2.1. Speeding behavior

The proposed functionality IVDM activates the ACC feature when triggered; thus, the ACC controller
automatically estimates the parameter LOT based on the ACCSSP (Labuhn and Chundrlik, 1995) and
possesses the capability to reduce the vehicle speed while encountering a host vehicle in the defined
proximity (Marsden et al., 2001). The ACC feature is a primary component of ADAS which can be
activated for any speed ≥25 MPH, resulting in augmented safety and vehicle engine performance (Luo
et al., 2010). Thus, IVDMpredicts ACCSSP based on the type of road segment (Supplementary Table S8)
and further details were discussed in Section 6 (Kolachalama and Malik, 2021a,b).

2.2. Steering behavior

The steering behavior vector (SBV) consists of four elements (speed, LAT, YAR, radius of road
curvature [RRC]), and the parameter RRC is known from the AICON feature based on the global
position system (GPS) coordinates. The measure of hard braking and acceleration (Wåhlberg, 2007)
was extended by introducing the concept of ideal steering behavior (ISB) (Kolachalama et al., 2018).
Hence, IVDMwould incorporate ISB and the guidelines established by the United States transportation
authority to estimate [LAT, YAR] for definite RRC (Kolachalama and Lakshmanan, 2021). The ISB
was defined assuming no lateral or longitudinal slip, and the corresponding mathematical models were
shown in Section 4.1.

Table 1. Continued

Vehicle drive mode Functionality

Tow/Haul Haul mode is a customer choice used for logistical purposes for traversing
heavy goods and towing (Gao et al., 2015)

Track The track mode is developed for circuits and tracks with known geometry,
providing a more aggressive transmission shift pattern than the sport mode
(Onder and Geering, 1995)

Trailer This mode is activated when a trailer is attached to the vehicle to control the
entire system’s longitudinal and lateral dynamics (Hac et al., 2008)

Source: General Motors Inc.

Figure 1. DBV—predicted elements by IVDM.
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2.3. Cabin air temperature

In an internal combustion engine vehicle, the thermal energy produced by the fuel combustion is
exchanged between the environment (external air temperature [EAT]) and the vehicle (Borman and
Nishiwaki, 1987). Among the vehicle’s many features, the HVAC is the only system that maintains the set
cabin air temperature (CAT), driven by user command. The CAT is increased by extracting heat from the
engine surface and decreased by the known process of HVAC. Hence, IVDM proposes a model that can
generate an optimal CATSP, potentially augmenting the efficiency of HVAC and Engine (Kolachalama
and Malik, 2021a,b).

3. Data Retrieval

In order to develop the computational model of IVDM, the real-time testing was performed using Cadillac
vehicle segments (2019XT6, 2021CT4, 2020CT5, 2021 Escalade All wheel drive, 2021 Escalade ESV),
and the vehicle data was retrieved by applying the principles of the integrated vehicle controller area
network bus architecture (Johansson et al., 2005). The test caseswere developed by activatingACCSSP in
the range [25 85] MPH, targeting all the road segments shown in Supplementary Table S8 and Figure 2.
The tools neoVI, Fire 2 (hardware) and Vehicle Spy (software), were utilized to selectively retrieve the
signal data for analysis (Figure 3; Jaynes et al., 2016). The data retrieval was donewith a default frequency
of 10 Hertz (1 time-step = 10 ms), and the properties of the data sets were depicted in Supplementary
Tables S1–S7. The elements (vehicle level vectors [VLV], engine operating point [EOP], cabin air
temperature operating point [CATOP]) were collected under normal driving conditions for every test case
considering the two scenarios, external air temperature EAT > 65°F and EAT <45°F (Supplementary
Table S9) whose properties were detailed in below subsections (Kolachalama and Malik, 2021a,b).

Figure 2. Cadillac: path traversed—Michigan, USA. Source: Google maps; Kolachalama and Malik,
2021a,b.
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3.1. Vehicle level vectors

The VLV include three components, namely, body module, driver behavior, and environmental
factors. The body module vector is embedded with the age of the vehicle (time step, odometer), tire
pressure, the shape of the vehicle (aerodynamic drag), and load (trailer, passengers). The tire pressure
and external load affect the normal and traction forces exerted on the wheels, affecting the vehicle
engine performance (Liang et al., 2019). The body design influences aerodynamic resistance and
instantaneous fuel consumption rate (IFCR 1E-8 m3/s) (Sudin et al., 2014), whereas the DBV consists
of the elements discussed in Section 2. The environmental factors consist of interactive vehicle
elements while traversing any terrain; EAT influences the Engine’s thermal stress (Kolachalama
et al., 2008), whereas the terrain data (curvature and gradient) obtained from the AICON features
affect vehicle dynamics. Also, the gradient is proportional to the vehicle’s Euler angles; hence, there is
no loss of generality in considering pitch, roll, and yaw angles as inputs replacing the gradient
(Eathakota et al., 2010). The parameters steering angle, humidity (HUM), and atmospheric pressure
(ATP) were not included in this research as the data has no significant variance, and the effect of these
elements on vehicle engine performance is minimal. The real-time analysis was performed under no-
slip conditions, that is, the traction force generated at the wheels is proportional to the normal forces
(Eathakota et al., 2008).

3.2. Engine operating point

The only external input in an internal combustion engine-driven vehicle is the air-fuel mixture ignited to
produce downward thrust onto the piston surface. The flame impingement produces instantaneous engine
torque (IETNm) and is transmitted to the engine components, which results in instantaneous engine speed
(IES rad/s). It is a well-established industrial methodology to represent the EOPwith the three parameters
IET, IES, and IFCR projected on the engine map generated for every vehicle (Kolachalama and
Lakshmanan, 2021). Thus, optimal EOP was considered as the criteria to predict ACCSSP, whose details
are presented in Section 4.2.

Figure 3. Controller area network data retrieval—vehicle Spy user interface. Source: General Motors
Inc., Detroit, MI.
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3.3. HVAC parameters: CATOP

The HVAC functionality is driven by multiple parameters: engine fan speed, load, air conditioning
refrigerant fluid pressure (ACRFP), engine surface temperature (EST), and power consumed. The
analysis of data retrieved resulted in substantial variations of [EST (°F), ACRFP (PSI)] with changes
in CAT (°F) and EAT (°F), thus remaining HVAC elements were not considered in this research. The
vector [EST (°F), ACRFP (PSI)] is empirically termed as CATOP, and optimal criteria to generate the
CATSPwas defined in Section 4.3. The snippets of HVAC elements were collected at a frequency of 10m
(odometer reading), as it was observed that the controller area network bus would require at least 300 ms
to record variations in CAT (°F) during the steady-state (Kolachalama and Malik, 2021a,b).

4. Vehicle Engine Performance: Criteria

This section defines the concept of ideal steering behavior (ISB), optimal engine and cabin air temperature
operating points [EOP, CATOP] reflecting augmented vehicle engine performance.

4.1. Ideal steering behavior

The steering behavior of the vehicle was estimated by the concept ideal steering behaviour (ISB) using the
steering behaviour vector [SBV] (speed, LAT, YAR, RRC) (Kolachalama and Malik, 2021a,b). The
mathematical model of ISB was defined by Equations (1) and (2), assuming no lateral and longitudinal
slip. Equation (1) is a quadratic function relating the parameters of SBV, and Equation (2) is the linear
optimization function (LOF) framed to resolve Equation (1). Therefore, [LAT (La), YAR (Ya)]= [0, 0] for
high RRC (~∞), and it is easy to see that LOF (~0) has an infinite set of solutions that satisfy the constraint
RRC �Y2

a =La. Hence, the parameters [LAT, YAR] could be estimated if the speed value Vsð Þ is known,
and the details were presented in Section 6:

2RRC =
V 2

s

La
þVs

Ya
,Vs =

�Laþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2aþ8RRC �La �Y 2

a

q

2:Ya
, (1)

LOF = min abs Ya �Vs�Lað Þ½ �: (2)

4.2. Engine performance

This research measures the Engine’s capability by three parameters (engine torque caliber [ETC], engine
speed caliber [ESC], Euclidean distance [ED]), directly related to vehicle engine performance. These
parameters represent the torque produced per unit of fuel consumption (ETC), speed produced per unit
torque (ESC), and the ED of the EOP from Ideal EOP under normal driving conditions. An enginemap is a
traditionally accepted convolute graph in the industry, plotted with operating EOP’s calibrated at the
manufacturing plant. The coordinate with the lowest IFCR (1E-8 m3/s) was assumed to be the ideal EOP,
and the line segment conjoining the operating and ideal EOPwas empirically defined as the vehicle engine
performance vector. In Sections 5 and 6, the predictive model of [EOP, ACCSSP] was discussed, and
Figure 4b is the pictorial representation of the instantaneous engine map (IEM), categorizing two
ACCSSP profiles (predicted and constant). The magnitude of the vehicle engine performance vector
represents the ED (Equation (3)), and IES (rad/s) was ignored in estimating the ED, as higher IES is
desired to reduce the trip time (Kolachalama and Malik, 2021a,b).

Vehicles traversing arterial road segments with speed limits ranging [25 45]MPH have operating EOP
closer to the ideal EOP (lower ED), as shown in the enginemap (Figure 4a). The speeds of the vehicles on
freeways range [65 85]MPH, which correspond to higher IES, and fluctuating [IET, IFCR] depending
on the dynamic state of the vehicle. Also, the state ways with speed limits (SL) as [45 65] MPH are
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considered the green zone (low IFCR). Hence, the generic criteria for augmented Engine operating
conditions would be lower [ED, IFCR] and higher [IET, IES, ETC, ESC]:

ED =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IETi� IETkð Þ2þ IFCRi� IFCRkð Þ2,

q
(3)

ETC =
IET

IFCR
, (4)

ESC =
IES

IET
: (5)

4.3. HVAC criteria: CATOP

In this research, the elements [Engine surface temperature (EST), air conditioning refrigerant fluid
pressure (ACRFP)] were defined as CATOP, and the optimal thermal stress and engine oil viscosity on
the engine components result when EST (ESTi)= 194°F (Borman and Nishiwaki, 1987). The parameters
A1 and A2, shown in (6) and (7), represent the conformance between the operating EST (ESTo) and ideal
EST (ESTi). Hence, minimum values of A1 and A2 are the criteria for optimal HVAC. The retrieved data
are shown in Supplementary Tables S1–S7, which depict the recorded EST ranges [165 220]°F.

The refrigerant integrated into the air conditioning system (ACS) of the Cadillac vehicle was assumed
to be R134a, and augmented functionality of ACS was achieved by limiting the maximum value of
operating ACRFP (ACRFPo). The upper boundary limits of ACRFP (ACRFPh) were defined in
Supplementary Table S10 in correlation with the EAT, and the intermittent boundary values of ACRFP
(PSI) for EAT = [65 110]°F were estimated by basic linear interpolation. Therefore, minimum B defined
in (8) and (9) was considered the optimal HVAC criterion corresponding to ACRFP (PSI) (Kolachalama

Figure 4. (a) Engine map: 2007 Toyota Camry 2.4 L I4 and (b) IEM—vehicle engine performance vector
(Kolachalama and Malik, 2021a,b). Source: Ricardo baseline standard car engine: Tier 2 fuel. EPA

ALPHAvehicle simulations. Version: June 20, 2016. The engine map for the 2007 Toyota Camry 2.4 L I4,
whose ideal EOP = [170 Nm, 2,400 RPM, 230 g/kwhr], was shown in (a). The conversion to the SI units
was performed assuming the [Calorific value (Cv), density (ρ f )] = [45 MJ/kg, 750 kg/m3], and thus the
ideal EOP= [170 Nm, 251.33 rad/s1, 159 1E-8m3/s]. A 2020Cadillac CT5 test vehicle was utilized in the
current research (Section 6), whose ideal EOP was assumed to be [250 Nm, 140 rad/s, 180 1E-8 m3/s].
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and Malik, 2021a,b). Thus, B is always nonnegative when EAT ≥ 65°F, but when EAT <65°F, the
parameter B is not significant in our analysis:

A1 = ESTo�ESTið Þ, if ESTo >ESTi = 194°F, (6)

A2 = ESTi�ESToð Þ, if ESTo ≤ESTi = 194°F, (7)

B = ACRFPo�ACRFPhð Þ, if ACRFPo >ACRFPh PSIð Þ, (8)

B = 0, if ACRFPo ≤ACRFPhorEAT < 65°F: (9)

4.4. Smoothness measure: Vehicle engine performance

The elements of the EOPwere analyzed and it was observed that IES (rad/s1) is a smoother curve, whereas
[IFCR, IET] have fluctuating behavior. The flame propagation phenomena due to the ignition of the fuel-
air mixture trigger thrust and torque with oscillating magnitudes. Hence to minimize the vibrations,
techniques include optimizing the spark ignition timing and camshaft mechanism (Kakaee et al., 2011),
integrating flywheel and generator (Gusev et al., 1997) were adopted. Therefore, smoothness measure
vector (SMV) [R2, adjusted R2, sum of square errors (SSE), root mean square error (RMSE)] of the
parameters—[EOP, CATOP] and [ED, ETC, ESC] was considered in our analysis, and the vehicle engine
performance criteria were shown in Supplementary Table S11 (Kolachalama and Malik, 2021a,b). The
SMV was estimated using the built-in toolboxes of MATLAB, and the spline function was utilized to fit
the data points.

5. DL Models: Prediction of [EOP, CATOP]

The proposed IVDM, when activated, predicts the DBVelements [ACCSSP, CATSP] by optimizing the
vectors [EOP, CATOP] and estimates [LAT, YAR] utilizing ideal steering behavior (ISB). In this section,
individual supervised predictive models were developed for five Cadillac (CT4, CT5, Escalade All wheel
drive, Escalade ESV, XT6) vehicle lines by mapping the vehicle level vectors (VLV) with the elements
[EOP, CATOP] as shown in Figure 5. The retrieved data were analyzed as time-sensitive; thus, Auto-
regressive Network with Exogenous Inputs (NARX) and long short-termmemory (LSTM) deep learning
(DL) methods were the obvious choices of the current research. Hence, in this section, the apt DL model
for vehicle data was identified, and performance analysis was conducted using a traditional statistical
measure vector (STMV). Autoregressive DL models were not considered in this article because of the
limitation on the size of the input vector (Kolachalama and Lakshmanan, 2021).

5.1. NARX and LSTM methods: Modeling

The default properties built-in MATLAB were utilized to initialize the process, as shown in Supplemen-
tary Table S12, and DL models were developed using m-script. The NARX is a recurrent dynamic
network whose mathematical model predicts the future output steps by regressing the previous states of
output and exogenous (independent) inputs. In contrast, LSTM predicts the output by considering the
long-term dependencies of the entire set of inputs and possesses the properties of recurrent neural
networks (Kolachalama and Lakshmanan, 2021). LSTM produced the best results for classification
and regression of biological data (e.g., antibody sequencing), and NARX is preferred for the data with
nonlinear behavior. The performance analysis of the predictive model of EOP using NARX and LSTM
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DL methods was done by varying the parameters (training size, test size, hidden layers/units), and it was
proven that the NARX method outperformed LSTM for ACC activated and deactivated datasets
(Kolachalama and Lakshmanan, 2021). In this section, extended validation was performed using a similar
methodology for the datasets depicted in Supplementary Tables S1–S7.

5.2. NARX and LSTM methods: Performance analysis

The resulting plots compare the retrieved data (blue) and predicted values (orange) using [NARX, LSTM]
methods for randomly selected snippets as shown in Supplementary Figures S1–S6 (NARX) and
Supplementary Figures S7–S12 (LSTM). The first row of the figure represents the three elements of
EOP, and the units of [IET, IES] were Nm and rad/s, whereas IFCR was recorded on a scale of 1E-8 m3/s.
The second row consists of the CATOP vector [Engine surface temperature (EST), air conditioning
refrigerant fluid pressure (ACRFP)], measured in [Fahrenheit (°F), pounds per square inch (PSI)]. The
numerical performance of the developed deep learning (DL)models was validated by adopting traditional
statistical measure vector (STMV) = [root means square error (RMSE), first-order derivative (FOD),
signal-to-noise ratio (SNR)] on the conformance between actual and predicted values, as shown in
Supplementary Tables S13 and S14. TheNARXmethod producedmaximumRMSE IET= 2.465 (CT4—
Set 1), whereas LSTMnetwork producedminimumRMSE IET= 18.515 (XT6—Set 2). The element IES
was predicted with equal competence by NARX (FOD < 1.129) and LSTM (FOD < 1.42), but LSTM
lacked the required consistency savvy (mean IFCR FOD= 11.9) to match the NARX output (mean IFCR
FOD = 10.22) for all the datasets. Similarly, the NARX prediction had 75% lower RMSE EST and 18%
lower FODACRFPwhen compared to LSTMoutput. It is easy to see that, despite the stochastic variation,
the predicted curves aligned to the actual values, and by visualizing the fit of NARX prediction is
smoother when compared with LSTM graphs and thus, the SNR results play a low priority role.

The research scope was limited to a single-vehicle test case leveraging the 2020 Cadillac CT5 datasets
(Supplementary Tables S4–S7). Hence, specific snippets of data with ACCSSP = [30 75] MPH
(Supplementary Table S15) were selected, and another validation check was performed for the developed
NARX DL model. The plots of predicted [EOP, CATOP], comparing the actual values, were shown
individually in Supplementary Figures S13–S17, Supplementary Figures S18–S22 (EAT > 65 °F), and
Supplementary Figures S23–S27 (EAT < 45°F). The computational efficacy of prediction was projected
using the STMV, as shown in Supplementary Tables S16 and S17. The IET RMSE values were <1.7, and
IES FODwas <0.27 for all the datasets, whereas the IFCR SNR has an acceptable range of [6.36 985.73].
Similarly, the ESTRMSE<2.3 (EAT> 65°F) and <0.9 (EAT<45°F), whereas ACRFP SNRhas a range of

Figure 5.NARXDL predictive models: EOP and CATOP—Inputs and outputs (Kolachalama andMalik,
2021a,b).
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[2.2 16.1]. Therefore, the efficacy of the NARXDLmodel was proven, and the results were assumed to be
satisfactory. Also, an increased number of datasets and enhanced validation would enrich prediction
precision. However, in this article, the core concept of IVDMwas highlighted, and further elements of the
research were pursued in Sections 6–9.

6. Prediction of DBV

The steps applicable to IVDM—prediction of DBV utilizing the functionality (Section 2), datasets
(Section 3), criteria (Section 4), and deep learning (DL) models (Section 5), were defined in this section.
The prediction of DBV elements [ACCSSP (MPH), CATSP (°F)] was made by the four-step process
described in Figure 6, and the applicable equation sets are shown in Table 2. The ACCSSP (>25 MPH)
was predicted by optimizing EOP assuming constant CAT; and similarly, CATSP (°F) was predicted by
optimizing CATOP and resulted ACCSSP in the previous step (Kolachalama and Malik, 2021a,b). The
default range of [allowable vehicle speeds (AVS), allowable cabin air temperatures (AVC)] to predict
[ACCSSP, CATSP] was estimated by the relations (10) and (11), assuming [DCAT, EATo] = [70, 65]°F.
The ADAS, infotainment, and connectivity (AICON) features retrieve the speed limits of the road
segments (SL) in real-time, and the functionality of the SIGN mathematical model was utilized, to
estimate AVC = [65 70]°F (EAT ≥ EATo°F) or [70 75] °F (EAT < EATo°F):

AVS = Speed Limit‐5,Speed Limitþ5½ �MPH, (10)

AVC = MinCAT ,MaxCAT½ �°F, (11)

Figure 6. IVDM—prediction of DBV (Kolachalama and Malik, 2021a,b).

Table 2. IVDM equation set—Prediction of DBV (Kolachalama and Malik, 2021a,b).

Tkþ1 = Tk þdT 2RRCkþ1 = S2kþ1

La kþ1ð Þ
þ Skþ1

Ya kþ1ð Þ
,

min abs Ya kþ1ð Þ:Skþ1�La kþ1ð Þ
� �� � EATkþ1 = EATk

Okþ1 = Ok þSk :dT Lo kþ1ð Þ = gμrþgsin θg kþ1ð Þ
� �þ ρaCd :Ac

2: McþMLð Þ :S
2
kþ1 TPkþ1 = TPk

Skþ1 = 65,75½ � MPH CATkþ1 = CATk or 65 70½ �°F or 70 75½ �°F Gravity (g) = 9.81 m/s2

Cd = 0.31; Ac = 1.71 m2

ρa = 1.225 kg/m3
Mass of the vehicle Mc=1,769.69 kg,
Mass of the external load ML=78.7 kg

Rolling coefficient μr= 0.013
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MinCAT = min DCAT �5x;DCAT þ5x½ �;MaxCAT = max DCAT �5x;DCAT þ5x½ �,

x = SIGN EAT �EAToð Þ:

6.1. Estimation of future input states: Vehicle level vectors

Step 1: The empirical relations defined in Table 2 were utilized to estimate the future input values of
vehicle level vectors (VLVkþ1) of the DL model relative to the current state of the vehicle (VLVk)
(Figure 5). The speed (Skþ1) was varied in the default range of AVS, and the parameter odometer (Okþ1)
was calculated by basic linear interpolation using [Skþ1, Lo kþ1ð Þ] assuming a constant time-step. The
magnitude of LOT (Lo kþ1ð Þ) was estimated by calculating the force required to overcome the resistance
(rolling, gradient, aerodynamics) for maintaining the ACCSSP, assuming no-slip and tire pressure
TPkþ1 is same as the previous step measured in kilopascals (kPa). The rolling resistance was estimated
using the coefficient (μr), whereas aerodynamic resistance is calculated using the area of cross section,
drag coefficient, and density of air [Ac, Cd , ρa] whose magnitudes were shown in Table 2. The steering
parameters [LAT (La kþ1ð Þ),YAR (Ya kþ1ð Þ)] were estimated assuming ISB, whereas the cabin air
temperature CATkþ1is varied in the default range of AVC. The Cadillac is equipped with [ADAS,
AICON] features (super and ultra-cruise), which would generate the vectors [RRC, gradient,
EAT] = [RRCkþ1, ϴkþ1, EATkþ1] based on the GPS coordinates, and thus VLVkþ1 was estimated as
shown in Table 3.

6.2. Prediction of output states: NARX DL model

Step 2: The input sets of vehicle level vectors (VLVkþ1) were estimated for all the values of the AVS
range (e.g., [65, 75] MPH), and thus 11 sets of inputs were generated. These matrices were fed into the
developed NARX DL model, and therefore a corresponding 11 sets of EOPkþ1 were predicted.
Similarly, six sets of CATOPkþ1 were predicted by varying the Cabin air temperatures in the allowable
range AVC = [65 70]°F.

Table 3. Estimated inputs—deep learning model (10 time steps = 1 s) (Kolachalama and Malik,
2021a,b).

Time
step

Odometer
(miles)

Speed
(MPH) RRC (m)

YAR
(rad/s)

LAT
(m/s2)

LOT
(m/s2) EAT (°F) CAT (°F)

T0 1,000.000 [65 75] 8,304.140 0.216 0.118 0.438 [78.3], [40.1] [65 70], [70 75]
dT10 1,000.002 [65 75] 8,304.140 0.216 0.118 0.375 [78.3], [40.1] [65 70], [70 75]
dT20 1,000.004 [65 75] 8,304.140 0.216 0.118 0.313 [78.3], [40.1] [65 70], [70 75]
dT30 1,000.006 [65 75] 9,342.158 0.192 0.105 �0.125 [78.3], [40.1] [65 70], [70 75]
dT40 1,000.008 [65 75] 24,912.420 0.072 0.039 �0.188 [78.3], [40.1] [65 70], [70 75]
dT50 1,000.010 [65 75] 74,737.261 0.024 0.013 �0.063 [78.3], [40.1] [65 70], [70 75]
dT60 1,000.012 [65 75] 74,737.261 0.024 0.013 0.250 [78.3], [40.1] [65 70], [70 75]
dT70 1,000.014 [65 75] 37,368.631 0.048 0.026 0.250 [78.3], [40.1] [65 70], [70 75]
dT80 1,000.016 [65 75] 24,912.420 0.072 0.039 0.188 [78.3], [40.1] [65 70], [70 75]
dT90 1,000.018 [65 75] 24,912.420 0.072 0.039 0.188 [78.3], [40.1] [65 70], [70 75]
T1 1,000.019 [65 75] 9,342.158 0.192 0.105 0.313 [78.3], [40.1] [65 70], [70 75]
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6.3. Implementation: Vehicle engine performance criteria

Step 3: The vehicle engine performance criteria defined in Section 4 were applied to the predicted vectors
[EOPkþ1,CATOPkþ1], whose results for 10 time-steps were shown in Tables 4 and 5. The top six
performing optimal ACC speeds and CAT’s were selected for each vehicle engine performance criteria, as
shown in Tables 6 and 7. Among these values, the top three modes were selected as the eligible vehicle
speeds (EVS) [71, 70, 69] MPH and eligible vehicle cabin air temperatures (EVC) ([68, 70, 67]°F or [72,
71, 70]°F) for the time step Tkþ1. A similar process was implemented for 100-time steps, and therefore the
[ACC Speed, CAT] matrix was framed as shown in Table 8.

6.4. Algorithm: [ACCSSP, CATSP] prediction

The [ACC, CAT] matrix was framed with three [EVS, EVC] for 10-time steps [1 s, 100 m]. Thus, a
maximum of 310 [ACCSSP’s, CATSP’s] are possible for 100-time steps, and a unique [ACCSSP, CATSP]
was generated by implementing the following algorithm.

Step 4A: Estimation of ACCSSP
1. Assuming the [ACC speed, Speed limit] at Tk is [Sk , SL], and if the EVS at Tkþ1are either Skþ1, Sk ,

or Sk�1, then Skþ1 = Skþ1.
2. If the EVS at Tkþ1 is neither Skþ1, Sk , nor Sk�1, then Skþ1 = Sk .
3. If Skþ1 = Sk for more than 100-time steps, Skþ1= Skþ1 if Skþ1 ≤ SLþ 5 or Skþ1= Sk�1 if Sk=

SL þ 5.

Step 4B: Estimation of CATSP
1. Assuming the CAT at dTk is Ck , if the EVC at dTkþ1 are either Ckþ1, Ck , or Ck�1.

Case 1: EATk≥EATo°F, then Ckþ1 = Ckþ1. (Ckþ1 ≤ maxCAT°F).

Case 2: EATk <EATo°F, then Ckþ1 = Ck�1. (Ck�1 ≥ minCAT°F)

2. If the EVC at dTkþ1 are neither Ckþ1, Ck , nor Ck�1, then Ckþ1 = Ck . (minCAT°F ≤Ck ≤
maxCAT°F)

3. If Ckþ1 = Ck for more than 100-time steps, then

Case 1: EATk≥EATo°F, then Ckþ1 = Ckþ1, if Ckþ1≤ maxCAT°F or Ckþ1 = Ck�1, if Ck =
maxCAT°F.

Case 2: EATk <EATo°F, then Ckþ1 = Ck�1, if Ck�1≥ minCAT°F or Ckþ1 = Ckþ 1, if Ck =
minCAT°F.

The algorithm proposed in Step 4 [A, B] was implemented on [ACC Speed, CAT] matrices (Table 8), by
unit step increment of [S0, C0] in the range of [AVS, AVC]. The possible [ACCSSP’s, CATSP’s] were
shown in Figures 7a and 8a, and a unique [ACCSSP, CATSP] was obtained by assuming initial values of
ACCSpeed (IAS) andCabin air temperature (ICAT) [IAS (S0), ICAT (C0)]= [70MPH, 65°F] as shown in
Figures 7b and 8b.

7. Results and Validation

The functionality of IVDM was applied to the snippets selected from the 2020 Cadillac CT5 data sets
for the ACCSSP= [30 70] MPH. The resulted plots of predicted [ACCSSP, CATSP] implementing all
the steps defined in Section 6, for the test cases were depicted in Supplementary Figures S28–S37.
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Table 4. Vehicle engine performance—Iteration of AVS (10 time steps = 1 s).

Data ACC speed—Iterative analysis

EOP Speed 65 66 67 68 69 70 71 72 73 74 75

IET Dist 1.6Eþ04 3.1Eþ04 4.7Eþ04 6.2Eþ04 7.8Eþ04 9.4Eþ04 1.1Eþ05 1.2Eþ05 1.4Eþ05 1.6Eþ05 1.7Eþ05
R2 0.76 0.83 0.77 0.74 0.77 0.77 0.75 0.77 0.75 0.78 0.76
Adj. R2 0.4 0.57 0.43 0.36 0.44 0.43 0.39 0.44 0.37 0.44 0.4
SSE 6.26 4.47 5.94 6.69 5.82 5.94 6.34 5.76 6.49 5.72 6.16
RMS 0.4 0.33 0.39 0.41 0.38 0.38 0.4 0.38 0.4 0.38 0.39

IES Area 1.8Eþ04 3.5Eþ04 5.3Eþ04 7.1Eþ04 8.9Eþ04 1.1Eþ05 1.2Eþ05 1.4Eþ05 1.6Eþ05 1.8Eþ05 2.0Eþ05
R2 1 1 1 1 1 1 1 1 1 1 1
Adj. R2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1 0.99 0.99
SSE 0.003 0.002 0.003 0.003 0.003 0.003 0.002 0.001 0.001 0.001 0.001
RMS 0.009 0.007 0.008 0.008 0.009 0.008 0.007 0.006 0.005 0.006 0.006

IFCR Area 2.8Eþ04 5.6Eþ04 8.4Eþ04 1.1Eþ05 1.4Eþ05 1.7Eþ05 1.9Eþ05 2.2Eþ05 2.5Eþ05 2.7Eþ05 3.0Eþ05
R2 0.78 0.78 0.72 0.74 0.8 0.75 0.81 0.74 0.76 0.68 0.67
Adj. R2 0.46 0.45 0.31 0.35 0.5 0.37 0.53 0.36 0.4 0.22 0.17
SSE 4,913.31 4,737.99 5,613.29 4,967.08 3,726.95 4,633.05 3,429.65 4,679.59 4,418.54 5,766.31 6,140.52
RMS 11.19 10.99 11.97 11.26 9.75 10.85 9.35 10.92 10.62 12.13 12.52

ETC Area 5.4Eþ01 1.1Eþ02 1.6Eþ02 2.2Eþ02 2.8Eþ02 3.3Eþ02 3.9Eþ02 4.5Eþ02 5.0Eþ02 5.6Eþ02 6.2Eþ02
R2 0.788 0.781 0.724 0.739 0.802 0.751 0.814 0.745 0.759 0.689 0.671
Adj. R2 0.469 0.452 0.309 0.348 0.504 0.377 0.535 0.362 0.398 0.222 0.176
SSE 0.02 0.02 0.025 0.023 0.017 0.022 0.016 0.023 0.022 0.03 0.033
RMS 0.022 0.023 0.025 0.024 0.021 0.023 0.02 0.024 0.024 0.028 0.029

ESC Area 1.1Eþ02 2.2Eþ02 3.3Eþ02 4.5Eþ02 5.6Eþ02 6.7Eþ02 7.8Eþ02 9.0Eþ02 1.0Eþ03 1.1Eþ03 1.2Eþ03
R2 0.822 0.869 0.824 0.801 0.826 0.817 0.799 0.812 0.783 0.807 0.792
Adj. R2 0.554 0.672 0.56 0.503 0.565 0.542 0.497 0.529 0.457 0.517 0.479
SSE 0 0 0 0 0 0 0 0 0 0 0
RMS 0.003 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

ED Area 1.9Eþ04 3.7Eþ04 5.5Eþ04 7.2Eþ04 9.0Eþ04 1.1Eþ05 1.2Eþ05 1.4Eþ05 1.6Eþ05 1.7Eþ05 1.9Eþ05
R2 0.787 0.783 0.725 0.743 0.802 0.751 0.815 0.747 0.761 0.689 0.671
Adj. R2 0.467 0.457 0.311 0.358 0.504 0.378 0.538 0.368 0.402 0.222 0.176
SSE 4,896.87 4,721.42 5,595.32 4,950.75 3,716.68 4,620.39 3,421.22 4,665.06 4,404.92 5,749.95 6,123.26
RMS 11.18 10.978 11.951 11.241 9.74 10.86 9.345 10.912 10.604 12.115 12.502
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Table 5. Vehicle engine performance—Iteration of AVC (10-time steps = 100 m).

CAT A1 A2 B

°F Area R2 Adj. R2 SSE RMSE Area R2 Adj. R2 SSE RMSE Area R2 Adj. R2 SSE RMSE

ACCSSP = 70 MPH; EAT = 78.75°F
65 114.5 0.994 0.986 1.495 0.194 1,931 0.998 0.994 61.03 1.242 2,252 0.995 0.989 158.9 2.004
66 175.2 0.995 0.987 2.749 0.264 1,994 0.998 0.994 64.36 1.275 2,365 0.996 0.989 167.8 2.059
67 216.5 0.992 0.979 6.555 0.407 2,020 0.998 0.994 67.47 1.306 2,379 0.996 0.990 149.4 1.943
68 203.8 0.992 0.981 5.391 0.369 1,872 0.997 0.993 67.63 1.307 2,399 0.996 0.990 155.5 1.983
69 178.2 0.993 0.982 3.933 0.315 1,688 0.997 0.993 52.16 1.148 2,402 0.996 0.990 167.6 2.058
70 201.9 0.995 0.986 3.773 0.309 1,612 0.998 0.994 44.56 1.061 2,416 0.996 0.990 162.6 2.027
ACCSSP = 70 MPH; EAT = 38.3°F
70 47.069 0.990 0.976 0.551 0.118 40.095 0.987 0.968 0.938 0.154 0.000 0.000 0.000 0.000 0.000
71 45.876 0.990 0.975 0.557 0.119 40.662 0.987 0.968 0.961 0.156 0.000 0.000 0.000 0.000 0.000
72 45.408 0.990 0.975 0.561 0.119 41.013 0.987 0.968 0.978 0.157 0.000 0.000 0.000 0.000 0.000
73 45.575 0.990 0.975 0.566 0.120 41.169 0.987 0.968 0.988 0.158 0.000 0.000 0.000 0.000 0.000
74 46.270 0.990 0.975 0.569 0.120 41.162 0.987 0.968 0.993 0.158 0.000 0.000 0.000 0.000 0.000
75 47.368 0.990 0.975 0.572 0.120 41.026 0.987 0.967 0.993 0.158 0.000 0.000 0.000 0.000 0.000

D
ata-C

entric
E
ngineering

e14-15

https://doi.org/10.1017/dce.2022.15 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/dce.2022.15


Table 6. Optimal ACC speeds—Vehicle engine performance (10 time steps = 1 s).

Area R2 Adj.R2 SSE RMS Area R2 Adj.R2 SSE RMS Area R2 Adj. R2 SSE RMS

IET IES IFCR
75 69 69 70 70 75 68 68 75 75 65 66 66 75 75
74 70 70 69 69 74 71 71 71 71 66 69 69 66 66
73 65 65 71 71 73 70 70 68 68 67 75 75 69 69
72 68 68 72 72 72 69 69 70 70 68 65 65 65 65
71 71 71 68 68 71 67 67 72 72 69 70 70 70 70
70 73 73 73 73 70 72 72 74 74 70 67 67 72 72

ETC ESC ED
75 66 66 66 66 75 69 69 70 70 65 66 66 75 75
74 69 69 65 65 74 70 70 69 69 66 69 69 66 66
73 75 75 69 69 73 68 68 71 71 67 75 75 69 69
72 65 65 75 75 72 65 65 72 72 68 65 65 70 70
71 70 70 70 70 71 71 71 73 73 69 70 70 65 65
70 67 67 67 67 70 66 66 68 68 70 67 67 72 72

Table 8. Optimal ACC speed (10 s) and CAT matrix (1,000 m)—100-time steps.

ACC speed matrix (10 seconds) CAT matrix (1,000 m)

T1 T2 T3 T4 T5 T6 T7 T 8 T 9 T 10 dT1 dT2 dT3 dT4 dT5 dT 6 dT7 dT 8 dT9 dT10

69 68 66 75 74 67 67 75 67 75 67 70 67 65 66 65 68 67 65 69
71 70 65 68 72 71 72 66 75 71 65 67 70 69 67 70 65 69 66 68
68 71 67 65 65 74 73 68 73 65 70 68 68 67 65 69 66 65 68 67

Table 7. Optimal CAT values—Vehicle engine performance (10 time steps = 100 m).

A1 A2 B

Area R2 Adj. R2 SSE RMSE Area R2 Adj. R2 SSE RMSE Area R2 Adj. R2 SSE RMSE

EAT = 78.75°F
65 66 66 65 65 70 66 66 70 70 70 67 67 67 67
66 70 70 66 66 69 65 65 69 69 69 68 68 68 68
69 65 65 70 70 68 67 67 65 65 68 70 70 65 65

EAT = 38.3°F
72 70 70 70 70 70 71 71 70 70 70 70 70 70 70
73 71 71 71 71 71 70 70 71 71 71 71 71 71 71
71 72 72 72 72 72 72 72 72 72 72 72 72 72 72
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The performance of the predicted and constant [ACCSSP, CATSP] was compared using the param-
eters defined in Section 4: vehicle engine performance criteria, whose output was presented in
Tables 9 and 10.

The computational methods adopted in this research were quantified using a new-fangled precise
approach by estimating instantaneous engine efficiency (IEE) (ne) and smoothnessmeasure vector (SMV)
of instantaneous engine maps (IEM), along with [IFCR 1E-8 m3/s, distance (m)] for constant and
predicted [ACCSSP, CATSP] whose outcome was shown in Supplementary Figures S38–S42 and
Table 11. The ratio of power output and rate of energy input was calculated to estimate IEE
(Equation (12)) (mean, deviation, variance), assuming the fuel used is gasoline and its properties [calorific
value (Cv), density (ρf )] were unchanged with the effect of temperature and pressure (Ahmed and Bhatti,
2010). The IEM was plotted on a two-dimensional plane using [IET (Nm), IES (rad/s)], and SMV was
measured using the criteria defined in Section 4.4:

ne =
IET � IES

Cv �ρf � IFCR
: (12)

8. Discussion

In this research, multiple engineering concepts were utilized to develop the concept of IVDM. The steps
included real-time testing and Controller area network (CAN) data acquisition, developing the DL
predictive models, feature functionality of vehicle engine performance, empirical methods to estimate
VLV for future time steps, and iterative analysis to predict the DBV.

Figure 7. Unique ACCSSP generation—(a) AVS = [65 75] MPH and (b) Initial ACC speed = 70 MPH.

Figure 8. Unique CATSP generation—(a) AVC = [65 70]°F and (b) Initial CAT = 65°F.
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Table 9. Performance analysis—Prediction of ACCSSP.

Parameter ACC = 30 MPH ACC = 40 MPH ACC = 50 MPH ACC = 60 MPH ACC = 70 MPH

Criteria Constant Predicted Constant Predicted Constant Predicted Constant Predicted Constant Predicted

Performance vectors
Distance 3.00Eþ04 3.02Eþ04 4.00Eþ04 4.10Eþ04 5.00Eþ04 5.04Eþ04 5.99Eþ04 6.09Eþ04 6.99Eþ04 6.94Eþ04
IET 2.05Eþ05 2.05Eþ05 1.60Eþ05 1.60Eþ05 2.30Eþ05 2.30Eþ05 2.49Eþ05 2.49Eþ05 2.45Eþ05 2.45Eþ05
IES 2.84Eþ05 2.84Eþ05 1.39Eþ05 1.39Eþ05 1.66Eþ05 1.66Eþ05 1.69Eþ05 1.69Eþ05 2.39Eþ05 2.39Eþ05
IFCR 5.63Eþ05 5.62Eþ05 2.26Eþ05 2.26Eþ05 3.53Eþ05 3.53Eþ05 4.26Eþ05 4.27Eþ05 5.90Eþ05 5.90Eþ05
ETC 4.06Eþ02 4.06Eþ02 7.13Eþ02 7.12Eþ02 6.61Eþ02 6.62Eþ02 5.93Eþ02 5.93Eþ02 4.09Eþ02 4.09Eþ02
ESC 1.44Eþ03 1.44Eþ03 8.65Eþ02 8.67Eþ02 7.21Eþ02 7.21Eþ02 6.85Eþ02 6.84Eþ02 1.94Eþ03 1.90Eþ03
ED 4.68Eþ05 4.68Eþ05 1.27Eþ05 1.27Eþ05 2.66Eþ05 2.66Eþ05 3.42Eþ05 3.42Eþ05 5.08Eþ05 5.08Eþ05
Performance vectors—Conformance (Predicted—Constant)
Distance 199.000 999.500 400.000 999.000 �499.000
IET �223.508 �74.710 �56.149 53.121 �18.207
IES �54.606 284.891 2.013 �59.833 20.534
IFCR �803.247 171.972 �95.391 33.725 �147.311
ETC �0.043 �0.906 0.064 �0.036 0.198
ESC 3.071 2.158 0.176 �0.396 �33.250
ED �792.187 161.953 �107.700 45.969 �222.340
Smoothness measure—R2

IET 0.997 0.997 0.999 0.999 0.995 0.995 0.999 0.999 0.999 0.999
IES 0.999 0.999 0.999 0.999 0.999 0.999 0.979 0.979 0.999 0.999
IFCR 0.998 0.998 0.972 0.972 0.989 0.989 0.992 0.992 0.998 0.998
ETC 0.996 0.996 0.970 0.971 0.987 0.987 0.979 0.979 0.992 0.992
ESC 0.995 0.995 0.998 0.998 0.999 0.999 0.997 0.997 0.998 0.998
ED 0.998 0.998 0.972 0.972 0.990 0.990 0.993 0.993 0.998 0.998
Smoothness measure—Adj. R2

IET 0.993 0.993 0.996 0.996 0.988 0.987 0.998 0.998 0.998 0.998
IES 0.996 0.996 0.998 0.997 0.999 0.999 0.948 0.947 0.998 0.998
IFCR 0.995 0.995 0.929 0.930 0.973 0.973 0.981 0.981 0.995 0.995
ETC 0.991 0.991 0.926 0.927 0.968 0.968 0.947 0.947 0.981 0.981
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Table 9. Continued

Parameter ACC = 30 MPH ACC = 40 MPH ACC = 50 MPH ACC = 60 MPH ACC = 70 MPH

Criteria Constant Predicted Constant Predicted Constant Predicted Constant Predicted Constant Predicted

ESC 0.988 0.989 0.994 0.994 0.998 0.998 0.993 0.993 0.995 0.995
ED 0.995 0.995 0.930 0.931 0.974 0.974 0.984 0.984 0.994 0.994
Smoothness measure—SSE
IET 8.26Eþ03 8.22Eþ03 74.064 72.920 570.321 572.589 6.47Eþ02 6.50Eþ02 3.52Eþ03 3.51Eþ03
IES 8.82Eþ03 8.88Eþ03 14.117 15.934 91.594 90.776 1.10Eþ03 1.11Eþ03 14.170 14.635
IFCR 9.94Eþ04 9.96Eþ04 1.60Eþ04 1.58Eþ04 2.44Eþ04 2.46Eþ04 4.95Eþ04 4.92Eþ04 5.75Eþ04 5.77Eþ04
ETC 0.074 0.074 0.152 0.150 0.085 0.085 0.089 0.088 0.041 0.041
ESC 1.045 1.019 0.002 0.002 0.004 0.004 0.013 0.013 53.374 46.723
ED 9.90Eþ04 9.91Eþ04 1.58Eþ04 1.56Eþ04 2.24Eþ04 2.25Eþ04 4.62Eþ04 4.59Eþ04 5.43Eþ04 5.45Eþ04
Smoothness measure—RMSE
IET 4.535 4.524 0.429 0.426 1.191 1.194 1.269 1.272 2.960 2.957
IES 4.685 4.701 0.187 0.199 0.477 0.475 1.653 1.662 0.188 0.191
IFCR 15.730 15.741 6.301 6.263 7.795 7.819 11.096 11.061 11.958 11.983
ETC 0.014 0.014 0.019 0.019 0.015 0.015 0.015 0.015 0.010 0.010
ESC 0.051 0.050 0.002 0.002 0.003 0.003 0.006 0.006 0.364 0.341
ED 15.698 15.708 6.270 6.233 7.468 7.492 10.725 10.691 11.621 11.646
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Table 10. Performance analysis—Prediction of CATSP.

Parameter EAT (°F) CAT (°F) Area Conformance R2 Adj. R2 SSE RMSE

ACCSSP = 30 MPH
EST
(A1 þ A2)

82.076 69 412.431 �66.097 0.936 0.841 28.869 0.858
Predicted 346.334 0.803 0.506 223.958 2.391

37.985 70 695.211 �0.457 0.989 0.971 13.008 0.576
Predicted 694.754 0.989 0.972 13.015 0.576

ACRFP (B) 82.076 69 4,796.364 �271.024 0.991 0.978 596.296 3.901
Predicted 4,525.340 0.988 0.969 703.936 4.239

37.985 70 28,447.657 �12.325 0.992 0.980 8.751 0.473
Predicted 28,435.331 0.992 0.980 8.755 0.473

ACCSSP = 40 MPH
EST
(A1 þ A2)

85.289 68 269.142 0.051 0.951 0.878 16.910 0.657
Predicted 269.193 0.963 0.907 12.982 0.576

37.634 71 429.335 �37.710 0.991 0.977 7.832 0.447
Predicted 391.625 0.990 0.975 9.661 0.497

ACRFP (B) 85.289 68 5,992.344 �550.425 0.968 0.919 447.093 3.378
Predicted 5,441.919 0.974 0.935 367.982 3.065

37.634 71 28,028.615 �6.797 0.988 0.970 18.523 0.688
Predicted 28,021.818 0.988 0.970 18.590 0.689

ACCSSP = 50 MPH
EST
(A1 þ A2)

80.726 67 561.773 2.441 0.962 0.905 7.244 0.430
Predicted 564.214 0.959 0.898 7.967 0.451

40.1 72 876.469 �1.070 0.885 0.713 1.246 0.178
Predicted 875.399 0.884 0.709 1.252 0.179

ACRFP (B) 80.726 67 1,904.872 59.813 0.981 0.952 382.367 3.124
Predicted 1,964.686 0.983 0.957 351.031 2.993

40.1 72 28,276.442 0.118 0.980 0.951 0.613 0.125
Predicted 28,276.559 0.980 0.951 0.613 0.125

ACCSSP = 60 MPH
EST
(A1 þ A2)

79.44 66 738.825 �192.196 0.961 0.902 13.422 0.585
Predicted 546.629 0.957 0.893 17.459 0.668

38.858 73 783.449 �3.056 0.981 0.953 4.052 0.322
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Table 10. Continued

Parameter EAT (°F) CAT (°F) Area Conformance R2 Adj. R2 SSE RMSE

Predicted 780.393 0.982 0.954 4.099 0.323
ACRFP
(B)

79.44 66 8,978.425 �2,153.683 0.909 0.772 13.125 0.579
Predicted 6,824.742 0.993 0.982 669.514 4.134

38.858 73 28,658.279 1.219 0.988 0.970 0.004 0.010
Predicted 28,659.498 0.991 0.977 0.004 0.010

ACCSSP = 70 MPH
EST
(A1 þ A2)

76.1 65 1,427.487 �904.718 0.990 0.976 1.027 0.162
Predicted 522.768 0.997 0.993 5.569 0.377

36.518 74 118.232 �10.842 0.934 0.835 2.274 0.241
Predicted 107.390 0.944 0.861 2.069 0.230

ACRFP
(B)

76.1 65 1,433.399 253.377 0.862 0.655 6,501.550 12.882
Predicted 1,686.776 0.873 0.681 6,049.353 12.426

36.518 74 28,851.815 2.671 0.806 0.514 0.000 0.003
Predicted 28,854.486 0.980 0.950 0.000 0.002
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The constant and predicted [ACCSSP, CATSP] were generated based on the developed concepts as
shown in Supplementary Figures S28–S37, for the selected snippets of Speeds and CAT ranging
[30 70] MPH) and [65 75]°F. Definite values were selected as the [Initial ACC Speed, Initial CAT] to
generate a unique [ACCSSP, CATSP], and the performance analysis corresponding to the vehicle
engine performance criteria were shown in Tables 9 and 10. The SMV for constant and predicted
[ACCSSP, CATSP] were interpreted, and it was observed that in most cases, the performance was
similar. The criteria for SMV was defined in Supplementary Table S11, and in 35% of the cases
predicted [ACCSSP, CATSP] has higher [R2 Adj. R2] and lower [SSE RMSE], whereas 50% of the
scenarios scored the same.

Among all the parameters (Section 4), the most critical elements of interest for vehicle engine
performance are [IFCR, 1E-8 m3=s), Distance], and the conformance of predicted and constant ACCSSP
test cases are shown in Table 9. The predicted ACCSSPwith the snippet speed= [30 50]MPH resulted in
lower IFCR by [803.247 95.391], with an additional distance traversed by [199 400] m. The constant
ACCSSPwith speed= [70]MPH, resulted in higher IFCR [147.311], ED [222.34], distance [499] m, and
lower [ESC, ETC] = [20.54, 0.198] which depicts vehicle movement on higher-gradient terrain. The
algorithm developed for this work also allots priority to lowering the trip time, and hence the predicted
ACCSSP with speed snippet = [40 60] MPH resulted in higher distance = [999.5 999] m and
IFCR = [171.972, 33.725].

Similarly, the performance of the predicted and constant [CATSP] was analyzed by the conformance
vectors [Engine surface temperature (EST), ACRFP]= [A1þA2, B] as shown in Table 10. The two test
scenarios with EAT ≥ 65°F and EAT <45°F were investigated, and lower values of the area [A1þ A2]
(EST) and B (ACRFP) are desired for enhanced HVAC performance. In the test case scenario with
ACCSSP = 70 MPH, the predicted CATSP with EAT = [76.1 36.5]°F, resulted in lower EST by
[904.718, 10.842]. However, the ACRFP has higher magnitudes for the predicted CATSP, which is
compensated by the better SMV similar to the snippet with ACCSSP= 50MPH. The [EST, ACRFP] for
predicted CATSP are higher by 2.441 and 59.813 for EAT = 80.72°F, which is not desirable. But the
SMV of ACRFP for the predicted CATSP has higher [R2, Adj. R2] = [0.983 0.957] and lower [SSE
RMSE] = [351.03 2.993]. Similarly, for EAT = 40.1°F, the EST for the constant CATSP is higher by
1.07, and the rest of the criteria have comparable values. Thus, enhanced performance was concluded
by analyzing the vehicle engine performance parameters for the test cases with ACCSSP = [30,
40, 60] MPH.

Table 11. Quantification of IVDM — IEE and IEM.

Test cases IEE IEM Performance

Speed
(MPH) Profile Mean Deviation

Variance
(1E-3) R2 Adj R2 RMSE

IFCR
(1E-3 m3)

Distance
(1Eþ5 m)

30 Constant 0.3210 0.0424 0.0018 0.9968 0.7878 12.4481 4.7716 0.1338
Predicted 0.3180 0.0415 0.0017 0.9983 0.8956 8.6682 4.7857 0.1401

40 Constant 0.3256 0.0281 0.7898 0.9998 0.9966 1.3902 3.4894 0.1785
Predicted 0.3254 0.0281 0.7870 0.9999 0.9982 1.0034 3.4882 0.1811

50 Constant 0.3320 0.0313 0.001 0.9981 0.9560 5.1152 3.7634 0.2231
Predicted 0.3339 0.0317 0.001 0.9961 0.9425 5.8793 3.7477 0.2146

60 Constant 0.3295 0.0286 0.8164 0.9964 0.7411 10.3102 3.8386 0.2677
Predicted 0.3298 0.0286 0.8204 0.9933 0.8836 6.9115 3.8330 0.2628

70 Constant 0.3154 0.0221 0.4889 0.9991 0.9900 0.6721 3.6281 0.3123
Predicted 0.3138 0.0219 0.4817 0.9998 0.9964 0.4067 3.6415 0.3181
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Additionally, the efficacy of IVDM was quantified by estimating the instantaneous engine efficiency
(IEE), smoothness measure vector (SMV) of instantaneous engine maps (IEM), and [IFCR, Distance] for
another set of snippets selected in a similar speed range [30 70]MPH. The plots and analytical results were
depicted in Supplementary Figures S38–S42 and Table 11. The SMV criteria defined in Section 4.4 was
adopted for IEM, whereas higher IEE [mean] and lower IEE [Deviation, variance] are desired for optimal
vehicle engine performance. It was observed that the IEM RMSE of the predicted ACCSSP has lower
values than the constant ACCSSP for all the test cases except for ACCSSP = 50 MPH, where the
RMSE = [5.115 5.879] share similar magnitudes. The test case with constant ACCSSP = 30 MPH has a
lower IFCR= 4.77, but the vehicle traverses additionally 630mwith predicted ACCSSP. The IEE [mean,
variance] for constant ACCSSP= 40MPHwere [0.3256, 0.7898E-3], and the predicted ACCSSP scored
[0.3254, 0.787E-3]. Thus IEE [variance] of the predicted ACCSSP is lower, and the IEE [mean,
Deviation] shares similar values. This approach of analyzing the [IEE, IEM] was not discussed in the
existing literature, and the computational results were assumed to be satisfactory. Therefore, overall
observation resulted that predicted ACCSSP satisfies the desired criteria in most of the scenarios and best
confirms the validation of the proposed IVDM.

The analytic results depicted IVDM ameliorates vehicle engine performance by predicting [ACCSSP,
CATSP] optimizing [EOP, CATOP]. The results obtained were good, and IVDM could emerge as a
significant feature in automotive systems.

9. Conclusion

This research proposed a novel drive mode named “intelligent vehicle drive mode” (IVDM), which
augments the vehicle engine performance in real-time without increasing the trip time under normal
driving conditions. The IVDM is not currently integrated into any vehicle segment and predicts the DBV
(speed, LOT, LAT, YAR, CAT] by optimizing the vectors [EOP, CATOP], obliging the driver’s command
in real-time. The IVDM activates the ACC feature when triggered; thus, LOT is automatically determined
by the ACC controller, and the parameters [LAT, YAR] were estimated by the defined mathematical
models assuming ideal steering behavior (ISB). The prediction of [ACCSSP, CATSP] was made by
applying the optimal Engine operating conditions criteria on the predicted parameters [EOP, CATOP].
Autoregressive network with exogenous inputs (NARX) DLmodels were developed to map the VLVand
[EOP, CATOP], whose performance was validated using the traditional statistical measure vector
(STMV). The quantification of the computational model was performed by comparing the Engine
operating conditions parameters for constant and predicted [ACCSSP, CATSP] and analyzing the
[IEE, IEM] using the single test vehicle 2020 Cadillac CT5. The results were satisfactory, and this
concept could be utilized to develop a new feature in the vehicle.

10. Future Work

The computational model of intelligent vehicle drive mode (IVDM) validated the vehicle engine
performance criteria using the elements [EOP, CATOP] for internal combustion engine-driven segment
with a single test vehicle, 2020 Cadillac CT5, under normal driving conditions. As future work, the
validation could be enhanced, including multiple vehicle lines, conducting tests for critical scenarios of
mountain regions (>14% slope), considering slip and extreme weather conditions (EAT > 85°F or EAT
<25°F). In this research, the environmental factors [humidity (HUM), atmospheric pressure (ATP)],
HVAC elements (engine fan speed, power, Nusselt number), the sensitivity of gasoline properties
[calorific value (Cv), density (ρf )] due to pressure and temperature changes, and constant CATSP to
predict ACCSSP were assumed to simplify the analytical approach. Also, in this research, built-in
MATLAB functions with default properties were utilized to develop deep learning (DL) models.
Therefore, the analysis can be extended incorporating all the affecting parameters and customized DL
models could be developed for each vehicle model data to enhance prediction precision. Also, the optimal
performance criteria were defined with basic relations between the parameters [EOP, CATOP] to simplify
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the analysis, thus enhanced vehicle engine performance criteria, including additional Engine and power-
train parameters, would produce improved results.

The fail-soft action was implemented to generate unique [ACCSSP, CATSP], which produced
satisfactory results of augmented Engine operating conditions. However, the generated profile might
not be the only optimal solution, and basic iterative analysis was adopted to estimate [eligible vehicle
speeds (MPH), eligible vehicle cabin air temperatures (°F)]; further research could be adopted to
ameliorate the results by developing an enhanced algorithm (e.g., reinforcement model adapting the
driver behavior). Also, the concept of IVDM could be extended with new criteria for road segments of
either parking lots, low curvatures (RRC = [8.34 42.57]m), or arterial roads (vehicles speed <25 MPH)
whose effect on Engine operating conditions is insignificant.

The feature development is a multistage process, and as the next step of this work, the plant simulation
model controls algorithm and software integration followed by validation could be deployed. The
emergence of electric and autonomous vehicles has triggered a new research path for the automotive
sector in recent years. Hence, IVDM could be developed for electric vehicles by defining new perform-
ance criteria for (battery operating point, motor operating point), which enhances the operating conditions
of (battery, inverter, motor), and substantial validation can be performed with multiple test vehicle
segments to enhance the efficacy of the proposed concept. Also, an interface could be developed between
IVDMand integrated path planning and perception algorithms of autonomous systems to enhance driving
behavior.
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