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Abstract

Statistical analysis is often used to evaluate the strength of evidence for or against scientific
hypotheses. Here we consider evidence measurement from the point of view of
representational measurement theory, focusing in particular on the 0-points of measure-
ment scales. We argue that a properly calibrated evidence measure will need to count up
from absolute 0, in a sense to be defined, and that this 0-point is likely to be something other
than what one might have expected. This suggests the need for a new theory of statistical
evidence in the context of which calibrated evidence measurement becomes tractable.

1. Introduction
Statistical analysis is common throughout the biological and social sciences, and
certain statistical outputs are routinely understood in evidential terms. The most
commonly used evidence statistic (ES) is the empirical p-value (P).1 Small values of P
are routinely said to indicate strong evidence against a null hypothesis, with evidence
strength taken to be stronger the smaller the value of P, and failure to achieve
sufficiently small P upon replication is interpreted as indicating evidence against the
initial finding.

There is a robust literature arguing against interpreting P as a measure of
evidence. Thus the very persistence of the practice suggests that strength of
statistical evidence is something scientists often want to measure. Indeed, it is
something that they domeasure, whenever they treat the numerical value of an ES as
representing evidence strength. The question is, does any given ES measure evidence
in a meaningful way? Here we invoke representational measurement theory (Hand
2004) in considering this question, focusing on one particular aspect of measurement
scale, namely, the 0-point.

Vieland (2017) proposed that the first step toward a properly calibrated ES was
development of a well-behaved empirical measure, that is, one that patently behaves
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1 Other familiar ESs include the simple likelihood ratio (SLR), maximum LR (MLR), and Bayes factor
(BF); see following text for additional details.
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the way evidence behaves, and she proposed a novel ES (the RLR, see following text)
that seemed to fit the bill, at least in certain simple cases. But establishing empirical
measurement devices is merely a first step toward actual calibration. In this article we
attempt to take a second step, focusing on one particular aspect of RLR that seems, on
the face of it, peculiar.

The remainder of this article is organized as follows. Section 2 provides
preliminary details regarding the ESs to be considered in what follows. In section 3 we
review distinctions among types of measurement scales, and briefly consider the scale
types of familiar ESs. The issue of the 0-point for a measurement scale arises in this
context. Section 4 considers the 0-points of BF and RLR, which leads to a
counterintuitive conclusion regarding the nature of 0 evidence. In section 5 we
consider the concept of absolute 0 as it arises in connection with measurement of
temperature to illustrate that any dissatisfaction remaining at the end of section 4
may simply reflect the fact that, as yet we lack a suitable theory of statistical evidence,
without which the issue of evidence calibration is moot.

2. Preliminaries
In ordinary parlance, the term “evidence” has (at least) two usages: It can refer to the
observational inputs to inference but is also used to refer to a particular relationship
between data and hypotheses. This relationship is sometimes referred to as support
(Hacking 1965) or relative support (Edwards 1992), but more commonly it is referred
to as evidence or weight of evidence. In what follows, we will use evidence in this latter
sense, referring to a relationship between hypotheses on given data in the context of
a statistical model.

Following Vieland (2017) we will illustrate throughout with coin tossing, with
probability θ that the coin lands heads and data D= (x,n), where x= observed number
of heads on n tosses. There is a simple formula in this case for the probability of D as a

function of θ: Pθ D� � � n
x

� �
θx 1 � θ� � n�x� �. While for actual coin-tossing, n can take

only integer values, in what follows we treat n as continuous.
Suppose we are interested in comparing the two hypotheses H1:θ < ½ (coin is

biased toward tails) and H2:θ = ½ (coin is fair). Following Hacking (1965), we will
assume that a fundamental quantity in any treatment of statistical evidence is the

simple LR (SLR), where in our example SLR θjD� � � θ1� �x 1�θ1� � n�x� �
1
2� �n for any given value of

θ1. One practical question is how to deal with the composite H1, which allows for
multiple values of θ1. Perhaps the most widely used approach is the maximum LR

(MLR), MLR�θjD� � θ̂� �x 1�θ̂� � n�x� �

1
2� �n , where θ̂ � x

n, the maximum likelihood estimate of θ.

But MLR has the (arguably fatal) flaw of not permitting evidence in favor of H2.
Another commonly used approach is the BF (Kass and Raftery 1995), which in this case
reduces to BF � R

LR θjD� �f θ� �dθ, where f θ� � is the prior probability distribution for θ.
Applying a uniform prior, BF is proportional to the simple average LR (ALR), where
the average is taken across all possible values of θ in the numerator.

Vieland (2017) proposed another evidence measure, RLR = MLR/ALR. In what
follows, we contrast RLR with BF, to make some philosophical points about the
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development and validation of measurement scales. But before this can be done, some
measurement theoretic distinctions are in order.

3. Measurement scale types
Measurements can be classified into different scale types, which can be characterized
in (at least) two useful ways. The first is by asking what we can do with them. Suppose
test subjects are asked to make a judgment of “more beautiful” or “less beautiful” in a
series of pairwise comparisons among n pictures of different faces. This allows a rank-
ordering of the pictures from least beautiful to most, and we can assign numbers (say,
1 to n) to represent this ordering. We can now compare faces with respect to rank-
ordering, for example, we can say “face #100 is judged to be more beautiful than #99.”
However, it is not meaningful to ask whether the amount by which #100 is more
beautiful than #99 is greater than the amount by which #50 is more beautiful than #49,
or than #2 for that matter. This is because nothing in the way we have constructed the
scale allows us to interpret distances from one number to another in terms of
underlying units of beauty. This illustrates ordinalmeasurement. What we can do with
ordinal scales is to make comparisons regarding order, and nothing more.

A second way to characterize scale types is by asking what we can do to them. For
ordinal variables, we can transform the original scale into any other set of symbols
that preserves rank-ordering, for example, we can replace our scale values 1,.,n with
their respective logarithms. As long as the transformation preserves rank-order, it
preserves the meaning of the original scale.

The logarithmic transformation would no longer be meaning-preserving, however,
if we interpreted the difference between numbers on the original scale as having
meaningful units. For instance, the Fahrenheit temperature scale provides not only a
rank-ordering of temperatures but also assigns meaning to the unit: The difference in
temperature between 100°F and 99°F is the same as the difference in temperature
between 50°F and 49°F. We can express this by saying that 1°F always “means the
same”2 with respect to temperature. This illustrates an interval scale. What we can do
with interval scales is to meaningfully make comparisons of order and also of
differences. As for what we can do to them, interval scales are amenable to any linear
transformation (e.g., the formula converting °F to °C), because such transformations
preserve both rank-order and a constant meaning for the unit across the scale range.

A logarithmic transformation would disrupt this thermal meaning. Loge(100°F) −
loge(99°F)= 0.01 while loge(50°F) − loge(49°F)= 0.02. Thus the same change in
temperature (1°F) becomes represented by different numbers on the logarithmic
scale. Application of a nonlinear transformation to measurements made on an
interval scale results in a “rubber scale,” for which the meaning of the unit changes
across the range of the scale (Houle et al. 2011). Clearly, comparing differences on a
rubber scale is problematic, in much the same way that comparing differences on an
ordinal scale is problematic.

Ratio scales are interval scales with one additional feature: they count up from 0.
Virtually all fundamental measurements in the physical sciences are on ratio scales,

2 This is Hacking’s (1972) phrase, from a passage critiquing the LR as an ES because no argument exists
to show that a unit change in the LR always “means the same.”
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including length, weight, mass, and so forth. Measurements made on ratio scales can
be compared with respect to order, differences, and ratios. The °Kelvin has ratio scale
type, which means that 20°K is twice as hot as 10°K. By contrast, 20°F cannot be
meaningfully said to be twice as hot as 10°F. The only arbitrary feature of a ratio scale
is the size of the degree, that is, the amount of change in the object of measurement
that we choose to assign to a one unit change on the measurement scale. Thus for
ratio scales, the only meaning-preserving transformation is multiplication by a
positive constant. Note that ratio scales do not require that the 0-point be attainable;
0 may be merely a limiting value of the scale, never achieved in practice3 (see also
following text).

Table 1 (modified from Houle et al. 2011) summarizes the major scale types.
We also note one relevant variation, the signed ratio scale, where sign is used by

convention to indicate direction. Houle et al. (2011) gives the example of a ratio-
scaled measure of left-right symmetry, with sign used to indicate whether symmetry
is measured from left to right or right to left; physical work is also measured on a ratio
scale under the convention that positive/negative values indicate work done by or to
a system, respectively.

What can we say about the measurement scale of BF? When we interpret larger
values of BF as stronger evidence in favor of H1, we are treating BF as providing a
rank-ordering of evidence, that is, as being at least ordinally scaled. In fact, we seem
to consider BF to be merely ordinal because a common substitution for BF in
reporting results is logBF.4 (The same is true for P and MLR.) But logarithmic
transformations of interval or ratio scaled variables create rubber scales, on which
differences between measurement values are no longer meaningful. We would wager
that virtually everyone interprets a change in BF from, say, 2 to 4 as representing less
of a change in the evidence than a change in BF from 4 to 20. This implies that we
believe we can meaningfully compare the difference 4–2 with the difference 20–4, or
perhaps the ratios 4/2 with 20/4. If we are on an ordinal or rubber scale, however,
neither type of comparison is supportable.

Ideally, we would like to be able to say when one study’s evidence is twice as strong
as another’s. Thus we assume we would prefer, if possible, to measure evidence on a

Table 1. Overview of measurement scale types

Scale
Type Range Examples

Meaningful
Comparisons

Permissible
Transformations

Ordinal ordered
symbols

personal preference order rank-order preserving

Interval real numbers dates; temperature in
°F or °C

order, differences linear

Ratio positive real
numbers

length; mass;
temperature in °K

order, differences,
ratios

multiplication by a
positive constant

3 The technical term for 0 as a limiting value is “infimum.” We will also use the expression “lower
bound” when referring to the bottom of a scale without presupposing whether its minimum value can be
achieved or not.

4 Here “log” may refer to the base2, base10, or natural scale.
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ratio scale. This presupposes not only a meaningful definition of the unit, but also,
establishment of a proper 0-point. The latter might seem the simpler task, but as we
argue in the following text, even this proves to be more complicated, and more
interesting, than one might have anticipated.

4. 0-points for logBF and RLR
To establish a proper 0-point for the BF, we need to be willing to adjust the scale from
the outset. The range of BF is (0,∞), but minimal evidence is represented by 1 on this
scale, with values <1 representing evidence in favor of H2 and values >1 indicating
evidence for H1. A ratio scale demands, however, that the minimal amount of the
object of measurement be assigned a value of 0. We could therefore opt for logBF
because log(1)= 0. The range of logBF is (−∞, ∞), which in turn suggests a signed
ratio scale, with sign indicating which hypothesis is supported (assuming that is, that
we could establish a meaningful unit of measurement for logBF in the first place,
which is by no means guaranteed). Equivalently, we can work with |logBF|.

|LogBF|= 0 demarcates the boundary, or what Vieland (2017) called the transition
point (TrP), between putative evidence for one hypothesis versus the other, with
larger departures from logBF= 0 taken to indicate increasing evidence (Figure 1a).
The existence of a TrP is a feature of any ES that permits evidence to accumulate in
favor of either hypothesis. Note that as n increases, the value of y = x/n (the
proportion of tosses landing heads) at which the TrP occurs shifts toward y= ½.5 Thus
for |logBF|, y(TrP) changes as a function of n. But the value of |logBF| at y(TrP) is
always= 0. This suggests that the range of |logBF| is [0, ∞). We return to this in
moment.

0 0.1 0.2 0.3 0.4
y

0

2

4

6

8

10

|lo
gB

F
|

(a)

n=20
n=10

0 0.1 0.2 0.3 0.4
y

0

5

10

15

R
LR

(b)

n=20
n=10

Figure 1. Transition point (TrP) of |log BF| and RLR.
Illustration for the coin-tossing example from the text: (a) |logBF| (uniform prior), (b) RLR. TrP is the point at which
|logBF|= 0 or RLR is at its minimum. Values to the left of TrP support H1, while values to the right support H2. In both plots,
TrP moves to the right as n increases. In addition, RLR increases at the TrP as n increases.

5 This corresponds to the familiar phenomenon of smaller effect sizes becoming “significant” as n
increases.
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The range of RLR is (0, ∞). However, RLR= 0 does not correspond to the TrP.
Rather, the TrP corresponds to the minimum RLR as a function of y for given n, which
is strictly> 0 (Figure 1b). This feature was highlighted in (Vieland 2017, figure 2b). As
with |logBF|, the RLR TrP shifts with increasing n. But what was not discussed in
Vieland (2017) is that additionally, the value of RLR at y(TrP) increases. This is in stark
contrast to the behavior of |logBF|.

Which if either type of behavior is correct? On the face of it, the |logBF| behavior is
more readily understood. The TrP is the value of y at which the data are equally
compatible with both hypotheses. Surely then no matter how much data we have, at
the TrP we still have 0 evidence favoring one hypothesis or the other. How can we
make sense of the idea that the evidence strength increases while the data remain
entirely impartial?

On the other hand, 0 appears to play two different roles on this scale. As n→0,
|logBF|→0 regardless of y. But we also have |logBF|(y=TrP)= 0, so another way to get to
0 is by letting y→TrP. 0 is both the infimum as n→0; and also, 0 is the actual value of
|logBF| when y= TrP. This in turn means that the range of |logBF| is {{0},(0,∞)}, which
is odd if not necessarily illegitimate.

Two ways to get to the same 0-point is not in itself a problem. For instance, there
are multiple recipes for bringing a physical system toward 0°K, for example, by letting
entropy S→0 or pressure P→0. But they all lead to the same state (viz., S ≈ 0 and
P ≈ 0). On the face of it, the situation with |logBF| is not like this. We can approach
|logBF|= 0 by letting n→0 or by letting y→TrP, but in the latter case n can be as large
as we like while |logBF|= 0, and in the former case |logBF| can only approach but
never achieve 0. These appear to be two different states.

And there seems to be a conceptual difference too. n→0 can be described as
allowing the quantity of relevant information to→0. But y= TrP does seem to convey
information regarding the hypotheses. In our coin-tossing example, where we
presume a single, underlying true value of θ, there is no physical explanation for a
coin that always lands such that y = TrP (even setting aside the matter of stochastic
variability), precisely because the TrP changes with n. For this very reason, however,
we can see that y = TrP conveys some kind of information about the coin and/or the
model, information that becomes more troublesome as n increases, in the sense of
perhaps increasingly calling the whole model into question. Whether this type of
information should play a role in evidence regarding the hypotheses is debatable.6 But
again, it would appear that |logBF|= 0 is being used to mean two different things: 0
relevant information, and, nonzero relevant information that is equivocal between
the hypotheses.7 In the absence of a general theory of evidence, it is not possible to
say definitively that the underlying states corresponding to |logBF|= 0 are in fact not
equivalent; but neither is it possible to assert that they are.

6 There is a rich philosophical literature on related topics, see, e.g., Fitelson (2002), Crupi et al. (2007),
and McCain and Poston (2014).

7 It is also the case that logSLR(y = TrP)= 0 for all n. We have suspected for some time that the SLR
fails to provide a calibrated measure of evidence strength, even while it permits us to determine which is
the better supported hypothesis (Hacking 1972). What is new here is the idea that part of the problem
might involve something fundamentally amiss with the 0-point.
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Playing devil’s advocate for the moment, suppose we wanted to eradicate this
duality of the 0-point from our evidence measurement scale. How might we go about
this? The only solution we can see would be to allow the evidence at the TrP to
increase with increasing n. This would achieve a scale with 0 as its infimum,
representing the situation in which evidence→0 when and only when the amount of
relevant information→0. Interestingly, this is precisely the behavior exhibited by RLR.8 It
is at the very least interesting to note that RLR, which is arguably the better empirical
measure in other regards (Vieland 2017), does not force us into the conundrum posed
by the 0-point of |logBF|.

The question of the 0-point for either ES appears to be nontrivial. It seems that a
simple appeal to intuition, or an a priori decision regarding treatment of the 0-point, is
insufficient. Apparently to resolve the matter we need a theory of statistical evidence,
in the context of which the precise relationships among data, hypotheses,
information, and evidence can be articulated. Insofar as there exists a lower bound
on strength of evidence, and surely there must be one, it begins to look like that lower
bound may turn out to be considerably more interesting than we had anticipated.
There is an instructive precedent for this, with which we will close our argument.

5. Absolute scales
The designation absolute arises almost exclusively in connection with Kelvin’s
temperature scale, which we may therefore take as paradigmatic of this scale type.9

Often the Kelvin scale is said to be absolute simply because it counts up from 0. But
counting up from 0 is a feature of all ratio scales. Is there a sense in which 0°K is
“absolute,” while, for example, 0 length (say, in centimeters) is not?

One way in which 0°K seems different from 0 length is that the lower bound for
temperature is subject to empirical determination.10 For instance, Amontons inferred
a lower bound by extrapolating from experimental data to find the temperature in
the limit as pressure went to 0, and experiments aimed at achieving ever lower
temperatures are ongoing to this day. Indeed the mere existence of a lower bound on
temperature was far from obvious a priori: “Hot and cold, like fast and slow, are mere
relative terms; and, as there is no relation or proportion between motion and a state
of rest, so there can be no relation between any degree of heat and absolute cold, or a
total privation of heat; hence it is evident that all attempts to determine the place of
absolute cold, on the scale of a thermometer, must be nugatory” (Rumford 1804, quoted
by Chang 2004, 172). By contrast, neither the existence of a lower bound for length,
nor the question of which length ought to be assigned a value of 0, requires any
investigation, or even any real thought.

8 This behavior is also reminiscent of Keynes’s (1921) discussion of the “weight of argument,” as
something that always increases with additional relevant data, independently of whether the augmented
data increase or decrease support for the argument.

9 In measurement theory texts the probability scale is sometimes said to be absolute in the sense that
no transformations are allowable (Houle et al. 2011), but this is a different use of the term; multiplication
by a positive constant is an allowable transformation for the Kelvin scale. Also, P is on the probability
scale, but this by no means guarantees that it is even on an ordinal scale when used as an ES.

10 It is important to remember that the °K was articulated in the course of development of
thermodynamics; the statistical mechanics view of the 0-point in terms of the complete absence of
particle motion came later, and presupposed thermodynamic theory articulated in terms of the °K.
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Under Kelvin’s definition, 0° corresponds to a fully efficient Carnot engine, and
there is nothing in the theory that would prevent full efficiency from occurring,
however, the laws of thermodynamics break down at extremely cold temperatures.11

The most we can say is apparently Nernst’s law, which tells us that for any reversible
process, the T= 0 isotherm cannot be intersected by any adiabat other than the S= 0
isentrope (Callen 1985, 281). Never mind what that means. The point here is not to
understand the physics, but only to note that if we want to resolve questions
involving 0°K, then an understanding of physics is required.

In short, we could say that 0°K is special because it is interesting. The 0-point of
temperature and its properties are neither obvious nor trivial to establish, but rather
derive from careful study of the intended object of measurement. 0°K is absolute
insofar as it is an infimum established by physical laws, in a way that 0 length is not.
Admittedly the distinction between 0-points for mundane ratio scales like length, and
absolute minima like 0°K, is a difference of degree (no pun intended) rather than kind.
Issues of measurement scale always depend on the theoretical contexts in which they
arise (Houle et al. 2011). But some theoretical contexts are more complex than others.
The paradigmatic absolute scale is simply a run-of-the-mill interval scale for which
the 0-point is absolute in the sense of being part and parcel of the theory of temperature
(thermodynamics) in the context of which the scale is defined. And this is ultimately
the basis for our interest in the 0-points of BF and RLR. Here too, as we have
suggested, it seems that we will need a theory of evidence before we can resolve
something so seemingly simple as what constitutes a minimal amount.

It is interesting to note that Kelvin’s own conception of an absolute scale did not
involve a 0-point at all. In fact, the first of his two temperature scales had no lower
bound. What Kelvin meant by an absolute scale was one that maintained constant
meaning for the degree (unit) of temperature regardless of the substance being
measured (Chang 2004). But for temperature, resolving the 0-point and establishing
the unit went hand in hand, informed by experimental results but above all requiring
the development of a novel methodological framework, which in turn changed
understanding of what temperature is.12 Just so, our understanding of what statistical
evidence is may need to adapt as we work out the particulars of how we are to go
about measuring it.

6. Discussion
A great deal of science relies on an activity that looks like measurement of statistical
evidence. But useful measurement requires a cogent measurement theoretic
foundation. Because we would like to be able to make meaningful evidential
comparisons of order, difference, and ratio, what we need is a ratio scale. We have

11 Quantum theory precludes 0°K but relating extremely cold quantum systems to thermodynamic
theory is nontrivial in its own right. Note also that so-called negative temperature on the Kelvin scale is a
red herring: Negative temperatures are warmer than their positive counterparts, so 0 remains the lower
bound.

12 Interestingly, Kelvin’s second scale—the one now accepted as correct—turned out to be a linear
transformation of the Celsius scale, implying that the °C “means the same” amount of temperature across
the range of the scale. Therefore, his first proposal, which was a nonlinear transformation of Celsius, has
to have been a rubber scale.
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argued here that a proper ratio scale for statistical evidence measurement will need
to be absolute, in the sense that determination of its 0-point apparently requires a
better theory of evidence than what statisticians have relied on to date.

But of course a meaningful 0-point alone is not sufficient for proper measurement.
An absolute scale is, at the end of the day, simply an interval scale with a lower bound
of 0 that is interesting in some way, and the hallmark of an interval scale is that the
unit “means the same” across the range of the scale and across contexts of
application. This returns us to the concept of absolute in a sense closer to Kelvin’s
original intent.

How does one confirm constancy of the meaning of a unit for a theoretically
constructed object of measurement? Kelvin’s theory of temperature was entirely
mathematical: The degree was defined in terms of ratios of heat for an ideal gas
undergoing a Carnot cycle, a wholly fictional setup that could not be implemented in
the laboratory. The constancy of the meaning of the unit was embedded in the
mathematics, but for that very reason, unavailable to direct empirical verification. By
Kelvin’s day there existed good empirical measurement devices such as Amontons’ air
thermometer, which seemed likely, based on experimentation, to be measuring
temperature on interval scales. Thus Kelvin was able to validate his measurement
scale empirically, to some extent, by aligning his calculations with the readings of
(apparently) interval-scaled measurement devices under carefully controlled
experimental conditions approximating, though never achieving, the conditions of
Carnot’s cycle.

An entire book could be written, however, in explication of that casual clause “to
some extent” in the previous sentence (indeed, vide Chang 2004!). Constancy of the
meaning of the °K as measured by actual thermometers was confirmed using a
process, in Chang’s phrase, of epistemic iteration, which to this day leaves us short of
certainty, but nevertheless with a rich and productive theoretical framework. The
laws of thermodynamics take on their familiar, elegant form only when expressed as a
function of temperature measured on the Kelvin scale, and this is the ultimate
validation of the °K. But it remains an unassailable fact that there is no such thing as
direct verification that any given measurement device is consistently measuring on
the Kelvin scale, let alone doing so under all conditions of application.

Apart from access to reasonably good thermometers, Kelvin had something else
working in his favor: He was among a community of scientists with a shared desire for
a better understanding of temperature. By contrast, it is difficult to convince
statisticians of the need for a better understanding of evidence. Perhaps this is
because they view the very idea of measurement of evidence on an absolute scale to
be, in Rumford’s evocative word, nugatory. After all, how would we verify that one
degree of evidence on any given measurement scale always “means the same” with
respect to the evidence, without some independent way of knowing what the
evidence is?

The point is well taken, but moot. Vindication of a theoretical measurement
construct is not a matter of axiomatics. It happens by epistemic iteration, not in one
fell swoop and never to the point of mathematical certainty. Perhaps the first step to
solving the evidence measurement problem—and surely this is a problem worth
solving—is understanding the limits on what demonstration of a solution would
look like.
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