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Abstract

Let � be a connected closed region with smooth boundary contained in the d-dimensional
continuous torus T

d . In the discrete torus N−1
T

d
N , we consider a nearest-neighbor

symmetric exclusion process where occupancies of neighboring sites are exchanged at
rates depending on � in the following way: if both sites are in � or �c, the exchange rate
is 1; if one site is in � and the other site is in �c, and the direction of the bond connecting
the sites is ej , then the exchange rate is defined as N−1 times the absolute value of the inner
product between ej and the normal exterior vector to ∂�. We show that this exclusion-
type process has a nontrivial hydrodynamical behavior under diffusive scaling and, in the
continuum limit, particles are not blocked or reflected by ∂�. Thus, the model represents
a system of particles under hard-core interaction in the presence of a permeable membrane
which slows down the passage of particles between two complementary regions.
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1. Introduction

The exclusion process is a continuous-time interacting particle system where particles move
as independent random walks on a graph except for the exclusion rule that prevents two particles
from occupying the same site, or vertex. In the symmetric case, the process evolves as follows:
to each bond we associate a waiting exponential time, which is independent of the waiting time
for any other bond; at the waiting time the occupancies of the sites connected by the bond
are exchanged; the parameter of the exchange times, or exchange rate, depends only on the
bond. The specification of the exchange rates determines the environment for the exclusion
process. In our case, as the underlying graph, we consider the discrete torus with Nd points
and nearest-neighbor bonds. The variable N is the scaling parameter.

In this paper we study the hydrodynamical behavior of symmetric exclusion processes in
nonhomogeneous environments, where the nonhomogeneity is due to the presence of slow
bonds. While a usual bond has exchange rate 1, a slow bond has a lower exchange rate. With
respect to the scaling parameter, we assume that a slow bond has an exchange rate of the
order N−1.
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When the environment is homogeneous, the exclusion process has a well-known hydrody-
namical behavior under diffusive scaling. Results in nonhomogeneous environments have been
obtained in several cases, even when the environment is random and consists of only slow bonds.
For one-dimensional processes, in [5], the exchange rate over a bond [x/N, (x + 1)/N ] is given
by [N(W(x + 1/N)−W(x/N))]−1, where W is an α-stable subordinator of a Lévy process.
Faggionato et al. [5] obtained a quenched hydrodynamic limit. In papers previous to [5], for
example [3] and [9], the randomness or nonhomogeneity did not survive in the continuum
limit. Another one-dimensional result, following [5], was obtained in [6], for more general, but
nonrandom, increasing functions W . The techniques used in those papers were strongly based
on theorems about the convergence of one-dimensional continuous-time stochastic processes.
In fact, even the d-dimensional case treated in [10] considered a class of nonhomogeneous
environments that could be decomposed, in a proper sense, into d one-dimensional cases.
Recently, different approaches have been examined to deal with d-dimensional environments;
see [4] and [7].

We now describe the exclusion processes that we are concerned with. Let {ej : j =
1, . . . , d} be the canonical basis of R

d and � ⊂ T
d be a simple connected region with smooth

boundary ∂�. If the bond [x/N, (x + ej )/N ] ∈ N−1
T

d
N has vertices in each of the regions

� and �c, its exchange rate is defined as N−1 times the absolute value of the inner product
between ej and the normal exterior vector to ∂�. For others edges, the exchange rate is defined
as 1. This means that the slow bonds are among those crossing the boundary of �. We call this
process the exclusion process with slow bonds over ∂�.

We can interpret ∂� as a permeable membrane, which slows down the passage of particles
between the regions � and �c. For this type of exclusion process, the membrane does not
completely prevent the passage of particles, and still survives in the continuum limit, appearing
explicitly in the hydrodynamic equation. The exchange rate of particles for a bond crossing
∂� is smaller if the bond is close to a tangent line of ∂�. Note that this assumption has
a physical meaning; consider, for example, cases of reflections in several physical models:
the partial reflection of light crossing a medium with different refractive indices, mechanical
systems where particles try to cross some interface, etc. However, the direction of the velocity
of particles is not changed as usually occurs in physical reflection. Our definition of the
exchange rates also allows a strong convergence result for the empirical measures associated
to the exclusion process, making the proof of the hydrodynamic limit simpler.

The hydrodynamical equation of the exclusion process with slow bonds over ∂� is a parabolic
partial differential equation ∂tρ = L�ρ, where the operator L� is a sort of d-dimensional
Krein–Feller operator. Without the presence of slow bonds, the operator L� would be replaced
by the Laplacian operator acting on C2 functions and the hydrodynamical equation is therefore
the heat equation. Here, the existence of the membrane modifies the domain, and, thus, the
operator itself. In fact, we observe that the proper domain for L� contains functions that are
discontinuous over ∂�. Geometrically, L� glues the discontinuity of a function around ∂�

and then behaves like the Laplacian.
One possible approach to prove the hydrodynamic limit for the exclusion process with slow

bonds over ∂� is through gamma convergence. In [7], this approach and the conditions for it to
hold were discussed; see also [3]. There, the coersiveness condition would require some kind of
Rellich–Kondrachov’s theorem (namely, the compact embedding in L2 of some sort of Sobolev
space supporting an extension of L�; see [2, p. 272]). In the method presented here, we go
in this direction, but instead of reaching the hypotheses of [7], we use similar analytical tools
in order to obtain a short and simple proof of the uniqueness of the hydrodynamic equation.
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We also show that the extension of L� satisfies the Hille–Yoshida theorem. On the other hand,
the convergence from discrete to continuous that we present here is made in a very direct way,
and it was inspired by the convergence of the discrete Laplacian to the continuous Laplacian.

The paper is presented as follows. In Section 2 we define the model and state all results
contained in the paper; Section 3 is devoted to proving results concerning the continuous
operator L�; in Section 4, the hydrodynamic limit is proved.

2. Notation and results

Let Td be the d-dimensional torus, which is [0, 1)d with periodic boundary conditions, and let
T

d
N be the discrete torus with Nd points, i.e. {0, . . . , N−1}d with periodic boundary conditions.

We denote by η = (η(x))x∈Td
N

a typical configuration in the state space �N = {0, 1}Td
N , for

which η(x) = 0 means that site x is vacant and η(x) = 1 means that site x is occupied. If a
bond of N−1

T
d
N has vertices x/N and y/N , it will be denoted by [x/N, y/N ].

Recall that {ej : j = 1, . . . , d} is the canonical basis of R
d . The symmetric nearest-neighbor

exclusion process with exchange rates ξN
x,y > 0, x, y ∈ T

d
N , |x − y| = 1, is a Markov process

with configuration space �N , whose generator LN acts on functions f : �N → R as

(LNf )(η) =
∑

x∈Td
N

d∑
j=1

ξN
x,x+ej

[f (ηx,x+ej )− f (η)],

where ηx,x+ej is the configuration obtained from η by exchanging the variables η(x) and
η(x + ej ):

(ηx,x+ej )(y) =

⎧⎪⎨
⎪⎩

η(x + ej ) if y = x,

η(x) if y = x + ej ,

η(y) otherwise.

Let νN
α , α ∈ [0, 1], be the Bernoulli product measure �N , i.e. the product measure whose

marginals have Bernoulli distribution with parameter α. Then {νN
α : 0 ≤ α ≤ 1} is a family of

invariant, in fact reversible, measures for any symmetric exclusion process.
Now, fix a simple connected region � ⊂ T

d with smooth boundary ∂�. Denote by �ζ (u)

the normal unitary exterior vector to the smooth surface ∂� in the point u ∈ ∂�. If x/N ∈ �

and (x + ej )/N ∈ �c, or x/N ∈ �c and (x + ej )/N ∈ �, we define �ζx,j as a vector �ζ (u)

evaluated at an arbitrary but fixed point u ∈ ∂�∩ [x, x+ ej ]. The exclusion process with slow
bonds over ∂� is a symmetric nearest-neighbor exclusion process with exchange rates

ξN
x,x+ej

= ξN
x+ej ,x =

⎧⎪⎪⎨
⎪⎪⎩
|�ζx,j · ej |

N
if x/N ∈ � and (x + ej )/N ∈ �c,

or x/N ∈ �c and (x + ej )/N ∈ �,

1 otherwise,

(2.1)

for j = 1, . . . , d and every x ∈ T
d
N . In this case, the exchange rate of a bond crossing the

boundary ∂� is also of order N−1, but it depends on the angle of incidence: the crossing of
∂� by a particle becomes less frequent as the direction of entrance gets closer to the tangent
plane to the surface ∂�. For a picture illustrating ideas, see Figure 1.

From now on, the rates in the definition of LN will always be given by (2.1). Denote by
{ηN

t : t ≥ 0} a Markov process with state space �N and generator LN speeded up by N2.
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Figure 1: The darker region corresponds to �. The thick lines represent bonds with exchange rates
|�ζx,j · ej |/N ; any other bond has exchange rate 1.

Let D(R+, �N) be the Skorokhod space of càdlàg trajectories (those that are continuous from
the right with left limits) taking values in �N . For a measure µ on �N , denote by PN

µ the
probability measure on D(R+, �N) induced by the initial state µ and the Markov process
{ηN

t : t ≥ 0}. The expectation with respect to PN
µ is going to be denoted by EN

µ .
A sequence of probability measures {µN : N ≥ 1} is said to be associated to a profile

γ : Td → [0, 1] if µN is a probability measure on �N for every N , and

lim
N→∞µN

{∣∣∣∣ 1

Nd

∑
x∈Td

N

H

(
x

N

)
η(x)−

∫
H(u)γ (u) du

∣∣∣∣ > δ

}
= 0 (2.2)

for every δ > 0, and every continuous function H : Td → R.
The exclusion process with slow bonds over ∂� has a related random walk on N−1

T
d
N that

describes the evolution of the system with a single particle. Thus, particles in the exclusion
process evolve independently as such a random walk except for the hard-core interaction. To
simplify notation later, we introduce here the generator of this random walk, which is given by

(LNH)

(
x

N

)
=

d∑
j=1

{
ξN
x,x+ej

[
H

(
x + ej

N

)
−H

(
x

N

)]
+ξN

x,x−ej

[
H

(
x − ej

N

)
−H

(
x

N

)]}
(2.3)

for every H : N−1
T

d
N → R and every x ∈ T

d
N . We will not differentiate between the notation

for functions H defined on T
d and on N−1

T
d
N .

2.1. The operator L�

Here we define the operator L� and state its main properties. First, its domain is defined
as a set of functions that are two times continuously differentiable inside and outside �, and
satisfy some additional conditions related to their behavior at ∂�. Such conditions are imposed
in order to have good properties of L� that allows us to conclude the uniqueness of solutions of
the hydrodynamic equation, and obtain a strong convergence result for the empirical measures
in the proof of the hydrodynamic limit. The necessity of these conditions will be made clear
later.
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Definition 2.1. Recall that �ζ denotes the normal exterior vector to the surface ∂�. The domain
D� ⊂ L2(Td) will be the set of functions H ∈ L2(Td) such that H(u) = h(u) + λ1�(u),
where

(a) λ ∈ R;

(b) h ∈ C2(Td);

(c) ∇h|∂�(u) = −λ�ζ (u).

Now, we define the operator L� : D�→ L2(Td) by L�H = h.

Geometrically, the operator L� removes the discontinuity around the surface ∂� and then
acts like the Laplacian operator.

Remark 2.1. It is not entirely obvious why there exist functions h ∈ C2(Td) such that
∇h|∂�(u) = −λ�ζ (u) for λ �= 0. For an example of such a function, consider g : Td → R

defined by

g(u) =
{

λ dist (u, ∂�) if u ∈ �c,

−λ dist (u, ∂�) if u ∈ �.

Since ∂� has no self intersection and is smooth, it is simple to check that there exists a
sufficiently small ε > 0 such that

V = {u ∈ T
d : dist(u, ∂�) < ε}

has a smooth boundary and without self intersection. Thus, the function g is smooth in the
open neighborhood V of ∂�, and satisfies the condition that ∇g|∂�(u) = −λ�ζ (u). However,
g is not differentiable in the space T

d . To solve this problem, it is enough to multiply g by∑
i �i , where {�i} is a partition of unity such that the support of any �i is contained in V and∑
i �i(u) = 1 for all u ∈ U ⊂ V , where U is an open set containing ∂�. Finally, the function

h(u) = g(u)
∑

i

�i(u)

satisfies the required conditions.

For the next result, we need to introduce some notation. We denote by I the identity operator
in L2(Td), and by 〈〈·, ·〉〉 and ‖ · ‖ its usual inner product and norm:

〈〈f, g〉〉 =
∫

Td

f (u)g(u) du and ‖f ‖ = √〈〈f, f 〉〉, f, g ∈ L2(Td).

Theorem 2.1. There exists a Hilbert space (H1
�, 〈〈·, ·〉〉1,�) which is compactly embedded in

L2(Td) such that D� ⊂ H1
� and L� can be extended to L� : H1

� → L2(Td) in such a way
that the extension enjoys the following properties.

(a) The domain H1
� is dense in L2(Td).

(b) The operator L� is self-adjoint and nonpositive: 〈〈H,−L�H 〉〉 ≥ 0 for all H in H1
�.

(c) The operator I−L� : H1
�→ L2(Td) is bijective and D� is a core for it.

(d) The operator L� is dissipative, i.e.

‖µH −L�H‖ ≥ µ‖H‖
for all H ∈ H1

� and µ > 0.
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(e) The eigenvalues of −L� form a countable set 0 = µ0 ≤ µ1 ≤ · · · with limn→∞ µn =
∞, and all these eigenvalues have finite multiplicity.

(f) There exists a complete orthonormal basis of L2(Td) composed of eigenvectors of−L�.

In view of (a), (c), and (d), by the Hille–Yoshida theorem, L� is the generator of a strongly
continuous contraction semigroup in L2(Td).

The space H1
� will be defined in Section 3. The name has been chosen in analogy to the

notation used for Sobolev spaces.

2.2. The hydrodynamic equation

Consider a bounded Borel measurable profile ρ0 : Td → R. A bounded function ρ : R+ ×
T

d → R is said to be a weak solution of the parabolic differential equation

∂tρ = L�ρ, ρ(0, ·) = ρ0(·) (2.4)

if, for all functions H in H1
� and all t > 0, ρ satisfies the integral equation

〈〈ρt , H 〉〉 − 〈〈ρ0, H 〉〉 −
∫ t

0
〈〈ρs, L�H 〉〉 ds = 0,

where we use the notation ρt for ρ(t, ·). We prove in Subsection 4.3 the uniqueness of weak
solutions of (2.4). Existence follows from the convergence result for the empirical measures
associated to the diffusively rescaled exclusion processes with slow bonds over �; this is
discussed in Section 4. Here we do not use time-dependent test functions as usual in the
definition of the weak solution, but we have a well-posed problem and we do not need a
solution in a stronger sense to prove the hydrodynamic limit which is the next stated theorem.

Theorem 2.2. Fix a Borel measurable initial profile γ : Td → [0, 1] and consider a sequence
of probability measures µN on �N associated to γ . Then, for any t ≥ 0,

lim
N→∞PN

µN

[∣∣∣∣ 1

Nd

∑
x∈Td

N

H

(
x

N

)
ηt (x)−

∫
Td

H(u)ρ(t, u) du

∣∣∣∣ > δ

]
= 0

for every δ > 0 and every function H ∈ C(Td), where ρ is the unique weak solution of the
differential equation (2.4) with ρ0 = γ .

3. The operator L�

We begin by studying properties of L� defined on the domain D� and we consider the
extension afterwards.

Lemma 3.1. The domain D� is dense in L2(Td).

Proof. It is enough to prove that there exists a subset of D� which is dense in L2(Td). All
smooth functions with support contained in T

d \ ∂� belong to D�, which is clearly a dense
subset of L2(Td), since ∂� is a smooth zero Lebesgue measure surface that divides T

d \ ∂�

into two disjoint open regions.

From now on, we use �d to denote the d-dimensional Lebesgue measure on T
d .
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Lemma 3.2. The operator −L� : D� → L2(Td) is symmetric and nonnegative. Further-
more, it satisfies a Poincaré inequality, which means that there exists a finite constant C > 0
such that

‖H‖2 ≤ C〈〈−L�H, H 〉〉 +
(∫

Td

H(x) dx

)2

for all functions H ∈ D�.

Proof. Let H, G ∈ D�. Write H = h+ λh1� and G = g+ λg1�, as in Definition 2.1. By
the first Green identity and Definition 2.1(c), we have

λh

∫
�

g du = λh

∫
∂�

(∇g · �ζ ) dS

= −λhλgVold−1(∂�)

= λg

∫
∂�

(∇h · �ζ ) dS

= λg

∫
�

h du, (3.1)

where dS is an infinitesimal volume element of ∂� and Vold−1(∂�) is its (d − 1)-dimensional
volume. Thus,

〈〈H,−L�G〉〉 = 〈〈h+ λh1�,−g〉〉
= −

∫
Td

hg du− λh

∫
�

g du

= −
∫

Td

gh du− λg

∫
�

h du

= 〈〈−L�H, G〉〉.
For the nonnegativeness, using (3.1),

〈〈H,−L�H 〉〉 = −
∫

Td

hh du− λh

∫
�

h du =
∫

Td

|∇h|2 du+ λ2
hVold−1(∂�) ≥ 0.

It remains to prove the Poincaré inequality. Write

‖H‖2 −
(∫

Td

H(x) dx

)2

=
∫

Td

[
H(u)−

∫
Td

H(v) dv

]2

du,

which can be rewritten as∫
Td

[(
h(u)−

∫
Td

h(v) dv

)
+ λh(1�(u)− �d(�))

]2

du.

Now apply the inequality (a + b)2 ≤ 2(a2 + b2) to the previous expression to show that it is
bounded by

2
∫

Td

(
h(u)−

∫
Td

h(v) dv

)2

du+ 2λ2
h(�d(�)− (�d(�))2).

By the usual Poincaré inequality (see [2, p. 265]), the last expression is less than or equal to

2C1

∫
Td

|∇h(u)|2 du+ 2λ2
h(�d(�)− (�d(�))2).
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Choosing a constant C2 > 0 such that �d(�) − (�d(�))2 ≤ C2Vold−1(∂�), the previous
expression is bounded above by

2 max{C1, C2}〈〈−L�H, H 〉〉,
which completes the proof with C = 2 max{C1, C2}.

Denote by 〈〈·, ·〉〉1,� the inner product on D� defined by

〈〈F, G〉〉1,� = 〈〈F, G〉〉 + 〈〈F,−L�G〉〉.
Let H1

� be the set of all functions F in L2(Td) for which there exists a sequence {Fn : n ≥ 1}
in D� such that Fn converges to F in L2(Td) and Fn is Cauchy for the inner product 〈〈·, ·〉〉1,�.
Such a sequence {Fn} is called admissible for F . For F and G in H1

�, define

〈〈F, G〉〉1,� = lim
n→∞〈〈Fn, Gn〉〉1,�, (3.2)

where {Fn} and {Gn} are admissible sequences for F and G, respectively. By [11, Proposi-
tion 5.3.3], the limit exists and does not depend on the admissible sequence chosen. Moreover,
H1

� endowed with the scalar product 〈〈·, ·〉〉1,� just defined is a real Hilbert space. From now
on, we consider H1

� with the norm induced by 〈〈·, ·〉〉1,�, unless we mention that we are going
to use the L2-norm.

Lemma 3.3. The embedding H1
� ⊂ L2(Td) is compact.

Proof. Let {Hn} be a bounded sequence in H1
�. Fix {Fn} as a sequence in D� such that

‖Fn−Hn‖ → 0 and {Fn} is also bounded in H1
�. Thus, to obtain a convergent subsequence of

{Hn}, it is sufficient to find a convergent subsequence of {Fn} in L2(Td). Write Fn = fn+λn1�,
with fn ∈ C2(Td). Then,

〈〈Fn, Fn〉〉1,� = 〈〈fn + λn1�, fn + λn1�〉〉 + 〈〈fn + λn1�,−fn〉〉.
Expanding the right-hand side and using (3.1), we obtain

〈〈Fn, Fn〉〉1,� = ‖fn‖2 + λ2
n�d(�)+ 2λn

∫
�

fn(u) du+ ‖∇fn‖2 + λ2
nVold−1(∂�),

which is greater than or equal to

‖fn‖2 + λ2
n�d(�)− λ2

n − �d(�)

∫
�

f 2
n (u) du+ ‖∇fn‖2 + λ2

nVold−1(∂�)

= (�d(�)− 1+Vold−1(∂�))λ2
n + (1− �d(�))

∫
�

f 2
n (u) du

+
∫

�c
f 2

n (u) du+ ‖∇fn‖2

≥ (Vold−1(∂�)− �d(�c))λ2
n + (1− �d(�))‖fn‖2 + ‖∇fn‖2.

If we set f̃n = fn + λn, and write Fn = f̃n − λn1�c , an analogous computation shows that
〈〈Fn, Fn〉〉1,� is greater than or equal to

(Vold−1(∂�)− �d(�))λ2
n + (1− �d(�c))‖f̃n‖2 + ‖∇f̃n‖2.
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By the classical isoperimetric inequality on the torus (see [1, Lemma 4.6] for the statement and
a direct proof), we have

max{Vold−1(∂�)− �d(�c),Vold−1(∂�)− �d(�)} > 0.

Since {〈〈Fn, Fn〉〉1,�} is a bounded sequence, we conclude that {λn} is bounded, as well as
the sequence {‖fn‖2 + ‖∇fn‖2}. By the Rellich–Kondrachov compactness theorem (see [2,
Theorem 5.7.1]), {fn} has a convergent subsequence in L2(Td). From this subsequence,
choosing a convergent subsequence of {λn} completes the proof.

Lemma 3.4. The image of I−L� : D�→ L2(Td) is dense in L2(Td).

Proof. By a similar argument to that used in the proof of Lemma 3.1, it is enough to show
that any smooth function f with support contained in T

d \ ∂� belongs to (I − L�)(D�).
Therefore, we need to find a function h in C2(Td) with support in T

d \ ∂� such that

h−h = f. (3.3)

From the classical theory of second-order elliptic equations (see, e.g. [2, Theorem 5.7.1]), there
exists h ∈ C2 satisfying (3.3).

Proof of Theorem 2.1. (a) Since D� ⊂ H1
�, it follows from Lemma 3.1 that H1

� is dense
in L2(Td).

(b) Define I − L� = A : D� → L
2(Td). From Lemma 3.2, A is linear, symmetric, and

strongly monotone on the Hilbert space L2(Td). By strongly monotone we mean that there
exists a c > 0 such that

〈〈AH, H 〉〉 ≥ c‖H‖2 for all H ∈ D�.

In this case, A satisfies the inequality above with c = 1. By [11, Theorem 5.5a], in the
conditions above, the Friedrichs extension A : H1

� → L2(T2) is self-adjoint, bijective, and
strongly monotone. With an abuse of notation, now define the extension L� : H1

�→ L2(T2) as
(I−A). Since I and A are self-adjoint in H1

�, this property is inherited by L� : H1
�→ L2(T2).

For nonpositiveness, note that

〈〈−L�H, H 〉〉 = 〈〈−(I−A)H, H 〉〉 = −〈〈H, H 〉〉 + 〈〈AH, H 〉〉 ≥ 0.

(c) As mentioned in the proof of part (b), the Friedrichs extension A : H1
�→ L2(T2) is

bijective. So it remains to show that D� is a core of A : H1
� → L2(T2). For any operator B,

denote by G(B) the graphic of B. Then D� is a core for A, if the closure of G(A|D�
)L2×L2 in

L2×L2 is equal to G(A). Since A is self-adjoint, A is a closed operator, otherwise, G(A) is a
closed set. Thus, the closure of G(A|D�

) is a subset of G(A). Let H ∈ H1
�. From Lemma 3.4,

there exists a sequence {Hn} in D� such that AHn converges to AH in L2. Hence, as proved
in [11, Theorem 5.5.a], A−1 is a bounded linear operator, and Hn converges to H in L2, from
which it follows that the closure of G(A|D�

) contains G(A).
(d) Fix a function H in H1

� and µ > 0. Set G = (µI −L�)H . Taking the inner product
with respect to H on both sides of this equality, we obtain

µ〈〈H, H 〉〉 + 〈〈−L�H, H 〉〉 = 〈〈H, G〉〉 ≤ 〈〈H, H 〉〉1/2〈〈G, G〉〉1/2.

Since H belongs to H1
�, by (b), the second term on the left-hand side is positive. Therefore,

µ‖H‖ ≤ ‖G‖ = ‖(µI−L�)H‖.
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Now we will show that (e) and (f) hold. We have seen that the operator (I−L�) : D� →
L2(T) is symmetric and strongly monotone. By Lemma 3.3, the embedding H1

� ⊂ L2(Td)

is compact. Therefore, by [11, Theorem 5.5.c], the Friedrichs extension A : H1
� → L2(Td)

satisfies claims (e) and (f) with 1 ≤ λ1 ≤ λ2 ≤ · · · , λn ↑ ∞. In particular, the operator
−L� = (A − I) has the same property with 0 ≤ µ1 ≤ µ2 ≤ · · · , µn ↑ ∞. Since 0 is an
eigenvalue of −L�, a constant function is an eigenfunction with eigenvalue 0, then (e) and (f)
also hold.

4. Scaling limit

Let M be the space of positive Radon measures on T
d with total mass bounded by 1 endowed

with the weak topology. For a measure π ∈ M and a measurable π -integrable function
H : Td → R, we denote by 〈π, H 〉 the integral of H with respect to π .

Recall that {ηN
t : t ≥ 0} denotes a Markov process with state space �N and generator LN

speeded up by N2. Let πN
t ∈M be the empirical measure at time t associated to {ηN

t : t ≥ 0},
which is the random measure in M given by

πN
t =

1

Nd

∑
x∈Td

N

ηN
t (x)δx/N , (4.1)

where δu is the Dirac measure concentrated on u.
Note that

〈πN
t , H 〉 = 1

Nd

∑
x∈Td

N

H

(
x

N

)
ηN

t (x)

for the empirical measures, and 〈π, H 〉 = 〈〈ρ, H 〉〉 for absolutely continuous measures π with
L2 bounded density ρ, and H ∈ L2(Td).

Fix T > 0. Let D([0, T ], M) be the space of M-valued càdlàg trajectories π : [0, T ] →
M endowed with the Skorokhod topology. Then, the M-valued process {πN

t : t ≥ 0} is a
random element of D([0, T ], M) whose distribution is determined by the initial distribution
of {ηN

t : t ≥ 0}. For each probability measure µ on �N , denote by Q�,N
µ the distribution of

{πN
t : t ≥ 0} on the path space D([0, T ], M), when ηN

0 has distribution µ.

Proposition 4.1. Fix a Borel measurable profile γ : Td → [0, 1], and consider a sequence
{µN : N ≥ 1} of measures on �N associated to γ in the sense of (2.2). Then there exists
a unique weak solution ρ of (2.4) with initial condition γ , and the sequence of probability
measures Q�,N

µN
converges weakly to Qγ

� as N ↑ ∞, where Qγ
� is the probability measure on

D([0, T ], M) concentrated on the deterministic path π(t, du) = ρ(t, u) du.

It is straightforward to obtain Theorem 2.2 as a corollary of the previous proposition. The
proof of Proposition 4.1 follows directly from the uniqueness of weak solutions of (2.4), proved
in Subsection 4.3, and the next two results.

Proposition 4.2. For any sequence {µN : N ≥ 1} of probability measures with µN concen-
trated on �N , the sequence of measures {Q�,N

µN
: N ≥ 1} is tight.

Proposition 4.3. Fix a Borel measurable profile γ : Td → [0, 1], and consider a sequence
{µN : N ≥ 1} of probability measures on �N associated to γ in the sense of (2.2). Then
any limit point of Q�,N

µN
is concentrated on absolutely continuous trajectories that are weak

solutions of (2.4) with initial condition γ .
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Proof of Proposition 4.1. By Proposition 4.2, the set of measures {Q�,N
µN
: N ≥ 1} is tight.

Since the Skorokhod space D([0, T ], M) is Polish, by Prohorov’s theorem, tightness is equiva-
lent to relative compactness (for the weak convergence). By the relative compactness, in order
to prove the convergence of the sequence (Q�,N

µN
)N≥1 to the probability measure Qγ

�, it is
enough to show that any convergent subsequence of (Q�,N

µN
)N≥1 has limit equal to Qγ

�. Let Q∗
be a limit of a convergent subsequence. By Proposition 4.3, Q∗ is concentrated on trajectories
π(t, du) = ρ(t, u) du such that ρ(t, u) is a weak solution of (2.4) with initial condition γ . The
uniqueness of weak solutions of (2.4) proved in Subsection 4.3 implies that Q∗ = Qγ

�.

In Subsection 4.1, we prove Proposition 4.2 and in Subsection 4.2 we prove Proposition 4.3.
As a consequence, we have the existence of solutions of (2.4) with initial condition γ . We
complete the proof in Subsection 4.3, showing the uniqueness of weak solutions of (2.4).

4.1. Tightness

Here we prove Proposition 4.2. Let D([0, T ], R) be the space of R-valued càdlàg trajectories
with domain [0, T ] endowed with the Skorokhod topology. To prove the tightness of {πN

t : 0 ≤
t ≤ T } in D([0, T ], M), it is enough to show tightness in D([0, T ], R) of the real-valued
processes {〈πN

t , H 〉 : 0 ≤ t ≤ T } for a set of functions H : Td → R which is dense in the
space of continuous real functions on T

d endowed with the uniform topology; see [8, p. 54].
Furthermore, if a sequence of distributions in D([0, T ], R) endowed with the uniform topology
is tight, then it is also tight in D([0, T ], R) endowed with the Skorokhod topology. Here we
prove the tightness of {〈πN

t , H 〉 : 0 ≤ t ≤ T } in D([0, T ], R), endowed with the uniform
topology, for H ∈ C2(Td).

Fix H ∈ C2(Td). By definition, {〈πN
t , H 〉 : 0 ≤ t ≤ T } is tight in D([0, T ], R) endowed

with the uniform topology if, for the boundedness,

lim
m→∞ sup

N

PN
µN

[
sup

0≤t≤T

|〈πN
t , H 〉| > m

]
= 0 (4.2)

and, for the equicontinuity,

lim
δ→0

lim sup
N→∞

PN
µN

[
sup
|t−s|≤δ

|〈πN
t , H 〉 − 〈πN

s , H 〉| > ε
]
= 0 for all ε > 0. (4.3)

The limit in (4.2) is trivial since

|〈πN
t , H 〉| ≤ sup

u∈Td

|H(u)|.

So we need to only prove (4.3). By Dynkyn’s formula (see the appendix of [8]),

MN
t = 〈πN

t , H 〉 − 〈πN
0 , H 〉 −

∫ t

0
N2LN 〈πN

s , H 〉 ds

is a martingale. By the previous expression, (4.3) follows from

lim
δ→0

lim sup
N→∞

PN
µN

[
sup
|t−s|≤δ

|MN
t −MN

s | > ε
]
= 0 for all ε > 0,

and

lim
δ→0

lim sup
N→∞

PN
µN

[
sup

0≤t−s≤δ

∣∣∣∣
∫ t

s

N2LN 〈πN
r , H 〉 dr

∣∣∣∣ > ε

]
= 0 for all ε > 0.
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Indeed, we show the stronger results below:

lim
δ→0

lim sup
N→∞

EN
µN

[
sup
|t−s|≤δ

|MN
t −MN

s |
]
= 0 (4.4)

and

lim
δ→0

lim sup
N→∞

EN
µN

[
sup

0≤t−s≤δ

∣∣∣∣
∫ t

s

N2LN 〈πN
r , H 〉 dr

∣∣∣∣
]
= 0. (4.5)

To verify (4.4), we use the quadratic variation of MN
t that we denote by 〈MN

t 〉. By Doob’s
inequality, we have

EN
µN

[
sup
|t−s|≤δ

|MN
t −MN

s |
]
≤ 2 EN

µN

[
sup

0≤t≤T

|MN
t |

]

≤ 2 EN
µN

[
sup

0≤t≤T

|MN
t |2

]1/2

≤ 4 EN
µN [〈MN

T 〉]1/2.

Since

〈MN
t 〉 =

∫ t

0
N2[LN 〈πN

s , H 〉2 − 2〈πN
s , H 〉LN 〈πN

s , H 〉] ds,

we obtain, by a straightforward computation,

〈MN
t 〉 =

∫ t

0
N2

d∑
j=1

∑
x∈Td

N

ξN
x,x+ej

1

N2d

[
(ηs(x)− ηs(x+ ej ))

(
H

(
x + ej

N

)
−H

(
x

N

))]2

ds.

Therefore, since ξN
x,x+ej

≤ 1,

〈MN
t 〉 ≤

T

N2d−2

d∑
j=1

∑
x∈Td

N

ξN
x,x+ej

[
H

(
x + ej

N

)
−H

(
x

N

)]2

≤ T d

Nd

(
sup
u∈Td

|∇H(u) · ej |
)2

. (4.6)

Thus, MN
t converges to 0 in L2 and (4.4) holds.

We complete the proof by verifying (4.5). Write

N2LN 〈πN
s , H 〉 = 1

Nd−2

d∑
j=1

∑
x∈Td

N

ξN
x,x+ej

(ηs(x)− ηs(x + ej ))

(
H

(
x + ej

N

)
−H

(
x

N

))

= 1

Nd−2

d∑
j=1

∑
x∈Td

N

ηs(x)

[
ξN
x,x+ej

(
H

(
x + ej

N

)
−H

(
x

N

))

+ ξN
x,x−ej

(
H

(
x − ej

N

)
−H

(
x

N

))]
.
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Define �N ⊂ T
d
N as the set of vertices that have some adjacent edge with exchange rate not

equal to 1. Then N2LN 〈πN
s , H 〉 is equal to the sum of

1

Nd−2

d∑
j=1

∑
x /∈�N

ηs(x)

[
H

(
x + ej

N

)
+H

(
x − ej

N

)
− 2H

(
x

N

)]
(4.7)

and

1

Nd−2

d∑
j=1

∑
x∈�N

ηs(x)

[
ξN
x,x+ej

(
H

(
x + ej

N

)
−H

(
x

N

))

+ ξN
x,x−ej

(
H

(
x − ej

N

)
−H

(
x

N

))]
. (4.8)

By the Taylor expansion (note that H ∈ C2), the absolute value of the summand in (4.7) is
bounded by N−2 supu∈Td |H(u)|. Considering the factor N−d+2 in front of the sum, we
conclude that (4.7) is bounded in absolute value by d supu∈Td |H(u)|.

Since there are an order of Nd−1 vertices in �N , and ξx,x+ej
≤ 1, the absolute value of (4.8)

is bounded by

1

Nd−2

d∑
j=1

∑
x∈�N

[∣∣∣∣H
(

x + ej

N

)
−H

(
x

N

)∣∣∣∣+
∣∣∣∣H

(
x − ej

N

)
−H

(
x

N

)∣∣∣∣
]

≤ 2d sup
u∈Td

|∇H(u) · ej |.

By the boundedness of (4.7) and (4.8), there exists C > 0, depending only on H , such that
|N2LN 〈πN

s , H 〉| ≤ C, which yields∣∣∣∣
∫ t

r

N2LN 〈πN
s , H 〉 ds

∣∣∣∣ ≤ C(t − r),

and (4.5) holds.

4.2. Characterization of limit points

Let γ : Td → [0, 1] be a Borel measurable profile, and consider a sequence {µN : N ≥ 1}
of measures on �N associated to γ in the sense of (2.2). We prove Proposition 4.3 in this
subsection, i.e. that all limit points Q∗ of the sequence Q�,N

µN
are concentrated on absolutely

continuous trajectories π(t, du) = ρ(t, u) du, whose density ρ(t, u) is a weak solution of the
hydrodynamic equation (2.4) with γ as an initial condition.

Let Q∗ be a limit point of the sequence Q�,N
µN

, and assume without loss of generality that
Q�,N

µN
converges to Q∗.

Since there is at most one particle per site, Q∗ is concentrated on trajectories πt (du) which
are absolutely continuous with respect to the Lebesgue measure, πt (du) = ρ(t, u) du, and
whose density ρ is nonnegative and bounded by 1; see [8, Chapter 4].

Lemma 4.1. Any limit point Q∗ of Q�,N
µN

is concentrated on absolutely continuous trajectories
πt (du) = ρ(t, u) du such that, for any H ∈ D�,

〈〈ρt , H 〉〉 − 〈〈γ, H 〉〉 =
∫ t

0
〈〈ρs, L�H 〉〉 ds. (4.9)
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By this lemma we can prove Proposition 4.3.

Proof of Proposition 4.3. It just remains to extend equality (4.9) to functions H ∈ H1
�. By

Theorem 2.1, the set D� is a core for the Friedrichs extension I−L� : H1
�→ L2(Td). Thus,

for any H ∈ H1
�, there exists a sequence Hn ∈ D� such that Hn → H and (I −L�)Hn →

(I −L�)H , both in L2(Td). This implies that L�Hn → L�H in L2(Td). Replacing Hn in
equality (4.9), and taking the limit as n→∞ completes the proof.

The remainder of this section is devoted to the proof of Lemma 4.1. Fix a function H ∈ D�,
and define the martingale MN

t by

〈πN
t , H 〉 − 〈πN

0 , H 〉 −
∫ t

0
N2LN 〈πN

s , H 〉 ds. (4.10)

We claim that, for every δ > 0,

lim
N→∞PN

µN

[
sup

0≤t≤T

|MN
t | > δ

]
= 0. (4.11)

For H ∈ C2, this follows from the Chebyshev inequality and the estimates given in the proof
of the tightness, where we showed that

lim
N→∞EN

µ

[
sup

0≤t≤T

|MN
t |

]
≤ lim

N→∞EN
µ

[
sup

0≤t≤T

〈MN
t 〉

]1/2 = 0. (4.12)

For H = h+ λ1� in D�, the first inequality in (4.6) is still valid and

〈MN
t 〉 ≤

T

N2d−2

d∑
j=1

∑
x∈Td

N

ξN
x,x+ej

[
H

(
x + ej

N

)
−H

(
x

N

)]2

= T

N2d−2

d∑
j=1

∑
x /∈�N

[
h

(
x + ej

N

)
− h

(
x

N

)]2

(4.13)

+ T

N2d−2

d∑
j=1

∑
x∈�N

ξN
x,x+ej

[
H

(
x + ej

N

)
−H

(
x

N

)]2

, (4.14)

where �N is also defined in the proof of the tightness. Expression (4.13) goes to 0 as N increases,
since the function h is Lipschitz. For the expression in (4.14), let x ∈ �N . If x/N ∈ � and
(x + ej )/N ∈ �c, then ξN

x,x+ej
≤ 1/N . The same holds if x/N ∈ �c and (x + ej )/N ∈ �.

If x/N, (x + ej )/N both belong to � or �c, the exchange rate ξN
x,x+ej

is 1, but∣∣∣∣H
(

x + ej

N

)
−H

(
x

N

)∣∣∣∣ =
∣∣∣∣h

(
x + ej

N

)
− h

(
x

N

)∣∣∣∣ ≤ 1

N
sup
u∈Td

|∇H(u) · ej |.

In both cases, expression (4.14) is of the order O(N−d). Therefore, from (4.12), we obtain
(4.11).

The next step is to show that we can replace N2
LN by the continuous operator L� in the

martingale formula (4.10) and that the resulting expression still converges to 0 in probability.
This will follow from the ensuing proposition. Recall the definition of LN given in (2.3).
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Proposition 4.4. For any H ∈ D�,

lim
N←∞

1

Nd

∑
x∈Td

N

∣∣∣∣N2
LNH

(
x

N

)
−L�H

(
x

N

)∣∣∣∣ = 0. (4.15)

Proof. As usual, set H = h+ λ1�, where h ∈ C2(Td). Rewrite the sum in (4.15) as

1

Nd

∑
x /∈�N

∣∣∣∣N2
LNH

(
x

N

)
−L�H

(
x

N

)∣∣∣∣+ 1

Nd

∑
x∈�N

∣∣∣∣N2
LNH

(
x

N

)
−L�H

(
x

N

)∣∣∣∣.
The first term above is equal to

1

Nd

∑
x /∈�N

∣∣∣∣N2
(

h

(
x + ej

N

)
+ h

(
x − ej

N

)
− 2h

(
x

N

))
−h

(
x

N

)∣∣∣∣,
which converges to 0 because h ∈ C2. The second term is less than or equal to the sum of

1

Nd

∑
x∈�N

∣∣∣∣h

(
x

N

)∣∣∣∣ (4.16)

and

1

Nd−1

∑
x∈�N

d∑
j=1

∣∣∣∣NξN
x,x+ej

(
H

(
x + ej

N

)
−H

(
x

N

))
+NξN

x,x−ej

(
H

(
x − ej

N

)
−H

(
x

N

))∣∣∣∣.
(4.17)

Since there are O(Nd−1) terms in �N , the expression in (4.16) converges to 0 as N → ∞.
Since ∂� is smooth, the quantity of points x ∈ �N for which ξN

x,x+ej
�= 1 and ξN

x,x−ej
�= 1

is negligible. Therefore, we must only worry about points x ∈ �N such that, for some j ,
only one of ξN

x,x+ej
and ξN

x,x−ej
is of order N−1. This occurs in one of the following four

cases: x/N ∈ �, (x − ej )/N ∈ �, and (x + ej )/N ∈ �c; x/N ∈ �, (x − ej )/N ∈ �c,
and (x + ej )/N ∈ �; x/N ∈ �c, (x − ej )/N ∈ �, and (x + ej )/N ∈ �c; x/N ∈ �c,
(x − ej )/N ∈ �c, and (x + ej )/N ∈ �. The analysis of these cases are analogous; thus we
consider only the first case. Suppose that x/N ∈ �, (x − ej )/N ∈ �, and (x + ej )/N ∈ �c.
In this case, the summand in (4.17) can be rewritten as

NξN
x,x+ej

(
H

(
x + ej

N

)
−H

(
x

N

))
+NξN

x,x−ej

(
H

(
x − ej

N

)
−H

(
x

N

))

= |�ζx,j · ej |
[
H

(
x + ej

N

)
−H

(
x

N

)]
+N

[
H

(
x − ej

N

)
−H

(
x

N

)]
,

which becomes uniformly (in x ∈ �N ) close to

−λ|�ζx,j · ej | sgn(�ζx,j · ej )− ∂h

∂uj

(
x

N

)
= −λ�ζx,j · ej − ∂h

∂uj

(
x

N

)
.

The condition ∇h|∂�(u) = −λ�ζ (u), which was imposed in the definition of D�, implies that

lim
N→∞NξN

x,x+ej

(
H

(
x + ej

N

)
−H

(
x

N

))
+NξN

x,x−ej

(
H

(
x − ej

N

)
−H

(
x

N

))
= 0.

Therefore, the terms in (4.17) converge uniformly to 0, and the same holds for the whole sum.
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Corollary 4.1. For H ∈ D� and every δ > 0,

lim
N→∞Q�,N

µN

[
sup

0≤t≤T

∣∣∣∣〈πN
t , H 〉 − 〈πN

0 , H 〉 −
∫ t

0
〈πN

s , L�H 〉 ds

∣∣∣∣ > δ

]
= 0.

Proof. By a simple calculation, the martingale defined in (4.10) can be rewritten as

MN
t = 〈πN

t , H 〉 − 〈πN
0 , H 〉 −

∫ t

0
〈πN

s , N2
LNH 〉 ds.

The result follows from Proposition 4.4 and (4.11).

At this point we have all the ingredients needed to prove Lemma 4.1, which says that, under
Q∗, with probability 1, (4.9) holds for any H ∈ D�. In order to prove this, it is enough to show
that, for any δ > 0 and any H ∈ D�,

Q∗
[

sup
0≤t≤T

∣∣∣∣〈πt , H 〉 − 〈π0, H 〉 −
∫ t

0
〈πs, L�H 〉 ds

∣∣∣∣ > δ

]
= 0. (4.18)

So let H be a fixed function in D�. The idea to estimate the probability in (4.18) is to apply
Portmanteau’s theorem to replace Q∗ by Q�,N

µN
and then use Corollary 4.1. But to obtain an

appropriate inequality we need the set{
sup

0≤t≤T

∣∣∣∣〈πt , H 〉 − 〈π0, H 〉 −
∫ t

0
〈πs, L�H 〉 ds

∣∣∣∣ > δ

}

to be open in D([0, T ], M). In order to guarantee this, we need H to be continuous, which is
not the case. To solve this problem, we use approximations of H by smooth functions.

For ε > 0, define
(∂�)ε = {u ∈ T

d; dist(u, ∂�) ≤ ε}.
Let Hε be a smooth function which coincides with H on T

d \ (∂�)ε and supTd |Hε| ≤
supTd |H |. Fix δ > 0. By the triangular inequality,

Q∗
[

sup
0≤t≤T

∣∣∣∣〈πt , H 〉 − 〈π0, H 〉 −
∫ t

0
〈πs, L�H 〉 ds

∣∣∣∣ > δ

]

≤ Q∗
[

sup
0≤t≤T

∣∣∣∣〈πt , H
ε〉 − 〈π0, H

ε〉 −
∫ t

0
〈πs, L�H 〉 ds

∣∣∣∣ >
δ

3

]

+ 2 Q∗
[

sup
0≤t≤T

|〈πt , H
ε −H 〉| > δ

3

]
. (4.19)

Recall that Q∗ is concentrated on trajectories πt (du) = ρ(t, u) du whose density ρ is
nonnegative and bounded above by 1. Then, under Q∗,

sup
0≤t≤T

|〈πt , H
ε −H 〉| ≤ sup

0≤t≤T

∫
(∂�)ε

ρ(t, u)|Hε(u)−H(u)| du

≤ 2�d((∂�)ε) sup
u∈Td

|H(u)|.
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Therefore, for small enough ε, the second probability on the right-hand side of inequality (4.19)
is null. So it remains to show that

Q∗
[

sup
0≤t≤T

∣∣∣∣〈πt , H
ε〉 − 〈π0, H

ε〉 −
∫ t

0
〈πs, L�H 〉 ds

∣∣∣∣ >
δ

3

]
= 0.

If G1, G2, and G3 are continuous functions, the application from D([0, T ], M) to R that
associates to a trajectory {πt , 0 ≤ t ≤ T } the number

sup
0≤t≤T

∣∣∣∣〈πt , G1〉 − 〈π0, G2〉 −
∫ t

0
〈πs, G3〉 ds

∣∣∣∣
is continuous in the Skorokhod metric. Note that Hε and L�H are continuous functions. By
Portmanteau’s theorem,

Q∗
[

sup
0≤t≤T

∣∣∣∣〈πt , H
ε〉 − 〈π0, H

ε〉 −
∫ t

0
〈πs, L�H 〉 ds

∣∣∣∣ >
δ

3

]

≤ lim
N→∞

Q�,N
µN

[
sup

0≤t≤T

∣∣∣∣〈πN
t , Hε〉 − 〈πN

0 , Hε〉 −
∫ t

0
〈πN

s , L�H 〉 ds

∣∣∣∣ >
δ

3

]
, (4.20)

since Q�,N
µN

converges weakly to Q∗ and the above set is open.
Now we replace Hε by H . This may be confusing to the reader; however, the previous

introduction of Hε was a necessary step in the proof. From this point, to deal with the right-
hand side of (4.20), we need Corollary 4.1. Hence, Hε should be replaced by H .

By definition,

sup
0≤t≤T

|〈πN
t , Hε −H 〉| ≤ 1

Nd

∑
x∈Td

N

∣∣∣∣Hε

(
x

N

)
−H

(
x

N

)∣∣∣∣
≤

(
�d((∂�)ε)+O

(
1

N

))
2 sup

u∈T
|H(u)|,

because Hε coincides with H in T \ (∂�)ε. Using the same argument as before, we obtain

lim
N→∞

Q�,N
µN

[
sup

0≤t≤T

∣∣∣∣〈πt , H
ε〉 − 〈π0, H

ε〉 −
∫ t

0
〈πs, L�H 〉 ds

∣∣∣∣ >
δ

3

]

≤ lim
N→∞Q�,N

µN

[
sup

0≤t≤T

∣∣∣∣〈πt , H 〉 − 〈π0, H 〉 −
∫ t

0
〈πs, L�H 〉 ds

∣∣∣∣ >
δ

9

]

+ 2 lim
N→∞Q�,N

µN

[
sup

0≤t≤T

∣∣∣∣〈πt , H
ε −H 〉

∣∣∣∣ >
δ

9

]
.

Again, for small enough ε, the second probability in the sum above is null. From Corollary 4.1
we finally conclude that (4.18) holds. Therefore, Q∗ is concentrated on absolutely continuous
paths πt (du) = ρ(t, u) du with positive density bounded by 1, and, Q∗-almost surely,

〈〈ρt , H 〉〉 − 〈〈ρ0, H 〉〉 =
∫ t

0
〈〈ρs, L�H 〉〉 ds

for any H ∈ D�. Hence, we have proved Lemma 4.1.
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4.3. Uniqueness of weak solutions

Now we prove that the solution of (2.4) is unique. It suffices to check that the only solution
of (2.4) with ρ0 ≡ 0 is ρ ≡ 0, because of the linearity of L�. Let ρ : R+×T

d → R be a weak
solution of the parabolic differential equation

∂tρ = L�ρ, ρ(0, ·) = 0.

By definition,

〈〈ρt , H 〉〉 =
∫ t

0
〈〈ρs, L�H 〉〉 ds (4.21)

for all functions H in H1
� and all t > 0. From Theorem 2.1, the operator −L� has countable

eigenvalues {µn : n ≥ 0} and eigenvectors {Fn}. All eigenvalues have finite multiplicity,
0 = µ0 ≤ µ1 ≤ · · · , and limn→∞ µn = ∞. Besides, the eigenvectors {Fn} form a complete
orthonormal system in the L2(Td). Define

R(t) =
∑
n∈N

1

n2(1+ µn)
〈〈ρt , Fn〉〉2

for all t > 0. Note that R(0) = 0 and R(t) is well defined because ρt belongs to L2(Td). Since
ρ satisfies (4.21), we have d〈〈ρt , Fn〉〉2/dt = −2µn〈〈ρt , Fn〉〉2. Then(

d

dt
R

)
(t) = −

∑
n∈N

2µn

n2(1+ µn)
〈〈ρt , Fn〉〉2,

because∑
n≤N

−2µn

n2(1+ µn)
〈〈ρt , Fn〉〉2 converges uniformly to

∑
n∈N

−2µn

n2(1+ µn)
〈〈ρt , Fn〉〉2

as N increases to ∞. Thus, R(t) ≥ 0 and (dR/dt)(t) ≤ 0 for all t > 0 and R(0) = 0.
From this, we obtain R(t) = 0 for all t > 0. Since {Fn} is a complete orthonormal system,
〈〈ρt , ρt 〉〉 = 0 for all t > 0, which implies that ρ ≡ 0.
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