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Previous experimental (Kühnen et al., Flow Turb. Combust., vol. 100, 2018, pp. 919–943)
and numerical (Marensi et al., J. Fluid Mech., vol. 863, 2019, pp. 850–875) studies
have demonstrated that a streamwise-localised baffle can fully relaminarise pipe flow
turbulence at Reynolds numbers of O(104). Optimising the design of the baffle involves
tackling a complicated variational problem built around time stepping turbulent solutions
of the Navier–Stokes equations which is difficult to solve. Here instead, we investigate
a much simpler ‘spectral’ approach based upon maximising the energy stability of the
baffle-modified laminar flow. The ensuing optimal problem has much in common with
the variational procedure to derive an upper bound on the energy dissipation rate in
turbulent flows (e.g. Plasting & Kerswell, J. Fluid Mech., vol. 477, 2003, pp. 363–379) so
well-honed techniques developed there can be used to solve the problem here. The baffle
is modelled by a linear drag force −F(x)u (with F(x) ≥ 0 ∀x) where the extent of the
baffle is constrained by an Lα norm with various choices explored in the range 1 ≤ α ≤ 2.
An asymptotic analysis demonstrates that the optimal baffle is always axisymmetric
and streamwise independent, retaining just radial dependence. The optimal baffle which
emerges in all cases has a similar structure to that found to work in experiments: the
baffle retards the flow in the pipe centre causing the flow to become faster near the
wall thereby reducing the turbulent shear there. Numerical simulations demonstrate
that the designed baffle can relaminarise turbulence efficiently at moderate Reynolds
numbers (Re ≤ 3500), and an energy saving regime has been identified. Direct numerical
simulation at Re = 2400 also demonstrates that the drag reduction can be realised by
truncating the energy-stability-designed baffle to finite length.

Key words: instability control, drag reduction, variational methods

1. Introduction

Turbulent friction drag accounts for a large consumption of energy in many systems,
e.g. gas and oil pipelines and vehicular transport. Over the past decades, many efforts

† Email address for correspondence: z.ding@hit.edu.cn
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have been made towards drag reduction by means of active or passive control. In
active control techniques, drag reduction can be achieved by either using micromachines
to destroy or suppress the near-wall small-scale turbulent motions (Kasagi, Suzuki
& Fukagata 2009) or by manipulating the velocity boundary conditions (Quadrio
2011). For example, in turbulent channel flows (Choi, Moin & Kim 1994), creating
microscale motions by micromachines to counteract near-wall vortices can reduce the
turbulent drag by approximately 10 %. However, this technique becomes unfeasible for
very high-Reynolds-number flow because the scale of the near-wall motion is much
smaller than the micromachines. Manipulating the boundary conditions shows that higher
reduction in turbulent drag can be achieved, e.g. blowing and suction fluids at the wall (Xu,
Choi & Sung 2002) reduce the drag by ∼20 % and spanwise oscillating the boundaries
reduce the drag by ∼30 % (Choi & Graham 1998; Choi, Xu & Sung 2002). However,
streamwise oscillating the boundaries is less effective for drag reduction than spanwise
oscillating the boundaries (Zhou & Ball 2008).

Very recently, Scarselli, Kühnen & Hof (2019) have demonstrated that moving the pipe
wall can fully relaminarise the turbulent motion, therefore achieving a full reduction in
turbulent friction drag. This work was inspired by the research of Hof et al. (2010) who
found that turbulent puffs can be relaminarised by flattening the base velocity profile.
Other active strategies, such as stirring the flow with rotors or injecting fluids through
an annular gap, were also able to flatten the base velocity profile and relaminarise the
turbulence (Kühnen et al. 2018b). In contrast to these active control approaches, Kühnen
et al. (2018a) and Kühnen, Scarselli & Hof (2019) found that the passive approach of
inserting a localised baffle in a pipe could similarly flatten the flow profile and thereby kill
pipe flow turbulence completely up to Re ≈ 10 000 so that the reduction in skin friction
is 80 %. To explain this effect, Kühnen et al. (2018b) considered a body force which
accelerated the fluid near the pipe wall and decelerated the fluid in the centre, showing
that the flow could similarly be kept laminar up to Re ∼ O(104).

Inspired by Kühnen et al. (2018a), Marensi, Willis & Kerswell (2019) investigated the
nonlinear non-modal instability (Kerswell 2018) of a flattened velocity profile in pipe flow,
finding that a flattened velocity profile can significantly increase the minimal energy of
disturbance that triggers turbulence. Moreover, flattening the mean profile significantly
reduces the turbulence energy production in the bulk region, which is shown to be crucial
for transition (Budanur et al. 2020). Marensi et al. (2019) used a baffle modelled by a linear
drag force f = −A × B(z)u (Giannetti & Luchini 2007), where z is the axial coordinate in
the dimensionless momentum equation

∂u
∂t

+ u · ∇u + ∇p − 1
Re

∇2u − f − c
Re

ez = 0. (1.1)

Here c is the applied pressure gradient such that the mass flux is fixed, Re = UD/ν is
the Reynolds number (U is the bulk speed along the pipe; D is the pipe diameter; ν is
the kinematic viscosity) and A is defined as the baffle amplitude. To mimic the localised
baffle used by Kühnen et al. (2018a), B(z) was taken to be constant in a short region of
the pipe with smooth transition regions down to zero either side. Numerical simulations
demonstrate that this baffle can fully relaminarise turbulence at Re = 10 000 when A =
0.005, which reduces the turbulent drag by 32 %.

Focussing on the passive control strategy of using a baffle, a natural question to ask
is can the baffle be designed to save yet more energy? One way to proceed would be
to maximise the destabilizing effect of a baffle on the turbulent state. This inevitably
results in a difficult to solve variational problem based on fully nonlinear turbulent
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simulations of the Navier–Stokes equations (see Marensi et al. 2020). A less direct
approach would be to seek a much simpler but admittedly ad-hoc design strategy based
on the baffle-modified laminar flow: Could making the laminar state more stable make
the turbulent state correspondingly less stable or weaker? This of course is a hypothesis
and the purpose of this paper is to investigate whether it is useful. Applying a spectral
criterion based upon energy stability makes more sense than linear stability since the
former implies that the laminar state is then the global rather than just a local attractor.
The strategy will then be to optimise the design of the baffle to make the energy stability
threshold of the baffle-modified laminar flow as large as possible. This ‘optimal’ baffle will
then be tested at higher Re to assess its performance using direct numerical simulations
(DNS). Practically, the variational formulation which results from this design strategy
is well-conditioned, being closely associated (by coincidence) with that used to find
maximal energy dissipation rates in turbulent shear flow (Doering & Constantin 1992,
1994; Plasting & Kerswell 2003, 2005), and so can be readily solved using numerical
techniques developed there.

The plan of the paper is as follows. The mathematical formulation of the variational
problem is laid out in § 2 and the method of solution in § 3. The fact that the optimal baffle
can only depend on the radius (for reasons detailed in appendix A) and the energy stability
constraint is marginally satisfied, leads to considerable simplification of the problem.
Results are presented in § 4. To demonstrate that the baffle designed by the energy stability
can relaminarise the turbulent flow up to Re ≈ 3500 DNS are carried out, and an energy
saving regime is identified in the two-dimensional Re-baffle amplitude parameter plane.
A discussion follows in § 5.

2. The variational problem

To set up the variational problem, we start by decomposing the full velocity field u into
a base flow field U and a perturbation field u′, which satisfy the following equations:

U · ∇U + ∇P − 1
Re

∇2U + F
Re

U − c
Re

ez = 0, (2.1)

∂u′

∂t
+ U · ∇u′ + u′ · ∇U + u′ · ∇u′ + ∇p − 1

Re
∇2u′ + F

Re
u′ = 0, (2.2)

∇ · U = ∇ · u′ = 0. (2.3)

Here, as before, Re := UD/ν where velocities have been non-dimensionalised by 2U and
lengths by 2/D. The governing equations (2.1)–(2.3) have a similar form to the Brinkman
equations, which describe porous media flows if the nonlinear terms are dropped where the
baffle exists. The baffle is modelled by a linear drag force as in Marensi et al. (2019) and
for convenience is rescaled here by the Reynolds number: f = −F(r, θ, z)u/Re (F ≥ 0)
so that F/Re represents 1/K, where K is the permeability of the porous media and U is
the laminar flow consistent with the baffle. Kühnen et al. (2019) discuss how baffles with
variable K can be made using 3-D printing techniques.

Taking the scalar product of u′ with (2.2) and a volume average,

〈 (•) 〉 := 1
V

∫
(•) dV (2.4)
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(V is the volume of the pipe), we obtain the energy balance of the perturbation system

∂

〈
1
2

u′
2〉

∂t
+ 〈u′ · u′ · ∇U〉 + 1

Re
〈|∇u′|2〉 + 1

Re
〈Fu′2〉 = 0, (2.5)

using the periodic boundary conditions across the pipe, non-slip boundary conditions at
the pipe wall and ∇ · u′ = 0. The flow is said to be energy stable if

∂

〈
1
2

u′
2〉

∂t
= −〈u′ · u′ · ∇U〉 − 1

Re
〈|∇u′|2〉 − 1

Re
〈Fu′2〉 < 0, (2.6)

for all (smooth) perturbations regardless of their size (because all three terms on the
right-hand side of (2.6) are quadratic in u′). If U is independent of Re, this can be rewritten
as

∂

〈
1
2

u′2
〉

∂t
=
[
〈|∇u′|2〉 + 〈Fu′2〉

] [ −〈u′ · u′ · ∇U〉
〈|∇u′|2〉 + 〈Fu′2〉 − 1

Re

]
, (2.7)

and, since the first bracket is positive definite (F ≥ 0), energy stability is established when
Re < ReE where

1
ReE

:= max
u′

−〈u′ · u′ · ∇U〉
〈|∇u′|2〉 + 〈Fu′2〉 (2.8)

for a given F. The idea is then to minimise 1/ReE over allowable F. It will turn out that U
is independent of Re but this only becomes clear after we establish that F = F(r) below.

The amplitude of the baffle needs to be constrained to obtain a well-defined optimisation
problem. In the simpler problem of adding a body force to the flow, a force can be found
which can make ReE as large as required, albeit at the price of creating a unidirectional
laminar flow whose dissipation rate exceeds the unforced turbulent flow value (see
appendix B). There is some ambiguity as to how the amplitude of the baffle should be
measured so we experiment with an Lα norm

a := ‖F‖α = 〈Fα〉1/α (2.9)

for a few choices of α ∈ [1, 2]. The choice α = 1 is perhaps most natural since it measures
the amount of material in the baffle but turns out to have awkward properties for reasons
discussed below. Using the L1 norm also allows the amplitude a discussed here to be
connected to the amplitude A used in Marensi et al. (2020) via A = ReV a.

With this amplitude constraint, the objective is to maximise Re subject to (2.1) (a steady
base flow), (2.6) (the condition of energy stability) and (2.9) (constraint on F), which leads
to the following variational problem:

max Re s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U · ∇U + ∇P − 1
Re

∇2U + F
Re

U − c
Re

ez = 0,

∇ · U = 0,

Q(u′; Re, F) ≥ 0 ∀u′ s.t. ∇ · u′ = 0, u′ = 0|∂V ,

‖F‖α = a, F ≥ 0,

(2.10)

where Q(u′; Re, F) := 〈
Reu′ · u′ · ∇U + |∇u′|2 + Fu′2〉. Solving this variational problem

to see if it yields a useful baffle design to relaminarise turbulent flows is the goal of this
work.
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3. Method of solution

To solve the variational problem (2.10), the following Lagrangian is constructed:

L = Re +
N∑

m=1

〈Reum
′ · um

′ · ∇U + |∇um
′|2 + Fum

′2〉 − 〈pm(x)∇ · um
′〉

︸ ︷︷ ︸
energy stability

+ 〈U+ · (ReU · ∇U + ∇P − ∇2U + FU − cez)〉 − 〈Q(x)∇ · U〉︸ ︷︷ ︸
steady base flow

+ μ1(〈Fα〉1/α − a)︸ ︷︷ ︸
constraint on F

+μ2

(
〈U · ez〉 − 1

2

)
︸ ︷︷ ︸

constant mass flux

+〈μ3(x)(F − b2)〉︸ ︷︷ ︸
Non-negativity on F

. (3.1)

Note that the Lagrange multiplier for the first constraint, which is purely quadratic in u′,
has been absorbed into the amplitude of u′. Here the subscript m marks the mth critical
mode of the energy stability problem. In general, the energy stability eigenvalue problem
will have multiple critical eigenfunctions which need to be kept marginal – or ‘pinned’
(Ding & Kerswell 2020) – as the baffle is adjusted. Keeping track of new critical modes
which emerge as a is increased is a crucial part of solving this problem and considerable
experience of handling this has been built up in the complementary problem of bounding
the energy dissipation rate in turbulent flow (Plasting & Kerswell 2003, 2005; Ding &
Kerswell 2020).

The ensuing Euler–Lagrange equations are

δL /δpm := ∇ · um
′ = 0, (3.2)

δL /δum
′ := Re(∇U + ∇UT) · um

′ + ∇pm − 2∇2um
′ + 2Fum

′ = 0, (3.3)

δL /δQ := ∇ · U = 0, (3.4)

δL /δU+ := ReU · ∇U + ∇P − ∇2U + FU − cez = 0, (3.5)

δL /δP := ∇ · U+ = 0, (3.6)

δL /δU := Re
∑
m=1

um
′ · ∇um

′ − Re(U+ · ∇UT − U · ∇U+)

− ∇Q + ∇2U+ − FU+ − μ2ez = 0, (3.7)

δL /δμ2 := 〈U · ez〉 − 1
2

= 0, (3.8)

δL /δc := 〈U+ · ez〉 = 0, (3.9)

δL /δRe := 1 +
N∑

m=1

〈um
′ · um

′ · ∇U〉 + 〈U+ · U · ∇U〉 = 0, (3.10)
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δL /δF :=
N∑

m=1

|um
′|2 + a1−αμ1Fα−1 + U+ · U + μ3 = 0, (3.11)

δL /δμ1 := 〈Fα〉1/α − a = 0, (3.12)

δL /δμ3 := F − b2 = 0 (3.13)

and

δL /δb := bμ3 = 0. (3.14)

At a given point x, the Lagrange multiplier μ3(x) either vanishes when F > 0 (b /= 0) or
is non-zero when F = 0, see (3.14). Using (3.11), we identify

F =
(

G(x) + μ3

μ1a1−α

)1/(α−1)

, (3.15)

where G :=
(∑N

m=1 |um
′|2 + U+ · U

)/
μ1a1−α. It is now clear that the choice α = 1 is a

special case since there is no equation to update F and so will be discussed separately (see
§ 4.1).

In the definition of L it has been assumed that the energy stability constraint will be
marginally satisfied at the optimum, i.e. Q = 0 (otherwise a ‘slackness’ term needs to be
introduced). This assumption can be justified after establishing that the optimal F is just
a function of r, see appendix B. With a given baffle F = F(r), (2.1) implies U = W(r)ez
is known and independent of Re (since U · ∇U = 0), and then the variational problem
consists of finding the largest Re such that U is energy stable or

Re ≤ −〈|∇u′|2 + Fu′2〉
〈u′ · u′ · ∇U〉 , (3.16)

which is clearly achieved at marginality or Q = 0. The fact that F = F(r) also affords
another simplification. For F = F(r), the critical modes take the form of harmonic waves,
i.e. um

′ = um(r) exp(imθ + ikmz) with different wave numbers m or km or both and hence
the critical modes are mutually orthogonal under volume averaging. This means

N∑
m=1

〈Re um
′ · um

′ · ∇U + |∇um
′|2 + Fum

′2〉 = 〈Re u′ · u′ · ∇U + |∇u′|2 + Fu′2〉, (3.17)

where u′ = ∑N
m=1 um

′. It turns out that we can use the azimuthal wavenumber as an index
(Plasting & Kerswell 2005) and write the perturbation field as

u′ =
N∑

n=1

ûn(r) exp(inθ + knz), (3.18)

where it is found that kn = 0 for n > 1 and kn = O(1) for n = 1.
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Optimal design of a baffle 902 A11-7

We now optimise the baffle form F = F(r) such that the energy stability threshold
Rec(a) is maximised. A Chebyshev collocation method is used in conjunction with
parametric continuation to solve the variational problem (see appendix D).

4. Results

We will firstly explore the asymptotic behaviour of the optimisation problem as α → 1
in § 4.1. Then, the influence of the norm index α on the baffle shape will be examined in
§ 4.2 where three typical norms α − 1 = 0.01, 0.1, 1 are considered. In § 4.3, we test one
of the baffles via DNS to see how well it performs at relaminarising the flow at larger Re.

4.1. The special case α = 1
When α = 1, the Euler–Lagrange equation δL /δF = 0 no longer contains F and it
becomes unclear how to iterate an initial guess of F closer to the optimal. (In fact, our
numerical code diverges at α = 1 and the asymptotic analysis near the critical energy
stability point (see appendix A) shows that there is no equation to solve F at the first-order
problem.) To gain insight into this special case, we study how the optimal baffle solution
behaves as α → 1. If

Ĝ := G + μ3

μ1a1−α
=
∑N

m=1 |um
′|2 + U+ · U

μ1a1−α
+ μ3

μ1a1−α
, (4.1)

then F = Ĝ1/(α−1) when α > 1, and we assume

Ĝ = Ĝ0 + (α − 1)Ĝ1 + (α − 1)2Ĝ2 + . . . , α → 1, (4.2)

where the Ĝi are functions of r. This implies, to leading order,

F = (−Ĝ0)
1/(α−1) exp(Ĝ1/Ĝ0) as α → 1. (4.3)

If max(−Ĝ0) > 1 and occurs at one or more isolated radii, F becomes a δ-function
in the limit (see appendix C). If max(−Ĝ0) < 1, then F ≡ 0 which violates the norm
constraint 〈F〉 = a. The second possibility is that Ĝ0 has a plateau max(−Ĝ0) = 1 where
the maximizing x are not unique. Then, F = exp(−Ĝ1(x)) in the region(s) where Ĝ = −1
and F = 0 otherwise. Numerical results suggest the latter scenario is what occurs even
though this looks non-generic.

We use the numerical solutions computed at α = 1.01 and 1.02 to approximate the
functions Ĝ0 and Ĝ1. If the numerical solution at α is Ĝα, then

Ĝ1.01 ≈ Ĝ0 + 0.01Ĝ1, Ĝ1.02 ≈ Ĝ0 + 0.02Ĝ1, (4.4a,b)

which gives

Ĝ0 ≈ 2Ĝ1.01 − Ĝ1.02, Ĝ1 ≈ 100(Ĝ1.02 − Ĝ1.01). (4.5a,b)

As a check, the approximation given in (4.3) of what F should be is compared with the
numerically computed F at α = 1.005 and two different amplitudes a = 1 and a = 4, see
figure 1. The analysis and the numerical results are in excellent agreement confirming the
assumption made in (4.2).
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r

FIGURE 1. This figure shows a comparison of the numerically calculated baffle profile F at α =
1.005 (lines) and the prediction from (4.3) (symbols). Two different values, a = 1 (blue-dashed
line) and a = 4 (red-solid line), are shown. The good agreement confirms the assumption made
in (4.2).

Figure 2 shows the functional structure of Ĝ0 and Ĝ1 over a range of amplitudes a
computed via (4.5a,b). The plateau of Ĝ0 becomes wider as a increases, indicating that
the optimal baffle occupies more of the pipe. However, this trend peters out for a � 4 so
that F = 0 in 0.7 � r ≤ 1 regardless of how high a becomes. This means that this design
procedure never places any part of the baffle near the wall which is consistent with the
experimental findings of Kühnen et al. (2018a).

It is worth remarking that the distortions in the contour plot of G1 in figure 2 at around
a ≈ 0.22, 1.83 and 3 are due to the appearance of extra marginal eigenfunctions in the
energy stability problem (see figure 2c). When a new critical mode emerges from the
energy stability, there is a gradient change in how the baffle evolves with a since an extra
constraint needs to be incorporated to maintain marginal energy stability of the baffle as a
increases.

4.2. More general cases: α = 1.01, 1.1 and 2
We now look in detail at three typical cases, α = 1.01, 1.1 and 2, for which the
Euler–Lagrange equations can all be solved numerically. The solution procedure starts
from the well-studied bifurcation point of energy stability with no baffle, i.e. a = 0,
where the marginal eigenfunction is unique and well known. Our numerical code finds
Re = 81.5198 and k = 1.0819 at this bifurcation point, which is in excellent agreement
with Joseph & Carmi (1969) (see the more accurate values reported in Plasting & Kerswell
2005). The amplitude a is then gradually increased using the previous solution as an initial
guess for the new value of a. Once the solution is found, the energy stability of U is
checked to see if any new eigenmodes need to be added (‘pinned’) or existing eigenmodes
which are no longer marginal dropped from the Euler–Lagrange equations. Details of
the computational methods (e.g. breaking the degeneracy of the eigenvalue problem) are
shown in appendix D.

The optimal base velocity profiles for several baffle amplitudes are shown in figure 3.
A common feature across the three cases, α = 1.01, 1.1 and 2, is that the flow is retarded
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FIGURE 2. (a) A contour plot of (a) Ĝ0(r; a) and (b) Ĝ1(r; a) in the r–a plane. In the region
where Ĝ0 > 0, the penalty function μ3 is active, i.e. μ3 < 0 such that F = 0. (c) The bifurcation
diagram of the wavenumbers n of marginal eigenfunctions in the energy stability problem at
α = 1.01 and 1.02. The bifurcation points are illustrated by dashed lines. For example, for a < a1
there is only one marginal eigenfunction with n = 1 whereas for a slightly larger than a1 there are
two (n = 1 and n = 2) before the n = 1 mode stabilises to leave just one (n = 2) until a = a2

where a new n = 3 mode becomes marginal. The contour lines of Ĝ1 reflect these changes at
a ≈ 0.22, 1.83, 3, with some sudden changes in gradient.

by the baffle in the centre while being accelerated near the wall due to the increased
pressure gradient. The former effect is particularly prominent for a = 0.1 and α = 1.01
where the baffle actually causes a valley in the velocity profile, although for larger a
only a flattening is seen. This is in agreement with the experimental observations and
is assumed to make the flow more stable (Kühnen et al. 2018a,b, 2019). At moderate a,
the optimal velocity profile resembles the mean axial velocity profile around Re = 3800
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FIGURE 3. The optimal base velocity profiles U = W(r)ez for (a) α = 1.01, (b) α = 1.1 and
(c) α = 2. The red-solid lines are for a = 0.1, blue dashed lines for a = 1 and black dash-dot
lines for a = 10. As a increases, inflection points appear in the velocity profiles.
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FIGURE 4. The optimal baffle shape F = F(r) (a) α = 1.01, (b) α = 1.1 and (c) α = 2. The
red-solid lines are for a = 0.1, blue-dashed lines are for a = 1 and black dash-dot lines are for
a = 10.

in Kühnen et al. (2018a) (see their figure 7a), e.g. for a = 1 and α = 1.1 (see figure 3b). It
is encouraging that the optimal baffle designed using energy stability seems to capture the
structure of the baffle used in experiments, e.g. there is a hole in the baffle centre when
a = 1 and α = 1.1, which looks similar to the experimental baffle (see figure 2 in Kühnen
et al. 2018a). However, it is worth recalling that the baffle designed by energy stability
considerations is homogeneous in the z direction, while the baffle used in experiments is
localised. Practically, the baffle designed here would have to be truncated to some finite
length. This is considered later in § 4.3 where DNS confirm that a truncated baffle can still
be effective at saving energy.

When a is large, an inflection point appears in the velocity profile, e.g. a = 10, appearing
earlier (at smaller a) when the norm index α is smaller. To investigate this phenomenon,
the corresponding optimal baffles F are plotted in figure 4. Conspicuously, there is no
baffle in the near-wall region and the peak of F moves from the pipe centre towards the
pipe wall as a increases. For large a, the baffle strongly retards the flow in the vicinity
region of r ≈ 0.5 where F peaks. The drag force, however, reduces in the centre region,
and the velocity in the central region becomes larger. This accounts for the formation of the
inflection point. The energy stability problem becomes increasingly degenerate with new
critical modes emerging as a increases (see figure 5). Modes can also become non-critical,
at which point they are dropped from the computation (Plasting & Kerswell 2005).
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FIGURE 5. The bifurcation diagram of marginal/critical eigenmodes in the energy stability
problem characterised by their azimuthal wavenumbers for (a) α = 1.1 and (b) α = 2. The
changes are marked by thin-dashed black lines: for example at just over a = 8 for α = 1.1, an
n = 2 eigenmode becomes neutral and needs to be pinned.
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FIGURE 6. The critical Reynolds number versus the baffle amplitude a. The thin lines are for
energy stability and thick lines are for linear stability. The solid lines are for α = 1.01 and the
bifurcation points are marked; the dashed lines are for α = 1.1 and the dash-dot lines are for
α = 2. The shaded region is linearly unstable.

As expected, the critical energy stability Reynolds number ReE (as opposed to ReL for
the linear stability Reynolds number) increases as a increases (see figure 6). However, the
rate of improvement is relatively modest with marginally higher ReE achieved for smaller
α. The downside of choosing a smaller α is that the base velocity field develops inflection
points sooner as a increases, possibly indicating that while the base velocity field is more
energy stable, it may also become linearly unstable for larger Re. This turns out to be the
case as shown in figure 6 (the most unstable critical mode is a corkscrew mode, n = 1,
k /= 0, for all the three cases). The optimal solution becomes linearly unstable when a �
0.1, 1 and 8.3 for α = 1.01, 1.1 and 2, respectively, so that the linearly unstable region in
the a–Re plane is larger for smaller α. With no baffle, ReL = ∞ – Hagen–Poiseuille flow
is believed linearly stable for all Re – whereas ReL ∼ O(103) for the baffles designed here.
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FIGURE 7. The surplus pressure gradient, c − 4, versus the baffle amplitude a.

The increase in the pressure gradient c − 4 (4 being the non-dimensionalised gradient
needed to drive Hagen–Poiseuille flow) caused by the baffle is examined in figure 7. This
shows that the increase in the pressure gradient is lower using a bigger norm index α and
increases linearly with a when the baffle is weak (small a) and approximately linearly
when a � 1.

4.3. DNS
In industrial and domestic applications, flows in pipes usually operate at high Reynolds
numbers (much higher than the critical energy Reynolds number), and so the baffle
designed by the L2 constraint seems the best choice to test because it produces the most
stable laminar flow and causes the least pressure increase in the laminar state of all the
baffles. Two categories of DNS were carried out: using (a) an infinitely long baffle; and
(b) a given length of truncated baffle. For the first case, a serial MATLAB code was used
wherein the fast Fourier transform is applied to the azimuthal and axial directions

(u, p) =
N∑

n=−N+1

M∑
m=−M+1

(ûmn(r), p̂mn(r)) exp
(

inθ + i
2π

Lz
mz
)

, (4.6)

(Lz = 10) and each Fourier mode is discretised using Chebyshev polynomials

(ûmn(r), p̂mn(r)) =
S∑

s=0

Ts(r)(ûmns, p̂mns), Ts(r) = cos
[

s cos−1

(
r − 1

2

)]
. (4.7a,b)

The second-order Adams–Bashforth–Crank–Nicolson scheme was implemented in time
and a resolution of (S, M, N) = (60, 32, 32) used. The parallelised openpipeflow code
(www.openpipeflow.org) was used for the second study, as well as validating the simpler
MATLAB code.
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FIGURE 8. The evolution of β for the controlled and uncontrolled flows at Re = 2400. The
red-solid line is for the flow with no baffle. The dashed lines are for the controlled flow, i.e. with
a baffle and a = 1. The baffle is introduced into the turbulent flow at t = 0, 200, 400 and 600,
respectively, and each time kills turbulence. The time unit is R/U.

a 0 0.5 1 2 3 4 5

〈∂p/∂z〉 6.78 6.48 4.82 5.50 6.21 6.90 7.69

TABLE 1. The pressure gradient versus the optimal baffle amplitude a at Re = 2400.

To quantify the relaminarisation of turbulent flow, we monitor the evolution of the
friction factor in the flow

1 + β(t) = 〈∂p/∂z〉
〈∂ p̄/∂z〉 , (4.8)

where p is the turbulent pressure and 〈∂ p̄/∂z〉 = c is the laminar pressure gradient, so β(t)
measures the increase in the pressure gradient caused by turbulent flows. To demonstrate
the capability of the designed baffle, the a = 1 L2 version is inserted into an Re = 2400
turbulent flow at four different times (see figure 8). For all the four cases, the turbulence
quickly decays away to leave the laminar flow solution. We also found that the total drag
can be significantly reduced by the baffle (see table 1). The total drag decreases as a
increases to a ≈ 1 but then increases until, at a ≈ 4, the baffle-modified laminar drag is
greater than baffle-free turbulence at Re = 2400.

Next, a series of DNS were performed to investigate the performance of the
L2-constrained baffle over a range of a and Re. Five different turbulent snapshots from
a fully developed pipe flow at different Reynolds numbers were used as initial conditions
for DNS at each point (Re, a) and run for a time 500D/U with the baffle considered
successful if all runs relaminarised. The phase diagram in figure 9 shows that the baffle
amplitude needed to relaminarise the turbulence increases as the Reynolds number until
Re ≈ 3600, where it hits the threshold for the baffle-modified laminar state to become
linearly unstable. Beyond this point, no relaminarisation was observed. Even for baffle
amplitudes a < 8.3 the baffle-modified laminar drag can become higher than the turbulent

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

60
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.602


902 A11-14 Z. Ding, E. Marensi, A. Willis and R. Kerswell

5000

Turbulent

Linearly unstable

Laminar-N

Laminar-Y

45004000
Re

a

3500300025002000
0

2

4

6

8

10

FIGURE 9. The phase diagram for the laminar–turbulent states in Re–a space. If all five
initial turbulent flow conditions relaminarised a diamond was drawn, otherwise a solid dot was
used. The shaded regime (a > 8.3) indicates where the baffle-modified laminar flow is linearly
unstable. The ‘Laminar-Y’ region indicates flow is laminar and the drag is smaller than an
unforced turbulent drag, indicating energy saving. The ‘Laminar-N’ region indicates that there
is no energy saving although the flow is laminar.

drag (see region ‘Laminar-N’ in figure 9) if the amplitude is sufficiently large. As a result
there is only energy saving in a strict subset of the relaminarisation – region ‘Laminar-Y’
in figure 9. The region ‘Laminar-N’ indicates where the flow is laminar but actually
consumes more power than the turbulent state with no baffle.

In the second study, we truncate the baffle to be the same length as the non-optimised
one studied in Marensi et al. (2019) (so that it occupied a fifth of the pipe) and examine
if the truncated optimised baffle using energy stability performs better. The baffle in
Marensi et al. (2019) was quantified by the L1 norm and so the truncated baffle was
rescaled accordingly to have the same L1 amplitude. We tested several different turbulent
initial conditions at Re = 2400 (much higher and the truncated baffle does not work).
The truncated baffle at a = 3 was found to be very robust in killing turbulence, while
the undesigned baffle only worked for some initial conditions. Figure 10 shows a typical
case where the undesigned baffle (Marensi et al. 2019) fails to relaminarise turbulence
and in fact causes a higher drag than the unforced turbulent flow at Re = 2400. When
the amplitude of the baffles is doubled, however, relaminarisation occurs for both but is
slower for the undesigned baffle compared with the truncated baffle. The laminar drag can,
however, be lower for the undesigned baffle than that caused by the optimised truncated
baffle. This indicates that the energy-stability-designed baffle is not globally optimal as
one would expect.

5. Discussion

This study has explored using an energy stability criterion to design an optimal baffle
for turbulence relaminarisation in pipe flow. The effect of a baffle was modelled by a
drag force f = Fu/Re with the amplitude of the baffle F measured by an Lα norm with
α ∈ [1, 2]. An asymptotic analysis for small a indicated that the optimal baffle is always
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FIGURE 10. The evolution of β(t) versus time t (here, 1 + β(t) = c/4). The truncated baffles
for a = 3 (radial profile is designed by energy stability) have the same length as the undesigned
baffle in Marensi et al. (2019) and the Reynolds number is Re = 2400.

one-dimensional (1-D), i.e. F = F(r) and the energy stability constraint is marginally
satisfied. The most natural amplitude choice (L1) turned out to be a singular case and so, as
an alternative, the limit of α → 1 was considered – in particular α = 1.01 – together with
two other cases α = 1.1 and 2. In all cases, the numerical results showed that the optimal
baffle acts by retarding the flow in the centre region which then leads to faster flow near the
wall region, i.e. the base velocity profile is flattened. The engineered baffles have similar
characteristics to those baffles used in experiments (Kühnen et al. 2018a, 2019) at least in
radial structure but no preferred optimal length in the streamwise direction emerges from
the optimisation.

Another consequence of the optimisation procedure is that the baffle-modified laminar
flow becomes linearly unstable flow if the baffle amplitude is too large. This linear
instability appears last as the amplitude increases for the largest norm index, α = 2 studied.
As a result this optimal baffle was then tested using DNS which showed that it can
efficiently kill turbulence for Re � 3500. A streamwise-truncated version of the baffle was
also compared with the unoptimised baffle studied in Marensi et al. (2019) at Re = 2400
and, as hoped, outperformed it.

The results of using energy stability as a design criterion are reasonable but not
compelling. In experimental studies, the localised porous baffle employed was found to kill
turbulence up to Re ≈ O(104) (Kühnen et al. 2018a) which is nearly three times higher in
Re than that found here. In hindsight, it could not have been anticipated that adding a baffle
to pipe flow would only increase the energy stability by a factor of approximately three
leaving it well below 103. This relative insensitivity of energy stability to modifications of
the laminar flow in a pipe is a surprise as is the unwelcome emergence of linear instability
at relatively low Re too. Clearly designing a baffle down at Re ≈ O(102) is not guaranteed
to produce turbulence-calming properties at Re = O(103)–O(104). Despite this, it is
possible that the designed baffle performs better in practice than our simulations show
since the nonlinear term u · ∇u was retained within the baffle for simplicity. In reality this
should be suppressed to properly model a porous medium. A further inadequacy of the
approach adopted here is the streamwise invariance of the optimal baffle which clearly is
impractical. Interestingly, the direct approach to the optimisation problem also struggles
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to produce a prediction of optimal baffle length (Marensi et al. 2020). This work indicates
that it is the streamwise-averaged baffle effect which is important and not the particular
streamwise distribution. But here, it surely is just a feature of requiring energy stability
everywhere in the pipe which is quite stringent.

In terms of next steps, there is the (considerable) challenge of directly tackling the full
optimisation problem of minimizing the energy consumption of a baffle-modified flow
over all baffles possible of a given amplitude; this has been recently studied in Marensi
et al. (2020). Staying with the idea of a spectral constraint design strategy, it seems clear
that the spectral constraint should be on the turbulent flow rather than the target laminar
flow solution. This would need a criterion for the statistical stability of turbulence which
continues to remain elusive.
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Appendix A. Optimal baffle is 1-D

Here we show that the optimal baffle is 1-D, i.e. F = F(r) for α > 1 by regularly
perturbing the baffle-free (a = 0) energy stability situation. All the variables for the energy
stability problem at small but non-zero a = ε are expanded around the a = 0 situation as
follows:

um
′ = u0

m + εu1
m + . . . , (A 1)

U = (1 − r2)ez + εδU + . . . , (A 2)

U+ = U+
0 + εδU+ + . . . , (A 3)

F = εF + . . . , (A 4)

μ1 = ε1−αμ1 + δμ1 + . . . , (A 5)

Re = Rec + εδRe + . . . , (A 6)

μ3 = μ0
3 + εδμ3 + . . . , (A 7)

where Rec ≈ 81.5. The perturbed energy stability equation (the first correction of (3.2)
and (3.3) expanded around a = 0) reads

∇ · u1
m = 0, (A 8)

Rec

⎛
⎝ w1

m
0

u1
m

⎞
⎠+ ∇p1

m − 2∇2u1
m = δRe

⎛
⎝ w0

m
0

u0
m

⎞
⎠+ Rec(∇δU + ∇δUT) · u0

m − 2Fu0
m

(A 9)
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and the leading-order solution of F satisfies

N∑
m=1

|u0
m|2 + αμ1Fα−1 + (1 − r2)W+

0 + μ0
3 = 0, (A 10)

which is (3.11). Here, when obtaining the eigenvectors u0
m and W+

0 , we force
∑N

m=1 |u0
m|2 +

(1 − r2)W+
0 + μ0

3 = 0 in the region
∑N

m=1 |u0
m|2 + (1 − r2)W+

0 < 0 such that F ≥ 0 is
ensured. In the region

∑N
m=1 |u0

m|2 + (1 − r2)W+
0 ≥ 0, we set μ3 = 0 such that F can be

determined. At a = 0 where Re ≈ 81.5 and U = (1 − r2)ez, there are two eigenmodes
which are marginally energy stable or critical,

u0
1 = c1ur cos(nθ + kz) − c1ui sin(nθ + kz), (A 11)

u0
2 = c2ur sin(nθ + kz) + c2ui cos(nθ + kz), (A 12)

where u = ur + iui is the eigenvector of (n, k) = (1, 1.08) (u0
2 is just a shift of u0

1 by π/2).
The leading-order solution of the Lagrange multiplier field U+

0 is driven by
Re(u0

1 · ∇u0
1 + u0

2 · ∇u0
2) – see (3.7), which splits into a 1-D part and a three-dimensional

(3-D) part

U+ = (c2
1 + c2

2)G (r)ez︸ ︷︷ ︸
1D

+ (c2
1 − c2

2)H exp(2inθ + 2ikz) + c.c.︸ ︷︷ ︸
3D

, (A 13)

where H = (H1(r), H2(r), H3(r))T. As a result (A 10) can be rewritten as

Fα−1 = (c2
1 + c2

2)F1(r)︸ ︷︷ ︸
1D

+ (c2
1 − c2

2)[F2(r) cos(2nθ + 2kz) + F3(r) sin(2nθ + 2kz)]︸ ︷︷ ︸
3D

,

(A 14)
where Fi(r) (i = 1, 2, 3) are dependent on ur, ui, G and H . Since F ≥ 0, the 1-D term is
larger than the oscillatory (in θ and z) 3-D term in (A 14),

(c2
1 + c2

2)F1(r) ≥ |(c2
1 − c2

2)[F2(r) cos(2nθ + 2kz) + F3(r) sin(2nθ + 2kz)]|. (A 15)

Hence, we can expand F as

F = ((c2
1 + c2

2)F1)
1/(α−1)

×
(

1 + (α − 1)(c2
1 − c2

2)[F2 cos(2nθ + 2kz) + F3 sin(2nθ + 2kz)]
(c2

1 + c2
2)F1

+ . . .

)
, (A 16)

and split F can be split into a 1-D part and a 3-D part,

F = ((c2
1 + c2

2)F1)
1/(α−1)︸ ︷︷ ︸

1D

+ (c2
1 − c2

2)H(r) exp(2inθ + 2ikz) + c.c.︸ ︷︷ ︸
3D-principal

+ Φ︸︷︷︸
3D-rest

, (A 17)

where Φ carries other wavenumber terms. Note that, δU is driven by FU and its 1-D part
can drive a 1-D parallel flow, and the 3-D part will initiate a 3-D flow which is proportional
to (c2

1 − c2
2). Hence, we can write δU = (c2

1 + c2
2)P(r)ez + (c2

1 − c2
2)Q exp(2inθ + 2ik) +

c.c.
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The solvability condition for u1
m to exist in the system (A 8) and (A 9) is

〈u0
m · L(u0

j )〉 = 0, (A 18)

where m, j = 1, 2 and L(u) defines the left-hand side of (A 8)–(A 9). Clearly, Φ does not
contribute to the integral (A 18) due to the orthogonality of Fourier modes. The solvability
condition is automatically satisfied when m /= j. For m = j, there are two solvability
conditions

〈δRe u0
mw0

m + Recu0
m · u0

m · ∇δU + F(u0
m)2〉 = 0, m = 1, 2. (A 19)

If c2
1 = c2

2 such that F is 1-D, the two solvability conditions are identical. When c2
1 /= c2

2,
the two solvability conditions are different as the contribution of the 3-D principal part
of F to integral

〈
F(u0

m)2
〉

changes sign when switching from m = 1 to m = 2. The two
solvability conditions can be simply stated as

d1 ± (c2
1 − c2

2)d2 = 0, (A 20)

where

d2 = 1/4
∫ 1

0
r(Hr(|ur|2 − |ui|2) − Hiur · ui) dr

+
∫ 1

0
r
(

u∗2 dQr

dr
+ 2in

u∗v∗Qr

r
+ 2iku∗w∗Qr

+ v∗2Qr

r
+ u∗v∗ dQθ

dr
+ 2in

v∗2Qθ

r
+ 2ikv∗w∗Qθ − u∗v∗Qθ

r

+u∗w∗ dQz

dr
+ 2in

v∗w∗Qz

r
+ 2ikw∗2Qz + c.c.

)
dr (A 21)

is a non-zero constant, (u∗,v∗,w∗) is the complex conjugate of u and (Qr,Qθ ,Qz) are the
three components of Q. Hence c2

1 = c2
2 so that F is 1-D, i.e. F = F(r). The same argument

can be applied to subsequent bifurcations (Ding & Kerswell 2020) assuming that d2 is
generically non-zero at each bifurcation. Since F is always 1-D for a � 1 as α → 1, we
assume F is 1-D for α = 1 as well. To summarise, the above shows that energy stability
can only design a 1-D baffle.

Appendix B. An unbounded body force and ReE → ∞
Here we show that a body force F can be found which makes ReE as large as required

while maintaining a constant mass flux. A body force determines the laminar flow but does
not enter the energy equation for any deviation away from this. Hence the expression for
ReE (2.8) is simplified to

1
ReE(F )

:= max
u′

−〈u′ · u′ · ∇U(F )〉
〈|∇u′|2〉 , (B 1)

where F is constrained by the mass flux condition 〈U · ez〉 = 1/2. We now construct a
sequence of C∞ unidirectional forces, F := fε(r)/Re ez, parameterised by a small positive
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real number ε and then demonstrate that ReE → ∞ as ε → 0 where the limiting force is
not smooth. The force fε is defined as follows:

fε := −1
r

d
dr

(
r

dWε

dr

)
, (B 2a)

with

Wε(r) := 1
2

tanh
(

1 − r
ε

)
, (B 2b)

where ε � 1 so there is a boundary layer at r = 1 (W(1) = 0, dWε/dr = O(e−2/ε) at r = 0
and the mass flux condition is satisfied to leading order in ε). The force fε is O(1/ε2) in
a boundary layer of thickness O(ε) near the pipe wall and decays exponentially into the
interior. Then 1/ReE is the largest eigenvalue Λ( fε) of the self-adjoint spectral problem

1
2

dWε

dr

⎡
⎣ w

0
u

⎤
⎦+ ∇p = Λ( fε)∇2u, (B 3)

where ∇ · u = 0 and u = uer + veθ + wez is regular at r = 0 and vanishes at r = 1.
Since Wε is only a function of r, this spectral problem can be partitioned into

1-D spectral problems parameterised by an azimuthal wavenumber m ∈ N and axial
wavenumber γ ∈ R. By inspection, the optimal solution as ε → 0 must have a boundary
layer of thickness O(ε) at r = 1 and either m = O(1/ε) or γ = O(1/ε) or both with
Λ = O(ε). A numerical solution for ε = 10−2 and 10−3 (see figure 11) confirms these
scalings and shows that: (a) the optimal is streamwise independent, i.e. γ = 0; and
(b) decays exponentially into the interior. These values of ε are already sufficient to
indicate the leading asymptotic behaviour

Λ( fε) = 0.019ε (B 4)

with m ∼ 0.68/ε, see figure 11. Clearly, this can be made as small as desired or ReE as
large as desired by choosing ε sufficiently small (and max fε = O(1/ε2) sufficiently large).
Hence there is no maximum ReE if the force is unconstrained in amplitude.

For Re � ReE = O(1/ε), the energy dissipation rate is

1
Re

〈|∇U |2〉 = 〈FU〉 = O
(

1
ε2Re

× 1 × ε

)
= O

(
1

εRe

)
= O(1) (B 5)

if ε is chosen to be just small enough to ensure the energy stability of the forced
unidirectional flow Wε. This energy dissipation rate then is more than that associated with
the normal turbulent response which is believed to scale as 1/ log(Re)2 in units of U3/R.
In other words, this strategy of forcing a unidirectional flow is more costly than just letting
the flow go turbulent.
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FIGURE 11. A contour of Λ( fε)/ε over (εm, εγ ) showing that maximum Λ( fε) is 0.019ε at
(εm, εγ ) = (0.68, 0) (data for ε = 0.001 shown).

Appendix C. The delta function baffle if Ĝ has a unique minimum

The solution for F is

F = lim
α→1

a1/α

[
(−Ĝ)α/(α−1)

2
∫ 1

0 r(−Ĝ)α/(α−1)dr

]1/α

. (C 1)

Introducing q = α/(α − 1), we have

F = a
2

lim
q→∞

(−Ĝ)q∫ 1
0 r(−Ĝ)q dr

. (C 2)

Assuming that Ĝ has a unique minimum and inf Ĝ < −1, and we expand Ĝq near the
maximal point r = r∗ then

Ĝq = exp(q ln(Ĝ)) ≈ exp(q ln(−Ĝ∗) − γ q(r − r∗)2), γ = Ĝ′′

2Ĝ

∣∣∣∣∣
r=r∗

> 0, (C 3a,b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

60
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.602


Optimal design of a baffle 902 A11-21

where Ĝ∗ = Ĝ(r∗). The integral
∫ 1

0 r(−Ĝ)q dr is dominated by the principal term when
q → ∞ as follows:

∫ 1

0
r(−Ĝ)q dr ∼ (−Ĝ∗)q

∫ 1

0
r∗ exp(−γ q(r − r∗)2)dr. (C 4)

Note that∫ 1

0
r∗ exp(−γ q(r − r∗)2)dr ∼ 1√

γ q
, so

∫ 1

0
r(−Ĝ)q dr ∼ (−Ĝ∗)q

√
γ q

, (C 5)

thus ∫ 1

0
r(−Ĝ)q dr ∼ (−Ĝ∗)q

√
γ q

. (C 6)

Hence, we have

F = a
2

lim
q→∞

(−Ĝ)q∫ 1
0 r(−Ĝ)q dr

∼ lim
q→∞

a
2
√

γ q

(
Ĝ

Ĝ∗

)q

∼
⎧⎨
⎩

a
2
√

q, r = r∗,

0, r /= r∗.
(C 7)

This indicates that F ∼ δ(r − r∗). Because the amplitude of F is constrained by 〈Fα〉1/α =
a, this indicates that F is

F = a
2r∗ δ(r − r∗) at α = 1. (C 8)

Appendix D. The Euler–Lagrange equations

Since F is 1-D, the Lagrangian (3.1) is rewritten as below when the mass flux is fixed,

L = Re + 〈Reu′ · u′ · ∇U +|∇u′|2+F|u′|2〉 − 〈p∇ · u′〉 + μ1

((
2
∫ 1

0
Fαr dr

)1/α

− a

)

+ μ2

(∫ 1

0
Wr dr − 1

4

)
+ 2

∫ 1

0
W+

(
d2W
dr2

+ 1
r

dW
dr

+ c − FW
)

r dr

+ 2
∫ 1

0
μ3(F − b2)dr, (D 1)

where U = W(r)ez. The Euler–Lagrange equations are

δL

δu′ = −Re(∇U + ∇UT) · u′ + 2∇2u′ − 2Fu′ − ∇p = 0, (D 2)

δL

δp
= ∇ · u′ = 0, (D 3)

δL

δW
= −2Re

(
du′w′

dr
+ u′w′

r

)
+ 2

(
d2W+

dr2
+ 1

r
dW+

dr

)
− 2FW+ + μ2 = 0, (D 4)
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δL

δF
= 2u′2 + v′2 + w′2 + 2a1−αμ1Fα−1 − 2W+W + 2μ3 = 0, (D 5)

δL

δμ1
=
(

2
∫ 1

0
Fαr dr

)1/α

− a = 0, (D 6)

δL

δW+ = d2W
dr2

+ 1
r

dW
dr

− FW + c = 0, (D 7)

δL

δRe
= 〈u′ · u′ · ∇U〉 + 1 = 0, (D 8)

δL /δμ2 =
∫ 1

0
Wr dr − 1

4
= 0, (D 9)

δL /δc =
∫ 1

0
W+r dr = 0, (D 10)

where ¯(•) = ∫ 2π

0

∫ L
0 (•) dθ dz/2πL is the average on a cylindrical surface. Here, we should

enforce F ≥ 0. To realise this, we will set 2u′2 + v′2+w′2 − 2W+W+2μ3 = 0 when F<0
occurs. This indicates that μ3 is to adjust the value of the 2u′2 + v′2 + w′2 − 2W+W.

D.1. One critical mode only
When there is only one critical mode, we write the mode as

[u1
′, v1

′, w1
′, p1

′] = [u1r + iu1i, v1r + iv1i, w1r + iw1i, p1r + ip1i](r) exp(ikz + iθ) + c.c.

(D 11)

We also fix the phase of this mode by setting (u1r, v1r, w1r, p1r)
T ⊥ (u1i, v1i, w1i, p1i)

T such
that the Euler–Lagrange equations admit a unique solution.

A condition for the wavenumber k should be added such that our algorithm can find the
optimal k automatically,

δL

δk
= 2k

∫ 1

0
(u2

1r + u2
1i + v2

1r + v2
1i + w2

1r + w2
1i)r dr −

∫ 1

0
( p1iw1r − p1rw1i)r dr = 0.

(D 12)

D.2. Degeneracy of the eigenvalue problem
When a is above a critical value (e.g. a = 0.96 for α = 2), other modes, which are
unstable, appear and the eigenvalue problem of the energy stability becomes degenerate.
When this occurs, we have to pin all the critical modes such that no unstable modes
arise from the energy stability. The ensuing variational problem is reminiscent of, but
distinct from, the ‘upper bound’ problem of finding the maximal friction factor possible
in turbulent pipe flow (Plasting & Kerswell 2005). In the ‘upper bound’ problem, the
so-called ‘spectral constraint’ – a modified version of the energy stability – should be
always satisfied, such that a bound on the viscous dissipation can be delivered. However,
the ‘upper bound’ problem wishes to maximise the viscous dissipation in a turbulent pipe
flow, while we aim to stabilise the flow by a baffle such that the state is always laminar
here.
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For n > 1, we find k = 0 numerically (see figure 12), and therefore the perturbation can
be written as

u′ = u1
′ +

N∑
n=2

un(r) cos(nθ), (D 13)

v′ = v1
′ +

N∑
n=2

vn(r) sin(nθ), (D 14)

w′ = w1
′ +

N∑
n=2

wn(r) cos(nθ), (D 15)

p′ = p1
′ +

N∑
n=2

pn(r) cos(nθ). (D 16)

Hence, the first critical mode n = 1, k /= 0 satisfies the following energy stability
equation:

−Re
dW
dr

w1r − ∂

∂r
p1r + 2Lu1r − 2

u1r

r2
+ 4n

v1i

r2
− 2Fu1r = 0, (D 17)

n

r
p1i + 2Lv1r − 2

v1r

r2
− 4n

u1i

r2
− 2Fv1r = 0, (D 18)

−Re
dW
dr

u1r + kp1i + 2Lw1r − 2Fw1r = 0, (D 19)

−Re
dW
dr

w1i − ∂

∂r
p1i + 2Lu1i − 2

u1i

r2
− 4n

v1r

r2
− 2Fu1i = 0, (D 20)

−n

r
p1r + 2Lv1i − 2

v1i

r2
+ 4n

u1r

r2
− 2Fv1i = 0, (D 21)

−Re
dW
dr

u1i − kq1r + 2Lw1i − 2Fw1i = 0, (D 22)

du1r

dr
+ u1r

r
− nv1i

r
− kw1i = 0, (D 23)

du1i

dr
+ u1i

r
+ nv1r

r
+ kw1r = 0, (D 24)

where

L = ∂2

∂r2
+ 1

r
∂

∂r
− n2

r2
− k2. (D 25)

The boundary conditions for the first mode at r = 0 are

du1r

dr
= du1i

dr
= dv1r

dr
= dv1i

dr
= w1r = w1i = p1r = p1i = 0. (D 26)
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For n ≥ 2, the energy stability equation is

−Re
dW
dr

wn − ∂

∂r
pn + 2Lun − 2

un

r2
− 4n

vn

r2
− 2Fun = 0, (D 27)

n

r
pn + 2Lvn − 2

vn

r2
− 4n

r2
un − 2Fvn = 0, (D 28)

−Re
dW
dr

un + 2Lwn − 2Fwn = 0, (D 29)

dun

dr
+ un

r
+ nvn

r
= 0, (D 30)

where

L = ∂2

∂r2
+ 1

r
∂

∂r
− n2

r2
. (D 31)

The boundary conditions for the other modes (n ≥ 2) at r = 0 are

un = vn = wn = pn = 0. (D 32)

The adjoint field W+ satisfies

− 4Re
(

d(u1rw1r + u1iw1i)

dr
+ u1rw1r + u1iw1i

r

)
−

N∑
n=2

Re
(

dunwn

dr
+ unwn

r

)

+ 2
(

d2W+

dr2
+ 1

r
dW+

dr

)
− 2FW+ + μ2 = 0. (D 33)

Equation (D 5) for baffle shape function F is restated as

4(u2
1r + u2

1i + v2
1r + v2

1i + w2
1r + w2

1i) +
N∑

n=2

u2
n + v2

n + w2
n

+ 2a1−αμ1Fα−1 − 2W+W + 2μ3 = 0. (D 34)

The equation to normalise the Reynolds stress (D 8) becomes

4
∫ 1

0

dW
dr

(u1rw1r + u1iw1i)r dr +
N∑

n=2

∫ 1

0

dW
dr

(unwn)r dr + 1 = 0. (D 35)

We follow Plasting & Kerswell (2005) and use a Newton method with parametric
continuation to solve the optimisation problem. Once a new mode becomes unstable, we
need to include this new mode in the Newton code. If a mode damps to zero as a increases,
we drop this mode from our computation. The Chebyshev collocation method is used to
solve the problem numerically. Once the relative error |δx/x| (x refers to the solution of
the Euler–Lagrange equations) is below 10−8, we terminate the Newton’s iteration. The
energy stability is then checked when the solution is converged (see figure 12).
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FIGURE 12. The eigenvalues λ of the energy stability versus the wavenumber k for (a) a = 1
and (b) a = 5. The norm index α = 2. The red-solid line is for n = 1; the blue-dashed line is for
n = 2 and the green-dash-dot line is for n = 3. The rest of the non-critical modes are not shown.
Clearly, for all n /= 1, the critical modes are streamwise homogeneous, i.e. k = 0.
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