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Computation of Galois groups of rational polynomials

Claus Fieker and Jürgen Klüners

Abstract

Computational Galois theory, in particular the problem of computing the Galois group of a
given polynomial, is a very old problem. Currently, the best algorithmic solution is Stauduhar’s
method. Computationally, one of the key challenges in the application of Stauduhar’s method
is to find, for a given pair of groups H <G, a G-relative H-invariant, that is a multivariate
polynomial F that is H-invariant, but not G-invariant. While generic, theoretical methods are
known to find such F , in general they yield impractical answers. We give a general method
for computing invariants of large degree which improves on previous known methods, as well
as various special invariants that are derived from the structure of the groups. We then apply
our new invariants to the task of computing the Galois groups of polynomials over the rational
numbers, resulting in the first practical degree independent algorithm.

1. Introduction

Computational Galois theory, in particular the problem of finding the Galois group of a given
polynomial, is a very old problem. While various algorithms have been published, so far they
are either impractical for groups of size >1000 due to the requirement of exact representation
of an algebraic splitting field, or they are degree dependent. Algorithms of the first kind include
for example the naive approach of constructing a splitting field by repeated factorization as
well as more sophisticated methods [24]. Algorithms of the second kind fall broadly into two
approaches: a classical approach that aims to characterize the Galois group as an abstract group
by building a decision tree using certain indicators (resolvent polynomials) [4, Chapter 6.3]
and a newer approach, by Stauduhar [23] where the Galois group is constructed explicitly as a
group of permutations of the roots of the polynomial in question. Stauduhar’s method roughly
works by traversing the lattice of (transitive) subgroups of the full symmetric group from the
top (Sn) down to the Galois group of the polynomial. At each step, this is done through the
help of invariants and the high precision evaluation of those.

This paper naturally splits into two parts: the first discussing the problem of finding a useful
invariant for each pair of groups (see § 2 for a precise statement), and the second part explaining
how this is used to compute Galois groups of polynomials over Q, see § 7 for details.

Primitive invariants for permutation groups, that is multivariate polynomials with a given
stabilizer, are among the most important objects in computational Galois theory. They are the
central ingredient in Stauduhar’s method [11, 12] for the determination of the Galois group
of a polynomial f : given two groups H <G a (G-relative) H-invariant is used to decide if
Gal(f)6Hg for some g ∈G under the assumption that Gal(f)6G. Furthermore, applications,
such as the explicit realization of Galois groups by explicitly computing defining equations for
subfields of the splitting field for f , rely on invariants as well [18].

While there are a few methods known for the computation of such invariants in the literature,
in applications, invariants were mostly the result of ad-hoc methods. Generic algorithms, for
example, [1, 14] for individual invariants or [16] for the computation of the entire ring of
invariants, become rapidly impractical for larger degree permutation groups.
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It should be stressed that while invariant theory gives explicit invariants for all pairs of groups
H <G, the generic results tend to be impractical as the resulting invariants are computationally
far too complex.

In what follows, we will give a new, space-efficient algorithm to compute all invariants of a
given degree for arbitrary pairs of groups, and for maximal subgroups of transitive groups we
give several constructions that allow the determination of efficient invariants in many cases.
We then demonstrate in § 5 that knowledge of the subgroup structure can also be used to
find efficient invariants, as frequently invariants for some subgroups can be combined to give
invariants for others.

Finally, we demonstrate the efficiency and the limits of our methods by considering several
examples.

2. Notation

Transitive groups of degree <32 are denoted by nTm where n is the degree and m is the
number of the group in the classification [5] used by both Magma and Gap. For the rest of
the article, we fix some positive integer n. The symmetric group on n elements, Sn, acts on the
polynomial ring Z[X] =Z[X1, . . . , Xn] in n variables via

Xi 7→Xσ(i).

For σ ∈Sn we usually write Fσ for the image under this map. A polynomial F ∈Z[X] is
called a H-invariant (for some group H 6Sn) if Fσ =F for all σ ∈H. Given two subgroups
H <G6Sn, we call a polynomial F ∈Z[X] a G-relative H-invariant, if its stabilizer StabG F :=
{σ ∈G |Fσ =F} in G equals H. A polynomial F ∈Z[X] is called an absolute H-invariant if
StabSn F =H.

For any subgroup H 6Sn we can consider the ring Z[X]H of absolute H-invariants and also
the invariant field Q(X)H of rational functions that are invariant under H.

Remark 2.1. If H <G6Sn is a pair of subgroups and if F ∈Z[X] is a G-relative
H-invariant, then:

(i) as an extension of fields, Q(X)H is a finite extension of Q(X)G of degree

[Q(X)H :Q(X)G] = (G :H);

(ii) furthermore
Q(X)H =Q(X)G[F ]

that is, F is a primitive element for the extension;
(iii) from the main theorem on symmetric functions it follows that

Z[X]Sn =Z[s1, . . . , sn]

where si =
∑

16j1<...<ji6n

∏i
`=1Xj` are the elementary symmetric functions.

3. Stauduhar’s method

In this section we recall the necessary tools from Stauduhar’s method. We do this in a slightly
more general context which has the advantage that we can combine the information obtained
by the resolvent method and by Stauduhar’s method.

Let us assume that we are given a monic polynomial f ∈Z[X] of degree n and we would like
to compute the Galois group of f . Certainly, the Galois group is a subgroup of Sn acting on
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the roots of f and therefore we can assume that we know a subgroup G6Sn with Gal(f)6G.
Assume furthermore that we have a proper subgroup H <G and let F ∈Z[X1, . . . , Xn] be a
G-relative H-invariant polynomial. In the following we denote by G//H a set of representatives
of right cosets Hσ of G/H. We remark that we only use right cosets in this paper. The following
is proved in [23].

Lemma 3.1. Let F be G-relative H-invariant and assume that Gal(f)6G, where Gal(f)
acts on the roots α1, . . . , αn in some fixed closure. Then

RF :=
∏

σ∈G//H

(T − Fσ(α1, . . . , αn))∈Z[T ].

RF is called the relative resolvent polynomial (corresponding to H <G and F ).

Proof. Since FH =F we see that RF does not depend on the choice of coset representatives.
The polynomial RF is invariant under G and since Gal(f)6G it is invariant under Gal(f).
Therefore all coefficients of RF are in Q and also algebraic integers, thus in Z.

Suppose that RF is squarefree and we know a non-trivial factor of RF in Z[T ]. In this
situation we show in the following theorem that the Galois group of f is contained in a proper
subgroup of G and therefore we make progress. In case RF is not squarefree, we apply a
Tschirnhausen transformation t∈Z[x] and compute a new polynomial

RF,t :=
∏

σ∈G//H

(T − Fσ(t(α1), . . . , t(αn))).

It can be shown [13] that there exist suitable transformations t such that RF,t is squarefree.
Furthermore, introducing t amounts to a change of f that will not affect the Galois group.

Theorem 3.2. In the situation of Lemma 3.1, assume that RF is squarefree and A∈Z[T ]
is a divisor of RF , of degree degA=m. Denote by ρ :G→SG/H the permutation action on
right cosets G/H. Then there exist σ1, . . . , σm ∈G such that

A(T ) =

m∏
i=1

(T − Fσi(α1, . . . , αn)).

Denote by B the set of right cosets {Hσi | 16 i6m}.
Then Gal(f)6 ρ−1(Stabρ(G)(B)).

Proof. The elements σ1, . . . , σm are in pairwise different right cosets of G/H since otherwise
Fσi =Fσj and the polynomial A is not squarefree. Extend the σi to a complete system of
representatives σ1, . . . , σr of G/H, where r= (G :H). Now let τ ∈Gal(f)6G be an arbitrary
element. The elements τσ1, . . . , τσr are also a set of representatives ofG/H. Since A is invariant
under τ ∈Gal(f), for 16 i6m we have τσi ∈Hσj with j6m. Therefore we get that ρ(τ)∈
Stabρ(G)(B).

The case of linear factors in Theorem 3.2 was already proved in [23], in fact it formed
the key technique in the original paper. The possible use of quadratic factors is mentioned
on the last page of [22] but is rejected there since the practical group theory would have been
too complicated. The general statement is also proven in [11, Satz 2.4], although only the case
of linear factors is used to determine groups. Higher degree factors are only considered in a
verification step.

We can also apply this theorem if we know more than one factor.
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Corollary 3.3. Assume that RF is squarefree and factors as RF =A1 . . . As with
Ai ∈Z[T ]. Denote by Bi the set of right cosets of G/H corresponding to Ai. Then

Gal(f)6
s⋂
i=1

ρ−1(Stabρ(G)Bi).

Because of its importance we describe the case of linear factors in more detail in the following
corollary.

Corollary 3.4. Assume that RF is squarefree and has a linear factor in Z[T ] corresponding
to Hσ for σ ∈G. Then Gal(f)6Hσ :=σ−1Hσ.

Proof. Note that a point stabilizer of ρ(G) is isomorphic to H.

We note that in the following we mostly use this corollary since finding linear factors is
much easier than doing a complete factorization. In particular, we are frequently able to find
linear factors without ever constructing RF completely. We note that the complexity of this
method depends on the index (G :U). Even if we do not compute the corresponding resolvent
polynomial of degree (G :U) directly, the coefficient bounds that we need in our algorithm are
dependent on this index, too.

If the index (G :U) is huge it could be nice to work with a subgroup H of smaller index and
use higher degree factors in order to prove that Gal(f) is contained in a conjugate of U .

Example 3.5. Let f ∈Z[X] be a polynomial with Galois group 19T5 ∼=C19 oC9. This is a
maximal subgroup of A19 of index 17!. Since 19T5 is not 2-transitive, take S := StabA19

([1, 2])
the intersection of the point stabilizers of 1 and 2, take F :=x1 − x2 and compute the
resolvent RF . This is a polynomial of degree 19 ·18 which has αi−αj as roots for 16 i 6= j6 19
(assuming that those roots are different). Furthermore, using resultants, RF can be computed
symbolically without explicit knowledge of S or F . Factorization of RF finds two factors of
degree 171. When we apply Theorem 3.2 we directly descend to the correct Galois group.

Let α be a root of the polynomial f in the last example. The factorization approach of the
last example is equivalent to the fact that f/(x − α)∈Q(α)[x] factorizes into two degree 9
factors.

Very often the factorization approach is not optimal or even feasible since the degree of the
resolvent polynomial is too high for efficient factorization. In some situations our algorithm
produces a Galois group (as an actual permutation group on the roots) which is only correct
with a very high probability. In this situation we can turn to the factorization method in order
to check our result, that is to give a proof that the result is mathematically correct. Since
we assume knowledge of the action on the roots, it is not necessary to factor the resolvent
polynomial. By analysing the proof of Theorem 3.2 we can write down the factor and check if
it is in Z[X] and whether it divides the resolvent polynomial, see § 7.4 for more details. Similar
ideas were used by Casperson and McKay [3] to obtain polynomials with Galois group M11.

Example 3.6. Let p be a prime number, G :=Sp+1, and H := PGL(2, p)6G. Then
(G :H) = (p − 2)! and H is a maximal subgroup. Furthermore G is sharply 3-transitive
which means that for the resolvent method we have to use a polynomial acting on 4-sets
of the roots which has degree

(
p+1
4

)
. For p= 19 this polynomial has degree 4845 and splits

into four factors of degree 570, 855, 1710, and 1710 respectively. In our implementation we
compute the Galois group using short cosets (see Remark 7.1) with a very high probability. By
applying the methods of § 7.4 we use this group to approximate the degree 570 factor. When
computing the corresponding stabilizer according to Theorem 3.2 we descend to G.
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We note that the group PSL(2, p)6Ap+1 is not 3-transitive. The 3-set polynomial, that is the
resolvent corresponding to S := StabAp+1({1, 2, 3}), gives no information since this polynomial
stays irreducible. But if we take the pointwise stabilizer S := StabAp+1 [1, 2, 3] (intersection of
the three pointwise stabilizers) then we will find three factors. The latter polynomial has only
degree (p+ 1)p(p− 1) compared to

(
p+1
4

)
.

As a final example in this section we consider a degree 40 polynomial with Galois group
PGsp(4,3). This polynomial was computed in [8] and for reasons of space we do not give the
actual polynomial here. It comes from the 3-torsion of a hyperelliptic curve

C : y2 + (−x2 − 1)y=x5 − x4 + x3 − x2.

The Galois group is primitive and not 2-transitive. Furthermore this group is maximal in A40.
The algorithm outlined below, using only linear factors, computes the Galois group within 50 s.
However, factoring a suitable resolvent for the stabilizer of 2-sets completes the computation
in only 20 s.

4. Generic invariants

We fix two groups H <G6Sn and assume unless explicitly stated otherwise, that H is a
maximal subgroup of G. The aim of this section is to find a G-relative H-invariant F ∈Z[X]
of small degree and a small number of terms. While the first aim can be obtained easily, the
second is more difficult, and will be discussed later. To simplify notation we will write

∑
A to

mean
∑
a∈A a for suitable sets A, usually orbits.

The first observation is that it is always easy to write down some invariant. Certainly, every
Sn-relative invariant is G-relative as well for H 6G6Sn.

We start with generic absolute invariants.

Lemma 4.1.

F :=
∑
σ∈H

(n−1∏
i=1

Xi
i

)σ
is an Sn-relative H-invariant.

While Lemma 4.1 proves the existence of G-relative H-invariants, these are very expensive
invariants from the point of view of evaluation. Even assuming that the powers of the evaluation
points are stored, the evaluation of each term needs n − 2 multiplications, so that in total
#H(n − 2) multiplications are necessary. In order to improve on this we make use of the
following well-known facts [6].

Theorem 4.2. For any polynomial I ∈Z[X], and every subgroup H 6Sn, we have that
F (X) :=

∑
{Ih(X) |h∈H}=:

∑
IH(X) is H-invariant.

For every H-invariant polynomial F ∈Q[X], there exist monomials mi and coefficients ai ∈Q
such that

F =

r∑
i=1

ai
∑

mH
i .

Thus invariants of the form
∑
mH form a vector space basis for the ring of all invariants.

The invariant ring Q[X]H of H-invariants is a graded Q-vector space. The dimensions of the
summands can be read off from the Hilbert series

fH(t) :=

∞∑
i=0

ti dim(RH)i

where (RH)i = {r∈Q[X]H |deg r= i} ∪ {0}.
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The Hilbert series can be computed from the knowledge of the set of the conjugacy classes
C of H,

fH(t) =
1

#H

∑
c∈C

#c∏l
i=1(1− xci)di

,

where (ci, di) is the cycle structure of any representative of the class c of H.

To improve on Lemma 4.1 we will try to find a small invariant as a basis element for some
(RH)d for d as small as possible. Unfortunately, there are pairs of groups, G=Sn, H =An for
example, where the invariant in Lemma 4.1 can be shown to be of minimal degree.

In the remainder of this section we will develop methods to compute a basis for (RH)d the
vector space of H-invariant polynomials of degree d and also for the subspace of G-relative
polynomials. Our strategy will be to first compute a basis for the Sn-invariants and then show
how to refine this basis. We start with few observations.

Remark 4.3.
(i) Let F ∈Z[X] be a polynomial and H 6Sn be a group. Then∑

σ∈H// StabH(F )

Fσ =
∑

FH

and thus is H-invariant.
(ii) Let m=

∏n
i=1X

ai
i be a monomial. Then we have

StabH(m) =
⋂

a∈{ai|16i6n}

StabH({i | ai = a}),

thus stabilizers of monomials can be computed as intersections of stabilizers of points or sets.
Of course, for H =Sn those stabilizers can be made explicit as direct products of suitable Sm
for m<n.
(iii) Let {1, . . . , n}=

⋃r
i=1Ai be a partition. Then

StabSn(A1, . . . , Ar)∼=
r∏
i=1

SAi .

4.1. Sn-invariants

In this section we will develop methods to compute a basis for the Sn-invariants as well as
indicate how to improve on the general method if we want to aim for relative invariants only.
The algorithm presented here is similar to the ideas presented in [1, 14].

The key idea here is that the orbit sum ∑
σ∈Sn// Stab(f)

fσ

does not depend on the representative f of the full orbit fSn and that the action of the group
on some monomial m only depends on the partition of {1, . . . , n} induced by m=

∏n
i=1X

ai
i ,

{1, . . . , n}=
⋃̇

a∈{ai|16i6n}

{i | ai = a}.

On the other hand, by giving a partition A := {Ai | i} of {1, . . . , n} and pairwise different
integers ai> 0 the orbit of m(a,A) :=

∏s
i=1

∏
j∈Ai X

ai
j is uniquely defined by A already. Thus

to solve our problem of finding a basis for (RSn)d we simply need to find all partitions and
exponents such that

∑s
i=1 ai#Ai = d. We summarize this in an algorithm.
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Algorithm 4.4. Let d be an integer. The algorithm produces a basis for (RSn)d.
(i) Let I := {}.
(ii) Compute the set P of all partitions of d of length at most n.
(iii) For p∈P do

(iv) Let p= (p1, . . . , pi). Append I by
∏i
j=1X

pj
j .

However, since we are eventually only interested in finding minimal degree invariants we
introduce more reductions here. The operation of Sn on m(a,A) does only depend on A, so
for a minimal degree invariant we can also stipulate that ai + 1 = ai+1, otherwise the same
behaviour can be obtained with smaller exponents. Similarly, minimal examples will be such
that #A1 >#A2 > . . .>#As. As an example: the orbits of X1X

3
2 and of X1X

2
2 are essentially

the same, namely the orbit of {{1}, {2}}. Thus if we are looking for examples of minimal
degree, then X1X

3
2 need not be considered.

4.2. H-invariants

Let H be a subgroup of Sn and I be a set of monomials generating different Sn-invariants via
orbit sums. Here we address the problem of refining I to contain a (maximal) set of monomials
generating H-invariants.

Let m be a monomial and S := StabG(m) its stabilizer in some group Sn>G>H. We use
the following theorem.

Theorem 4.5. Let G>H be groups, m a monomial and S= StabG(m) its stabilizer.
Furthermore, let S \ G/H be the double cosets of G with respect to S and H and let
{gi | 16 i6 r} be a set of representatives (that is, G=

⋃r
i=1 SgiH and SgiH =SgjH if and

only if i= j). Then {mg
i | 16 i6 r} generate linearly independent H-invariants.

Proof. The linear independence is a direct consequence from the fact that the double coset
decomposition induces a decomposition of mG into pairwise disjoint H-orbits.

Thus the computation of H-invariants is reduced to the computation of Sn-invariants
followed by a double coset decomposition. While in general double coset decompositions are
hard to compute, it is feasible here. We make use of the ladder-technique of [21]: usually to
compute double cosets, one computes a coset decomposition with respect to one group and
lets the other group act on them, thus the complexity depends on the size of the index of
the larger group in G. This procedure is frequently helped by computing a descending chain
from G=:S0> . . .>Sj =S down to one smaller group, S for example. The action of H on
S \G can then be deducted from the action of H on Si+1 \ Si. Unfortunately, it is hard and
frequently impossible to find good subgroup chains, that is chains with small indices. The new
idea introduced in [21] is to use a ladder rather than a chain, that is to allow up-ward steps
as well as down-ward ones. In order to use this technique we therefore have to construct a
suitable ladder. This will be achieved by the following procedure.

Algorithm 4.6. Let G be a permutation group acting on Ω and A⊆Ω be arbitrary. This
algorithm will compute a ladder Gi such that G=G0, Gr = StabG(A) and if Gi<Gi+1 then
#Gi+1/#Gi6#Ω and Gi>Gi+1 with #Gi/#Gi+1 6#Ω otherwise.

(i) Let B := {}, and i := 1, G0 :=G.
(ii) For a∈A do
(iii) Add a to B and compute Gi := StabGi−1

{a}.
(iv) If B 6= {a} then Gi+1 := StabGB and set i := i+ 2. Otherwise set i := i+ 1.

Proof. Let A := {a1, . . . , an}. The properties of the Gi are direct consequences of the
following facts:
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(i) we either have Gi = StabGi−1
{{a1, . . . , as}, {as+1}} (in which case Gi<Gi+1); or

(ii) we have an up-ward step and obtain Gi+1 = StabG{a1, . . . , as+1}. Note that StabGi+1

{as+1}=Gi;
(iii) for G=Sn, we have # StabG{a1, . . . , as}= s!(n − s)! and # StabG{{a1, . . . , as},

{as+1}}= s!1!(n− s− 1)!;
(iv) in general, StabGA=G ∩ StabSn A, and for any groups V <U <Sn we have (U ∩ G :

V ∩G)6 (U :V ), thus the bound on the indices follows. 2

For more general partitions, Algorithm 4.6 will be called repeatedly.

Algorithm 4.7. Let G be a permutation group acting on Ω and A= {A1, . . . , As} a
partition of Ω. This algorithm will compute a ladder Gi such that G=G0, Gr = StabG(A)
and if Gi<Gi+1 then #Gi+1/#Gi6#Ω and Gi>Gi+1 with #Gi/#Gi+1 6#Ω otherwise.

(i) Let U :=G.
(ii) For a∈A do

(iii) Compute a ladder from U to StabU a using Algorithm 4.6 and print it.
(iv) Let U := StabU a.

Let G6Sn be arbitrary and H <G a maximal subgroup. In order to compute G-relative
H-invariants, we now use one of the following algorithms.

Algorithm 4.8. Let H <G be as above and d> 0 be an integer. This algorithm will find a
basis for the space of G-relative H-invariants of degree d.

(i) Compute a basis B for (RSn)d using Algorithm 4.4.
(ii) For each b∈B do

(iii) Compute the corresponding partition A.
(iv) Use Algorithm 4.7 to compute a ladder L from Sn to StabSn(b) using the partition A.
(v) Use L to compute a set C of double coset representatives for StabSn b \ Sn/H.
(vi) For each c∈C do
(vii) Compute the indices of the stabilizers (H : StabH b

c) and (G : StabG b
c). If they differ

then bc generates a G-relative H-invariant. In this case print
∑
h∈H// StabH bc b

ch.

The correctness of the algorithm follows immediately from the above discussions. We remark
that if we want only one invariant rather than a basis, we can use a probabilistic approach.

Algorithm 4.9. Let H <G be as above and d> 0 be an integer such that there exists
an G-relative H-invariant of degree d. This algorithm will find one G-relative H-invariant of
degree d.

(i) Compute a basis B for (RSn)d using Algorithm 4.4.
(ii) Repeat.

(iii) Compute a random element σ ∈Sn.
(iv) For each b∈B check if (G : StabG b

σ) differs from (H : StabH b
σ). If so, print∑

h∈H// StabH bσ b
σh and terminate.

To find a (minimal) degree d such that there exists an G-relative H-invariant we simply
compute the difference of the Molien series fH(t)− fG(t) =

∑∞
i=1 siti and take d as the index

of any non-zero coefficient.

5. Special invariants

Like in the previous section we assume that H is a maximal subgroup of G. We use the
maximality in our proofs to show that an H-invariant F is G-relative, if there exists one
element g ∈G \H with F g 6=F .
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Unfortunately, there are examples where the generic invariants are too expensive to compute
or the given presentation needs too many arithmetic operations to evaluate the invariant. The
best known example for this are the groups H =An and G=Sn. Clearly, H is a maximal
subgroup of G and the invariant

F1(X1, . . . , Xn) :=
∑
σ∈H

(n−1∏
i=1

Xi
i

)σ
given in Lemma 4.1 is an Sn-relative An-invariant polynomial of smallest possible total degree.
If we store the powers of Xi we need (n − 2)n!/2 multiplications in order to evaluate this
invariant. If the characteristic is not equal to 2, then a better invariant is well known: (for any
σ /∈H =An)

F2(X1, . . . , Xn) :=
∏

16i<j6n

(Xi −Xj) =F1 − Fσ1 ,

which can be evaluated using n(n− 1)/2 multiplications, if the factored form is used.
Most of the special invariants presented here follow the same pattern and are derived from

the same source, namely from the different action of G and H on natural objects like the
action on blocks or block systems. Ultimately, as we saw above in the discussion of general
factorization patterns, we can use permutation presentations for G acting on the cosets by any
subgroup V <G.

In the following we assume that H <G6Sn where H is maximal in G are acting on Ω :=
{X1, . . . , Xn}. Let us start with the case that H is acting intransitively. The proof of the
following lemma is trivial.

Lemma 5.1. Assume that there exists an orbit O of H on Ω which is not invariant under G.
Then

F (X1, . . . , Xn) :=
∑
Xi∈O

Xi (5.1)

is a G-relative H-invariant.

We remark that intransitive groups may occur in our applications even if we start with
transitive groups. The reason is that some of the following algorithms will reduce the problem
recursively to groups of smaller degree.

Let us assume for the rest of the section that the given groups H 6G6Sn are transitive.
For transitive groups the notion of blocks and block systems are very important. We remark
that most of the following invariants are well known, for example see [11, 12].

Definition 5.2. Let G6Sn be transitive and ∅ 6=B⊆Ω be a subset. Then B is called a
block, if for all g ∈G we have Bg ∩B := {Xg |X ∈B} ∩B ∈{∅, B}. Blocks of size 1 and n are
called trivial blocks.

It is very easy to see that Bg is a block if B is a block. By acting on a block B we get a
partition of Ω which is called a block system. Therefore every block is contained in a block
system. Furthermore it is easy to see that the blocks containing X1 are in 1–1 correspondence
to the groups GX1 6U 6G, where GX1 = StabG{X1} is the point stabilizer of G and U is the
stabilizer of the block, that is U = StabGB= {g ∈G |Bg =B}.

If H 6G then clearly every block (system) of G is a block (system) of H. But it may be the
case that H possesses more blocks.
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Lemma 5.3. Let H 6G6Sn be transitive groups and assume that B1, . . . , Bm is a block
system of H, but not one of G. Then

F (X1, . . . , Xn) :=

m∏
i=1

∑
X∈Bi

X (5.2)

is a G-relative H-invariant.

Proof. Every h∈H only permutes the factors of F and therefore stabilizes F . Let g ∈G\H.
Then there exist Xi and Xj lying in the same block which are mapped to different blocks. This
produces a monomial of F g containing XiXj which does not exist in F . Since cancellations
are impossible, we get the desired result.

Now we can assume that the block systems of H and G coincide. Now let B1, . . ., Bm be
a block system of H (and G). We can define two canonical actions of G and H. One is by
simply permuting the blocks which give transitive permutation representations Ḡ and H̄ on
m points. We get the following exact sequences of groups,

1→NG→G→ Ḡ→ 1, 1→NH→H→ H̄→ 1,

where NG (respectively NH) is the kernel of the permutation representation.
In the case that NH =NG we can apply the following lemma. We remark that we always

get NH =NG if H̄ 6= Ḡ. This is true because H is a maximal subgroup of G by our general
assumption.

Lemma 5.4. Let H 6G6Sn be transitive groups with a common block system B1, . . . , Bm.
Assume that the above defined normal subgroups NH and NG are equal. Let E(X1, . . . , Xm)
be a Ḡ-relative H̄-invariant. Then

F (X1, . . . , Xn) :=E(Y1, . . . , Ym) for Yi :=
∑
X∈Bi

X (5.3)

is a G-relative H-invariant.

Proof. Elements of NH =NG only change the ordering of the sum defining Yi. Therefore an
element g acts on F via the action of ḡ on E. Therefore the polynomial F is H-invariant. In
order to show the G-relativity, we need to prove that for g ∈G \ H we have ḡ /∈ H̄. The last
statement easily follows from NH =NG.

The other action can be defined within a block B1 via StabG(B1)|B1 . We get the following
invariant.

Lemma 5.5. Let H 6G6Sn be transitive groups with a common block system B1, . . . , Bm.
Let H̃ := StabH(B1)|B1

, G̃ := StabG(B1)|B1
and assume [G :H] = [G̃ : H̃]. Let E(Xi1 , . . . , Xil)

where B1 = {Xi1 , . . . , Xil} is a G̃-relative H̃-invariant. Furthermore let {σ1, . . . , σm} be a
system of representatives of right cosets of StabH(B1) in H.

Then F :=Eσ1 + . . .+ Eσm is a G-relative H-invariant.

Proof. An element of H can be uniquely written as a product of an element of StabH(B1)
and some σi. The first one stabilizes E and the second one only permutes the Eσi . Therefore
F is invariant under H. Since [G :H] = [G̃ : H̃] we see that {σ1, . . . , σm} are representatives of
the right cosets of StabG(B1) in G. Since an element g ∈G \H can be uniquely written as a
product g̃σi of an element g̃ ∈StabG(B1) and some σi we get that the element g̃ cannot be
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an element of StabH(B1). Therefore Eg̃ 6=E. Furthermore the Xj which appear in Eσi are
different for different values of i which shows that F g 6=F .

Now we have to deal with groups where the number of block systems is the same and it is
not possible to use Lemmas 5.4 or 5.5. In this situation, we can try the following [11, 6.19] in
the situation that the size of O is not too large.

Lemma 5.6. Let U := StabH(B1)|B1 = StabG(B1)|B1 and K1<K2 6U . Now let F be a
K2-relative K1-invariant such that O :=FG =FH and the orbit O has the form {Fσ1 , . . . , F σo}
for suitable elements σ1, . . . , σo ∈H. Finally let ρ :G→SO be the permutation representation
of G on O. If ρ(H) 6= ρ(G) then let Y be a ρ(G)-relative ρ(H)-invariant. For a suitable
Tschirnhausen transformation t∈Z[x] we have that

I :=Y (t(Fσ1(X)), . . . , t(Fσo(X)))

is a G-relative H-invariant.

Proof. Since G and H act identically on the block B1, the orbits FG and FH are the same.
By construction, I is clearly H-invariant, all that we need to show is that I is not G-invariant.
Since F is not ρ(G) invariant, this is immediate.

It should be noted that the use of blocks above is only part of the attempt to create an
invariant F with a small orbit.

The following theorem is a generalization of a result of Eichenlaub [9], who proved the
corresponding result for wreath products of symmetric groups. Recall that a wreath product
U oV is a semidirect product of the type UmoV , where V 6Sm and the action of V permutes
the copies of U . For a formal definition we refer the reader to [7, p. 46].

Theorem 5.7. Let G=U o V be the wreath product acting on Xi,j (16 i6 d, 16 j6m),
where U 6Sd, V 6Sm and md=n. Furthermore let N � U be a normal subgroup of index 2.
Let E be a U -relative N -invariant with the property that Eu =−E for all u∈U \N . Denote
by sk the kth elementary symmetric function on m letters. Then G has a subgroup H of index
2 and

F (X1,1, . . . , Xd,m) := sm(d1, . . . , dm) = d1 . . . dm

is a G-relative H-invariant, where dj :=E(X1,j , . . . , Xd,j).

We note that in the original statement given in [9] there are two other subgroups of index 2.
One is Sd o Am6Sd o Sm which can be dealt with by Lemma 5.4 and the other one comes
from the fact that whenever we have two subgroups of index 2, there will be a third one. An
invariant for this can be efficiently computed using the first two invariants, see Lemma 5.8.

Proof. Clearly, we have N oV 6U oV and using Lemma 5.5 we get that E+Eu with u∈U \N
is a G-relative N oV -invariant. Let u∈U \N be an arbitrary element and let u1 and u2 be the
canonical images of u in the first and second copy of Um in G, respectively. Now we claim that
H = 〈N oV, u1u2〉6G. Clearly, F fixes all elements of N oV because all di are fixed by elements
of N and swapped by elements of V . The element u1u2 fixes d3, . . . , dm and has the property
that du1u2

1 =−d1 and du1u2
2 =−d2. Therefore we get Fu1u2 =F . For an arbitrary element g ∈G

we get that F g =±F and therefore the index of H in G is at most 2. Clearly, Fu1 =−F and
therefore H 6=G and F is G-relative.

We note that this invariant can be applied to groups G which are not wreath products. For
example, it could be possible that G is contained in a wreath product, but not in the index
2-subgroup and H is contained in that index 2-subgroup.
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As already mentioned it is possible to combine relative invariants in order to get new ones.
Suppose G6Sn has two subgroups H1<G and H2<G with G-relative Hi-invariants Fi. On
the invariant field side, this corresponds to Q(X)G having two finite separable extensions
Q(X)G(Fi) corresponding to Q(X)Hi with normal closures MCi and Ci := CoreG(Hi). In this
situation we can transfer information about Hi to all subfields (and the corresponding fix
groups) of the compositum MC1MC2 =MCoreG(H1∩H2).

The first such example already appears in [9].

Lemma 5.8. Let G6Sn be a permutation group which has two subgroups H1 6=H2 of index
2 with G-relative Hi-invariants Fi. If F gi =±Fi for g ∈G, then F1F2 is a G-relative H3-invariant
for H3 := (H1 ∩H2) ∪ ((G \H1) ∩ (G \H2)).

Proof. An element of H1 ∩ H2 clearly stabilizes F . Therefore let h∈H3 \ H1 ∩ H2. Then
h /∈H1 ∪H2 and therefore Fh1 =−F1 and Fh2 =−F2 which gives Fh =F . This proves that F
is H3-invariant. Let g ∈G \H3. Then g ∈H1 or g ∈H2, but g /∈H1 ∩H2. Therefore F g =−F
and F is G-relative.

Even if the invariants do not satisfy F gi =±Fi, the above Lemma 5.8 can be used, since for
G//Hi = {Id, g} we see that F̃i :=Fi−F gi is a G-relative Hi-invariant with the desired property
F̃ gi =−F̃i.

In the more general situation we can still use the field theoretic view to combine information
from two (or more) subgroups. Assume G<Sn has two subgroups Hi<G (i= 1, 2) with
G-relative Hi-invariants Fi, set H12 :=H1 ∩ H2 and Ci := CoreG(Hi) for i∈{1, 2, 12}. Then
for any maximal subgroup C12<H3<G a G-relative H3 invariant can be constructed by any
of the following methods from Fi, (i= 1, 2) and a G/C12-relative H3/C12-invariant. Also, set
K :=Q(X)G.

(1) Intransitive construction. Let H̃i be the permutation representation of G on G//Hi,
i∈{1, 2, 12}. We consider the subdirect product H̃1 ×H12

H̃2
∼= H̃12

∼=G/C12. The maximal

subgroup H3<G corresponds to a maximal subgroup H̃3<H̃12. Let F be an invariant for this
pair, then F ([F s1 : s∈G//H1], [F s2 : s∈G//H2]) is a G-relative H3-invariant.

(2) Transitive construction. By the primitive element theorem, we can find an invariant Fi,
i= 1, 2, such that K(Fi) =Q(X)Ci . Again, by the primitive element theorem, we find some
r such that F1 + rF2 is primitive for Q(X)C12 . From here it is straight forward to obtain an
invariant for H3 as a polynomial in F1 + rF2.

In general, this is only applicable if the indices of the groups in question are small. In
particular, the transitive construction is mainly of interest for normal subgroups.

6. Intransitive groups

The Stauduhar algorithm works for intransitive groups (from reducible polynomials) in the
same way as it does for transitive groups (from irreducible polynomials). Let f ∈Q[x] be a
squarefree polynomial of degree n. Assume that f = f1 . . . fr ∈Q[x] has r factors of degree
ni = deg fi. Then we know that Gal(f) is a subgroup of the intransitive group Sn1 × . . . ×
Snr 6Sn. Using the methods for irreducible polynomials we can compute the Galois groups
Gi := Gal(fi)6Sni . Then Gal(f)6G1 × . . .×Gr 6Sn. This direct product can be used as a
starting group of our algorithm.

In order to simplify the presentation, let us assume that Gal(f)6G1 × G2<Sn. This is
no restriction, since we do not assume that G1 or G2 are transitive. Therefore we have a
corresponding factorization f = f1f2 ∈Q[x], where we do not assume that f1, f2 are irreducible.
All groups H with Gal(f)6H 6G1×G2 have a special structure. Let us start to theoretically
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describe Gal(f). Denote by Ni the splitting field of fi. Furthermore define N to be the
compositum N1N2 and M :=N1 ∩ N2. Let U be the Galois group of M/K. Then the Galois
group of N/M is the subdirect product (fibre product) G1×UG2 with common factor group U .
Denote by φi :Gi→U the corresponding epimorphisms. Then G1 ×U G2 can be realized via

G1 ×U G2 = {(g1, g2)∈G1 ×G2 |φ1(g1) =φ2(g2)}.
Now let us consider the case that H =G1×UG2 and G=G1×G2. We note [2, Corollary 1.3]

that H is a normal subgroup of G, if and only if U is abelian. Define Vi6Gi to be the normal
subgroups such that Gi/Vi =U . Then we get the following chain of subgroups,

V1 × V2 6G1 ×U G2 6G1 ×G2.

A G1 ×G2-relative V1 × V2-invariant can be computed by using the corresponding Gi-relative
Vi-invariants defined on the components and the primitive field argument. This invariant can
be improved to a G-relative H-invariant by taking sums over elements from H//(V1 × V2).

In general, since the generic invariants are computationally bad, we would like to use special
invariants in this case as well. However, none of them work for intransitive groups, so our
only chance here is to compute a transitive representation of the larger group and then test
for special invariants in the transitive representation. Let H <G and G be intransitive. If the
G-orbits and the H-orbits differ, we get a trivial G-relative H-invariant from any H-orbit that
is no G-orbit. Hence, we assume that the orbits are the same. Similarly, we assume that the
action of G and H on the orbits agree. In this case we construct a transitive representation
φ :G→ST of G on the set T :=

∏
o∈O o where the product runs over all orbits. The image

φ(H) of H under this representation is again a subgroup of φ(G) and we can now test for
special invariants.

Lemma 6.1. Assume I ∈Z[Xt | t∈T ] is a φ(G)-relative φ(H)-invariant. Then there exist a
suitable Tschirnhausen transformation y ∈Z[x] such that

I

(
y

(∑
o∈O

Xto

) ∣∣∣∣ t∈T)
is a G-relative H-invariant.

Proof. For any fixed t∈T it is clear that
∑
o∈OXto is a primitive element for Q[Xt | t∈

T ]φ(H)/Q[Xt | t∈T ]φ(G) since all the conjugates
∑
o∈OXso , s∈T , are different.

7. Computation of Galois groups

In the previous sections we investigated a variety of special and generic constructions for
invariants. Here we are going to discuss how they can be used to compute Galois groups.

To start, let f be an irreducible monic polynomial in Z[x] and let K be an extension of Q
such that f(x) =

∏n
i=1(x− αi) with αi ∈K, that is K a fixed splitting field, not necessarily a

minimal one. We want to compute

Gal(f) := Aut(Q(α1, . . . , αn)/Q)6Sα1,...,αn .

Since we assume f to be irreducible, Gal(f) is a transitive subgroup of Sn.
Suitable choices for K are p-adic fields or the field of complex numbers. We will defer the

choice of the field until we discussed the operations we need to perform with it. Thus we
assume that (somehow) we are given a field K and the roots αi in some arbitrary but fixed
ordering.

The main algorithm will, starting with some group G>Gal(f), refine the initial guess by
considering (maximal) subgroups. Hence the first step is a good starting group.
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7.1. Starting group

Naively, obviously, Gal(f)6Sn, so G :=Sn is a valid start. However, this is very bad for the
subsequent steps as Sn has maximal subgroups of very large index.

Set E :=Q(α1) =Q(x)/f which is a number field of degree n. Using algorithms developed
by Klüners [17] (or recently van Hoeij, Klüners and Novocin [15]) it is relatively easy to find
subfields Q⊂F ⊂E, or to decide that there are no subfields. By Galois theory, the subfields
are in 1–1 correspondence to the (unknown) block systems of the (unknown) Galois group.
Thus the non-existence of subfields proves the group to be primitive.

Assume we have a non-trivial subfield F =Q(β) for β=
∑
r`α

`
1. Then B1 := {αj |

∑
r`α

`
i =∑

r`α
`
1} is the block containing α1, the other blocks are computed similarly. From here,

it is trivial to compute the wreath product WF corresponding to this block system, and
Gal(f)⊆WF . The construction can be improved if we compute the Galois group of F/Q
(and even more if we compute the group of F/E, but this is too expensive in practise). Doing
this for all subfields, we compute a suitable starting group.

If there are no subfields, hence Gal(f) is primitive, we can try to obtain a good starting group
from factoring suitable resolvent polynomials as indicated in Theorem 3.2 and Examples 3.5
and 3.6.

7.2. Stauduhar

We assume now that we have some Gal(f)6G6Sn. The next step is now to either prove that
G is the Galois group or replace it by some smaller group H. Now let H <G be maximal. If
we have subfields, we should also verify that H admits the same block systems as G, otherwise
it cannot contain the Galois group. In the following we would like to apply Corollary 3.4.

We now find a G-relative H-invariant F using any of the methods above, typically starting
with the special invariants in § 5 and, failing that, using § 4. Next, we verify that

Fσ(α) =F τ (α) if and only if στ−1 ∈H (7.1)

and compute
C := {σ ∈G//H |Fσ(α)∈Z}.

If C is non-empty, then G :=
⋂
σ∈C H

σ will be our new group.

Remark 7.1. Obviously, if (G :H) is large, this is going to be very inefficient, if not
impossible. If we have knowledge of some non-trivial element τ ∈Gal(f), coming from some
known automorphism of K, then we can aid the computation of C. Instead of G//H we only
compute

G//τH := {σ ∈G//H | τ ∈Hσ}

the so called short-coset. The actual computation of G//τH can be performed even if (G :H)
is too large to be computed [12, 4.6].

However, we do not know how to test (7.1) effectively. All we do here is to apply some
probabilistic test, that is test for some 100 cosets if the images differ and rely on an independent
proof later to justify the result.

7.3. Splitting field

Now that we have looked at the components of the algorithm, we can discuss the splitting
field. As we saw, we need to be able to quickly evaluate F (α), decide if two such evaluations
are different and, finally, test if F (α)∈Z. All of those tasks would be trivial if we could use a
purely algebraic, exact representation of a splitting field K. However, since [K :Q]># Gal(f)
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this is in general not practical. Using K =C as Stauduhar did is possible, but makes it difficult
to decide if F (α)∈Z; this would involve a careful analysis of the numerical properties of F .
By restricting the invariants to be free of division, and using a suitable p-adic field K, we can
overcome most problems, although we actually need both complex and p-adic information. We
choose a suitable prime p and compute a finite extension K of Qp. The complex information is
used to derive the p-adic precision necessary to guarantee correctness. Let 0<M be such that
|αi|6M for all complex roots αi. It is now easy to compute N such that |Fσ(α)|6N , for all
σ as we cannot align the ordering of complex and p-adic roots. Thus using a p-adic precision k
such that pk > 2N means that we can easily find (the unique) θ∈Z such that F (α) = θ mod pk

and |θ|<N .
Proving that F (α) = θ is equivalent to showing that RF (θ) = 0. Since RF ∈Z[t] and θ∈Z, we

have RF (θ)∈Z. From F (α) = θ mod pk we get pk|RF (θ), while on the other hand |RF (θ)|6
(|θ|+N)(G:H), so either RF (θ) = 0 or

pk 6 (|θ|+N)(G:H), (7.2)

so we can easily compute k large enough to prove RF (θ) = 0. Unfortunately, k=O(G :H), so
k is too large to be useful in general. Similarly to the use of short cosets (see Remark 7.1) we
apply a hybrid approach. We choose k large enough to find θ, that is k=O(logN), and rely
on a final proof step to verify the computation.

7.4. Checking unproven steps

In the case that (G :H) is huge we have two problems when we apply Corollary 3.4. On the
one hand the set G//H of coset representatives of G/H is too big and on the other hand the
needed p-adic precision depends exponentially on the index (G :H), see (7.2). In our actual
implementation we only consider the short cosets in Remark 7.1 and we replace the exponent
in (7.2) by a small number like 10. Using these two modifications we are able to do the
corresponding computations for the Stauduhar step. In order to get a mathematical proof for
our computations we have two problems. Firstly, we apply Corollary 3.4, but we cannot check
if the resolvent polynomial RF is squarefree by only considering some of its roots. Secondly,
by only using exponent 10 instead of (G :H) we cannot prove that θ is a rational integer. In
both cases the probability that we are wrong is small, but this does not give a mathematical
justification that Gal(f) is contained in a conjugate of H. In order to get this we change the
method and use Theorem 3.2 for larger degree factors A (and a different H).

For simplicity we assume we have a subgroup chain G=:H0>H1> . . .>Hr as a result of
the algorithm with only one (the first) step being unproven. We expect that Gal(f) =Hr, but
strictly, at this point we only have the following two facts: Gal(f)⊆G=H0 and if Gal(f)⊆H1,
then Gal(f) =Hr. Typically, this is the result of (H0 :H1) being too large to verify the resolvent
to be squarefree or the derived precision being too large to verify the rationality of the root.
The correctness of the other steps is dependent on the correctness of the first step. The case
of several unproven steps, due to several large indices, can be handled analogously.

We proceed as follows. We try to find a subgroup U of G such that Hr acts intransitively on
the cosets of G/U . Then we compute the resolvent polynomial RF for the group pair U 6G and
some G-relative U -invariant F . If RF is squarefree and reducible then this already proves that
Gal(f) is a proper subgroup of G. Since we expect that the Galois group is Hr we can easily
compute the elements σ1, . . . , σm ∈G which give the factor A in Theorem 3.2. Therefore we
can easily compute an approximation of the expected factor, hence, by rounding, the expected
factor in Z. Finally, we use exact trial division and then descend to a smaller subgroup of G
by using this theorem. When the stabilizer is Hi for some 16 i6 r, our computation is finished
successfully, otherwise we replace G by the stabilizer and restart this step.

https://doi.org/10.1112/S1461157013000302 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157013000302


156 c. fieker and j. klüners

It might be difficult to find a good subgroup U . Good candidates are intransitive subgroups
of G, see [12, § 5]. In Example 3.6 we used a polynomial acting on 4-sets. These r-set
polynomials have the advantage that we can compute them quickly symbolically.

7.5. Overall algorithm

To quickly summarize the overall algorithm for irreducible integral polynomials f ; we start
be factoring f modulo several primes p in order to find a prime such that the least common
multiple of the degrees of the factors is not too large (and not too small) and that f remains
squarefree, fixing such a prime to then compute approximations to the roots in the p-adic
field as well as the permutation of the roots corresponding to the Frobenius of the
p-adic field. Furthermore, if the Galois group is Sn or An, this too is typically detected just
from the degrees of the modulo p-factors. Finally, approximations to the complex roots of f
are obtained as well.

The next step, as outlined above, is to derive a suitable starting group for the Stauduhar
iteration. Here, we compute all subfields of the stem field E=Q[x]/f of f , the corresponding
block systems and the largest transitive group G admitting those blocks.

The third step is the iteration of the Stauduhar test in § 7.2 above. As a result, have a chain
of subgroups with the properties described in § 7.4 above, hence we apply those techniques to
verify the result.

7.6. Reducible polynomials

Most of the outlined method applies to reducible polynomials as well, the key difference is that
the groups occurring are naturally intransitive, which excludes most of the special invariants.
Let f =

∏
fi be squarefree and monic. We start by fixing a common splitting field K, and

computing the roots of f and the Galois groups Gi = Gal(fi)⊂Sα. Galois theory now states
that Gal f <

∏
Gi, so we restart the algorithm above with f and G :=

∏
Gi as a starting group.

We note that only subgroups H <G that project onto the full Galois groups of the factors
need to be investigated, that is, the final group is a subdirect product of the Gi.

7.7. Other fields

Most of the abstract theory described in this paper applies for all infinite ground fields as well,
hence the algorithm carries over to different applications. However, there are a few remarks in
order: the actual performance of the overall algorithm depends critically on the splitting field
chosen. In the case of p-adic fields, this is a well-studied situation with excellent algorithms
already known. In the case of Laurent-series over finite fields, occurring naturally as splitting
fields for polynomials in f ∈Fq(t)[x], the situation is similar. However, in more general fields,
good descriptions of possible splitting fields are not quite that easily obtained. In particular,
apart from efficiency considerations, the test for ‘rationality of the resolvent root’ needs to
be adapted. Finally, it should be noted that several of the ‘special invariant’ listed above will
not work in small characteristic (in particular in characteristic 2), hence the efficiency of the
method is endangered.

8. Numerical results

In order to test the procedure outlined in this paper, we applied it to the complete contents
of a database of polynomials [19] with known Galois groups (http://galoisdb.math.upb.de).
This database contains explicit examples, sometimes many, for most groups of degree 623. For
more than 106 polynomials, a total of 4835 different Galois groups have been computed. In
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this range, for 4624 groups the average runtime was less than 5 s. Only five groups took more
than 30 s to compute.

Let us look at an explicit example in detail. Let

f :=x20 − 308x16 + 33 396x12 − 1 554 608x8 + 28 579 232x4 − 113 379 904

with Galois group 20T684 of order 61 440. We start by factoring f modulo several small
primes to select p= 89 for our splitting field which is an unramified cubic extension of Q89.
Next, subfields are computed, and we recurse by computing the Galois group of the degree 10
subfield first. Using the subfield data, we conclude that the Galois group of f is a subgroup of
20T992 of order 217 ·3·5. This group has six maximal transitive subgroups, of which only one is
a candidate for the target groups, the others can be excluded by block systems or intersections
with other known groups. The only group to test further is isomorphic to 20T807 of index
24; for this pair of groups we construct a special invariant using § 5.6. The group 20T807
now has eight maximal transitive subgroups, two of which we need to test further. For both
subgroups, both isomorphic to 20T684 of index 2, our algorithm fails to find special invariants,
thus uses the generic ones from § 4. Unfortunately, on evaluation of those invariants, we detect
duplicate values, hence have to resort to Tschirnhaus transformation. In this example, we end
up trying up to ten different transformations of degree up to 7 before we find one to remove the
duplicate values, hence makes the resultant squarefree and a descent is found. The resulting
group again has four maximal transitive subgroups, none of which however are possible, thus
the computation terminates. The ‘long’ runtime here is a result of the generic invariants on
the one hand and the need for Tschirnhaus transformations on the other. By construction, the
generic invariants chosen are of minimal degree but need >500 000 multiplications for a single
evaluation. Due partly to the Tschirnhaus transformations, a p-adic precision of >60 digits is
used which then explains the runtime.

Comparing this to other polynomials with the same group, we see that the runtime varies
substantially (20–240 s) which is due to the number of Tschirnhaus transformations used:
this depends on the polynomials and not (directly) on the group. In this example, the ‘nice’
structure of the polynomial with lots of zero coefficients indirectly causes the transformations,
while we could ‘easily’ fix this by a transformation of the original polynomial, this would also
incur a drastic growth of the coefficients, thus rendering this mostly useless.

Overall, the runtime can be seen to depend mainly on the groups as this determines the
invariants and the descent tree transversed. Long runtimes typically are the result of bad
invariants (generic invariants, frequently if the groups are very similar, that is small index).
Large index subgroups, while posing a potential problem for the verification, are frequently
easy to compute with: the short cosets reduce the number of candidates dramatically and the
vastly differing groups make finding of invariants easy.

9. Future work

The algorithm, as presented here, has two major weaknesses: it needs to find ‘good’ invariants
and it ‘needs’ a small index in order to have verifiable results. Thus more work is needed
to increase the number of ‘special’ invariants. In fact, work in this direction has already
commenced, for example Elsenhans [10] found better invariants for pairs of intransitive groups
and for certain (large) pairs of 2-groups. In order to address the verification problem, maybe
the use of non-linear factors of the resolvent polynomials as demonstrated in Example 3.5
should be investigated further.

However, as of now, we have a degree independent complete algorithm to compute Galois
groups of univariate polynomials. The algorithm is very efficient and has been used on
polynomials of degree >100 already.
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