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Abstract

Since the foundational work of Chenciner and Montgomery in 2000 there has been a great deal
of interest in choreographic solutions of the n-body problem: periodic motions where the n bodies
all follow one another at regular intervals along a closed path. The principal approach combines
variational methods with symmetry properties. In this paper, we give a systematic treatment of
the symmetry aspect. In the first part, we classify all possible symmetry groups of planar n-body
collision-free choreographies. These symmetry groups fall into two infinite families and, if n is
odd, three exceptional groups. In the second part, we develop the equivariant fundamental group
and use it to determine the topology of the space of loops with a given symmetry, which we show
is related to certain cosets of the pure braid group in the full braid group, and to centralizers
of elements of the corresponding coset. In particular, we refine the symmetry classification by
classifying the connected components of the set of loops with any given symmetry. This leads to
the existence of many new choreographies in n-body systems governed by a strong force potential.

2010 Mathematics Subject Classification: 37C80, 70F10 (primary); 58E40 (secondary)

1. Introduction

The problem of determining the motion of n particles under gravitational
interaction has long been of interest, and since Poincaré there has been particular
interest in periodic motions. In the last 20 years, renewed interest has followed
the discovery of what are now called choreographies: periodic motions where
the particles, assumed to be of equal mass, follow each other around a closed
path at regular intervals. In 1993, Moore [31] discovered the first of these,
where three identical particles move along a figure-8 curve; he found this
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Figure 1. Examples of planar choreographies; (a) circular, (b) the Figure 8, (c) the super-8, and
(d) a nonsymmetric choreography.

numerically. Independently, Chenciner and Montgomery [8] (re)discovered this
figure-8 solution a few years later, but they proved its existence using a clever
combination of symmetry methods and variational techniques.

Since the work of Moore, Chenciner, and Montgomery, there have been many
papers written on the subject of choreographies. We restrict ourselves to the
planar case, although interesting examples of choreographies have been shown
to exist in higher dimensions [1, 9, 12, 15]. In the plane, the first choreography
known (in hindsight) was the circular choreography of Lagrange, in which the
particles are positioned at the vertices of a regular n-gon rotating with constant
speed about its centre. Soon after the work of Chenciner and Montgomery,
J. Gerver suggested a four-particle choreography on what is called the ‘super-8’,
a curve similar to a figure-8 but with three internal regions and two crossings
([7, p. 289] and Figure 1(c)). The papers [7, 35] contains many examples of
choreographies, found numerically, and it will be noticed that almost all have
some geometric symmetry.

Some work approaches the questions using numerics and some uses an
analytic-topological approach, but almost all methods use a variational setting
for the problem. The original paper by Moore [31] was asking how the theory of
braids could be used in the study of dynamical systems of n interacting bodies
in the plane—any periodic motion of n particles can be represented by a braid
(indeed a pure braid, as the particles return to their original position after one
period), and Moore’s numerical approach was to use the braid as an ‘initial
condition’ for the variational problem and then ‘relax’ the curve by decreasing

https://doi.org/10.1017/fms.2013.5 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2013.5


Classification of planar choreographies 3

the action. Chenciner and Montgomery’s approach was also variational, but they
used explicitly the symmetries involved in the figure-8 solution, together with
the variational set-up, and the crux of their existence proof was to show that
minimizing the action within the given symmetry class did not involve collisions.

The idea of using symmetry methods in the variational problem was taken
up in a very interesting paper by Ferrario and Terracini [13], where they
gave, among other things, conditions on the symmetry under consideration
guaranteeing that a minimizer of the action is free of collisions (their ‘rotating
circle’ condition, which we describe in Section 2).

An excellent review by Terracini was published in 2006 [39], containing many
more references.

The principal aim of the present paper is to make systematic the combination
of topological (braid) methods and symmetry methods. We begin by classifying
all possible symmetry groups arising for (collision-free) choreographies in the
plane, and then proceed to study symmetries in loop space, first in general and
then referring specifically to choreographies. The work is an extension of the
work presented in the second author’s thesis [37].

1.1. Configurations and symmetries. We are interested in the motion of an
isolated system of n identical particles in the plane. We identify the plane with
C, the complex numbers. Under these assumptions, the centre of mass of the
particles is given by (1/n)

∑
j zj, and without loss of generality we can take this

point to be fixed at the origin. In addition, we assume that the particles do not
collide. Later, we assume that they interact under a conservative attractive force.
Much of this section follows the work of Ferrario and Terracini [13].

The configuration space of the system is therefore

X(n) :=
{
(z1, . . . , zn) ∈ Cn

∣∣∣∣ ∑
j

zj = 0, zi 6= zj ∀i 6= j

}
,

which is a (noncompact) manifold of real dimension 2n − 2. There is a natural
symmetry group acting on X(n), namely the product of the orthogonal group in
the plane and the group of permutations of the n points Γ := O(2) × Sn, acting
by

(A, σ ) · (z1, . . . , zn)= (Azσ−1(1), . . . ,Azσ−1(n)). (1.1)

All group actions will be left actions, whence the inverse on the permutation in
(1.1).

Let Λ = ΛX(n) be the space of all loops in X(n). A loop is by definition a
continuous map

u : T→ X(n),
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where T is the time circle: we identify T= R/Z, so loops are parameterized by
t ∈ [0, 1]. Then

u(t)= (z1(t), . . . , zn(t)) ∈ X(n), (1.2)

where each zj : T→ C.
Denote by Ŝ1 the symmetry group of rotations and reflections of the time circle

T, which is isomorphic to O(2). The action of Γ on X(n) extends to an action of
Γ × Ŝ1 on the loop space Λ: if τ ∈ Ŝ1, we put

((A, σ, τ ) · u)(t) := (A, σ ) · u(τ−1(t)), (1.3)

where (A, σ ) acts as in (1.1). A loop u is said to have symmetry G < Γ × Ŝ1

if G is the isotropy subgroup of u under the Γ × Ŝ1-action (we use the notation
G< H to mean that G is a subgroup of H). Explicitly, this means that

u(τ (t))= (A, σ ) · u(t), ∀ (A, σ, τ ) ∈ G.

Notice that g= (I, σ, τ ) ∈ G means that

zσ(j)(τ (t))= zj(t) (∀j, t),

and consequently particles whose labels are within the same orbit of σ follow
the same path. In particular, if σ is a cycle of order n (the number of particles),
then all the particles follow the same path.

A particular subgroup of Γ × Ŝ1 of central interest is the choreography
group Cn, which is the cyclic group of order n generated by c = (I, σ1,−1/n),
where σ1 is the cycle σ1 = (123 . . . n) ∈ Sn.

Recall that, given any action of a group G on a space X, the fixed point space
is defined to be

Fix(G,X)= {x ∈ X | ∀g ∈ G, g · x= x}.
DEFINITION 1.1. A choreography is an element of the fixed point space
Fix(Cn,ΛX(n)).

We denote this fixed point space by Λc = ΛcX(n). Explicitly, the loop (1.2) is
a choreography if, for each j= 1, . . . , n,

zj+1(t)= zj

(
t + 1

n

)
, (1.4)

where the index is taken modulo n; in particular, particle 1 follows particle 2,
which in turn follows particle 3, and so on, and all with the same time delay of
1/n. As already pointed out, this definition requires all the particles to move on
the same curve. Such motions are sometimes called simple choreographies, to
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distinguish them from more general choreographies where more than one curve
is involved, and possibly different numbers of particles on different curves: we
only consider these simple choreographies. Note that the definition does not
imply that the particles are in numerical order around the curve, as Example 1.3
below shows.

It follows from the definition that the symmetry group G of any choreography
satisfies Cn < G (in Proposition 2.1 we show that it is in fact a normal subgroup).
Since Cn is of order n, it follows that n divides the order of the symmetry group
G of any choreography.

For a given symmetry group G< Γ × Ŝ1, we denote by ρ, σ, τ the projections
of G to each component. That is, given an element g ∈ Γ × Ŝ1, we write its three
components as ρ(g) ∈ O(2), σ(g) ∈ Sn, and τ(g) ∈ Ŝ1.

DEFINITION 1.2. A subgroup G < Γ is said to be nonreversing if τ(G) < S1;
otherwise it is reversing.

These are what Ferrario and Terracini call symmetry groups of cyclic and
dihedral type, respectively [13]. Note that their ‘brake type’ symmetry groups
cannot occur in collision-free (simple) choreographies with more than one
particle.

EXAMPLE 1.3. One important—but in a sense trivial—class of choreography is
what we call the circular choreographies, where the particles lie at the vertices
of a regular n-gon which rotates uniformly about the centre of mass; they are the
generalizations of the Lagrange solution to n particles. Explicitly, consider the
parameterized circle z(t) = exp(2π it) in the plane. Let ` be an integer coprime
to n, and define a motion of n particles by, for j= 1, . . . , n,

zj(t)= e2π i`j/n z(`t). (1.5)

This is easily seen to be a choreography, satisfying (1.4). The full symmetry
group of this motion is isomorphic to a semidirect product O(2) n Zn '
(SO(2)×Zn)oZ2; an explicit description of the elements of this group is given
in Equation (2.1). In this motion, particle j immediately follows particle j + m
around the circle, where m`= 1(mod n), with a time delay of 1/`m; that is,

zj+m(t)= zj

(
t + 1

m`

)
,

which implies the choreography condition (1.4). In this example, we have

ker ρ = Cn, ker σ ' SO(2), ker τ = 〈(R2π`/n, σ1, 0)〉 ' Zn.

We assume that ` is coprime to n, for otherwise this motion involves particles
coinciding for all time.
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Classification. The main result of the first part of the paper (stated as
Theorem 2.3) is a complete classification of all possible symmetry groups of
(simple) planar choreographies. In other words, we classify all those subgroups
of O(2)×Sn× Ŝ1 that on the one hand contain Cn and on the other are realized as
the symmetry group of some collision-free n-body motion. For a given number
n of particles, one finds that there are two infinite families of symmetry group
and, if n is odd, three exceptional symmetry groups. Full details of the symmetry
groups are given in Section 2; here, we give a brief description. For the infinite
families, the curve on which the particles move has the symmetry of a regular
k-gon for some k ≥ 1. As the particles move, they visit the ‘vertices’ of the k-gon
in some order. This order is similar to the difference between a pentagon and
a pentagram: in the former the vertices are visited in geometric order, while in
the latter the vertices are visited alternately (that is, in the order 1, 3, 5, 2, 4,
rather than 1, 2, 3, 4, 5). There is a convenient notation used to distinguish these,
the so-called Schläfli symbol. In this notation, the basic regular convex k-gon is
denoted {k}, while the k-gon with every `th vertex visited in sequence is denoted
{k/`} —in particular, {k/1} = {k}. Thus the pentagon is denoted {5}, while the
pentagram is denoted {5/2}. In order for the geometric object {k/`} to consist
of a single closed curve, it is necessary and sufficient that k and ` are coprime
(which we write throughout as (k, `)= 1). We adapt this notation, and denote the
symmetry groups for n particles moving on a curve of type {k} or {k/`} by C(n, k)
or C(n, k/`) respectively if there is no time-reversing symmetry, and by D(n, k)
or D(n, k/`) respectively if there is such a symmetry. See for example Figure 3
for choreographies illustrating the difference between D(6, 5) (pentagon) and
D(6, 5/2) (pentagram). In these infinite families, the time-reversing symmetries
occur in combination with a reflection in the plane. As k→∞, the k-gon tends to
a circle, and so we denote the symmetry of the circular choreography introduced
above by D(n,∞/`).

On the other hand, if n is odd, there are three exceptional symmetry groups,
denoted C′(n, 2), D′(n, 1), and D′(n, 2) (where, as always, n is the number of
particles). For example, the choreography in Figure 8 has symmetry D′(3, 2).
In these groups there is always an element which either acts as time-reversing
symmetry but not a reflection (in D′(n, 1)), or a reflection which is not acting
as time-reversal, in C′(n, 2), or both, in the case of D′(n, 2). Precise details are
given in Section 2, while a number of different choreographies are illustrated in
Figure 2.

Comparison to recent literature. Stewart [38] gives a classification of symmetry
groups arising in many-body problems which is different from ours. This
difference arises for two reasons: first, Stewart does not restrict attention to
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(a) D(6,4) (b) D(6,4) (c) D(6,4) (d) D(6,4)

(e) D(8,3) (f) D(8,3) (g) D(8,3) (h) D(8,3)

(i) D(4,6) (j) D(5,8) (k) D(8,9 2)

(m) D(8,7) (n) D(9,4) (o) D(9,4) (p) D(10,5 2)

(l) D(8,9 4)

Figure 2. A selection of choreographies with their symmetry group. See Remark 1.6. These are
all from the regular families of symmetry groups; for some examples illustrating the exceptional
symmetry groups, see Figure 6. Where the same label appears for more than one figure, they
correspond to different connected components of the corresponding Fix(G,ΛX(n)). Animations
can be viewed on the first author’s website [27] and also as supplementary material online at
http://dx.doi.org/10.1017/fms.2013.5.

choreographies, and second, his approach is local, and would apply to Hopf
bifurcation or Lyapunov centre theorem scenarios: they are the symmetries that
can arise for periodic orbits in a linear system. On the other hand, Barutello
et al. [2] do give a classification of symmetries for three-body choreographies.
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(a) D(6,  5) (b) D(6,  5 2)

Figure 3. Comparison of different values of `: D(6, 5) and D(6, 5/2) reflect the difference between
the symmetries of a pentagon and a pentagram.

Table 1. Comparison of the classification in this paper with that of
Barutello et al. [2] for three-particle choreographies (note that in [2]
the dihedral group of order 2m is denoted D2m, while here we denote it

Dm).

This paper D(3, k/`) D′(3, 2) D′(3, 1) C′(3, 2)
Barutello et al. ‘Lagrange’ D6 D3 C6

However, their classification is simpler than ours (even for n = 3), as they
consider the motion in a rotating frame (or modulo rotations), which has the
effect of projecting out the rotational part of our symmetry groups, so effectively
they consider subgroups of Z2 × S3 × Ŝ1; in particular, all the groups D(3, k/`)
in this paper are collapsed to the single ‘Lagrange type’, which is the image of
D(3,∞/`) in Z2 × S3 × Ŝ1. See Table 1. This is similar to viewing the motion
on the shape sphere; see for example [30] and references therein.

1.2. Variational problem and topology of loop spaces. The principal
motivation for this paper is to apply the results to the variational problem
describing the periodic motion of n identical particles in the plane, interacting
under a Newtonian potential. However, the Newtonian potential is renowned
for its difficulty, as was evident even to Poincaré (in modern terms, because
the action functional on the space of collision-free loops is not coercive). The
proof of the existence of the figure-8 solution by Chenciner and Montgomery [8]
uses some delicate arguments to show that the minimum of the action functional
over the set of loops with the given symmetry cannot occur for a loop with
collisions. A different argument for avoiding collisions covering more general
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symmetry classes was given by Ferrario and Terracini [13], under the hypothesis
that the symmetry group satisfy what they call the rotating circle condition (see
Section 2.6 below).

Given an action of a (Lie) group Γ on a manifold X, there is a natural action of
Γ×Ŝ1 on the loop spaceΛX. This action has been used a great deal in bifurcation
theory, in particular for the Hopf bifurcation by Golubitsky and Stewart [16] and
for the Hamiltonian Lyapunov centre theorem [28]. However, it seems it has
not been used as extensively, or as systematically, in variational problems. The
second half of this paper goes a little way to address this.

Typically, one is looking for periodic solutions of a differential equation
which can be expressed as a variational problem. This includes the existence
problem of closed geodesics, as well as periodic orbits for n-body problems
and more general Lagrangian mechanical systems. Let A : ΛX → R be the
‘action functional’, whose critical points correspond to periodic solutions of a
given fixed period, which we take to be 1, and assume that it is invariant under
the action of Γ × Ŝ1. (This invariance occurs for example if the Lagrangian is
invariant under the action of Γ on X, or, for the geodesic problem, if the metric
is invariant under the Γ action). For each subgroup G < Γ × Ŝ1, denote by AG

the restriction of A to Fix(G,ΛX). By Palais’ principle of symmetric criticality
[32], critical points of AG coincide with critical points of A lying in Fix(G,ΛX),
that is, to periodic solutions with spatio-temporal symmetry G.

If the functional AG is coercive, then it is guaranteed to achieve a minimum,
and indeed a minimum on each connected component of Fix(G,ΛX). Coercive
means that, for every sequence that has no point of accumulation (in the weak
topology), the functional tends to infinity, and it is a standard argument in
variational calculus that, provided the functional is lower semicontinuous and
coercive, then it achieves its minimum; see for example the book of Jost and
Li-Jost [23].

For the geodesic problem on a compact Riemannian manifold X, the action
functional, equal to the length of a loop, satisfies the Palais–Smale condition and
is coercive, and the critical points are the closed geodesics [25]. The topological
techniques of this paper can be used to prove the existence of symmetric
geodesics, namely those satisfying u(t + θ) = g · u(t), for each (g, θ) ∈ G <

Γ×S1. In particular, a symmetric geodesic is one that, as a curve in X, is invariant
under those transformations of X contained in the projection of G to Γ .

For planar n-body problems, the space X is X(n) introduced above, which is
not compact, nor even complete because of collisions, and separate arguments
are required to deal with the two problems.

Its completion X(n) ' Cn−1 is not compact and the action functional is not
coercive, as loops can move to infinity without the action increasing. However,
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imposing restrictions on the types of loops considered can ensure coercivity of A,
and there are two types of restriction considered in the literature: topological and
symmetry based. The topological constraints were introduced by Gordon [20]
using the notion of tied loops. The symmetry approach was used in various ways
by different authors and culminated in a beautifully simple result of Ferrario and
Terracini [13], who showed that the restriction AG of A to the subspace of loops
in X(n) with symmetry G is coercive if and only if G< Γ × Ŝ1 is such that

Fix(G,X(n))= {0}. (1.6)

This holds for a wide class of action functions A, including the one derived
from the Newtonian potential. For our purposes, this condition (1.6) holds for the
choreography group Cn, and a fortiori for any group containing Cn (the groups
of our classification).

There remains the issue of collisions. For the gravitational 1/r potential,
the action functional on ΛX(n) fails to be coercive because, as was known to
Poincaré, there are trajectories with collisions for which the action is finite.
Following Poincaré and others since, one can introduce the notion of a strong
force (essentially with potential behaving like 1/ra for a ≥ 2 near collisions,
rather than the Newtonian 1/r), in which case a simple estimate shows that every
loop with collisions has infinite action. This idea was investigated by Gordon
[20], where he combines it with his idea of tied loops inΛX(n) to ensure that A is
coercive on these connected components of ΛX(n). (See also the very interesting
papers of Chenciner [5, 6] describing the insights and contributions of Poincaré.)

This discussion leads to the following essentially well-known result.

THEOREM 1.4. Consider the n-body problem with a strong force potential, and
let G be any subgroup of Γ × Ŝ1 containing Cn. Then in each connected
component of Fix(G,ΛX(n)) there is at least one choreographic periodic orbit
of the system.

Proof. The strong force analysis by Gordon [20] and the coercivity result
of Ferrario and Terracini [13] mentioned above imply that each connected
component of Fix(G,ΛX(n)) contains a local minimum of the action functional.
This minimum is a periodic orbit, and necessarily a choreography, since G
contains Cn. �

Connected components of the loop space ΛX(n) correspond to (conjugacy
classes of) pure braids, and Montgomery [29] gives a very nice analysis of which
components of ΛX(n) are tied in Gordon’s sense, in terms of the pure braids and
their winding numbers. In the second half of this paper, we show that, for each
group G < Γ × S1 (so not including time-reversing symmetries, which will be
dealt with in a separate paper), the connected components of Fix(G,ΛX(n)) are in
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one-to-one correspondence with certain conjugacy classes in the full braid group,
and more precisely by the Pn-conjugacy classes in a certain coset in Bn/Pn, where
Pn is the pure braid group on n strings (or twisted conjugacy classes in the case
of C′(n, 2)). The precise formulation is given in Theorem 5.7. In a sense, this can
be seen as extending the work of Montgomery.

For the Newtonian (weak) potential, the action functional is not coercive at
collisions, and the notion of tied loops does not apply, as the set of collisions
does not obstruct moving from one component ofΛX(n) to another. The proof by
Chenciner and Montgomery [8] of the existence of the figure-8 solution involves
showing that the minimum over all loops with collision is greater than the action
of a particular loop with the given symmetry (the class D′(3, 2) in our notation),
and hence the minimum over loops with that symmetry must be realized for
a collision-free loop. The important paper of Ferrario and Terracini [13] gives a
general perturbation argument, based on a technique of Marchal, showing that for
many symmetry classes the minimum of AG cannot be achieved at a trajectory
with collisions. These symmetry classes are those satisfying their rotating circle
condition, a property we discuss in Section 2.6.

However, even with the gravitational potential, the lack of coercivity does
not of course imply that there is not a minimum on each connected component
of Fix(G,ΛX(n)), and indeed numerics suggest that in many, or perhaps most,
examples there are such minima (there is numerical evidence that on some
connected components there is no minimum, see [34, 35], but this evidence is
also only numerical).

In this paper, we make no claim to prove explicitly the existence of new
choreographies for the Newtonian n-body problem, although we can make the
following statement, which is an easy consequence of the results of Ferrario and
Terracini.

THEOREM 1.5. Suppose that n is odd. Then for each of the symmetry types
D′(n, 1) and C′(n, 2) there is a collision-free periodic orbit of the Newtonian
n-body system with that symmetry.

It is possible that the choreographies in question are those where n particles
move around a figure-8 curve—however to our knowledge it has not been shown
that these minimize the action for the given symmetry type.

Proof. Ferrario and Terracini [13] prove that for any symmetry satisfying the
rotating circle condition there is a collision-free minimum in the set of loops
with that symmetry. We show in Proposition 2.9 that the symmetry groups in
question do satisfy this property. �

Note that the groups C(n, k/`) also satisfy the rotating circle condition, but in
that case it is known that the circular choreography minimizes the action [3].
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(a) D(3, 4) at t  0 (b) D(3, 4) at t  (c) D(3, 4) at t  

Figure 4. A choreography for the three-body problem with fourfold symmetry (‘three particles
on a Celtic knot’). Note that the particles at t = 1/12 are obtained from those at t = 0 by
rotating by −π/2 and relabelling by σ−1

1 = (1 3 2). This corresponds to the symmetry element
g= (R3π/2, σ

2
1 , 1/12), the generator of C(3, 4). Figure (a) demonstrates the element (κ, (2 3), 0) ∈

D(3, 4), while Figure (b) illustrates (κπ/4, (1 3), 1/12), and Figure (c) illustrates (κπ/2, (1 2), 1/6).
See [27] for the animation.

For the three-body problem, many choreographies are known (numerically),
almost all of which have just reflectional symmetry (many with one axis, and
some with two, such as the figure-8). A new possibility raised here is the
symmetry types D(3, k) with k > 2. A particular case is the choreography of
‘three particles on a Celtic knot’, depicted in Figure 4, with D(3, 4) symmetry.
While a motion similar to the figure exists for the strong force, by Theorem 1.4, it
would be particularly interesting to know if it exists for the Newtonian attraction.

We have hitherto not been specific about exactly which space of loops we
use. For variational calculus one needs the Sobolev space H1(T,X(n)) with its
usual topology, while for the topological part one uses continuous loops with
the compact-open topology. It is proved in [25] that the spaces are homotopic,
and the argument can be adapted to show that the homotopy can be chosen to
respect the action of Γ × Ŝ1. Thus connected components of Fix(G,C0(T,X(n)))

correspond to those of Fix(G,H1(T,X(n))), and the corresponding components
are homotopy equivalent.

Organization. The paper is organized as follows. In Section 2, we describe the
symmetry groups arising for planar choreographies and some of their properties,
and state the classification theorem, Theorem 2.3. The proof of the theorem is
the subject of Section 3.

The remainder of the paper investigates the topology of the space of
choreographic loops with a given symmetry. Section 4 describes a general
approach to the question for the action of any Lie group Γ on a manifold
X. We introduce the notion of ‘equivariant fundamental group’, which can be
used to compute the connected components and their fundamental group of
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(a) D(6,  4) (b) D(10,  5 2)

Figure 5. Two examples of choreographies with nontrivial core: in the first the order of the core
is c= 2, and in the second c= 5 (generated by rotations through π and 2π/5, respectively). They
are shown for generic values of t illustrating the core symmetry which is valid for all t. Compare
with special configurations t = 0 in Figure 2(c) and (p)

the spaces of symmetric loops. These ideas are applied in Section 5 to the
question for choreographies. Finally, Section 6 provides a method to describe
which components of the space of loops with symmetry G contain loops
with symmetry group strictly greater than G, an important issue in applying
variational techniques. In Sections 4–6, we consider only the action of Γ × S1,
rather than allowing time-reversing symmetries in Γ × Ŝ1. Subgroups with
time-reversing symmetries will be considered in a forthcoming paper.

REMARK 1.6. The figures showing choreographies are provided to illustrate
the symmetry types of choreographies, and the differences between different
connected components of the space of loops with a given symmetry type (a
number of examples of this are shown in Figure 2, and compare also Figures 5
and 11). The choreographies are all found using MAPLE or MATLAB by a
method of steepest descent to minimize the action for the n-body problem with
Newtonian potential, although in most cases there is no guarantee that such
a solution exists. The method is applied on a space of finite Fourier series
with coefficients satisfying conditions corresponding to the symmetry group in
question, as described in Section 2.4. Consequently, if there does exist a solution
in a particular connected component of the space of loops with a given symmetry
type, then it is reasonable to expect the solution to resemble the corresponding
figure. Animations of the figures are available on the first author’s website [27];
the programming for the animations was created by Dan Gries.

It has been observed by others before that it is not difficult to create
numerical examples of choreographies by taking a parameterized curve with
several self-intersections and placing on it a large number of particles at regular
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intervals, and then decreasing the action until it is minimized (using a computer
programme of course). On the other hand, it appears to be much more of a
challenge to produce examples where there are very few particles compared with
the degree of symmetry of the curve, such as the examples D(3, 4), D(4, 6), and
D(5, 8) illustrated in Figures 2 and 4. It would be particularly interesting to prove
existence results for these examples.

2. Classification of symmetry types

2.1. Notation. Here, we introduce some notation for certain subgroups and
elements that will be useful throughout the paper. The symbol n always denotes
the number of particles, and we assume that n≥ 3.

• We denote by Rθ ∈ SO(2) the rotation of the plane through an angle θ and by
κ ∈ O(2) the reflection in the horizontal axis. In complex coordinates, Rθ is
multiplication by eiθ and κ is complex conjugation. We occasionally use κθ to
denote reflection in the line at an angle θ with the horizontal (so κ0 = κ and
Rθ κ = κθ/2).

• Let Sn denote the symmetric group on n letters, with identity element denoted
e, and consider two particular subgroups. First, denote by σ1 ∈ Sn the cycle
σ1 = (123 . . . n) of order n, so σ1(j) = j + 1(mod n), and denote by Σn <

Sn the cyclic subgroup generated by σ1. Second, let s1 be the order-two
permutation which fixes the element 1 and reverses the numerical order:
s1 = (2n)(3(n − 1)) · · · , so s1(j) = 2 − j(mod n), and denote by Σ+n < Sn

the dihedral group of order 2n generated by σ1 and s1.

• For k coprime to n, we denote by σk ∈ Σn the unique permutation satisfying
σ k

k = σ1. That is, σk(j)= j+ k′, where kk′ ≡ 1(mod n).

• Recall that T is the circle R/Z. For θ ∈ S1 (the group, also R/Z), denote the
transformation t 7→ θ + t of T simply by θ , and the reversing transformation
t 7→ θ − t by θ̄ . Thus 0 denotes the identity, and 0̄ the reflection about t = 0.
The reflection θ̄ is the reflection that fixes the points θ/2 and θ/2+ 1/2.

• The choreography element is c = (I, σ1,−1/n) ∈ Γ × S1, and the
choreography subgroup Cn is the cyclic subgroup of order n generated by c.

With this notation, the symmetry group of the speed-` circular choreography
with n particles described in Example 1.3 is generated by(

I, σ1,−1
n

)
, (R2π`θ , e, θ), (κ, s1, 0), (2.1)

with θ ∈ S1.
Since the space of choreographies is Fix(C,Λ(X(n))), there is a natural action

of the normalizer of Cn in Γ × Ŝ1 on this space. This normalizer is in fact equal
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to O(2)×Σ+n × Ŝ1. In the next proposition we show that the isotropy subgroup
of any choreography is contained in this group: if collisions were allowed, this
would not be the case.

2.2. Basic properties. Associated to any choreography u is its symmetry group

G, and the projections ρ, σ, τ of G to SO(2), Sn, and Ŝ1, respectively. We now
give a few basic properties of these projections.

PROPOSITION 2.1. Let u be a choreography with symmetry group G< Γ × Ŝ1.
Then the following hold.

(1) ker τ ∩ ker ρ = ker τ ∩ ker σ = 1.

(2) ker τ, ker σ and ker ρ are cyclic groups. Indeed, τ(ker ρ) and τ(ker σ) are
subgroups of S1, while ρ(ker τ) is a subgroup of SO(2).

(3) If ker ρ ∩ ker σ 6= 1, then the curve is multiply covered. Indeed, if

|kerρ ∩ ker σ | = ` > 1,

then u(t/`) is also a choreography, albeit with a different ordering of the
particles.

(4) Cn is a normal subgroup of G, and σ(G) < Σ+n .

A simple example where ker ρ ∩ ker σ 6= 1 is the circular choreography with
speed ` for ` > 1, see Example 1.3, where ker σ ∩ ker ρ ' Z`.
Proof. (1) Let α ∈ ker τ ∩ ker ρ, in which case α = (I, σ, 0) for some σ . Then
zσ(i)(t)= zi(t), for all i, t. This is not possible without collisions, and so we must
have σ = e.

Now let α′ ∈ ker τ ∩ ker σ , so α′ = (A, e, 0) for some A ∈ O(2). Then Au(t)=
u(t) for all t. If A is a rotational symmetry, then all zi are at the origin for all t,
leading to collisions, and if A is a reflection, zi(t) ∈ R for all i, which also implies
collisions. Hence A must be trivial.

(2) Assume that τ(ker ρ) 6< S1. Then, after possibly reparameterizing time,
there exists some α ∈ Sn such that g = (I, α, 0) ∈ ker ρ. For this g, zα(j)(−t) =
zj(t) ∀j, t. If α(j) 6= j, then there will be a collision at t = 0. So we must have
α = e, and hence g ∈ ker ρ ∩ ker σ ; that is, g = (I, e, 0). This implies that
zi(−t) = zi(t) for all i, t, and so all the particles move in both directions on the
same curve. This system has collisions, so is not allowed.

Now assume that τ(ker σ) is not a subgroup of S1, and consider h= (A, e, 0) ∈
ker σ . Then hch−1c= (I, σ 2

1 , 0), which is not possible by part (1) (we assume that
n> 2, so σ 2

1 6= e). Hence τ(ker σ) must be a subgroup of S1.
Now assume that ρ(ker τ) is not a subgroup of SO(2); that is, there exists some

element k = (κ, σ, 0) ∈ ker τ (up to conjugacy), and we can assume that σ 6= e
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by part (1). Since the centre of mass is at the origin and all particles follow the
same curve, this curve must intersect Fix(κ) = R. Suppose that i is such that
σ(i) 6= i, and let t0 ∈ T be such that z1(t0) ∈ R. The symmetry element k then
guarantees that zσ(i)(t0) = κzi(t0) = zi(t0) —a collision! Hence ρ(ker τ) must be
a subgroup of SO(2).

It follows that ker σ and ker ρ must be cyclic, since their images under τ are
cyclic (for ker τ , its image under ρ), and their kernels under these maps are
trivial.

(3) If ker ρ ∩ ker σ is not trivial, then it must be cyclic, as it is contained
in ker ρ. Then there exists (I, e, (1/`)) ∈ G, and we have u(t + (1/`)) = u(t)
for all t, so u is `-times covered. Moreover, let ũ(t) = u(t/`) for t ∈ [0, 1]. This
satisfies ũ(t+1)= ũ(t), and so it is 1-periodic, and ũ has choreography symmetry
(I, σ`, 1/n). Indeed, set s = t/l; then z̃j(s + 1/n) = zj(t + (1/n`)) = zσ`(j)(t) =
z̃σ`(j)(s).

(4) Let α = (A, π, a) ∈ G, and conjugate c by α:

cα =
(

I, πσ1π
−1,±1

n

)
.

The product πσ1π
−1 := σ ′ will be of the same cycle type as σ1 = (1 . . . n),

namely a cycle of length n. Combine this element cα = (I, σ ′,±1/n) ∈ G with
c or its inverse as needed, depending on the sign of the τ component, to obtain
(I, σ ′σ±1

1 , 0) ∈ G. Since the intersection ker τ ∩ ker ρ is trivial by part (1), we
must have that σ ′σ±1

1 = e or σ ′ = σ∓1
1 . Then, cα = (I, σ±1

1 ,∓1/n), and hence is
in Cn, and so α is in the normalizer of Cn, as required. Finally, since σ π1 = σ±1

1 ,
the only possibility is that π ∈ Σ+n (other elements of the normalizer of Σ+n
conjugate σ1 to other generators of Σ+). �

COROLLARY 2.2. Let u be a choreography with symmetry G. Then either the
kernel of ρ is the choreography group Cn, or the choreography is multiply
covered.

Proof. First, note that Cn < ker ρ, by its definition.
Assume that ker ρ 6= Cn. Then there exists an element g= (I, α, 1/r) in G\Cn.

We know from the proposition that the τ component of g must not be time
reversing, since the spatial component is trivial, and hence there cannot be a
reversal of the direction of motion.

Let m = lcm(r, n) in which case m > n. Combination of elements gives
h = (I, β,−1/m). We know that m is a multiple of n, so set m = an, and then
ha = (I, βa,−1/n).

Multiplying by c−1 gives (I, σ−1
1 βa, 0), which cannot occur by Proposition 2.1,

except in the case where βa = σ1, or equivalently β = σa. In this case, we have
h = (I, σa,−1/m) and m = an, so we obtain an element of ker ρ ∩ ker σ , and
hence the curve is multiply covered by Proposition 2.1. �
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2.3. Symmetry types. We define some finite subgroups of Γ × Ŝ1, which
turn out to be all possible finite symmetry types of planar choreographies
(Theorem 2.3 below); a symmetry type is a conjugacy class of symmetry groups,
or isotropy subgroups. As usual, let n denote the number of particles, and assume
that n ≥ 3, and recall that c = (I, σ1,−1/n). There are two regular families and
three exceptional subgroups, the latter only for odd values of n.

The two regular families are as follows.

C(n, k/`) with k ≥ 1, `≥ 1 coprime to k; this is the subgroup generated by c and
g0 = (R2π`/k, e, 1/k). If `= 1, we write this as C(n, k). Clearly g0 and c
commute, so C(n, k/`)' Zn×Zk, which is cyclic if n and k are coprime.
In particular, C(n, 1) = Cn, and if k > 1 we can restrict to 1 ≤ ` < k/2
(`= 0 would contradict Proposition 2.1; see Remarks 2.4 below).

D(n, k/`) with the same conditions on k, `; this is generated by the two
generators c and g0 of C(n, k/`) together with the ‘reflection’ (κ, s1, 0̄)
(see Section 2.1 for the notation). The group is isomorphic to (Zn ×
Zk) o Z2, which is an index-2 subgroup of Dn × Dk and of order 2nk.
Indeed,

D(n, k/`)

' {(g, h) ∈ Dn × Dk | g, h are both reflections or both rotations}.
If `= 1, we write this as D(n, k). In particular, D(n, 1)= CnoZ2 ' Dn,
the dihedral group of order 2n.

The three exceptional subgroups, arising only for odd n, are as follows.

C′(n, 2) — the cyclic group of order 2n generated by g= (κ, σ2,−1/2n). Notice
that g2 = c, and gn = (κ, e, 1/2).

D′(n, 1) — the dihedral group of order 2n generated by c and the ‘reflection’
(Rπ , s1, 0).

D′(n, 2) — the dihedral group of order 4n generated by (κ, σ2,−1/2n) and
(Rπ , s1, 0). This group contains both C′(n, 2) and D′(n, 1) as index-2
subgroups.

Note that, when dealing with general statements, writing C(n, k/`) includes
the case ` = 1, and clearly C(n, k/1) = C(n, k), and similarly D(n, k/1) =
D(n, k) (as described in the introduction). See Figures 2–4 for examples of
choreographies with symmetry D(n, k/`).

We are now ready to state the classification theorem. Recall that the circular
choreographies are defined in Example 1.3 and their symmetry is given in
(2.1). Consistent with the notation for symmetry groups above, we denote the
symmetry group of the circular choreographies by D(n,∞/`).
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THEOREM 2.3. Let n ≥ 3. The symmetry group of any planar n-body
choreography is either that of a circular choreography D(n,∞/`) or is
conjugate to one of the symmetry groups C(n, k/`), D(n, k/`), and, if n is odd,
C′(n, 2), D′(n, 1), and D′(n, 2).

The proof of this theorem is the subject of Section 3. For the remainder of this
section, we make some elementary observations about the symmetry groups in
the following remarks, and describe a few consequences of the classification.

REMARKS 2.4. (1) For the groups C(n, k/`) and D(n, k/`), it is useful to
note that the cyclic groups ker ρ, ker σ and ker τ (see Proposition 2.1) are
generated as follows:
• ker ρ = Cn by c= (I, σ1,−1/n);

• ker σ by g0 = (R2π`/k, e, 1/k); and

• ker τ (the core), which is cyclic of order c := (n, k), by

gk/c
0 cn/c = (R2π`/c, σ

n/c
1 , 0). (2.2)

• It is also useful to note that if c= (n, k)= 1 then τ is an isomorphism so
that C(n, k/`) is cyclic of order nk generated by

ga
0c

b =
(

R2πa`/k, σ
b
1 ,

1
nk

)
, (2.3)

where a, b are such that an − bk = 1. More generally, if (n, k) = c, then
τ(G) is generated by c/nk, and one has

ga
0c

b =
(

R2πa`/k, σ
b
1 ,

c

nk

)
, (2.4)

where now an− bk = c, but G itself is not cyclic.

(2) It was stated in the definition of C(n, k/`) that ` is coprime to k. If (k, `) >
1, then the element (I, e, 1/(k, `)) is in G, contradicting Proposition 2.1.
Moreover, the group C(n, k/`) is conjugate to C(n, k/(k − `)) (by the
element (κ, e, 0)), and this, together with the coprimality, allows us to restrict
attention to ` = 1 for k ≤ 4 and 1 ≤ ` < k/2 if k ≥ 5. The same restrictions
also apply to D(n, k/`).

(3) If n is even, the analogues of the exceptional subgroups would involve
collisions, and so do not arise.

(4) The subgroups denoted C are all nonreversing symmetry groups, while
those denoted with D are reversing (that is, of cyclic and dihedral type,
respectively, in the language of [13]).
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(5) We will see that all these symmetry types are of interest for choreographies
in the n-body problem (at least with a strong force interaction—see
Theorem 1.4), except those where n divides k (see Example 5.11).

(6) In the two regular families, an element preserves orientation in T if and
only if it preserves orientation in R2, while for the exceptional groups
there are elements g with τ(g) ∈ S1 but ρ(g) 6∈ SO(2), or conversely with
ρ(g) ∈ SO(2) but τ(g) 6∈ S1.

(7) For any choreography with symmetry type D′(n, 1) or D′(n, 2), the particles
pass through the origin. This is because the presence of the time-reversing
element (Rπ , s1, 0) ∈ G implies that z1(0) = Rπz1(0), so that z1(0) = 0. It
then follows that each of the other particles also passes through 0.

(8) Choreographies of type C′(n, 2) may or may not pass through the origin,
but if one does not then its winding number around the origin is 0. This
is because the symmetry (κ, σ2, 1/2n) reverses the orientation of the plane,
but preserves the orientation of the curve, so takes the winding number to its
opposite. This is illustrated in Figure 6(a,b), where the origin (the barycentre)
is clearly to the left of the symmetric crossing point.

PROPOSITION 2.5. Choreographies with symmetry type C′(n, 2), D′(n, 1), or
D′(n, 2) have zero angular momentum.

Proof. The symmetries we consider each have a well-defined effect on angular
momentum. The rotations SO(2), the permutations Sn, and the time translations
S1 preserve the angular momentum, while the reflections in O(2) and the
time-reversing elements of Ŝ1 change the angular momentum to its opposite.
It is clear that any choreography whose symmetry group contains an element
which changes the sign of the angular momentum must have angular momentum
equal to zero. This is the case for all the exceptional symmetry groups,
as (κ, σ2,−1/2n) and (Rπ , s1, 0) reverse the angular momentum (as do all
conjugate elements). It is not the case for the regular families. �

2.4. Fourier series. Write z(t) for the parameterized curve defining the
choreography u(t), with t ∈ T= R/Z. So

zj(t)= z(t + (j− 1)/n), j= 1, . . . , n.

Using complex coefficients, we can write z as a Fourier series,

z(t)=
∑
r∈Z

ζr exp(2π irt). (2.5)

The fact that the centre of mass is at the origin translates into the following
constraint on the coefficients, as observed by Simó [35].
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(a) C (7, 2) at t  0

(c) D (9, 1) (at t  0)

(b) C (7, 2) at t  14

(d) D (7, 2) (at t  0)

Figure 6. Exceptional symmetry groups. (a,b) A choreography for the seven-body problem,
with symmetry C′(7, 2), demonstrating the symmetry generator (κ, σ2, 1/14), where here σ2 =
(1 5 2 6 3 7 4). (c) A choreography with D′(9, 1) symmetry: rotation by π is combined with a time
reversal. (d) A choreography with D′(7, 2) symmetry which possesses both the other symmetries:
a rotation by π combined with time-reversal as well as a reflection which is not time reversing;
another with this symmetry, in a different connected component, would be the figure-8 curve with
seven particles. See [27] for animations.

LEMMA 2.6. If u is a choreography with n particles and r is a multiple of n,
then ζr = 0 in (2.5).

Proof. Let z(t) =∑r ζr exp(2π irt) and zj(t) = z(t + (j − 1)/n). The centre of
mass (as a function of time) is

0 = 1
n

∑
r

ζr

[ n∑
j=1

exp(2π ir(t + j/n))

]

= 1
n

∑
r

exp(2π irt)

[
ζr

n∑
j=1

exp(2π irj/n)

]
.
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Table 2. Conditions on Fourier coefficients in (2.5) for each symmetry type.

Symmetry Conditions on Fourier coefficients
C(n, k/`) ζr = 0 ∀r 6≡ `(mod k)
D(n, k/`) as C(n, k/`), with ζr ∈ R
C′(n, 2) ζ−r = (−1)rζr ,∀r
D′(n, 1) ζ−r =−ζr ∀r
D′(n, 2) ζ−r =−ζr ,∀r with

{
ζr ∈ R if r is even
ζr ∈ iR if r is odd

This is satisfied if and only if

ζr

n∑
j=1

exp(2π irj/n)= 0 (∀r),

and the result then follows since the sum over j vanishes if n is not a divisor of r;
otherwise it is equal to n . �

If the choreography only has choreographic symmetry Cn = C(n, 1) (as in
Figure 1(d)), then there is no further restriction on the Fourier series of the
underlying curve. If there is just one reflection giving a time-reversing symmetry,
then z(−t)= z(t), and this translates into the condition ζn ∈ R, which in practice
means that x(t) has a cosine expansion and y(t) a sine expansion (where z =
x+ iy).

PROPOSITION 2.7. The symmetry of a choreography u translates into the
conditions on the Fourier coefficients shown in Table 2.

Proof. This is a simple calculation for each group. �

2.5. Isotropy subgroup lattice. For two subgroups G,H of Γ × Ŝ1, we write
H ≺ G to mean that H is subconjugate to G—that is, H is conjugate to a subgroup
of G. It is a transitive relation.

PROPOSITION 2.8.
The subgroups listed above satisfy the following subconjugacy relations (recall
that C(n, k/1)= C(n, k) and D(n, k/1)= D(n, k)).

(1) C(n, k/`)≺ D(n, k/`).

(2) C(n, k/`)≺ C(n, k′/`′) if and only if k | k′ and `≡±`′(mod k).

(3) D(n, k/`)≺ D(n, k′/`′) if and only if k | k′ and `≡±`′(mod k).

(4) C′(n, 2)≺ D′(n, 2) and D′(n, 1)≺ D′(n, 2).

(5) C(n, 1)≺ C′(n, 2) and C(n, 1)≺ D′(n, 1).

These are illustrated in Figure 7. Note that (2) and (3) hold with k′ =∞.
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D (n, 2)

C (n, 2) D (n, 1)

Figure 7. Lattice of isotropy subgroups, with k | k′ and `′ ≡±`(mod k).

An example illustrating part (2) is that C(4, 5) ≺ C(4, 10/`′) for `′ = 1 and
4, while C(4, 5/2) ≺ C(4, 10/`′) only for `′ = 3, as `′ = 2 is not coprime to
k′ = 10. Part (3) is similar.

Proof. These all follow from the definitions of the groups (also from the Fourier
series representations above). That there are no other subconjugacies is a simple
case-by-case analysis, using for example that G = C(n, k/`) ≺ G′ = C(n, k′/`′)
requires that |G| divides |G′|, and so k | k′. Moreover, the generator of C′(n, 2)
is not conjugate to any element of any C(n, k/`), or indeed of any element of
D(n,∞/`). �

The importance of this lattice of isotropy subgroups for choreographies lies
in the fact that H ≺ G is a necessary condition for there to be a sequence of
choreographies with symmetry H converging to a choreography with symmetry
G. For example, for D(n,∞/`)≺ D(n, k/`), the choreography determined by

z1(t)= e2π i`t(1+ ε cos(2πkit)),

which has symmetry D(n, k/`), converges as ε→ 0 to the circular choreography
given in Example 1.3, which has symmetry D(n,∞/`). Note also that for ε 6= 0
the particles follow each other in numerical order with time lag 1/n, while for
ε = 0 and ` > 1 particle j follows particle j+m, where m`≡ 1(mod n), but now
with time lag 1/`n.

2.6. Rotating circle condition. In their very interesting paper [13], Ferrario
and Terracini introduce the rotating circle condition, and show by a clever
perturbation argument that if the action of G satisfies this condition then a
collision path in the loop space cannot be a local minimum of the restriction
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of the Newtonian action functional to the set of loops with symmetry G. This
condition is defined for choreographies in Rd, and in R2 it reduces to the
following.

A symmetry group G satisfies the rotating circle condition if, for each t ∈
[0, 1], one has

(1) ρ(Gt) < SO(2); and

(2) ρ(Gt,i)= 1, for at least n− 1 of the indices i.

Here, Gt is the subgroup of G that fixes t (under τ ), and Gt,i is the subgroup of
Gt that fixes the index i (under σ ). Of course 1 is the trivial group.

PROPOSITION 2.9. The groups C(n, k/`), C′(n, 2), and D′(n, 1) all satisfy the
rotating circle condition, while the remaining groups D(n, k/`) and D′(n, 2) do
not.

Proof. For G = C′(n, 2), this is immediate, as Gt is trivial for all t. The same
is true of C(n, k/`) when n, k are coprime. More generally, for G = C(n, k/`),
Gt is the core generated by gc = (R2π`/c, σ

n/c
1 , 0), where c is the order of the

core (ker τ )—see Remarks 2.4. The first condition is clearly met, as ρ(gc) =
R2π`/c ∈ SO(2), while the second follows from the fact that ker τ ∩ker σ is trivial
(Proposition 2.1). For D′(n, 1), we have that Gt is of order at most two, with G0

generated by g0 = (Rπ , s1, 0). Here ρ(g0) ∈ SO(2), and σ(g0) = s1, which fixes
precisely one index (namely, 1 — recall that n is odd for D′(n, 1)).

For the two remaining types, we have elements (−κ, s1σ2, 1/2n) ∈ D′(n, 2)
and (κ, s1, 0) ∈ D(n, k/`), both of which violate the rotating circle condition
(here −κ = Rπκ is the reflection in the vertical axis). �

3. Proof of the classification theorem

In this section we prove Theorem 2.3, and we rely extensively on the notation
introduced in Section 2.1. Let u be a choreography of period 1, with finite
symmetry G. We also assume that u does not have period less than 1 (if it has
minimal period T < 1 then replace u(t) by u(t/T), which then has period 1, and
if necessary relabel the particles). By Proposition 2.1(4), G< O(2)×Σ+n × Ŝ1,
and Cn C G. The proof is in two halves: first, we assume that the symmetry group
has trivial core (so τ is injective), and then we reduce the general case to the first,
by considering the quotient by a free group action. As usual, τ : G→ Ŝ1 is the
projection.

3.1. Trivial core. Recall that the core of the symmetry group is ker τ . So first

we assume that G is such that τ is injective. This means that G' τ(G) < Ŝ1, so
that G is isomorphic to a cyclic or a dihedral group. In O(2) and Ŝ1, there are two
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nonconjugate of subgroup of order two: the first is the order-two subgroup of
SO(2) or S1, which we denote C2 and call cyclic, while the second is generated
by a ‘reflection’ in O(2) or Ŝ1, which we refer to as dihedral, and denote D1.

3.1.1. Nonreversing symmetry groups. We are assuming that τ(G)⊂ S1. Since
τ is injective, it follows that G is isomorphic to a subgroup of S1, so is a cyclic
group, and since it contains Cn its order is a multiple of n. Suppose then that
G' Zkn, where k is a positive integer.

Let g0 be the element of G ' Zkn with τ(g0) = 1/nk: it is a generator of G.
Then

g0 = (ρ(g0), σ (g0), 1/nk)

for some σ(g0) ∈ Σ+n and ρ(g0) ∈ O(2). Consider gk
0. Now gk

0 =
(ρ(g0)

k, σ (g0)
k, 1/n), and since τ is injective this must be equal to c. It follows

that ρ(g0)
k = I and σ(g0)

k = σ1.
The equation σ(g0)

k = σ1 has a solution if and only if (n, k)= 1. In that case,
the solution is unique and is, by definition (see Section 2.1), σ(g0)= σk.

Now consider ρ(g0). Since ker ρ = Cn (Corollary 2.2), we have a short exact
sequence,

1→ Cn −→ Zkn
ρ−→ Zk→ 1,

where Zk < O(2).

• If k = 1, then ρ(g0)= I so G= Cn = C(n, 1).

• If k > 2, then we have that Zk < O(2) is generated by R2π/k. The element
ρ(g0) generates Zk, and so must be equal to R2π`/k for some ` coprime to k. In
this case, we have G= C(n, k/`) with k coprime to both n and `.

• In the case where k = 2, we have two possibilities. Either Zk is C2, generated
by Rπ , in which case we have ρ(g0) = Rπ and G = C(n, 2), or it is dihedral
D1, generated by κ (or a conjugate), in which case ρ(g0) = κ , and we have
G= C′(n, 2).

3.1.2. Reversing symmetry groups. This is a bit more involved. Since we are
assuming that the core is trivial, G' τ(G), and G is therefore a dihedral group.
Since τ(G) contains (1/n) ∈ S1, it must be Dkn for some k. Let G0 = τ−1(Znk)

be the index-2 subgroup of G consisting of the nonreversing elements. Let r ∈ G
be an order-two element satisfying rg = g−1r for g ∈ G0, so r together with G0

generates G. Up to conjugacy by S1, we can suppose that τ(r)= 0. Furthermore,
since r is of order two, it follows that ρ(r) and σ(r) are of order one or two.

For σ(r), the dihedral condition implies that r anticommutes with c and so, in
particular,

σ(r)σ1σ(r)
−1 = σ−1

1 .
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As σ1 generates an Abelian group of order n > 2, σ(r) cannot be in this group.
Hence it must be a reflection on the points. Thus, for odd n, σ(r) ∈Σ+n must be
conjugate to s1, which fixes one particle (namely, z1), while, for even n, there are
two possibilities:

σ(r)=
{

s12 fixing no particles

s1 fixing z1 and z1+n/2,

but with σ1 both generate the same dihedral group Σ+n .
For the ρ component, since ρ(r) is an element of order at most two, we must

have ρ(r)= I,Rπ or a reflection, and this is to be combined with G0 = C(n, k/`)
or, if n is odd, C′(n, 2), from the first—nonreversing—part of the proof. However,
ρ(r) = I would give an element of ker ρ whose temporal component is not in
S1, contradicting Proposition 2.1(2). There remains to consider ρ(r) = Rπ or a
reflection.

The dihedral condition on r gives{
ρ(r)R2π`/kρ(r)

−1 = R−2π`/k if G0 = C(n, k/`)

ρ(r)κρ(r)−1 = κ if G0 = C′(n, 2).
(3.1)

Consider each case in turn. First, suppose that G0 = C(n, k/`).

• If ρ(r) = Rπ , it would commute with R2π`/k in the above, which is only
possible if k ≤ 2 (recall that (k, `) = 1). Then G contains the element g =
(Rπ , s, 0). If k = 2, then combining g with (Rπ , e, 1/2) ∈ C(n, 2) produces
the element (I, s, 1/2), which again contradicts Proposition 2.1(2). If on the
other hand k = 1, we adjoin the element (Rπ , e, 0) to C(n, 1) = Cn, which
gives the group D(n, 1).

• If ρ(r) = κ , then G contains (κ, s, 0), with s = s1 or s12 as before, in which
case G is of type D(n, k/`): note that together with C(n, k/`) the element
(κ, s, 0) with the two possible values of s generates conjugate subgroups of
Γ × Ŝ1.

Now suppose that G0 = C′(n, 2), which is generated by g′ = (κ, σ2, (1/2n))
with n odd. By (3.1), ρ(r) commutes with κ , and so is either Rπ or one of the
reflections κ or κ ′ := Rπκ (reflection in the line orthogonal to Fix(κ)). Moreover,
since n is odd, σ(r)= s1 (up to conjugacy, or relabelling the particles).

• If ρ(r)= Rπ , then r = (Rπ , s1, 0), so giving the group G= D′(n, 2).

• If ρ(r) = κ , then rg′ ∈ ker ρ but τ(rg′) 6∈ S1, so contradicting
Proposition 2.1(2).

• Finally, if ρ(r) = κ ′, then ρ(rκ) = κ ′κ = Rπ , and we are in the case G =
D′(n, 2) again.
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(a) D(4,6)
2             .

(b) X    .2

Figure 8. A choreography u for the four-body problem with sixfold symmetry, which has core of
order two, and its image û under the map Ψ .

We have therefore considered every case with a trivial core, and shown that
each either gives one of the groups of the classification in Section 2.3 or by
contradicting Proposition 2.1 leads to a collision so the trivial core case is
complete. We next consider the cases with nontrivial core.

3.2. Nontrivial core. Suppose now that the choreography u has symmetry
group G with nontrivial core K := ker τ . It follows that u(t) ∈ Fix(K,X(n)) for
all t. By Proposition 2.1, K is a cyclic group of order c, say, and is generated
by an element of the form gc := (R2πr/c, σ

n̂
1 , 0) ∈ Γ × Ŝ1 for some r coprime

to c (and we may assume that 1 ≤ r ≤ c/2 up to conjugacy). Throughout the
paper we put n̂ = n/c, and for given K we write Y = YK = Fix(K,X(n)). For the
choreography to have core K it follows that, for all j,

zj+n̂ = e2π ir/czj. (3.2)

We begin with an elementary lemma. Recall that the centre of mass is fixed at
the origin.

LEMMA 3.1. Any choreography with nontrivial core does not pass through the
origin.

Proof. Let gc = (R2πr/c, σ
n/c
1 , 0) generate the core, and suppose for contradiction

that the curve does pass through the origin: say z1(t0) = 0. Then zn̂+1(t0) =
e2π ir/c0= 0, resulting in a collision. �

The classification of choreographies in Y proceeds by identifying Y as a
smooth finite cover of X (̂n)

∗ , the configuration space of n̂ distinct particles in the
punctured plane C \ {0}, thereby reducing the classification of choreographies
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with core to those with no core, but now in X (̂n)
∗ . Explicitly, the covering is given

by
Ψ : Fix(K,X(n)) −→ X (̂n)

∗
(z1, . . . , zn) 7−→ (zc

1, . . . , zc
n̂).

(3.3)

Note that it follows from the lemma that the zj 6= 0. Solving (3.3) and using (3.2)
shows that Ψ is a smooth covering of degree cn̂.

Let u(t)= (z1(t), . . . , zn(t) be a choreography with core K, and define the loop
û in X (̂n)

∗ by

û(t)= (w1(t), . . . ,wn̂(t))= Ψ (u(t/c)),
which implies that wj(t) = zj(t/c)c. Combining (3.2) with the choreography
symmetry of u shows that each wj is of period 1, and the loop û is indeed a
choreography. Furthermore, if the core of u is precisely K, then the core of û is
trivial, so we can apply the classification we have so far obtained (Section 3.1)
to û.

We can immediately rule out the exceptional groups D′(n, 1) and D′(n, 2),
as they necessarily pass through the origin (which is excluded by the lemma
above). We can also rule out C′(n, 2), as its winding number is necessarily zero
(see Remarks 2.4(8)), while we have the following lemma.

LEMMA 3.2. Any choreography u with nontrivial core has nonzero winding
number around the origin.

Proof. Let u(t) = (z1(t), . . . , zn(t)), and consider the underlying curve z(t) =
z1(t) say. The winding number is given by integrating dz/z around the
curve. First, integrate dz/z from t = 0 to t = 1/c. This is equivalent to
ln(z(1/c) − ln(z(0))(mod 2π i), which is 2π i(r/c(mod 1)) 6= 0, using the
choreography symmetry and (3.2). The integral from t = 0 to t = 1 is therefore
2π i(r(mod c)) 6= 0, and so the winding number itself is equivalent to r(mod c),
and we are done. �

There remain the possibilities of û having symmetry C(n̂, k̂/̂̀) or D(n̂, k̂/̂̀),
for some integers k̂, ̂̀with (n̂, k̂) = (k̂, ̂̀) = 1. So the question remains, given
one of these symmetries for û, what are the possible symmetries of u?

Suppose first that û has symmetry C(n̂, k̂/̂̀), for ̂̀ coprime to k̂. We claim
that u has symmetry (conjugate to) C(n, k/`) for some ` necessarily coprime to
k = ck̂ and with ` = ±̂̀(mod k̂). Note that since c | n and (n̂, k̂) = 1 it follows
that (n, k)= c, consistent with the fact that the core is of order c.

Now C(n̂, k̂/̂̀) is generated by the choreography element ĉ = (I, σ̂1,−1/n̂)
and ĝ0 = (R2π ̂̀/̂k, e, 1/k̂). Explicitly, for each j and each t,

e2π î̀/̂kwj

(
t − 1

k̂

)
= wj(t).
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Taking cth roots and replacing t by t/c gives

e2π î̀/kzj

(
t − c

nk

)
= e2π ih/czj(t),

for some integer h (independent of j and t by the choreography symmetry), with
k = ck̂. That is, the symmetry group of u contains, in addition to K and Cn, the
group generated by

g= (R2π(̂̀−ĥk)/k, e, (c/nk)).

This is the symmetry group C(n, k/`) with `= ̂̀+ hk̂ as required. Note that r in
the core is related to ` by r ≡ `(mod c).

Finally, suppose that û has symmetry D(n̂, k̂/̂̀). Then it also has symmetry
C(n̂, k̂/̂̀), and so u has symmetry C(n, k/`) as above. Moreover, û has symmetry
(κ, s1, 0̄). That is,

w̄2−j(−t)= wj(t).

Here, the index 2− j is modulo n̂. Lifting this to u (taking cth roots and replacing
t by t/c as above) gives

z̄2−j+f n̂(−t)= zj(t),

for some f . This leads to a subgroup conjugate to D(n, k/`), and concludes the
proof of Theorem 2.3. �

4. Connected components of spaces of symmetric loops

Let us fix notation. Throughout the remainder of this paper, X will denote a
smooth manifold, and Γ will be a Lie group acting smoothly on X. (Although we
assume X to be a manifold, the results hold more generally.) The loop space ΛX
on X is the set of all continuous maps u : T→ X, where we identify the circle T
with R/Z. All loop spaces are given the compact-open topology. There is then a
natural action of Γ × S1 on the loop space ΛX given by

((g, θ) · u)(t)= g · u(t − θ).
We will consider the natural action of Γ×Ŝ1 in a later paper. For the remainder of
this paper, we change notation slightly compared to the earlier sections. Instead
of writing G < Γ × S1 as hitherto, we now let G be a subgroup of Γ , and the
corresponding subgroup of Γ × S1 is given as the graph of a homomorphism
τ : G→ S1; we denote this subgroup by Gτ .

In this section, we analyse the sets of connected components of the spaces
Fix(Gτ ,ΛX) for subgroups Gτ of Γ × S1. In the following section, we apply
these results to spaces of choreographies with C(n, k/`) and C′(n, 2) symmetry.
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In a future paper, we will consider the reversing symmetry groups in Γ × Ŝ1,
with applications to the remaining symmetry types of choreography.

The topological analysis in this section is based on [26], but expressed in more
‘equivariant’ terms.

4.1. Symmetric loops. We assume throughout that X is a manifold with an
action of a Lie group Γ , and we let τ : G→ S1 be a given homomorphism, and
write K = ker τ C G. The graph Gτ of τ is of course the subgroup {(g, τ (g)) ∈
Γ ×S1 | g ∈ G}. A loop u ∈ΛX is said to have symmetry Gτ if u ∈ Fix(Gτ ,ΛX).
This means that (g, τ (g)) · u= u for all g ∈ G, or g · u(t)= u(t + τ(g)).

The following lemma is easy to check.

LEMMA 4.1. The action of Gτ onΛX restricts to an action of (G/K)τ onΛ(XK),
where XK = Fix(K,X). Moreover, Fix(Gτ ,ΛX)= Fix((G/K)τ ,Λ(XK)).

For g ∈ Γ , let

ΛgX = {γ : [0, 1] → X | γ (1)= g · γ (0)}
be the space of relative loops with phase g, or more briefly of g-loops. In
particular, ΛeX =ΛX.

For each g ∈ Γ and each positive integer r, define a map φr : ΛgX→Λgr
X by

concatenating γ with its image under g, and then with its image under g2, and so
on, up to gr−1. That is,

φr(γ )(t)=


γ (rt) if t ∈ [0, 1/r]
gγ (rt − 1) if t ∈ [1/r, 2/r]
...

gr−1γ (rt − r + 1) if t ∈ [(r − 1)/r, 1].

(4.1)

Note that indeed φr(γ )(0) = γ (0) and φr(γ )(1) = grγ (0). Furthermore, if
gr = e, then φr(γ ) ∈ Fix(H,ΛX), where H is the cyclic group generated by
(g, 1/r) ∈ Γ × S1.

PROPOSITION 4.2. Suppose that τ(G) is of order r, in which case τ(G)= Zr <

S1. Then the map

φr : ΛgXK −→ Fix(Gτ ,ΛX),

defines a homeomorphism for any g ∈ G satisfying τ(g)= 1/r.

Note that if g, g′ satisfy τ(g)= τ(g′) then they differ by an element of K, and
therefore they act the same way on XK , and so ΛgXK =Λg′XK .
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Proof. Let γ ∈ ΛgXK and u = φr(γ ). Since γ (t) ∈ XK for all t, so is u(t).
Since gr ∈ K, it follows that u is indeed a loop. That u has symmetry Gτ is
straightforward. Moreover, φr is a homeomorphism, as the inverse is simply the
restriction u 7→ [t 7→ u(t/r)] (with t ∈ [0, 1]), and both maps are continuous in
the compact-open topology. �

DEFINITION 4.3. Given a loop u ∈ ΛX with symmetry Gτ as above, we call
γ = φ−1

r (u) a generator of u. Explicitly,

γ (t)= u(t/r), t ∈ [0, 1]. (4.2)

4.2. Equivariant loop space. Let X be a manifold, and let Γ be a group acting
on X. Denote by P(X) the space of all paths on X, that is, continuous maps
[0, 1] → X, and by P(X, x) the space of those paths γ for which γ (0) = x. We
follow standard notation, and denote byΛX the space of (free) loops in X, that is
the set of those γ ∈ P(X) for which γ (1)= γ (0), and we let Ω(X, x) denote the
space of loops based at x, namely those for which γ (0) = γ (1) = x. All spaces
of paths are given the compact-open topology.

We define the equivariant free loop space to be

ΛΓ X := {(γ, g) ∈ P(X)× Γ | γ (1)= g · γ (0)}.
Similarly, for x ∈ X, ΩΓ (X, x) consists of those equivariant loops (γ, g) with
γ (0) = x and γ (1) = g · x. We will denote by β the projection P(X) × Γ → Γ

given by β(γ, g)= g. We also denote the restrictions of β toΛΓ X andΩΓ (X, x)
by β. In the last section we defined, for each g ∈ Γ ,

ΛgX = {γ ∈ P(X) | γ (1)= g · γ (0)} = β−1(g)⊂ΛΓ X.

In the same way that the fundamental group π1(X, x) is defined to be
Ω(X, x)/ ∼, where ∼ means homotopy of paths relative to the end points, we
define

πΓ1 (X, x)=ΩΓ (X, x)/∼,
where again ∼ is relative to end points, and with g kept fixed. This set πΓ1 (X, x)
has a natural group structure given by

(γ, g)(δ, h)= (γ ∗ (gδ), gh),

where gδ is the image of δ under the action of g on X, and ∗ is the usual
concatenation product in homotopy. Note that our notation does not distinguish
between homotopy classes and their representatives: one could be more careful
and write for example ([γ ], g)([δ], h) = ([γ ∗ gδ], gh). We hope that this will
not be a source of confusion. Some details and examples of this group can be
found in the second author’s thesis [37, Section 2.4]. The group was introduced
by Rhodes [33], where he calls it the fundamental group of the transformation
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group, and denotes it σ(X, x, Γ ). The group is independent of base point x
up to isomorphism, provided X is path connected, or more generally provided
Γ acts transitively on the set of connected components of X. (Rhodes [33]
proves this only for Abelian groups, but it is easily seen to be true in general:
indeed the map (γ, g) 7→ (hγ, hgh−1) provides a homeomorphism ΩΓ (X, x)→
ΩΓ (X, hx) which descends to an isomorphism πΓ1 (X, x)→ πΓ1 (X, hx).) Some
other properties, immediate from the definition, are as follows. We write all
groups multiplicatively, so the trivial (homotopy) group is denoted 1.

• There is a short exact sequence,

1→ π1(X, x)−→ πΓ1 (X, x)
β−→ Γ → 1, (4.3)

where β is the natural projection (γ, g) 7→ g as above, and more generally, if
N C Γ (normal subgroup), then

1→ πN
1 (X, x)−→ πΓ1 (X, x)−→ Γ/N→ 1. (4.4)

• If H < Γ , then πH
1 (X, x)= β−1(H) < πΓ1 (X, x).

• If x is fixed by Γ , then πΓ1 (X, x) ' π1(X, x) o Γ , where the action of Γ on
π1(X, x) is the natural one. In particular, if the action of Γ on X is trivial, then
πΓ1 (X, x)' π1(X, x)× Γ .

• If f : X → Y is an equivariant map, then there is a natural homomorphism
f∗ : πΓ1 (X, x)→ πΓ1 (Y, f (x)). More generally, if Γ < H and f : X → Y is
Γ -equivariant, then there is a natural homomorphism

f∗ : πΓ1 (X, x)−→ πH
1 (Y, f (x)).

At the level of homotopy, the homeomorphism φr of Proposition 4.2 becomes

(φr(γ ), gr)= (γ, g)r, (4.5)

using the group structure in πΓ1 .

EXAMPLE 4.4. Let S1 act on a manifold X. Then there is a homomorphism
α : π1(S1, e)→ π1(X, x) generated by the homotopy class of the orbit S1 · x.
It is well known that the image of α lies in the centre of π1(X, x). Then we claim
that

πS1

1 (X, x)' π1(X, x)×αR,
where ×α means that we identify (γ, r + n) and (α(n)γ, r) for n ∈ Z '
π1(S1, e); in other words, we factor π1(X, x) × R by the normal subgroup
generated by (α(1),−1), where the 1 is the generator of π1(S1, e) ' Z < R.
The isomorphism is given as follows. Let θ ∈ R and p ∈ X, and denote by θp the
path

θp(t)= (tθ) · p, (4.6)
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which is a path from p to θ · p following the S1-orbit. Then, for (γ, θ) ∈
π1(X, x)×R, the corresponding element of πS1

1 (X, x) is (γ ∗ θx, θ(mod 1)). This
descends to a well-defined homomorphism π1(X, x)×αR→ πS1

1 (X, x), which
has inverse

(γ, θ) 7→ [γ ∗ (−θ)θ ·x, θ].
Note that (−θ)θ ·x is the reverse path of θx. (Everything is up to homotopy of
course.)

The projection β makes πS1

1 (X, x) into a bundle over S1 with fibre π1(X, x)
and monodromy α. If we restrict the action to the cyclic group Zk < S1, then the
corresponding subgroup of π1(X, x)×αR is

π
Zk
1 (X, x)' π1(X, x)×αZ(1/k),

where Z(1/k) is the subgroup of R consisting of integer multiples of 1/k.

A fundamental property of πΓ1 (X, x) is the following. The first part in
fact follows from a result of Rhodes [33, Theorem 4], although he proves a
more general statement about orbit spaces of not necessarily free actions. The
argument in the free case is more straightforward, so we give it here (it appears
also in the second author’s thesis [37, Proposition 2.4.3]).

PROPOSITION 4.5. If N is finite and acts freely on a manifold X, then
πN

1 (X, x) ' π1(X/N, x̄); more generally, if N is a finite normal subgroup of Γ
and acts freely on X, then

πΓ1 (X, x)' πΓ/N1 (X/N, x̄).

Proof. The map X→ X/N is a covering, and so it enjoys the homotopy lifting
property (see, for example, Hatcher [22, Proposition 1.30]). Consider the natural
map given by projecting the path:

ΩN(X, x)−→Ω(X/N, x̄). (4.7)

It follows from the homotopy lifting property that this map is a homeomorphism,
and that it induces the required isomorphism

πN
1 (X, x)−→ π1(XN, x).

The more general statement follows from the snake lemma applied to the
diagram.

xx

x x
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The first column is injective with cokernel N, since πN
1 (X, x)' π1(X/N, x̄), and

the final column is surjective with kernel N; since the resulting homomorphism
N → N is an isomorphism, it follows that the middle column is an
isomorphism. �

A simple consequence of this is that, if Γ is a finite group, πΓ1 (X, x) is the
equivariant fundamental group of X.

COROLLARY 4.6. If Γ is a finite group acting on a manifold X, then πΓ1 (X, x)
is isomorphic to the fundamental group of XΓ := X×Γ EΓ .

Here, EΓ is the total space of the universal classifying bundle for Γ ; it is a
contractible space on which Γ acts freely. The space X×Γ EΓ = (EΓ ×X)/Γ is
(the Borel construction for) the homotopy orbit space for the Γ -action on X; see
for example [21].

Proof. Let ∗ ∈ E be a base point, and for each g ∈ Γ choose a path ωg from
∗ to g · ∗ (since EΓ is contractible, ωg is unique up to homotopy). Consider
the injective map i : ΩΓ (X, x) → ΩΓ (X × EΓ, (x, ∗)) defined by i(γ, g) =
((γ, ωg), g).

We claim that the induced homomorphism

i∗ : πΓ1 (X, x)−→ πΓ1 (X × EΓ, (x, ∗))
is an isomorphism. That it is injective is clear, for, if (γ, g) is in the kernel, then
g= e, and γ is trivial. It is surjective because EΓ is contractible, so any Γ -loop
((γ, δg), g) is homotopic to ((γ, ωg), g), which is in the image of the original
map i. Therefore

πΓ1 (X, x)' πΓ1 (X × EΓ, (x, ∗))' π1(XΓ , (x, ∗)),
where the latter isomorphism follows from the proposition above. �

4.3. Connected components. We are interested in the topology of the space
ΛΓ X of equivariant loops, and in particular of each ΛgX = β−1(g). To this end
we adapt the usual argument showing that the connected components of the
free loop space ΛX correspond to conjugacy classes in the fundamental group
π1(X, x).

First, we need the topology of the based equivariant loop space ΩΓ (X, x), or
ratherΩg(X, x) for each g. This is derived by giving Γ the discrete topology and
using the fibration P(X, x) × Γ → X, (γ, g) 7→ g−1γ (1) with fibre ΩΓ (X, x).
Since P(X, x) is contractible, one finds from the long exact sequence that, for
k ≥ 1,

πk(Ω
Γ (X, x), (γ, g))' πk+1(X, x).
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And by definition π0(Ω
Γ (X, x), (γ, g)) = πΓ1 (X, x) (as Γ has the discrete

topology).
Consider now the fibration in the following diagram.

g

g

x

(4.8)

The fibre over the point x is ΩΓ (X, x). The long exact sequence associated to
this fibration ends with

· · · −→ π2(Ω
Γ (X, x), (γ, g))−→ π2(Λ

Γ X, (γ, g))−→ π2(X, x)−→
−→ π1(Ω

Γ (X, x), (γ, g))−→ π1(Λ
Γ X, (γ, g))−→ π1(X, x)−→

−→ π0(Ω
Γ (X, x), (γ, g))−→ π0(Λ

Γ X, (γ, g))−→ π0(X, x)= 1,
(4.9)

where we have assumed that X is path connected.
Since the topology on Γ is discrete, we have π0(Ω

Γ (X, x), (γ, g)) =
πΓ1 (X, x), so that the last few terms of the sequence above become

· · · −→ π1(Λ
Γ X, (γ, g))−→ π1(X, x)

ε−→πΓ1 (X, x)

−→ π0(Λ
Γ X, (γ, g))−→ 1.

(4.10)

LEMMA 4.7. The map ε is given by conjugation in πΓ1 (X, x) by elements of
π1(X, x):

ε(η)= (η, e)−1(γ, g)(η, e)= (η̄ ∗ γ ∗ (gη), g), (4.11)

where η̄ is the reverse path of η.

Proof. The map ε : π1(X, x)→ π0(Ω
Γ (X, x), (γ, g))= πΓ1 (X, x) is the effect of

lifting a loop η ∈Ω(X, x) in the fibration (4.8). Let t0 ∈ [0, 1], and put y= η(t0).
The g-loop η̄y ∗ γ ∗ (g · ηy), where ηy(t)= η(t0t) for t ∈ [0, 1] (see figure below),
provides a deformation of γ , continuous in t0, with base point y. Letting t0

increase until t0 = 1 gives the required expression.

g

g

g

x

yy

x �

It follows from the exact sequence (4.10) that two g-loops γ, δ ∈ Ωg(X, x)
are in the same connected component of ΛgX if and only if there is a loop η ∈
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Ω(X, x) and a homotopy

δ ∼ η̄ ∗ γ ∗ (gη).
If we assume that X is aspherical, which will be true of the applications to

choreographies, then we can easily deduce more (a space is aspherical if its
universal cover is contractible; these are also known as Eilenberg–MacLane
K(π, 1) spaces). In this case, πk(X, x) = 1 for k ≥ 2, and it follows that
πk(Ω

Γ (X, x)) = 1 for k ≥ 1, and the long exact sequence above then implies
that πk(Λ

Γ X) = 1 for k ≥ 2. In particular, the ‘· · · ’ at the start of (4.10) can be
replaced by 1, and so π1(Λ

Γ X, (γ, g)) is isomorphic to the kernel of ε.
The preceding discussion can be summarized in the following statement,

which is a restatement in terms of the equivariant fundamental group of two
theorems in [26]. The theorem will be applied via Proposition 4.2 to spaces of
symmetric loops.

THEOREM 4.8. Suppose that X is a manifold with an action of a group Γ . For
each g ∈ Γ , the relative loop space ΛgX enjoys the following properties.

(1) The connected components of ΛgX are in one-to-one correspondence with
the set of orbits of the action of π1(X, x) on β−1(g) ⊂ πΓ1 (X, x) by
conjugation.

(2) If in addition X is aspherical, then the connected component of ΛgX
containing γ is aspherical with fundamental group isomorphic to the ‘partial
centralizer’

ZπΓ1 (X,x)
((γ, g)) ∩ π1(X, x),

where ZπΓ1 (X,x)
((γ, g)) is the centralizer of the element (γ, g) in πΓ1 (X, x).

Proof. (1) The exact sequence (4.10) together with Lemma 4.7 shows that two
g-loops γ, δ ∈Ωg(X, x) belong to the same connected component of ΛgX if and
only if there exists η ∈ π1(X, x) such that

(δ, g)= (η, e)−1(γ, g)(η, e).

That is, if and only if (γ, g) and (δ, g) lie in the same orbit of the action
of π1(X, x) on the coset β−1(g) ⊂ πΓ1 (X, x). Different connected components
therefore correspond to different orbits of this action.

(2) Since X is aspherical, we have that πk(Ω
Γ (X, x), (g, γ )) = 0 for k ≥ 1,

so the long exact sequence (4.9) shows that πk(Λ
Γ X, (γ, g)) = 0 for k ≥ 2, and

π1(Λ
Γ X, (γ, g)) is isomorphic to ker ε. By Lemma 4.7, this kernel is the required

‘partial centralizer’. �

Before turning to the case in hand of n-body choreographies, we illustrate the
theorem with two examples.
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EXAMPLE 4.9 (Taken from [26]). Consider Γ = Z2 = 〈κ | κ2 = e〉 acting on
X = T by κθ =−θ . Then, using the fixed point θ = 0 as base point, one sees that
πΓ1 (T, 0) = Z o Z2, with (a, κ)(b, κ) = (a − b, e). Thus (a, e)(b, κ)(a, e)−1 =
(b+ 2a, κ). It follows that, with τ(κ)= 1/2, we have Fix(Γτ ,ΛX)'ΛκX, and
this has two connected components, determined by the parity of b ∈ Z in (b, κ);
both components are contractible.

EXAMPLE 4.10. For a more interesting example, let X be the cylinder T × R
with a single puncture at (1/2, 0). The fundamental group is the free group on
two generators F2. Choosing x = (0, 0) as a base point, the generators are the
two loops a and b, one above the puncture and one below, both chosen to go
round the circle T once in the positive direction. Let Γ = Z2 act by reflection
in the equator, so κ · (θ, r) = (θ,−r). Since x is fixed by this action, we have
that πΓ1 (X, x) ' F2 o Z2, with Z2 acting on F2 by κa = b and κb = a. If we let
τ : Γ → S1 be the only nontrivial homomorphism (so τ(κ) = (1/2)), we have
that

Fix(Γτ ,ΛX)'ΛκX,

and the latter space has connected components in one-to-one correspondence
with the orbits of the action of F2 on β−1(κ) < πΓ1 (X, x). This action is

(w, e)(z, κ)(w−1, e)= (wzw̄−1, κ),

where w is any element of F2, so any word in a, b, and w̄ is the same word
but with a replaced everywhere by b and vice versa. Thus two κ-loops z, z′

based at x are in the same connected component of Fix(Γτ ,ΛX) if and only
if there is a w ∈ F2 such that z′ = wzw̄−1. For example, all κ-loops of the
form ww̄−1 are in the same connected component as the trivial loop at x.
Moreover, that connected component is contractible by Theorem 4.8(2), since
it is aspherical with fundamental group {w ∈ F2 | ww̄−1 = e}, which is the trivial
group. On the other hand, the connected component containing the κ-loop a is
not contractible, as ab(a)

(
ab
)−1 = ab(a)a−1b−1 = a, so all powers of ab lie in

the partial centralizer ZF2oZ2((a, κ)) ∩ F2.

REMARK 4.11. The theorem above was written in terms of ‘twisted conjugacy’
in [26] (also known as Reidemeister conjugacy). Let π be a group, and let φ be an
endomorphism of π . Two elements γ, γ ′ ∈ π are said to be φ-twisted conjugate
if there is a δ ∈ π such that γ ′ = δγ φ(δ−1). In the first example above φ(a)=−a
(additively), and in the second φ(w)= w̄.

The description in [26] is related to the present approach as follows. For
g ∈ Γ , let ω = ωg be a fixed path from x to g · x. Then we can identify the
coset β−1(g) ⊂ πΓ1 (X, x) with π1(X, x) by making ζ ∈ π1(X, x) correspond to
(ζ, e)(ωg, g)= (ζ ∗ ωg, g) in β−1(g). The expression for ε in (4.11) above using
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this identification is, for η ∈ π1(X, x),

ε(η)= η̄ ∗ (ζ ∗ ωg) ∗ (gη) ∗ ωg.

Thus ε(η)= η−1ζφ(η), which is precisely Reidemeister conjugation of ζ , where
φ is the automorphism

φ(η)= ωg ∗ (gη) ∗ ωg.

Further details can be found in [37, Section 2.5].

5. Choreographies and braids

We now apply the results of the previous section to the case in hand of n
distinct points in the plane, and in particular to the choreographic loops. We are
interested in the action of finite subgroups G of Γ = O(2) × Sn on X(n), and
we use some of the properties above to find the equivariant fundamental group
πG

1 (X
(n), x). (We ignore the temporal part S1 here, as its action on X(n) is trivial.)

5.1. Configuration space and braids. First, we recall some facts about braid
groups, and introduce some notation. Two useful references are the books by
Kessel and Turaev [24] and Farb and Margalit [11]. It was first observed by Fox
and Neuwirth [14] that the fundamental group of the space X(n) is (isomorphic to)
the pure braid group Pn, and it was moreover proved by Fadell and Neuwirth [10]
that X(n) is aspherical. Recall that the braid groups sit in a short exact sequence

1→ Pn −→ Bn
π−→ Sn→ 1, (5.1)

where Bn is the full braid group on n strings, and Sn the permutation group.
Furthermore, Sn acts freely on X(n), and the fundamental group of the quotient
space X(n)/Sn is the full braid group Bn (as observed in [14]). It follows that the
equivariant fundamental group π Sn

1 (X
(n), x) is isomorphic to the braid group Bn,

and that (4.3) becomes (5.1) (that is, β becomes π ). Here, we are taking the usual
base point considered for braid groups, namely x is any point in X(n) where the zj

are placed in sequence along the real line.
Let us denote the generators of the braid group Bn by b1, b2, . . . , bn−1, where

bi represents the crossing of string i + 1 over (in front of) string i (these are
usually denoted σ1, . . . , σn−1, but this would conflict with our use of σi as
permutations). In terms of the motion of points in the plane, bi represents the
clockwise interchange of points i and i+ 1. The centre of both groups Bn and Pn

is infinite cyclic, generated by the full twist ∆2, where

∆= (b1b2 . . . bn−1)(b1b2 . . . bn−2) · · · (b1).

The full twist represents a clockwise rotation through 2π of the whole braid.
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1 2 3 4 5

1 2 3 4 5

Figure 9. The braid δ for n= 5. We have π(δ)= (1 2 3 4 5)= σ1.

Denote by δ the element δ = b1b2 . . . bn−1 (see Figure 9). In the exact sequence
(5.1), we have π(δ)= σ1 = (12 . . . n). It follows that δn ∈ Pn, and in fact δn =∆2

(as is not hard to see geometrically).

REMARK 5.1. Some care should taken to express correctly the permutation
associated to a given braid, since we are using the usual left action of the
permutation group. Now, as homotopy classes of curves in X(n), the product bb′

is the class [b ∗ (σ · b′)], where σ = π(b). It follows that π(bb′)= π(b) ◦ π(b′)
(so first applying π(b′) on X(n) and then π(b)—this is consistent with the usual
relation between free group actions and fundamental groups, as described for
example in Spanier [36, Ch. 2]). In particular, the permutation associated to the
braid δ = b1b2b3b4 ∈ B5 shown in Figure 9 is π(δ)= (1 2 3 4 5) (rather than the
usual (5 4 3 2 1)).

There is a homomorphism χ : Bn → Z, generated by χ(bi) = 1 (for all i),
and called the exponent sum of the braid; it measures the algebraic number of
crossings in the braid. For example, χ(δ)= n− 1, while χ(∆)= 1

2 n(n− 1). The
important property in the present context is that χ is invariant under conjugation,
as is easy to see. (More abstractly, the first homology group of Bn is Z, and χ is
the natural projection Bn→ H1(Bn)' Bn/[Bn,Bn].)

We define two subgroups of the braid group which will be useful when we
consider choreographies with nontrivial core below.

DEFINITIONS 5.2. First, we let Bn,1 be the group

Bn,1 = {b ∈ Bn+1 | π(b)(0)= 0}, (5.2)

where the n + 1 strings are labelled 0, 1, . . . , n. Its generators are described in
the review by Vershinin [40] (where Bn,1 is denoted Br1,n+1).
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Second, we define a subgroup Pn,1(c) of Pn+1 as follows (again label the strings
0, . . . , n). For each pure braid p ∈ Pn+1 there are integers wij(p) given by the
number of times string i winds around string j. Then put

Pn,1(c) = {p ∈ Pn+1 | wj0(p)≡ 0(mod c),∀j= 1 . . . , n}.
That is, the number of times each string winds around the 0-string is an integer
multiple of c. (This also has a homological interpretation, as the winding
numbers of a loop are the components of the image of the element of Pn in
its first homology group: H1(Pn)' Zn(n−1)/2.)

Recall that σ1 ∈ Sn is the permutation σ1(j)= j+ 1(mod n).

PROPOSITION 5.3. Suppose that c divides n, with 1 < c < n, and that ` is
coprime to c. Let K be the subgroup of Γ generated by (R2π`/c, σ

n̂
1 ), where

n̂ = n/c, so K is cyclic of order c. The space Y = Fix(K,X(n)) is connected and
aspherical, with fundamental group π1(Y, y)' Pn̂,1(c) < Pn̂+1.

Proof. We saw in Section 3.2 that Y is a cover of X (̂n)
∗ , of degree cn̂. The

homotopy type of X (̂n)
∗ is found from the fibration X (̂n+1)→ C given by

(z0, z1, . . . , zn̂) 7−→ z0.

The fibre over 0 is X (̂n)
∗ , and, since the base is contractible, the total space and

the fibre are homotopic. That is, X (̂n)
∗ ∼ X (̂n+1), and the latter is aspherical with

fundamental group Pn̂+1, as already pointed out. Now consider the covering
Ψ : Y → X (̂n)

∗ of degree cn̂ given in (3.3), which is in fact the quotient map for
the action of Zn̂

c acting by multiplication by cth roots of unity:

(ω1, . . . , ωn̂) · (z1, . . . , zn)= (ω1z1, . . . , ω̂ zj, . . . , ωn̂zn) (ωj ∈ Zc), (5.3)

where ̂ = j(mod n̂). This gives the short exact sequence,

1→ π1(Y, x)−→ π1(X
(̂n)
∗ , Ψ (x))−→ Zn̂

c→ 1.

The projection to Zn̂
c is the winding number modulo c of each of the strings

(particles) around the origin, so in order for a loop to be in π1(Y, x) these winding
numbers must vanish, modulo c. �

For the following theorem, we need to define an involution b 7→ b̄ on Bn: given
any braid b ∈ Bn, then b̄ is the same braid but with every overcrossing changed
into an undercrossing and vice versa. This is a homomorphism, and clearly this
leaves the resulting permutation unaffected: π(b̄) = π(b). Algebraically, let b
be any word written in terms of the generators bj; then b̄ is the same word with
each instance of a generator replaced by its inverse. It follows that the exponent
sum satisfies χ(b̄)=−χ(b). For example, if b= bib

−2
j , then b̄= b−1

i b2
j . One can

show easily that ∆̄=∆−1.
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Recall the notation ×α and the curve (−θ)g·x defined in Example 4.4. Recall
also that R2πθ is the rotation through 2πθ in the plane, and that κ is the reflection
in the x-axis (complex conjugation).

THEOREM 5.4. For Γ = O(2) × Sn acting on X(n), with x the usual base point
for braids, there is an isomorphism

πΓ1 (X
(n), x)

∼−→ (Bn×αR)o Z2

(γ, g) 7−→
{
([γ ∗ (−θ)g·x, θ], e) if g= (R2πθ , σ )

([γ, 0], κ) if g= (κ, σ ),
where σ ∈ Sn. The image of the remaining elements, so those of the form g =
(R2πθκ, σ ), can be determined using the semidirect product structure coming
from κ[b, s] = [b̄,−s]. The homomorphism α : Z→ Bn is given by α(n) = ∆2n.
In terms of this isomorphism, the projection β : πΓ1 → Γ is given by

β([b, θ], κ r)= (R2πθκ
r, π(b)) ∈ O(2)× Sn,

where π : Bn→ Sn is the usual projection.

Proof. We use Proposition 4.5 and Equation (4.4), with N = Sn C O(2) × Sn.
First, Sn acts freely on X(n), so that

π
Sn
1 (X

(n), x)' π1(X
(n)/Sn, x̄)' Bn. (5.4)

Now apply Proposition 4.5 to the SO(2)-action to obtain (we identify S1 ∼−→
SO(2) by θ 7→ R2πθ )

π
SO(2)×Sn
1 (X(n), x)' πSO(2)

1 (X(n)/Sn, x̂)' π1(X
(n)/Sn, x̂)×αR. (5.5)

The second isomorphism, by Example 4.4, is (γ̂ , θ) 7→ [γ̂ ∗ (−θ)θ ·x, θ], where
γ̂ is a path in X(n)/Sn with phase θ . Let γ be the unique lift of the path γ̂ to X(n)

with base point x. Since γ̂ (1)= θ · x̂, we have that γ (1)= σ · θ · x= θ · σ · x for
some σ ∈ Sn. That is, γ (1)= g · x for g= (R2πθ , σ ) ∈ SO(2)×Sn. Consequently,
γ ∗ (−θ)g·x is a path from x to σ · x, and so represents a braid, as required.

The final result then follows by using κ ∈ O(2)—the reflection in the x-axis
(real line) which fixes the base point and makes every overcrossing into an
undercrossing and vice versa, so changing each bj into b−1

j .
For the homomorphism β, the element s ∈ R corresponds to rotation through

an angle of 2πs, and κ corresponds to the reflection in the x-axis. The choice
of semi-direct product structure then determines the first component of β.
The second component π(b) is determined by the projection associated to
Equation (5.4) above. �
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For future reference, if p ∈ Pn, which we consider as the element (p, 0, e) ∈
(Bn×αR)o Z2, then conjugation by p is given by

p(b, θ, e)p−1 = (pbp−1, θ, e) and p(b, θ, κ)p−1 = (pbp̄−1, θ, κ). (5.6)

The first of these just involves the usual conjugacy in the braid group, while the
second uses a twisted (Reidemeister) conjugacy: in the notation of Remark 4.11,
it uses φ(p)= p̄.

EXAMPLE 5.5. The equivariant fundamental groups for the nonreversing
symmetry groups without core are subgroups of the group πΓ1 (X

(n), x) found
in Theorem 5.4. For the cyclic group Σn < Sn (the ‘spatial component’ of the
choreography group Cn), one has

π
Σn
1 (X(n), x)' CBn, (5.7)

a group we call the cyclic braid group, and which is the subgroup of Bn generated
by Pn and δ; it is of course the inverse image under π : Bn→ Sn of the cyclic
group Σn. The homomorphism β : πΣn

1 →Σn here is just the restriction of π to
this cyclic braid group.

Combining this example with the SO(2) action, we can find πG
1 (X

(n), x) for
G = C(n, k/`), using Example 4.4. Recall that, provided that (n, k) = 1, G is
cyclic of order nk and is generated by g= (R2πa`/k, σ

b
1 ), where an− bk = 1.

COROLLARY 5.6. (1) Let G = C(n, k/`), with (n, k) = 1. There is an
isomorphism

πG
1 (X

(n), x)
∼−→ CBn×αZ(1/k), (5.8)

where Z(1/k) is the subgroup of R consisting of integer multiples of 1/k.
Given (γ, g) ∈ πG

1 (X, x) for g = (R2πa`/k, σ
b
1 ), the corresponding element of the

right-hand side is

[γ ∗ (−θ)g·x, a`/k],
for θ = a`/k ∈ Z(1/k) (the path θp is defined in Example 4.4). Under this
isomorphism, the projection β : πG

1 → G< SO(2)×Σn is given by

β([b, θ])= (R2πθ , π(b)).

(2) Let G = C′(n, 2), which is cyclic of order 2n, and its projection to Γ is
generated by (κ, σ2) ∈ Γ . There is an isomorphism

πG
1 (X

(n), x)
∼−→ CBn o Z2, (5.9)

where the semidirect product comes from κ · b = b̄. Any relative loop γ with
g= (κ, σ2) maps under the isomorphism to (γ, κ), and β(γ, κ r)= (κ r, π(γ )).
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0 1 2 3 4

0 1 2 3 4

Figure 10. The braid δ̂ ∈ Bn̂,1 for G = C(n, k/`) with (n, k) = c > 1, shown here for n̂ = 4; note
that π(δ̂)= (1 2 3 4)= σ̂1. See Remark 5.1

Proof. Since the groups are subgroups of Γ , these statements are all immediate
consequences of the more general Theorem 5.4. �

5.2. Choreographies. We now return to the case of choreographies, where the
equivariant loops are those arising from the classification of Section 2. Since
we are looking at nonreversing symmetry groups in this section, there are two
cases: C(n, k/`) and, if n is odd, C′(n, 2), defined in Section 2.3. (We consider
the time-reversing symmetries in a separate paper.)

Recall that for C(n, k/`) we denote the core by K: it is the pointwise isotropy
of a loop with this symmetry, and is the cyclic group of order c= (n, k) generated
by (R2π`/c, σ

n̂
1 ) ∈ Γ . If c= 1, or if G= C′(n, 2), then K is trivial.

Combining Propositions 4.2, 5.3, and Theorem 4.8, we deduce the main result
of this section. For the part with nontrivial core, it will be useful to use the
subgroup Bn̂,1, defined in Equation (5.2). Note that the projection π : Bn̂+1 →
Sn̂+1 restricts to Bn̂,1 → Sn̂. Define the element δ̂ = b2

0b1b2 . . . bn̂−1 ∈ Bn̂,1 (see
Figure 10), and note that π(δ̂) = σ̂1 = (12 . . . n̂) ∈ Sn̂+1. In fact, though we do
not use it, it is well known that (δ̂)n̂−1 =∆2.

THEOREM 5.7. Let G be any of the symmetry groups C(n, k/`) or C′(n, 2).
(1) The set of connected components of the space Fix(G,ΛX(n)) is in

one-to-one correspondence with the following sets.

• For G = C(n, k/`) with (n, k) = 1, the set of Pn-conjugacy classes in the
coset δbPn ⊂ CBn, where bk ≡−1(mod n).

• For G = C(n, k/`) with (n, k) = c > 1, the set of Pn̂,1(c)-conjugacy classes
in the coset δ̂bPn̂,1(c) ⊂ Bn̂,1, where δ̂ ∈ Bn̂,1 is defined above, and bk ≡
−c(mod n).

https://doi.org/10.1017/fms.2013.5 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2013.5


Classification of planar choreographies 43

• For G = C′(2, n), the set of orbits of the twisted conjugacy action of Pn

on the coset δ′Pn, where δ′ = δ(n+1)/2, and the twisted conjugacy action is
p · b= pbp̄−1, for p ∈ Pn, and the definition of p̄ precedes Theorem 5.4.

(2) The connected component containing u ∈ Fix(G,ΛX) is aspherical with
fundamental group isomorphic to the group Πu defined as follows.

• For G= C(n, k/`) with (n, k)= 1, then

Πu = {p ∈ Pn | pb= bp},
where b ∈ δbPn < Bn is the braid corresponding to the path t 7→ u(t/nk) for
t ∈ [0, 1] and bk ≡−1(mod n).

• For G = C(n, k/`) with (n, k) = c > 1 it is the analogue, with X(n) replaced
by Y , and so p ∈ Pn̂,1(c) in place of Pn,

Πu = {p ∈ Pn̂,1(c) | pb= bp},
where b ∈ δ̂bPn̂,1(c) < Bn̂,1 is the braid corresponding to the path t 7→ u(ct/nk)
for t ∈ [0, 1] and bk ≡−c(mod n).

• For C′(n, 2), it is

Πu = {p ∈ Pn | pb= bp̄},
where b ∈ Bn is the braid corresponding to the path t 7→ u(t/2n) for t ∈ [0, 1].
For example, for choreographies with symmetry C = C(n, 1), we have that

k = 1, so b=−1. The relevant coset is therefore δ−1Pn.

REMARKS 5.8. (a) It is easy to see that each of the cosets occurring in part (1)
contains infinitely many conjugacy classes, since multiplication by powers of
∆2 preserves the coset, but changes the conjugacy class, as is readily seen by
considering the exponent sum (which is invariant under conjugacy).

(b) Note that in the theorem the a, b are not unique. However, different choices
of b differ by multiples of n, and δb+rn = δb∆2r. So first the cosets δbPn and
δb+rnPn coincide, and second, while the conjugacy classes are not the same, they
are in (natural) one-to-one correspondence, because ∆2 is central.

(c) Finding centralizers of braid elements is an interesting problem in braid
theory; see for example [19]. However, the known results do not address the
twisted conjugacy problem relevant to C′(n, 2), although some general results
do exist [18].

Proof. By Proposition 4.2, we know that Fix(G,ΛX(n)) is homeomorphic to
ΛgX(n) if the core is trivial, and to ΛgY = ΛgYK if the core K is nontrivial, for
some suitable g ∈ Γ discussed below. In each case, given a loop u ∈ Fix(G,X(n)),
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one defines a suitable g-loop γ according to Proposition 4.2. The set of connected
components is then given in part (1) of Theorem 4.8, while the fundamental
group of each component is given in part (2) of the same theorem. We proceed
by treating each class of symmetry group in turn: first the two cases with trivial
core, and then the remaining groups with nontrivial core, which requires a more
involved argument.

First, suppose that G = C(n, k/`), with (n, k) = 1. Here, G is cyclic of
order nk, and its projection to Γ is generated by g = (R2πa`/k, σ

b
1 ) ∈ Γ , with

an− bk = 1. Now πG
1 is given in Corollary 5.6, and (γ, g) represents an element

[b, r/k] ∈ CBn×αZ(1/k) ' πG
1 for some b ∈ Bn and r ∈ Z. Then β([b, r/k]) =

(R2πr`/k, π(b)) ∈ SO(2)×Sn, from which r = a and π(b)= σ b
1 , and consequently

b belongs to the coset δbPn. The final statement in this case then follows from
the expression for conjugation given in (5.6).

Next, suppose that u has symmetry G = C′(n, 2), which is the cyclic group
of order 2n whose projection to Γ is generated by g′ = (κ, σ2) (recall that n is
odd, so σ2 = σ h

1 with h = (n + 1)/2). Then β−1(g′) ⊂ πΓ1 (X(n), x) is the coset
(δhPn, 0, κ) < πΓ1 (X

(n), x) (see Theorem 5.4 for notation). It then follows from
the second part of (5.6) that the conjugation by p ∈ Pn is given by b 7→ pbp̄−1.

Finally, suppose that G has nontrivial core, that is G= C(n, k/`) with (n, k)=
c > 1. Then, by Proposition 4.2, we have that Fix(G,ΛX(n)) ' ΛgY for g =
(R2πa`/k, σ

b
1 ), with an − bk = c; see (2.4). By Proposition 5.3, the fundamental

group of Y = Fix(K,X(n)) is Pn̂,1(c), so that the connected components of ΛgY
are in one-to-one correspondence with the Pn̂,1(c)-conjugacy classes in the coset
β−1(g)⊂ πN/K

1 (Y, x), where N is any group containing K and g and acting on Y .
It remains to identify a suitable group N so that the commutation is as given in
the theorem.

We take the group N as follows. The core K is generated by (R−2π`(c), σ
n̂
1 ), and

σ n̂
1 is a product of n̂ disjoint cycles of length c. For j = 1, . . . , n̂, let πj ∈ Sn be

the cycle of length c,

πj = (j(n̂+ j)(2n̂+ j) · · · ((c− 1)n̂+ j));
that is, πj(j+ rn̂)= j+ (r + 1)n̂(mod n), for r = 0 . . . c− 1. Then, as a product
of disjoint cycles, σ n̂

1 = π1π2 . . . πn̂. Let N < NΓ (K) be

N = SO(2)× (Zn̂
c o Sn̂).

The action on Y is by SO(2) acting on the plane as usual, the jth component of
Zn̂

c acting by powers of the cycle πj (equivalently, on Y by multiplication by cth
roots of unity as in (5.3)), and Sn̂ acting by permuting the n̂ disjoint cycles in σ n̂

1 .
(The permutation part of N is the wreath product Zc o Sn̂.) Clearly K < N, and
there is therefore an action of N/K on Y . Moreover, the subgroup Zn̂

c acts freely,
and the quotient Y/Zn̂

c can be identified with X (̂n)
∗ via the map Ψ defined in (3.3).
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(a) D(6,  4) (b) D(10,  5 2)

Figure 11. Two examples illustrating different connected components of each symmetry type
compared with those in Figure 5; see also Remark 1.6. Many examples of five-body choreographies
with a single time-reversing reflectional symmetry—so type D(5, 1)—in different connected
components have been found (numerically) by Simó [35, Figure 3].

Let Γ̂ = SO(2)× Sn̂ act in the usual way on X (̂n)
∗ , and let ψ : N/K→ Γ̂ be the

surjective homomorphism ψ(R, σ ) = (Rc, σ̂ ), where σ̂ (j) = σ(J)(mod n̂). The
kernel of ψ is precisely Zn̂

c , and the map Ψ is then equivariant with respect to ψ ,
meaning that Ψ (g · x)= ψ(g) · Ψ (x).

Since the Zn̂
c-action is free, by Proposition 4.5 we have an isomorphism

π
N/K
1 (Y, x)' π Γ̂1 (X (̂n)

∗ , x)= Bn̂,1×αR, (5.10)

where α(1) = ∆̂2, where ∆̂2 is the full twist in Pn̂+1 ⊂ Bn̂,1 (the proof of the
final equality in (5.10) is the same as that for Theorem 5.4, bearing in mind that
only Sn̂ acts and not Sn̂+1, and we are not including the reflection κ). Now, with
δ̂ ∈ Bn̂,1 defined just before the statement of the theorem, we have that π(δ̂)= σ̂1,
so (similar to the case above)

β−1(R2πa`/k, σ
b
1 )= δ̂bPn̂,1(c),

as required, where β : πN/K
1 (Y, x)→ N/K.

The fundamental group of the component containing u is then deduced in the
same way as before. �

Choreographies with the same symmetry but in different connected
components can often be distinguished by their sequence of winding numbers:
since the particles move without collision, in the full periodic orbit each pair
of particles winds around each other some integer number of times. For a
given choreography, the winding number for particles i and j depends only
on the difference |i − j|, because of the choreography symmetry. For the two
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choreographies depicted in Figure 11 the sequence of winding numbers is
(−3,−3, 1) and (−3,−3, 2,−3,−3), respectively, while for the choreographies
of Figure 5 they are (1,−3, 1) and (−3, 2, 2, 2,−3), respectively. The two with
symmetry D(6, 4) have different winding numbers, and so are not homotopic;
similarly for the two D(10, 5/2)-choreographies. Here, the notation is that the
kth term of the sequence is the winding number of particle j around particle j+k.
It is not hard to show that, for choreographies of type C(n, k, `), the winding
numbers are all equivalent to `(mod k).

EXAMPLE 5.9. Consider the circular choreography u, with speed ` = 1 and n
particles (Example 1.3). If z0 = (ω, ω2, . . . , ωn−1, 1) ∈ X(n), where ω = e2π i/n,
then u(t) = e2π itz0. For this example, it is convenient to use z0 as the base point.
The generators of the braid group bi now represent the clockwise exchange of
particle i and i + 1. The braid δ = b1 . . . bn−1 becomes the rigid rotation by
2π/n of the configuration in the clockwise direction, represented by the path
δ(t)= e−2π it/nz0. The braid∆2 = δn is the full twist, given by a clockwise rotation
by 2π .

Let k be coprime to n, and let (g, τ (g)) = (R2πa/k, σ
b
1 , (1/nk)) ∈ Gτ =

D(n,∞), the symmetry group of u, where an − bk = 1. Let γ (t) = u(t/nk) for
t ∈ [0, 1] (so γ is the generator of u—Definition 4.3). Then γ ∈ ΛgX(n), so it
is natural to ask which connected component it belongs to. The components of
ΛgX(n) are indexed by the Pn-conjugacy classes of δbPn < CBn as described in the
theorem above. A calculation involving the isomorphism of Theorem 5.4 shows
that the corresponding braid is precisely δb.

Since b is coprime to n, it follows from results of [4] (see also [19]) that the
centralizer of δb in Pn is the cyclic group generated by ∆2. It then follows from
Theorem 5.7 that the space of loops with symmetry C(n,∞) (or symmetry type
D(n,∞)) is homotopic to S1, a fact which also follows from the direct argument
in Example 5.11 below.

EXAMPLE 5.10. Consider the choreographies with three particles and fourfold
rotational symmetry, so G = C(3, 4). Then G ' Z3 × Z4 ' Z12, which is
generated by

(g, τ (g))= (R3π/4, σ
−1
1 , 1

12

) ∈ Γ × S1

(see (2.3), with an− bk = 1 for a= b=−1), and we have that

πG
1 (X

(3), x)' CB3×αZ(1/4),
where α(1) = ∆2, and the set of connected components is in one-to-one
correspondence with the P3-conjugacy classes in the coset δ−1P3 ⊂ B3 (in fact
in CB3 the cyclic braid group).
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1 1

3

2

3

2

( ) ( )

2
2

g.x g.x

Figure 12. Two braids arising from loops with D(3, 4) symmetry. The first is the circular
choreography, and the second the one depicted in Figure 4. The black dots represent the base point
z0 ∈ X(3), and the open dots the point γ (1) = g · z0, where g = (R−π/2, σ−1

1 ), and σ−1
1 = (1 3 2).

The solid curves represent γ and the dashed ones (−θ)g·x. (A break in the solid path in the second
figure represents the one traversed later: in other words this is a top-down view of the motion, with
time increasing downwards and the ‘hidden’ curve broken as usual.)

There are two examples of elements of C(3, 4) we have seen: the circular
choreography with symmetry type D(3,∞), see Examples 1.3 and 5.9 above,
and the choreography in Figure 4 (and note that of course D(3, 4) < C(3, 4)).
The generators and braids of these are illustrated in Figure 12. The first of
these corresponds to the P3-conjugacy class containing δ−1 = b−1

2 b−1
1 , as shown

in the example above, while the second corresponds to the one containing
b2

2δ
−1 = b2b

−1
1 .

It was shown in the previous example that the P3-centralizer of δ = b1b2 is the
subgroup of P3 generated by∆2, so that the set of loops with symmetry C(3,∞)
has the homotopy type of a circle (as was shown explicitly in Example 5.9).
On the other hand, the element b2b

−1
1 is a pseudo-Anosov braid (by exclusion:

it is neither periodic nor reducible [17]; or see [11, Section 15.1]), and it
follows from work of González-Meneses and Wiest [19] that its P3 centralizer
is isomorphic to Z2 (in fact generated by (b2b

−1
1 )

3 and ∆2). Assuming that
the functional is coercive (which occurs for example for the strong force; see
Section 1.2), it follows by using Morse theoretic arguments that it must have at
least two S1-orbits of critical points on this component, for otherwise it would
be homotopic to a circle.

Finally, we consider symmetry groups where the number of particles divides
the order of symmetry of the curve, and show directly that such loops are always
homotopic to the circular choreography, and indeed in the case of the Newtonian
potential the only choreographic solution is the circular solution.

EXAMPLE 5.11. Suppose that G = C(n, k/`), with k a multiple of n. Then
c = (n, k) = n, and the fixed point space Fix(K,X(n)) ' X(1)

∗ , the punctured
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plane (see Lemma 3.1). Indeed, the position of the first particle determines the
others, as they lie at the vertices of a regular n-gon centred at the origin. The
motion will preserve this property, and so the solutions will be ‘homothetic’. The
fundamental group of this fixed point space is Z, and the equivariant fundamental
group πG

1 (C∗, x) ' Z × Zk, with β(p, q) = (p(mod n), q) ∈ G = Zn × Zk.
The conjugacy is trivial, so there are countably many connected components
(parameterized by π1(C∗)= Z), and each connected component is homotopic to
a circle.

More explicitly, let u(t)= (z1(t), . . . , zn(t)) be a choreography with symmetry
C(n, k/`), with k = an. The symmetry implies in particular that, for all t,
zi(t)/zj(t) is never a positive real number. Define a new choreography v

homotopic to u within the set of loops with symmetry C(n, k/`) by projecting
each point radially to the unit circle:

v(t)=
(

z1(t)

|z1(t)| , . . . ,
zn(t)

|zn(t)|
)
.

This choreography involves all the points moving equally spaced around the unit
circle, and so in fact has symmetry D(n,∞/`). It follows that every component
of C(n, k/`) with n|k contains a loop with symmetry D(n,∞/`). Furthermore,
each of the Z’s worth of connected components of C(n, k/`) mentioned above
contains the multiple coverings of the basic one.

As far as the dynamics is concerned, the potential function on X(n) restricts to
a similar potential function on this fixed point space. In particular, if the potential
is homogeneous of degree d, then the restriction is also homogeneous of degree
d, and the resulting dynamics coincides with that for a single mass moving in the
corresponding central force. For example, if the system is Newtonian (d =−1),
the restricted dynamics will involve the vertices of the regular n-gon moving
in ellipses, parabolae, or hyperbolae. However, if the motion is not circular,
then distinct vertices will move on distinct curves, so the only choreographic
solution will be the circular motion. Similar results should be available for other
homogeneous potentials.

In the next section, we extend this example by asking which components of
C(n, k) and C(n, k/`) do not contain loops with greater symmetry.

6. Adjacencies and components

There is a familiar question in the application of topological methods to
the calculus of variations which asks whether a given loop is homotopic to a
loop which is multiply covered. If it is not, then existence theorems (such as
existence of geodesics) guarantee there is a solution in the given homotopy class
(connected component of loop space) which is not just a multiple covering of a
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simpler solution, so guaranteeing a ‘new’ solution. The answer is simply that a
loop is not homotopic to a multiply covered loop if and only if the corresponding
element of the fundamental group is primitive. An element of a group is said to
be primitive if it cannot be written as a positive power of another element; this
property is invariant under conjugacy.

From the symmetry perspective, even if there is no symmetry group on the
configuration space X, there is always an S1-action on the loop space ΛX (we
do not discuss the Ŝ1 action in this section). A trivial loop is one with isotropy
precisely S1. A loop has symmetry Zr < S1 if and only if it is r-times covered.
So, if a loop u has symmetry Zr < S1, then the curve v : t 7→ u(t/r), for t ∈ [0, 1],
is also a loop, and the homotopy classes satisfy [u] = [v]r, explaining what was
said above. In particular, u is freely homotopic to a multiply covered curve (that
is, one with greater symmetry) if and only if [u] ∈ π1(X, x) is not a primitive
element.

The natural extension of this question to the symmetric setting is to ask
whether a particular connected component of the space of loops with symmetry
G contains loops with greater symmetry (of which multiple coverings are
a particular case). We saw an instance of this in Example 5.11, where
G = C(n, k/`) with n|k: all such components contain loops with symmetry
D(n,∞/`).

In the context of choreographies, we saw in Section 2.5 that C(n, k/`) ≺
C(n, k′, `′) if and only if k | k′ and `≡ `′(mod k). Some components of the loops
with symmetry (at least) C(n, k/`) contain loops with symmetry C(n, k′, `′), and
some do not. Similarly, if n is odd, C(n, 1) ≺ C′(n, 2), and the same question
arises. In this section, we develop a method to determine which components do
contain loops with greater symmetry and which do not, in terms of conjugacy
classes in the equivariant fundamental group πΓ1 (X

(n), x). If the action of Γ
on X is free, this is a simple extension of the classical result above, the
requirement being that the relevant element (γ, g) be a primitive element of
πG

1 —see Corollary 6.2 below.

6.1. Maximal symmetry type. Returning to the general context of actions of
a group Γ on a connected manifold X, suppose that a loop u has symmetry
equal to G< Γ × S1, with τ(G)= Zr < S1, and suppose that g ∈ G is such that
τ(g)= 1/r. Such a g is uniquely defined modulo K = ker τ C G and, moreover,
since u has isotropy G, g ∈ N = NΓ (K), the normalizer of K in Γ . As usual,
define in this case γ (t)= u(t/r) for t ∈ [0, 1], the generator of u, so u= φr(γ ) in
the notation of (4.1). Then γ ∈ΛgXK .

Let C(u) denote the connected component of Fix(G,ΛX) containing u, or
what is equivalent by Proposition 4.2, the connected component of ΛgXK
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containing γ . The question is whether C(u) contains any points with symmetry
group strictly containing G. We say that the component C(u) is of maximal
symmetry type if there are no loops in C(u)with symmetry strictly greater than G.

THEOREM 6.1. Suppose that the group Γ acts on a manifold X, and let u be a
loop in X with isotropy G< Γ × S1, with K = ker τ trivial, and let γ ∈ΛgX be
a generator of u. The connected component C(u) of Fix(G,ΛX) containing u is
of maximal symmetry type if and only if both the following conditions hold:

(1) (γ, g) ∈ πΓ1 (X, x) is a primitive element; and

(2) there does not exist a nontrivial isotropy subgroup K of the Γ -action on X
for which (γ, g) ∈ πN

1 (X
K, x′), where N = NΓ (K) and x′ ∈ XK .

More generally, the same is true if u ∈ ΛY for Y = XK0 , with K0 = ker τ C G
nontrivial, provided that Γ is replaced by Γ0 := NΓ (K0)/K0, X is replaced by
Y , and, for condition (2), K strictly contains K0, x and x′ should be in the same
connected component of XK0 , and N is replaced by

N ′ = (NΓ (K0) ∩ NΓ (K))/K0.

Condition (2) implicitly uses the identification of πN
1 (X

K, x′) with its image in
πΓ1 (X, x) (since XK ⊂ X and N < Γ ). More generally, it uses the identification of
πN′

1 (X
K, x) with its image in πΓ0

1 (X
K0, x). Note that this condition (2) is trivially

satisfied if K is a maximal isotropy subgroup of the Γ -action on X.
In the more general version of condition (1), the group πΓ0

1 (Y, x) arises from
the natural action of NΓ (K0)/K0 on Y = XK0 , and is isomorphic to the quotient

1−→ K0 −→ π
NΓ (K0)
1 (Y, x)−→ π

Γ0
1 (Y, x)−→ 1,

where the first inclusion is k 7→ (x̄, k), where x̄ is the constant loop at x.

Proof. We prove the ‘basic’ version; the more general version follows by
considering the Γ0-action on XK0 .

First, we prove the ‘only if’ statement. Suppose first that (γ, g) ∈ πΓ1 (X, x) is
not primitive, so there is a (δ, h) ∈ πΓ1 (X, x) and p> 1 such that (γ, g)= (δ, h)p.
Let v be the loop corresponding to δ. Then v is homotopic to u in Fix(G,ΛX),
so C(u) is not maximal. Second, suppose that condition (2) is violated. Since X
is connected, the groups πΓ1 (X, x) and πΓ1 (X, x′) are isomorphic, so let (γ ′, g)
be the corresponding element in the latter group (same g). Then there is a
(δ, h) ∈ πN

1 (X
K, x′) such that (γ ′, g) = (δ, h) (h is only defined modulo K, but

we can choose h= g). It follows that u and v are homotopic.
For the converse, suppose that the component C(u) is not of maximal

symmetry type, and let v ∈ C(u) be a loop with greater symmetry. That is, v ∈
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Fix(H,ΛX)∩C(u) for some group H < Γ ×S1 with H 	 G. Let τ ′ : H→ S1 be
the projection, and let K be the kernel. If K is nontrivial, then condition (2) fails.

On the other hand, if K is trivial, then the image of τ ′ is a subgroup of
S1 strictly containing τ(G), so has order pr for some integer p > 1. Let h
satisfy τ ′(h) = 1/pr, and define δ(t) = v(t/pr) for t ∈ [0, 1]. Then δ ∈ ΛhX,
and (γ, g)= (δ, h)p, so that (γ, h) is not primitive. �

As mentioned above, if the action of Γ on X is free, the theorem simplifies
considerably.

COROLLARY 6.2. Suppose that the action of Γ on X is free, and let u be a
loop with symmetry G< Γ ×S1. The connected component C(u) of Fix(G,ΛX)
is of maximal symmetry type if and only if the corresponding element (γ, g) ∈
πΓ1 (X, x) is primitive, where γ is the generator of u.

6.2. Application to choreographies. Since we know from Theorem 2.3 all the
isotropy subgroups of Γ ×S1 appearing for choreographies, we can simplify the
application of the theorem above. There are two types of case to consider. The
first, more direct and only for odd n, is that C(n, 1) = Cn ≺ C′(n, 2), and the
other, which involves many subcases, is that C(n, k/`) ≺ C(n, k′/`′) if and only
if k | k′ and `′ ≡±`(mod k).

Suppose first that n is odd and that u has symmetry C(n, 1). By Theorem 5.7,
the set of connected components of C(n, 1) is in one-to-one correspondence
with the Pn-conjugacy classes in the coset δ−1Pn ⊂ CBn (the cyclic braids
are defined in Equation (5.7)). The connected component C(u) containing u
therefore corresponds to the Pn-conjugacy class containing δ−1pu for some
pu ∈ Pn.

Suppose that v ∈ C(u) has symmetry C′(n, 2), and let η(t) = v(t/2n), so that
η ∈Λ(κ,σ2)X(n) (see Section 2.1 for notation). Since there is no rotational part to
this symmetry group, the relevant equivariant fundamental group is

π
Z2×Σn
1 (X(n), x)' CBn o Z2,

with product (b1, κ)(b2, g)= (b1b̄2, κg) for g ∈ {I, κ}, and b̄ is the braid obtained
from b by changing all overcrossings to undercrossings and vice versa (see
Theorem 5.4). The map φ2 : Λ(κ,σ2)X(n)→ΛcX(n) is

(γ, (κ, σ2)) 7−→ (γ ∗ γ̄ , c).
Furthermore, connected components correspond to twisted conjugacy classes,
and indeed, under this map, for arbitrary r ∈ Pn,

r ∗ γ ∗ r̄−1 7−→ (r ∗ γ ∗ r̄−1) ∗ (r̄ ∗ γ̄ ∗ r−1)= r ∗ (γ ∗ γ̄ ) ∗ r−1,
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up to homotopy, so mapping connected components to connected components
(as it must!). Moreover, with (γ, (κ, σ2)) corresponding to (b0, κ) ∈ BnoZ2, we
have that b0 = δ′p for some pure braid p (see Theorem 5.7). The corresponding
braid under φ2 is b0b̄0 = δ′pδ′p̄ = δ′δ′p′p̄ = δp′′, as required for braids with
C(n, 1) symmetry. Thus we have, for odd n, the following.

PROPOSITION 6.3. A loop u with symmetry C(n, 1) is homotopic to a loop with
symmetry C′(n, 2) if and only if the corresponding element b of the braid group
can be written as b= b0b0.

Note that π(b)= π(b0)
2 = σ1, which implies that π(b0)= σ2 (σ2 is the unique

square root of σ1 in Sn), so any b0 satisfying b= b0b0 corresponds to a loop with
symmetry C′(n, 2).

On the other hand, as pointed out earlier, the exponent sum satisfies χ(b̄) =
−χ(b). It follows that χ(bb̄) = 0, and consequently the braid associated to any
component of the set of choreographies containing loops with C′(n, 2) symmetry
must have zero exponent sum.

An open question arising here is whether, for g′ the generator of C′(n, 2), the
map

π0(Λ
g′X(n))−→ π0(Λ

cX(n))

is injective. Failure of this would amount to the existence of two braids b, b′ ∈
δ′Pn in distinct twisted conjugacy classes, for which bb is conjugate to b′b′. This
would have implications for the number of critical points of the action functional
in a connected component of C(n, 1), as there would be at least two critical points
in that component with symmetry (conjugate to) C′(n, 2).

Now consider the case C(n, 1) ≺ C(n, k/`), with (n, k) = 1. Since there are
no fixed points for the Γ -action, we are in the setting of Corollary 6.2. Let
g = (R2πa`/k, σ

b
1 ), and δ ∈ ΛgX(n), where as usual an − bk = 1. Then the map

φk : ΛgX(n)→ΛcX(n), as in Equation (4.1), and, at the level of homotopy,

φk(η, g)= (η, g)k = (γ, c),
with γ = φk(η). Representing (η, g) ∈ πΓ1 (X(n), x) as [b0, a`/k] ∈ Bn×αR and
(γ, c) as [b, 0], we require that [b0, a`/k]k = [b, 0]. This becomes

[bk
0, a`] = [b, 0],

so that b=∆−2a`bk
0. This implies the following.

PROPOSITION 6.4. A loop u with symmetry C(n, 1) and corresponding braid
b ∈ δ−1Pn is homotopic to a loop with symmetry C(n, k/`) with (n, k)= 1 if and
only if ∆2a`b has a kth root, where an≡ 1(mod k).
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Having a kth root means of course that it can be written as ∆2a`b = bk
0 for

some braid b0. Since χ(∆2)= n(n− 1), this requires 2a`n(n− 1)+ χ(b) to be
a multiple of k, and hence the exponent sum satisfies

χ(b)≡−(n− 1)`(mod k).

This restricts the possible values of k, `. We aim to consider the full question,
allowing for the core, in a future paper.

Finally, we mention a result of González-Meneses [17], who shows that the
kth root of a braid, if it exists, is unique up to conjugacy in Bn. Moreover, if the
braid is of pseudo-Anosov type, then a kth root, if it exists, is unique. (The type
of b coincides with the type of∆2b, as is readily checked.) This suggests that the
map

π0(Λ
gX(n))−→ π0(Λ

cX(n))

may be injective. However, the conjugacy in [17] is by all possible elements of
Bn, while π0 is determined by conjugacy with respect to elements of Pn. So this
is inconclusive, but again would have repercussions for estimates of numbers of
critical points.
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[5] A. Chenciner, ‘A note by Poincaré’, Regul. Chaotic Dyn. 10(2) (2005), 119–128.
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