BULL. AUSTRAL. MATH. SOC. VOL. 34 (1986) 219-223

THE FREE ORTHOMODULAR WORD PROBLEM IS SOLVABLE

GUDRUN KALMBACH

It is shown that the free orthomodular word problem is solvable. Since the free orthomodular lattice L_o on countably many generators has, as a partial subalgebra, every finite partial orthomodular lattice P, which is contained in some orthomodular lattice as a partial subalgebra, it is sufficient to prove Evans embedding property for these P only. The construction of the finite orthomodular lattice containing P as a partial subalgebra has and can be done outside of L_o . It uses the coatom extension for ortholattices.

In order to prove that the free orthomodular word problem is solvable, it is sufficient, by [1], to prove that every finite "partial" orthomodular lattice S can be embedded in a finite orthomodular lattice. We can assume that S is a finite suborthoposet of the free orthomodular lattice L_o on countably many generators and we shall prove that there exists a finite suborthoposet M(S) of L_o which is generated by S and M(S) is, with the induced structure, an orthomodular lattice

(Theorem 4).

Received 12 November 1985. I thank M. Dichtl, who worked for three years on this problem, for numerous discussions. I am sorry that it was not he, but I, who found a solution.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 \$A2.00 + 0.00. 219

Theorem 4 holds for all *m*-generated suborthoposets of L_{α} with

 $m \leq 2$ since the free orthomodular lattice on two generators is finite [2;3.9]. Our inductive hypothesis is:

- (A) For every *m*-generated suborthoposet $T \subseteq L_o$ with m < n there exists a finite orthomodular lattice M(T) such that
- (i) T is a generating suborthoposet of M(T) ,
- (ii) joins and meets in L_o of elements in T, which exist in T, are preserved in M(T),
- (iii) M(T) can be embedded into L_o such that T is mapped identically onto itself and every chain $E \subseteq T$ generates the Boolean subalgebra $\Gamma E \subseteq L_o$ in M(T).

Here ΓA is, for $A \subseteq L_o$, the subalgebra of L_o generated by A. For condition (iii) we observe that, in general, the condition on L_o implies that, for any finite orthomodular lattice N generated by T, there exists an isomorphic copy of N in L_o . We shall write $x^o = x$ and $x^1 = x'$ for elements x of an ortholattice.

LEMMA 1. Let L be a finite ortholattice and let $a \in L - \{0, 1\}$ be such that:

- (i) $M = L \{a, a^{1}\}$, with the induced structure, is an orthomodular lattice
- (ii) there exist $b_0, b_1 \in L$ such that

$$[0,a^{\varepsilon}) = [0,b_{\varepsilon}] \subseteq L$$
 for $\varepsilon = 0,1$.

Then there exist a finite orthomodular lattice N containing M as a subalgebra and L as a generating suborthoposet.

Proof. By [2; p. 310] we construct for the quasi-ideal $D = [0, b_0 \lor b_1] \underline{C} M$ a coatom-extension $N = M \cup (D \lor \{c'\}) \cup (D' \lor \{c\})$ where (1, c) is a new coatom above the elements of D. If we identify $a^{\varepsilon} \in L$ with $(b_1^{1-\varepsilon}, c^{\varepsilon})$ then M is a subalgebra of N and L is embedded as a generating suborthoposet in N.

https://doi.org/10.1017/S000497270001008X Published online by Cambridge University Press

LEMMA 2. Let S be a finite n-generated suborthoposet of L_0 with an element $a \in S$ such that $T = S - \{a,a'\}$ is (n-1)-generated. Then there exists a finite orthomodular lattice M(S) such that (i)-(iii)of (A) hold for $S \subseteq M(S)$.

Proof. By the inductive hypothesis there exists a suborthoposet M(T) of L_o with the properties (i)-(iii) of (A) for $T \subseteq M(T)$. In T there exist finitely many elements $a_1, \ldots, a_p < a$ and $d_1, \ldots, d_t > a$. Define $b_o = a_1 \vee \ldots \vee a_p$ and $b'_1 = d_1 \wedge \ldots \wedge dt$. We can assume $b_o, b_1 \in M(T)$ since $T \cup \{b_o, b_1, b'_o, b'_1\}$ is (n-1)-generated. By 1, there exists a finite orthomodular lattice N = M(S) containing the ortholattice $M(T) \cup \{a, a'\}$, with $x \leq a \leq y$ for $x, y \in M(T)$ iff $x \leq b_o$ and $b'_1 \leq y$, as a generating suborthoposet and M(T), as a subalgebra. The definition of N and the properties of M(T), S and L_o imply that (i)-(iii) of (A) holds for $S \subseteq M(S)$.

It follows from Lemma 2 that we can make the new inductive assumption: (B) For every *n*-generated suborthoposet $S \subseteq L_{O}$ which contains an

(n-1)-generated suborthoposet T with $2 \le |S - T| < 2r$ there exists a finite orthomodular lattice M(S) such that (i)-(iii) of (A) holds for $S \le M(S)$.

Let $S \subseteq L_0$ be an *n*-generated suborthoposet with an (n-1)-generated suborthoposet T such that |S - T| = 2r. Let $a \in S - T$ be such that S is generated by $T \cup \{a\}$. We measure the length of an element in Sin terms of the generating set D and choose an element $b \in S - T$ of maximal length. Then $E = S - \{b, b'\}$ is a suborthoposet of L_0 generated by D for which the inductive hypothesis (B) applies. Let L_1 be a finite orthomodular lattice which is embedded into L_0 such that (1)-(iii) hold for $E \subseteq M(E) = L_1$. We can assume that $b \notin L_1$ in the following lemma since otherwise M(E) = M(S) satisfies (i)-(iii) of (B) for $S \subseteq M(S)$.

LEMMA 3. Assume that whenever $z \in E$ covers b, and b covers two elements $x, y \in E$, then u < b < v for $u, v \in E$ implies $z \leq v$ and $u \leq x$ or $u \leq y$. Then there exists a finite orthomodular lattice N=M(S) , containing $L_1 \cup \{b,b'\}$ as a suborthoposet, such that (i)- (iii) of (A) holds for $S \subseteq M(S)$.

Proof. We assume $b \notin L_1$. In particular, by (iii), $x \notin y'$. In L_1 we consider the interval $[x \land y, z]_1$ and its extension to the orthoposet $N_{1} = [x \land y, z]_{1} \cup \{b, b'\}$ such that $[0, b) \cap N_{1} =$ = $([0,x] \cup [0,y]) \cap N_1$ is a quasi-ideal A in $N_1 \cap L_1$ and where a < b < c in N_1 implies c = z and $a \leq x$ or $a \leq y$. By using the coatom-extension for the new coatom b and the quasi-ideal A there exists a finite orthomodular lattice N_2 containing N_1 as a generating suborthoposet. We can assume that N_2 is embedded in L_2 and we replace in L_1 the interval $[0, z \land (x' \lor y')]_1$ by an isomorphic copy N_3 of N_2 . In the product L_2 of $[0, z' \lor (x \land y)]_1 \subseteq L_1$ with N_3 we identify the element $(x \land y, b \land (x' \lor y'))^{\varepsilon}$ with b^{ε} . We paste the ortholattices L_2 and $L_3 = L_1 - ([0, z \land (x' \lor y')]_1 \cup [z' \lor (x \land y), 1]_1)$ to the ortholattice N along the common segment $[0, z' \lor (x \land y)]_1 \times \{0, 1\}$. A new element in $N - L_1$ is only comparable with an element $x \in L_3$ if $x \in L_{2}$ holds. Therefore if, for $c, d \in L_{3}$, we have both c < d' and $c' \land d' \not\in L_3$, then $c' \land d' < z \land (x' \lor y')$ and we extend the partial order on N for these elements and their orthocomplements by $u \leq c'$, d'for all $u \leq c' \wedge d'$ in N. This way we obtain from N an orthomodular lattice M(S) such that (i)-(iii) of (B) holds for $S \subset M(S)$.

Some remarks additional to Lemma 3 are: If there exists $A \subseteq S$ with $|A| \ge 2$ such that z covers b and b covers a for all $a \in A$ and $\dot{x} \in S$, and if u < b < v for $u, v \in E$ implies $z \le v$ and $u \le a$ for some $a \in A$, then we can use the same arguments for the quasiideal $\cup \{[0,a]|a \in A\} \cap N_1$ replacing $([0,x] \cup [0,y]) \cap N_1$ in Lemma 3. We also observe that, for the case where two elements u, v (or more) cover b and b covers two elements x, y (or more) in S such that a < b < c for $a, b \in S$ implies $a \le x$ or $a \le y$ and $u \le c$ or $v \le c$, there exists an element z in L_1 such that for the E-generated element b either $b < z \leq u, v$ or $x, y \leq z < b$ holds. In the first case we apply the construction of Lemma 3. to the interval $N_1 = [x \land y, z]_1 \subseteq L_1$. The other case is dual and for the case where more than two elements in S cover b or are covered by b we apply the procedure just described (several times if necessary). We conclude that the assertion of Lemma 3 holds without the additional assumptions on E.

THEOREM 4. Let $S \subseteq L_o$ be a finite suborthoposet. Then there exists a finite suborthoposet $M(S) \subseteq L_o$ containing S as a generating set which, together with its induced structure, is an orthomodular lattice.

References

- [1] T. Evans, "Embeddability and the word problem," J. London Math. Soc. 28 (1953), 76-80.
- [2] G. Kalmbach, Orthomodular lattices. (Academic Press, London, 1983).

Abt.Math.III, O.E. University Ulm D-7900 ULM West Germany.