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Unimodality and strong unimodality of the distribution of ascendingly ordered random
variables have been extensively studied in the literature, whereas these properties have
not received much attention in the case of descendingly ordered random variates. In this
paper, we show that log concavity of the reversed hazard rate implies that of the density
function. Using this fundamental result, we establish some convexity properties of such
random variables. To do this, we first provide a counterexample showing that a claim of
Basak & Basak [7] about the lower record values is not valid. Then, we provide conditions
under which unimodality properties of the distribution of lower k-record values would
hold. Finally, some extensions to dual generalized order statistics in both univariate and
multivariate cases are discussed.

1. INTRODUCTION

Convex and concave functions play an important role in statistics, probability, and especially
in reliability theory. Several aspects such as unimodality, strong unimodality, and logcon-
cavity have been extensively discussed. A cumulative distribution function (cdf) F is said to
be unimodal if F is either convex, concave, or a value a ∈ R exists such that F is convex on
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(−∞, a) and concave on (a,∞). Assuming that F has a probability density function (p.d.f.)
f , this means that f is either (i) non-decreasing, (ii) non-increasing, or (iii) non-decreasing
on (−∞, a) and non-increasing on (a,∞), respectively. Note that these three properties may
serve as a definition of unimodality for non-negative functions h. Alternatively, one may
define unimodality of a non-negative function h via convexity of the sets {x : h(x) ≥ α} for
any α > 0 (cf. An [4]). A cdf F is said to be strongly unimodal if its convolution with any
unimodal distribution is unimodal. Thus, any strongly unimodal distribution is unimodal
but the converse is not necessarily true. The famous result of Ibragimov [20] linked this
property to logconcavity of the corresponding p.d.f. f . He showed that a non-degenerate
cdf F is strongly unimodal if, and only if, it has a logconcave p.d.f. f . A non-negative
function h : R

n �−→ R+ is said to be logconcave if h(αx + (1 − α)y) ≥ [h(x)]α[h(y)]1−α, for
all x,y ∈ R

n and α ∈ (0, 1). At this point, it has to be mentioned that logconcavity of the
density function f is equivalent to the property that f is a Pólya frequency function of order
2 (PF2) (see Karlin [24]). Barlow & Proschan [6, p. 76] proved that the PF2 property of f
leads to increasing failure rate (IFR) property of its distribution. An extensive survey on
these concepts is provided by the monograph of Dharmadhikari & Joag-Dev [17].

Unimodality and strong unimodality of the distribution of ascendingly ordered random
variables have been extensively studied (see, e.g., Alam [1], Huang & Ghosh [19], Raqab &
Amin [29], Basak & Basak [7], Aliev [2], Cramer, Kamps & Rychlik [15], and Cramer [13]).
Since generalized order statistics (GOSs), defined by Kamps ( [21,22]), contain all the models
discussed by the above authors, recent results of Chen, Xie & Hu [12] and Alimohammadi
& Alamatsaz [3] concerning GOSs have unified most of the previous findings. On the other
hand, the case of descendingly ordered random variables has not received much attention
so far.

In another direction, Burkschat, Cramer & Kamps [9] introduced a dual model that
enables a common approach to descendingly ordered random variables called dual general-
ized order statistics (DGOSs) including reversed ordered order statistics and lower k-record
values. Let F be an absolutely continuous cdf with p.d.f. f and define F̄ = 1 − F . Then,
random variables Xd

(r,n,m̃,k), r = 1, 2, . . . , n, are called DGOSs based on F if their joint
density function is given by

fXd
(1,n,m̃,k),...,X

d
(n,n,m̃,k)

(x1, . . . , xn) = k

⎛
⎝n−1∏

j=1

γj

⎞
⎠(n−1∏

i=1

[F (xi)]mif(xi)

)
[F (xn)]k−1f(xn),

(1)

for all F−1(1−) ≥ x1 ≥ x2 ≥ · · · ≥ xn > F−1(0), where n ∈ N, k > 0 and m1, . . . ,mn−1 ∈
R are such that γr = k + n − r +

∑n−1
j=r mj > 0 for all r ∈ {1, . . . , n − 1}, and m̃ =

(m1, . . . ,mn−1), for n ≥ 2 (m̃ ∈ R is arbitrary for n = 1).
There exist some representations for the marginal density functions of GOSs (see,

e.g., Kamps [21,22], Kamps & Cramer [23], Cramer & Kamps [14], Cramer, Kamps &
Rychlik [15]). Cramer, Kamps & Rychlik [15] established a representation of the p.d.f. of
the GOS X(r,n,m̃,k) in the form

fX(r,n,m̃,k)(x) = cr−1[F̄ (x)]γr−1gr(F (x))f(x), x ∈ R, (2)

where cr−1 =
∏r

i=1 γi, r = 1, . . . , n, γn = k, and gr is a particular Meijer’s G-function (see
Eq. (2.6) in Cramer, Kamps & Rychlik [15]). Tavangar & Asadi [31] rediscovered this repre-
sentation by presenting an integral representation of gr. Analogously, Burkschat, Cramer &
Kamps [9] gave a representation for the p.d.f. of DGOSs. In particular, they stated that if
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X(r,n,m̃,k), r = 1, . . . , n, are GOSs based on an absolutely continuous cdf G and Xd
(r,n,m̃,k),

r = 1, . . . , n, are DGOSs based on an absolutely continuous cdf F , then

(F (Xd
(r,n,m̃,k)))1≤r≤n

d= (1 − G(X(r,n,m̃,k)))1≤r≤n. (3)

So, from (2) and (3) we arrive at the marginal p.d.f. of the DGOS Xd
(r,n,m̃,k) as:

fXd
(r,n,m̃,k)

(x) = cr−1[F (x)]γr−1gr(F̄ (x))f(x), x ∈ R, (4)

where cr−1 and gr are as in (2). For m1 = m2 = · · · = mn−1 = m, the p.d.f. (4) simplifies
to

fXd
(r,n,m,k)

(x) =
cr−1

(r − 1)!
[F (x)]γr−1hr−1

m (F (x))f(x), x ∈ R, (5)

where

hm(x) =

⎧⎨
⎩

1
m + 1

(1 − xm+1), m �= −1

−ln(x), m = −1
, x ∈ [0, 1),

(see also Kamps [21,22]).
Notice that, for m1 = · · · = mn−1 = −1 and k ∈ N, the models of GOSs and DGOSs

equal the upper and lower k-record models in distribution, respectively. Thus, the p.d.f. of
the lower k-record value Xd

(r,n,−1,k) is given by

fXd
(r,n,−1,k)

(x) =
kr

(r − 1)!
[F (x)]k−1[− ln F (x)]r−1f(x), x ∈ R, (6)

(see, e.g., Arnold, Balakrishnan & Nagaraja [5] and Nevzorov [26]).
In this paper, we show that logconcavity of the reversed hazard rate r = f/F implies

that of the corresponding density function. Using this fundamental result, we establish some
convexity properties of such random variables. To do this, we first provide a counterexam-
ple showing that a claim of Basak & Basak [7, Remark, p. 396] about the lower record
values is not valid. Then, we provide conditions under which unimodality properties of the
distribution of lower k-record values hold. In this regard, the notion of local unimodality of
the distributions for ordered random variables is dealt with in this paper for the first time.
Finally, some extensions to DGOSs in both univariate and multivariate cases are discussed.

2. CONVEXITY PROPERTIES OF LOWER k-RECORD VALUES BASED ON THE
REVERSED HAZARD RATE

In view of the growing importance of reversed hazard rate in reliability analysis and stochas-
tic modeling, a wide interest has been shown in investigating its properties (see, e.g., Block,
Savits & Singh [8], Finkelstein [18], Marshall & Olkin [25] and Shaked & Shanthikumar [30]).
In what follows, we first provide two fundamental interesting results for reversed hazard
rates. Here, L = inf{x : F (x) > 0} and U = sup{x : F (x) < 1} denote the lower and upper
bounds of the support of the underlying cdf F , respectively. Hence, the interval of support
is given by (L,U) where −∞ ≤ L < U ≤ ∞.

Block, Savits & Singh [8] have shown that the support must be (−∞, U) with U < ∞
provided that the reversed hazard rate is a non-decreasing function on (L,U). Lemma 2.1
provides an extension of this result to unimodal reversed hazard rates when L is supposed
to be finite.
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Lemma 2.1: Let L be finite. If the reversed hazard rate r = f/F is unimodal, then it has to
be non-increasing.

Proof: As pointed out in the introduction, a unimodal reversed hazard rate r can result
in three cases: (i) r is non-decreasing; (ii) r is first non-decreasing and then non-increasing
and, finally; and (iii) r is non-increasing. In cases (i) and (ii), r must be non-decreasing
on an interval (L,α) for some α ∈ (L,U) with F (α) > 0. Then, the reversed hazard rate
of the right truncated cdf Fα defined by Fα = F/F (α) with support (L,α) has the same
reversed hazard rate as F on (L,α). Since r is assumed to be non-decreasing on (L,α),
Theorem 2.1 of Block. Savits & Singh [8] proves that L = −∞ must hold which contradicts
our assumption. Therefore, cases (i) and (ii) can not occur for a unimodal r. Thus, the
desired result follows. �

It is worth mentioning that Pellerey, Shaked & Zinn [27] proved an analogous result of
Lemma 2.1 for hazard rates under the stronger condition of logconcavity of hazard rates
for non-negative random variables. The corresponding proof is quite different and lengthy.
Here, we have relaxed the logconcavity condition to unimodality.

Chandra & Roy [10] showed that the reversed hazard rate is non-increasing when its
p.d.f. f is logconcave. In the following lemma, we consider a reversed implicative relationship
between reversed hazard rate and density function.

Lemma 2.2: Suppose that the reversed hazard rate r is logconcave. If either

(i) L is finite
(ii) or L = −∞ and r is non-increasing,

then the p.d.f. f is logconcave.

Proof: From Lemma 2.1, we have that r is non-increasing for finite L. Therefore, we can
assume that r is both logconcave and non-increasing whatever so is L. Then, we rewrite the
reversed hazard rate formula as f = r · F , so that, for x ∈ (L,U),

ln f(x) = ln r(x) + lnF (x) = ln r(x) − R(x), (7)

where R(x) =
∫ +∞

x
r(y)dy is called the reversed hazard function. Since r is non-increasing,

R must be convex on (L,U) which means that −R is concave. Since the sum of two concave
functions is concave, (7) yields concavity of ln f and, hence, we have the desired result. �

It should be mentioned that logconcavity of the reversed hazard rate is not a necessary
condition for logconcavity of the p.d.f. As an example, one may consider the Rayleigh
distribution with cdf F (x) = 1 − exp(−x2/2), x > 0. Obviously, the p.d.f. is logconcave.
However, the reversed hazard rate r with r(x) = x

exp(x2/2)−1 , x > 0, is not logconcave.
Although the restriction of L being finite is required in Lemma 2.1, Lemmas 2.1 and 2.2

can be applied to many distributions such as lifetime distributions with finite left endpoint
of support. Furthermore, several distributions with L = −∞ such as normal, logistic, and
Gumbel as well as distributions with finite L such as gamma and Weibull have decreasing
reversed hazard rate. For other examples and relations, we refer the reader to Chechile [11].

Now, we focus on unimodality properties of the distribution of lower k-record values.
Aliev [2] provided a counterexample showing that convexity of 1/f , as formulated by Basak
& Basak [7], is not sufficient to conclude that the upper record values are unimodal. Now, we
provide the following counterexample for the lower record values with a stronger condition
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Figure 1. The p.d.f. of the second lower record value in Counterexample 2.3.

on f . Furthermore, this counterexample shows that strong unimodality of F is not sufficient
for strong unimodality of lower record values.

Counterexample 2.3: Suppose that in (6) r = 2, k = 1 and f(x) = x2/21, 1 ≤ x ≤ 4.
Clearly, f is logconcave and so 1/f is convex. However, Figure 1 shows that the second
lower record value is not unimodal and therefore, it is not strongly unimodal.

Unfortunately, the distribution of k-record values can hardly be unimodal. The situ-
ation is even worse for lower records than for the upper ones. For upper k-record values,
Alimohammadi & Alamatsaz [3] established the result assuming additionally the mono-
tonicity of f . But, this assumption does not work for the lower k-record values (for details
we refer to Remark 2.5). In such a situation, however, we shall show below that for local
unimodality of the lower and upper k-record values, the condition of 1/f being convex is
sufficient. Furthermore, the corresponding interval for local unimodality is specified.

Theorem 2.4: Let the p.d.f. f of the cdf F be such that 1/f is convex on (L,U). Then,
all lower (upper) k-record values have locally unimodal distributions on (F−1(e−1), U)
((L,F−1(1 − e−1))).

Proof: Let f ′
Xd

(r,n,−1,k)
denote the right derivative of fXd

(r,n,−1,k)
. So, from (6) we have

f ′
Xd

(r,n,−1,k)
(x) = G1(x)

[
k − 1
F (x)

+
(r − 1)

F (x) ln F (x)
+

f ′(x)
f2(x)

]
= G1(x) · w(x), say, (8)

where G1(x) = kn

(r−1)! [F (x)]k−1[− ln F (x)]r−1f2(x). Note that convexity of 1/f implies that
f is right differentiable and f ′/f2 is non-increasing. Now, w(x) is non-increasing in x
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provided that F (x) ln F (x) is non-decreasing in x, i.e., when

(F (x) ln F (x))′ = f(x) ln F (x) + f(x) ≥ 0.

Thus, ln F (x) ≥ −1 and hence x ≥ F−1(e−1). Now G1(x) ≥ 0 and w(x) is non-increasing
on (F−1(e−1), U). Thus f ′

Xd
(r,n,−1,k)

changes sign at most once as x moves from L to U and

any sign change has to be from positive to negative. Clearly, this implies that fXd
(r,n,−1,k)

is
unimodal.

For upper records, the result follows immediately from the p.d.f. of the upper k-record
values and its derivative (9) as given below:

fX(r,n,−1,k)(x) =
kn

(r − 1)!
[F̄ (x)]k−1[− ln F̄ (x)]r−1f(x), x ∈ R

and

f ′
X(r,n,−1,k)

(x) = G2(x)
[−(k − 1)

F̄ (x)
+

(r − 1)
F̄ (x)(− ln F̄ (x))

+
f ′(x)
f2(x)

]
, (9)

where G2(x) = kn

(r−1)! [F̄ (x)]k−1[− ln F̄ (x)]r−1f2(x). �

Remark 2.5: We can rewrite (8) and (9) as:

f ′
Xd

(r,n,−1,k)
(x) =

G1(x)
F (x)

[
(k − 1) +

(r − 1)
ln F (x)

+
f ′(x)
f2(x)

F (x)
]

(10)

and

f ′
X(r,n,−1,k)

(x) =
G2(x)
F̄ (x)

[
−(k − 1) +

(r − 1)
(− ln F̄ (x))

+
f ′(x)
f2(x)

F̄ (x)
]

. (11)

Comparing (10) with (11), we find that even by adding the condition of monotonicity of f ,
the quantity inside the brackets on the right-hand side of (10) cannot be non-increasing in
x, but this is the case for (11).

Counterexample 2.3 shows that lower k-records need not be unimodal whereas
Theorem 2.4 illustrates that the property of unimodality holds at least on the right tail of
the distribution. Theorem 2.6 proves that unimodality holds for lower and upper k-record
values from a uniform distribution (see also Remark 3.3).

Theorem 2.6: The distribution of each lower and upper k-record value from a uniform
distribution is unimodal.

Proof: The assertion follows from (10) and (11) using the same argument as in the proof
of Theorem 2.4, because f ′(x) = 0, x ∈ (L,U), and, thus, the third troublesome term inside
the brackets of (10) and (11) cancels out. �

Furthermore, it should be mentioned that the p.d.f. of lower and upper record values
from a uniform distribution are not logconcave in general though they are unimodal (see
also Remark 3.3). This is illustrated by the following counterexample.
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Counterexample 2.7: Consider the second lower record value from a uniform distribu-
tion. Its p.d.f. is given by (see (6))

fXd
(2,n,−1,1)

(x) = − ln(x), x ∈ (0, 1].

The second derivative of the logarithm of the p.d.f. is given by (ln fXd
(2,n,−1,1)

)′′(x) =

− ln(x)+1
x2(ln(x))2 , x ∈ (0, 1], which obviously has a sign change at x = e−1 from positive to nega-

tive. Thus, ln fXd
(2,n,−1,1)

is convex on (0, e−1) and concave on (e−1, 1). Hence, fXd
(2,n,−1,1)

is not logconcave. Similar arguments apply to upper records.

To obtain the next results of this section, we need the following lemma.

Lemma 2.8 (An [4]): Let h : R �−→ R+ be a measurable function and {x : h(x) > 0} =
(a, b). If h is logconcave on (a, b), then both H1(x) =

∫ x

a
h(y)dy and H2(x) =

∫ b

x
h(y)dy are

also logconcave on (a, b).

The next theorems deal with logconcavity of distributions of lower k-record values.

Theorem 2.9: Let the reversed hazard rate of F be logconcave. If either

(i) L is finite
(ii) or L = −∞ and r is non-increasing,

then the joint p.d.f. of lower k-record values is logconcave.

Proof: Let m1 = · · · = mn−1 = −1 in (1). Then, according to Lemmas 2.2 and 2.8, we
have

logconcavity of r ⇒ logconcavity of f ⇒ logconcavity of F.

So, the joint density in (1) becomes a product of univariate logconcave functions. Since
logconcavity is preserved under products, the assertion holds. �

The preceding lemma is now applied to the marginal distributions of lower k-record
values.

Lemma 2.10 (Prékopa [28]): Suppose that h : R
n × R

m �−→ R+ is a logconcave function and
η(x) =

∫
Rmh(x,y)dy is finite for each x ∈ R

n. Then, η is logconcave on R
n.

Theorem 2.11: Any marginal p.d.f. of lower k-record values is logconcave and so strongly
unimodal if either of the following satisfies:

(i) L is finite and the reversed hazard rate of F is logconcave, or L = −∞ and the
reversed hazard rate of F is logconcave and non-increasing.

(ii) The p.d.f. f and the reversed hazard function R are both logconcave.

Proof: (i) The assertion follows directly from Lemma 2.10 and Theorem 2.9.
(ii) Since R = − ln F and logconcavity of f implies logconcavity of F (Lemma 2.8), the

result follows by the conditions of the theorem and the p.d.f. given in (6).
�
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Remark 2.12: Logconcavity of r implies logconcavity of f (Lemma 2.2) and R (Lemma 2.8).
So, the condition in (ii) is weaker than that of (i).

Example 2.13: Clearly, the exponential distribution has a constant hazard rate, but its
reversed hazard rate is decreasing. By straightforward calculations it can be seen that the
exponential distribution does not satisfy the conditions of Theorem 2.11 part (i). In fact,
its reversed hazard rate is logconvex. However, it satisfies part (ii) of Theorem 2.11. Con-
sequently, lower k-record values from an exponential population are strongly unimodal and,
thus, unimodal.

3. EXTENSIONS TO DGOSS

First, note that many results on DGOSs can be obtained from those of GOSs using the
relationship presented in Eq. (3). But, in Theorem 3.4, we establish some stronger results
than those resulting from the findings on logconcavity of GOSs. Theorems 3.1 and 3.6 are
an adaption of results for GOSs established in Chen, Xie & Hu [12] and Alimohammadi &
Alamatsaz [3], respectively. They are given for completeness and thus we omit their proofs.

Theorem 3.1: Suppose that Xd
(r,n,m̃,k), r = 1, 2, . . . , n, are DGOSs based on an absolutely

cdf F with p.d.f. f . Then, the joint p.d.f. of DGOSs is logconcave if any of the following
conditions is satisfied:

(i) k ≥ 1, mi ≥ 0, i = 1, . . . , n − 1 and F is strongly unimodal.
(ii) k > 0, mi ≥ −1, i = 1, . . . , n − 1,

(a) L is finite and the reversed hazard rate of F is logconcave,
(b) L = −∞ and the reversed hazard rate of F is logconcave and non-increasing.

We need to recall the following lemma to obtain the main results of this section.

Lemma 3.2 (Alimohammadi & Alamatsaz [3]): The functions gr, r = 2, . . . , n, in (2) are
logconcave for mi ≥ 0, i = 1, . . . , n − 1.

Remark 3.3: Notice that the result of Lemma 3.2 can also be deduced using that
gr = k−1

r · fr where fr is the marginal density function of the rth uniform GOS with
parameters m1, . . . ,mr−1 ≥ 0, k = 1, (or, equivalently, γ̃1 ≥ · · · ≥ γ̃r−1 ≥ γ̃r = 1) and kr =∏r

j=1 γ̃j is an appropriate normalizing constant (here γ̃j = γj − γr + 1, 1 ≤ j ≤ r). Hence,
Corollary 4.1 of Cramer [13] yields logconcavity of gr. Further, we can apply Lemma 4.5 in
Cramer [13] in combination with the notion of multiplicative strong unimodality as intro-
duced by Cuculescu & Theodorescu [16]. This proves that the cdf of a uniform DGOS is
always unimodal (cf. Theorem 2.6). Moreover, it is convex if the smallest gamma is included
in (0, 1].

Theorem 3.4: Any marginal p.d.f. of DGOSs is logconcave and so strongly unimodal if any
of the following conditions is satisfied:

(i) Either conditions (i) or (ii) of Theorem 3.1 hold.
(ii) For r = 1 and mi ∈ R, i = 1, . . . , n − 1:

(a) γr ≥ 1 and F is strongly unimodal,
(b) γr > 0, L is finite and the reversed hazard rate of F is logconcave,
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(c) γr > 0, L = −∞ and the reversed hazard rate of F is logconcave and non-
increasing.

(iii) For r ≥ 2, the situations and conditions are the same as for r = 1 but with mi ≥ 0.

Proof: (i) The assertion follows directly from Lemma 2.10 and Theorem 3.1.
(ii) The result in (a) follows by (4). Also, parts (b) and (c) hold by rewriting (4) in the

following form with r = 1:

fXd
(r,n,m̃,k)

(x) = cr−1[F (x)]γrgr(F̄ (x))r(x), x ∈ R.

(iii) Lemma 3.2 yields the result for r ≥ 2.
�

Remark 3.5: The above results are stronger than those of Chen, Xie & Hu [12]. They had
only proved an analogous result to part (i) of our Theorem 3.4 for GOSs, while our findings
contain two more results in parts (ii) and (iii) of the theorem for DGOSs. Their results were
also incomplete for certain cases of the parameter values involved. This shortcoming is also
clarified by our rather strong Counterexample 3.8 for DGOSs.

In the next theorem, we present some sufficient conditions to ensure unimodality of
DGOSs.

Theorem 3.6: Let F be a cdf with p.d.f. f . Then, its DGOS is unimodal if any of the
following conditions is satisfied:

(i) For r = 1 and mi ∈ R, i = 1, . . . , n − 1:
(a) 0 < γr < 1 and f is right differentiable and non-increasing on its support,
(b) γr = 1 and f is unimodal,
(c) 1 < γr and either 1/f is convex or f is right differentiable and non-decreasing

on its support, and
(ii) For r ≥ 2:

(a) 0 < γr < 1, mi ∈ R, i = 1, . . . , n − 1, and f is right differentiable and non-
increasing on its support,

(b) γr = 1, m1 = · · · = mn−1 = −1, and f is right differentiable and non-increasing
on its support,

(c) 1 ≤ γr, 0 ≤ mi, i = 1, . . . , n − 1, and 1/f is convex.

Remark 3.7: Alam [1] showed the unimodality of order statistics by convexity of 1/f . Then,
Huang & Ghosh [19] proved that order statistics from strongly unimodal distributions are
strongly unimodal. According to Theorems 3.6 and 3.4, reversed ordered order statistics have
also unimodal and strongly unimodal distributions when 1/f is convex and f is logconcave,
respectively. Note that the parameters are given by m1 = · · · = mn−1 = 0 and k = 1 but
the p.d.f. for GOS and DGOS has the same structure. This reflects the symmetry in the
case of order statistics, which is just a change in the population cdf from F to 1 − F (−·).

The above theorems are stated by means of the notions of convexity and logconcavity
of functions. In particular, the implications

(i) logconcavity of r ⇒(ii)logconcavity of f ⇒(iii)convexity of 1/f ⇒(iv)unimodality of f

are an important tool in the derivations. In order to illustrate these conditions, we present
some examples. First, the logistic distribution satisfies (i) and, thus, (ii), (iii) and (iv). The
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Figure 2. The p.d.f. of the third DGOS in Counterexample 3.8.

continuous uniform distribution satisfies (ii) but not (i). The Cauchy distribution satisfies
(iii) and so (iv) but not (i) and (ii). Finally, the power distribution with parameter less than
one only satisfies (iv).

We should note that Theorems 3.4 and 3.6 include most values of the parameters except
for cases with mi < 0, for some i ∈ {1, . . . , n − 1}. However, the following counterexample
presents a situation where Theorems 3.4 (iii) and 3.6 (ii) fail.

Counterexample 3.8: Let n = 4, γ4 = k = 0.7, m1 = m2 = m3 = −0.7 and f(x) =
x2/21, 1 ≤ x ≤ 4 in (5). Note that, f satisfies not only the condition of 1/f being con-
vex, but also it is logconcave. However, Figure 2 shows that the third DGOS is not unimodal
and therefore, it is not strongly unimodal.

It is worthwhile pointing out that this counterexample is stronger than that presented
in Alimohammadi & Alamatsaz [3], because the p.d.f. f in their counterexample satisfies
only the condition of 1/f being convex.
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