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ON THE SOLUTION OF A NONLINEAR PROBLEM IN CELL
MEMBRANE THEORY
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Abstract

Methods for integral equations are used to derive upper and lower pointwise bounds for
the solution of a nonlinear boundary value problem arising in the steady-state finite cable
model of cell membranes. Test calculations are performed to illustrate the results and the
accuracy achieved is significantly better than that obtained previously by other methods.

1. Introduction

Boundary value problems described by equations of the form

-£- = -i, ~=m(u), 0 < * < l , (1.1)
ax ax

with
iio, i ( l ) = O, (1.2)

arise in the steady-state finite cable model of nonlinear cell membranes [3]. Here x
measures the distance down a finite one-dimensional cable, u0 is a prescribed positive
number, current is injected at the end x = 0 and the end x = 1 is terminated in an
open circuit, u(x) is the transmembrane potential and i(x) is the axial or longitudinal
current down the core of the cable. The membrane current per unit length m («) can be
any linear or nonlinear function of u which crosses the m(u) = 0 axis only once with
a positive slope. The values of w(l) and i (0) are not known and must be determined
as part of the solution.

Several approaches to solving problems like this with nonlinear m(u) have been
described [1, 2, 4]. The numerical approach of Kootsey [4] combined a shooting
method with an automatic algorithm for iteration, and involved initial estimates of
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the unknown input current. The variational approach of Anderson and Arthurs [1]
employed extremum principles as the basis of a practical optimisation procedure.
Simple analytical bounding curves for the solution have also been obtained [2] and
these show that the solution is known in the cases considered to within a few per cent.
Such accuracy may suffice for certain applications, but to improve on this accuracy
is of theoretical and practical interest and it is this aspect of the problem that we
shall consider here. Of the methods already used the one producing bounding curves
provides an immediate and direct measure of the error at each stage. However in
the quest to reduce the error this method becomes progressively more cumbersome
and slow, since it employs polygonal approximations to m(«). For that reason we
have decided to investigate a quite different approach using an integral equation
formulation, some simple bounding results, and an approximation scheme based on
an inclusion procedure. This approach proves to be straightforward to implement and
in the test cases considered leads to very significant improvements in accuracy.

2. Boundary value problem

In terms of the function u the boundary value problem of (1.1) and (1.2) is

^ 4 = »*(«) (0 < x < 1), (2.1)
dx2

with
M(0) = M0, n'(l) = 0 . (ii0 > 0). (2.2)

For the purposes of this paper we shall consider the case of a third order polynomial
membrane current-voltage relation given by

m(u) = u + u\ (2.3)

This relation is used to represent steady-state outward-going rectification observed in
nerve membranes [3]. With m{u) of the form (2.3) it follows immediately, by a simple
convexity argument using (2.1) and the fact that M(0) = M0 > 0, that the solution u
satisfies

0 < u < M0 (0 < x < 1). (2.4)

We shall now rewrite the problem in the form

Au = h(u) (0 < x < 1), (2.5)

with
= MQ, M'(1) = 0 («o > 0), (2.6)
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in which

Au = -u" + o2u, (2.7)

h{u) = (a2 - l)w - u\ (2.8)

where a denotes a free real parameter at this stage. Next, in order to work with
homogeneous boundary conditions, we split the function u by writing

(2.9)

Then (2.5) and (2.6) give

A<p + A!; =/!(<?+£), ( 0 < * < l ) , (2.10)

with
= u0, <p'(l) + £'(l) = 0 . (2.11)

We now choose £ to satisfy

A^=0, ( 0 < J C < 1 ) , (2.12)

= u0, | '(1) = 0, (2.13)

which leads to
£(x) = w 0 cosha( l — x ) / c o s h a . (2.14)

It then follows that the function <p satisfies

A? = fifp) (0 < x < 1), (2.15)

with

<p'(l) = 0, (2.16)

in which
fifp) = h(<p + | ) = (a2 - \){fp + | ) - (<p + ^)3, (2.17)

where £ is the function given by (2.14). The problem in (2.5) and (2.6) has thus been
transformed to that of finding the solution <p of (2.15) and (2.16). We shall regard the
solution <p as belonging to the real Hilbert space £2(0, 1) with inner product

<V,O= / MMOdt (2.18)
Jo

and associated norm

<«(>,¥>)*. (2.19)
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In addition we know from (2.4) that the solution function (p(x) belongs to the subset
of£2(0, 1) denned by

5 = {<Pi(x) : 0 < <pt•+ $ < «o, 0 < x < 1}. (2.20)

Relative to this space the operator

A = -f~2+ o2l (2.21)
dx

in (2.15), with (2.16), is self-adjoint and positive with lowest eigenvalue given by

X0 = n2/4 + (j2. (2.22)

3. Integral equation form

If we introduce the inverse K of the operator A given in (2.21), subject to the
boundary conditions (2.16), we find that <p satisfies the equivalent integral equation

F<p = cp-K{f(<p)} = 0, (3.1)

that is,

<p{x)= f k(x,t;a)f{fp{f))dt, (3.2)
Jo

where
f(fp{f)) = (a2 - l)fo>(0 + 5(0} - {<p(f) + HO?, (3.3)

and k(x, t\ a) is the kernel of K given by

c,t\(j) = I
. sinhcrf cosha(l - x) /a cosher, 0 < t < x,

~ ' sinha;ccosha(l — t)/a cosha, x < t < 1.

Since the kernel k (x, t; a) is symmetric in the variables x and t and is Hilbert-Schmidt,
AT is a bounded completely continuous operator [6]. Furthermore, since K is a positive
operator, it follows that the norm || K || of K defined by

|| AT || = m&x{Kv, v) with ||v|| = 1, (3.5)

is equal to the largest eigenvalue of K, that is

|| K || = (lowest eigenvalue of A)"1

= (n2/A + a2)-\ (3.6)

https://doi.org/10.1017/S0334270000010213 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010213


30 A.M. Arthurs andJ. Clegg [5]

We can now establish some useful inequalities involving / , Kf and F. For any
functions <pt and <p2 in the set S of (2.20) we show that there are parameters a, fi and
y such that

- f(<Pi)\\ < ot \\<px - ^ H , a > 0 , (3.7)

< 0 \\w - <p2\\, 0 < p < 1, (3.8)

and
ll*Vi - ^ 1 1 > y ll^i - ^11, y = l-p>0. (3.9)

For the function / in (3.3) we have, by the mean value theorem, that

2) | | , 0 € [<pu<p2]

= \\[o2-l- 3(0(0 + HO)2} ifpx - (Pi) I

< max \a2 - 1 - 3(0(0 + £(0)2| Iki -<Pi\\. (3.10)

Thus (3.7) holds with

or = max l a 2 - 1 - 3(0(0 + t (0)2 | • (3.11)
o<«<i' '

Now choose a2 to minimize the value of a in (3.11). This is done by using (2.20) and
taking

a = a2- 1 = 3w0
2 - (a2 - 1), (3.12)

which gives
ff2 = 3« 0

2 /2+l , (3.13)

and
a = 3«0

2/2. (3.14)

Here we recall that u0 is the prescribed end value in (2.2). For the operator Kf of
(3.1) and (3.2) we have

< \\K\\ \\f(Vl) - f(<p2)\\

< a \\K\\ 11^,-^11 (3.15)

by (3.7). Thus the inequality in (3.8) holds with

0 = « ||tf||, (3.16)

and on using (3.6), (3.13) and (3.14) we see that
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which satisfies
0 < p < 1. (3.18)

In this case the operator Kf of (3.1) and (3.2) is a contraction mapping on the set S
which ensures the uniqueness of the solution q> of (3.1).

To establish (3.9) for the operator F defined by (3.1) we observe that

\\F<P\ ~ F<p2\\ = Up, -ft-

> I I P i - ^ l | -

> \\<Pi - <P2\\ - P \\<Pi - <Pi\\ b y (3 .8 )

(3.19)

where
y = 1 - 0 > 0. (3.20)

This proves (3.9).
Finally we note that if the parameter a is not introduced in (2.5), (2.7) and (2.8),

the analysis leads to the parameter values

a = l + 3«o2, p = {\ + W)^~2, Y = l-P, (3.21)

and since for Kf to be a contraction we require 0 < P < 1, it follows that the values
of H0 that can be admitted are restricted to lie in the region u0

2 < (jz2 — 4)/12. Since
we wish to consider values in the region u0 > 1 we have developed the formulation
based on (2.5) which places no restriction on the end value u0.

4. Pointwise bounds for the solution

We now derive pointwise bounds for the solution <p(x) of the problem in (2.15) and
(2.16), which in turn will provide bounds for the solution u(x) of the original problem
in (2.1) and (2.2) with (2.3). Bounds for the derivatives <p'(x) and u'(x) will also be
derived.

By the formulation of Section 3, the function q>(x) satisfies the integral equation

<p(x)= f k(x,t;a)f(<p(t))dt
Jo

= <k, fW)), (4.1)

where k = k(x, t; o) and f(<p) = f(<p(f)) are given in (3.3) and (3.4), and the inner
product is defined by (2.18) with integration over the variable t. Now consider the
difference

A = {g, fifp)) - (g, /(<&)>, (4.2)
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where g denotes an arbitrary function in £2 and <J> is any function in S. Then

< \\g\\

< \\g\\

< \\g\\

= \\g\\

\m<p) -
a \\<P - '

- \ \ F < p -
Y

Y

•/(*)»
J>| |

-F<P\\

1 = C(*)

by (3.7)

by (3.9)

say, (4.3)

using the fact that F<p = 0. From (4.3) we therefore have upper and lower bounds of
the form

(g, /(ct)) - C(<D) < (g, fi<p)) < (g, / ( * ) ) + C(<D). (4.4)

Two particular choices of the function g are of interest here. These are

0) g = k{x, t; a),
( I I ) g = l

In these cases, (4.4) provides pointwise bounds for <p{x) and its derivative <p'(x)
respectively. These bounds, in conjunction with (2.9), then enable us to obtain
pointwise bounds for u(x) and its derivative u'(x), giving the solution of the original
problem in (2.1) to (2.3). These bounds in (4.4) are subject to the conditions

(i) <t> belongs to S,
(ii) / satisfies (3.7),

(iii) Kf is a contraction operator on S.
(4.6)

More elaborate bounds for equations of the form (4.1) have been derived by Robinson
and Yuen [5], but the bounds in (4.4) are sufficient for our purposes here.

5. Calculations

We now use these results to calculate pointwise bounds for the function <p(x) and
its derivative cp'(x), and hence for u(x) and u'(x). The particular values of u0 which
will be considered here are given in Table 1 together with the associated values of CT2,
a, fi and y.

We start the calculations by choosing the simple trial function

<t>2 = c2p2(x), p2(x) = x2- 2x, (5.1)
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« 0

1
2
3

2

2.5
7

14.5

a

1.5
6

13.5

LJ ^ 1

6 / ( 7 T 2 •

24/(7T2

54/(TT2

-

+
+

Y
10)
28)
58)

TABLE 1. Values of u0 and the associated parameters.

where the coefficients of the quadratic polynomial have been chosen so that <J>2 satisfies
the boundary conditions

= 0, = 0. (5.2)

The optimal value of the parameter c2 is found by minimizing H^^H subject to the
constraint — u0 < c2 < 0 in order to ensure that <J>2 € <S. This in turn minimizes the
correcting functional C. By optimizing in this way we are choosing <J>2 as close as
possible to cp, using the fact that \\F<p\\ = 0. The constants a2, a, ft and y are given
the values indicated by Table 1. As an illustration, for the particular case u0 = 1, it
is found that a minimum ||F4>2|| = 0.004062 is reached when c2 = —0.16983 and
the resulting pointwise bounds for u(x) are given in Table 2. The next step is to
improve these bounds progressively by choosing polynomials of higher order for our
trial function 4>. Thus, let

= 4>3 = c3p3(x), p3(x) = a3x
3 + a2x

2
a0.

For this trial function to satisfy the boundary conditions (5.2) we require

a0 = 0, 3a3 + la2 + ax = 0.

(5.3)

(5.4)

Two further conditions are needed to determine the coefficients a3, a2 and au From
the results obtained using the quadratic trial function <I>2, we have an approximation
for (p given by

= (k(x, t; a), /(<D2)> % <p. (5.5)

This information can be used to help choose coefficients for the next trial function cp3.
Thus, suppose we insist that

Then these conditions together with (5.4) fully determine the coefficients in <J>3. As
before, the parameter c3 is chosen to minimize || F<J>31| subject to the constraint <J>3 e S.
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X

0.2

0.4

0.6

0.8
1

Lower bound

0.820993

0.698145

0.617630

0.571847

0.556950

Upper bound

0.822780

0.701225

0.621684

0.576615

0.562041

C
0.000894

0.001540

0.002027

0.002384

0.002546

TABLE 2. Pointwise bounds for u (or) based on (5.1), with u0 = 1.

T h i s process can be con t inued to generate further trial functions <t>4, <J>5) . . . , < ! > „ , . . .
of increas ing degrees n. L e t

Q>n = cnpn(x), pn(x) = anx" + an_\x

Then to satisfy (5.2) we require that

a0 = 0, nan + {n - l)an^ -\

which together with the (« — 1) conditions

pn{x) = £„_, (x) = {k(x, t; a), /(<!>„_,)>,

H axx + a0.

= 0 ,

= I 2 s = i

(5.7)

(5.8)

(5.9)

fully determine the coefficients a, in pn(x). Finally, the parameter cn is chosen to
minimize ||F<I>n|| subject to the constraint 4>n e S. This procedure has been continued
as far as a sixth order trial function

<i>6 = c6(a6x
6 + a5x

5 H f- axx),

where it is found in the case u0 = 1 for example that

a, = 0.386264, a2 = -0.258541, a3 = -0.054139,
a4 = 0.192167, a5 = -0.132968, a6 = 1.031568,

(5.10)

(5.11)

with c6 = 1.00001 and ||F<D6|| = 0.0000053. Pointwise bounds for u'(x) can be
obtained by applying the bounds (4.4) with g = ^k(x,t;o). The optimal sixth
order trial function has already been found in the calculations above. The resulting
pointwise bounds for both u(x) and u'(x) for the cases u0 = 1, 2, 3 are contained in
Table 3.
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«o = 1
11(0.2)

H(0.4)

H(0.6)

M(0.8)

«d)

«'(0)
«'(0.2)

«'(0.4)

K'(0.6)

M'(0.8)

«o = 2

M(0.2)

H(0.4)

M(0.6)

H(0.8)

"(1)

«'(0)
M'(0.2)

M'(0.4)

w'(0.6)
..f/f\ Q\

M lu.o)

«o = 3

«(0.2)

«(0.4)

M(0.6)

M(0.8)

"(1)

«'(0)

M'(0.2)

a'(0.4)

M'(0.6)

II'(0.8)

Lower bound

0.82175370

0.69950579

0.61941840

0.57391112

0.55913630

-1.06700936

-0.73605930

-0.49751450

-0.30948875

-0.14871269

1.49489235

1.19316988

1.01063135

0.91136837

0.87975165

-3.30624316

-1.91323035

-1.16829535

-0.68575207

-0.31997451

2.03766526

1.53785583

1.25643795

1.10878189

1.06218438

-6.92155555

-3.32910770

-1.85365940

-1.03882214

-0.47782374

Upper bound

0.82175604

0.69950982

0.61942370

0.57391737

0.55914297

-1.06699549

-0.73604808

-0.49750438

-0.30947925

-0.14870454

1.49511356

1.19351110

1.01105410

0.91186457

0.88029492

-3.30472705

-1.91214030

-1.16724473

-0.68465900

-0.31892076

2.04083140

1.54218469

1.26139943

1.11455518

1.06876886

-6.89629376

-3.31217134

-1.83633821

-1.02043372

-0.45908028

C

0.00000117

0.00000202

0.00000265

0.00000312

0.00000333

0.00000694

0.00000561

0.00000506

0.00000475

0.00000408

0.00011061

0.00017061

0.00021137

0.00024810

0.00027164

0.00075806

0.00054503

0.00052531

0.00054653

0.00052687

0.00158307

0.00216443

0.00248074

0.00288665

0.00329224

0.01263089

0.00846818

0.00866060

0.00919421

0.00937173

TABLE 3. Pointwise bounds using a sixth order trial function.
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6. Concluding remarks

From Table 3 it can be seen that with simple polynomial functions the bounds (4.4)
lead to close pointwise bounds for the solution. As u0 increases these pointwise bounds
grow further apart because the constant a increases, despite the fact that the parameter
a2 has been chosen to minimize the value of a. Nevertheless, the results obtained
from (4.4) are very satisfactory considering the simple nature of the calculations.
More sophisticated second order bounds can be used to improve these results further
and work on these lines will be reported later.

For the particular case M0 = 1, the results in Table 3 can be compared with those
obtained by previous work [1,2]. The values of M(1) and u'(0) are of special interest
and from Table 3 we have

0.55913630 < «(1) < 0.55914297,
-1.06700936 < H'(0) < -1.06699549.

The value of «(1) is correct to five decimal places whereas the value of «'(0) is correct
to four decimal places. These compare with the bounds obtained in [2]

0.556 < «(1) < 0.563,
-1.077 < M'(0) < -1.049,

which are consistent with, but much less accurate than, the bounds resulting from the
present work. The variational estimates derived in [1] are

M ( 1 ) « 0.560, w'(0) %-1.022,

and it can now be seen that there is quite a substantial error in the variational approx-
imation to M'(0).

Since the procedure used here is relatively straightforward to implement, provided
a suitable integral equation can be formulated, our work shows that for problems of
this type the approach via bounds for {k, f{<p)) is an extremely effective way to find
the solution.

The test case described here, with m(u) given by (2.3), was chosen primarily to
provide a straightforward illustration of the method. In his review of the paper, one
of the referees has drawn attention to the fact that for this case the solution can be
expressed in terms of a Jacobian elliptic function. Numerical work based on this
provides an independent check on the results in Table 3.

Preliminary studies of other boundary value problems, in which m(u) = l/u2 and
m(u) — exp(—u), show that the method can be applied effectively and efficiently in
cases where m (u) is not of simple polynomial form.
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