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A Generalization of Circulants.

By E. T. BELL.

{Received SQth January 1928. Read 3rd February 1928.

1. In connection with Bertrand's algebraical exercise of 1850,
Muir1 remarks that it is not unlikely that the divisibility of
a3 + 6s +c3 — 3abc by a + 6 -f c had been previously noted, although,
there is no record of the fact. Bertrand's exercise is to the effect
that the circulant of the third order repeats under multiplication
or, what is the same, admits of composition; the formulae of com-
position are stated in the exercise precisely as they would follow
from Spottiswoode's theorem on the linear factors of a circulant.
The whole of this is implied as an immediate special case, and indeed
as one that any reader would construct at once, in an identity due
to Lagrange, reproduced by Legendre.2

It is interesting also to see that Legendre was acquainted with
the origin of Lagrange's forms as eliminants—a common method of
obtaining that special case of these forms subsequently called
circulants. Neither Lagrange nor Legendre, of course, pointed out
any connection with determinants as they are now written. It seems
not unlikely that Bertrand constructed his exercise directly from
Legendre or from Euler's Algebra.

It has not been noticed that Lagrange's theorems on homo-
geneous, completely factorable forms that admit of composition lead
to a generalization of circulant determinants. Nor has it been
stated, apparently, that the cofunctions of Schapira3 are the simplest
instances of a class of functions originating in Lagrange's composi-
tions. These will be considered elsewhere, when we shall also give a
generalization of the theory of block circulants (see Muir, vol. 4,
pp. 385-395) in line with that of the present note concerning simple
circulants. The generalizations of block circulants are reached by

1 History of the Theory of Determinants, vol. 1, p. 401.
2 Theoi-ie des Nombres, tome II, § XVI, pp. 137-138. Bertrand's exercise is obtained

from Legendre's formulas by putting a = b = Q, c = l. The substance of the discussion
is given also in the Supplements to Euler's Algebra.

3 See Muir, vol. 4, p. 360. A short account of Schapira's extensive theory will be
found in his obituary notices. The original is in Russian.
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norming irrational transforms of the determinants in this note; when
all the irrationalities involved are roots of unity, the normed deter-
minants degenerate to block circulants. The theorems thus attained
include those of Torelli (see Muir, vol. 4, pp. 366-370).

2. Let 9 be any root of

(1) 6(9) = 9" +k16"-1 + ... + kn = 0,

and consider the associated linear difference equation

(2) Ur+n + *! U r + n - i + - . . + K = 0 ( r = 0 , 1 , . . . ) -

Any solution MA (h = 0, 1, . . . ) of (2) is of the form

(3) uh =uoco,h + «iCi,fc+ . . .+«„_!<;„_!,A,

where c/; u (j = 0, 1, . . . , n — 1; h = 0, 1, . . .) is the j th fundamental
sequence satisfying (2); namely, the c/, h are defined by

(*) ty, r + n ~T n-i Cjf r + n- l "T • • • T~ i&nty, r = "j

c,-,.,- = 1 , cy, * = 0 (A < n - 1, A * j) ,

( i = 0, 1, . . . , n - l ; A = 0, 1, . . .)•

Let T (8) * 0 be any polynomial in 6, including the case T (6) = a
constant different from zero. Then, by the usual division trans-
formation, we can write T (6) uniquely in the form

(5) T(d) = Q(d)e(d) + R(9),

where Q(8), R(0) are polynomials in 6, the degree of R (6) does not
exceed n — 1, and either or both of Q (9), R (6) may be constants,
excluding only the case Q (9) = R (9) = 0 . Hence, by (1), we have

(6) T(9) = R(9).

Applying (6) to 6r. where r is any integer ^ 0, we get readily

(7) 0r = C0, P + C,, r 6 + . . . . + Cn . lt r 0*~\

By n applications of (7) we next have the reduction

(8) bg 9* +&! 9>-+1 + . . . + &„_! 6"-+»-1

= Bo,r + B1,r0 + ... + Bn-u r 6n~\
where 60, bu . .., bn-1 are independent variables, in which the
B's do not contain 0. Hence, by what precedes, we get, for
j = 0, 1, . . . , n - 1,

(9) Bj,r = hcj,r +h<>j, r + i + • • • + K-i Cj, r + n-i,
(10) Bjt r == Bjt0 COj r + Bjt 1Cli r + . . . -\- Bjy n-x Cn-1: r,

(11) Bj, r + n + h Bjt r+n-L +... + knBj, r = 0,

so that the sequences Bjt r (j = 0, 1, . . . , n — 1; r = 0, 1, . . . ) are a
second set of n linearly independent solutions of (2).
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The generalized circvlant B (b) = B (b0, bv . . ., bn-^), of order n
generated by the equation (1) is defined to be the determinant (12)

j ^0 .0

B (b) ^ Bl> °

n - i

Bn-1,0 B1l-1,1 £„_!,„_!

To justify this definition we shall prove that the determinant (12)
is the product of n linear factors; that the product of two such
determinants is a third of the same kind; and that, when

C\Q\ L h h C\ h • 1
\io) /fcj — A-2 — • • • — " 7 1 - 1 — "> ""n — -1

in (1), the first of the theorems just stated becomes Spottiswoode's
for the factorization of an ordinary circulant, and hence that the
second theorem degenerates, in the case (13), to the theorem for the
product of two ordinary circulants. Moreover the arguments
z0, . . . , zn-x in the product theorem

( 1 4 ) B(x0, . . . , Xn-j) B(y0, . . . , y n - i ) =B{z0, . . . , z , , , . , )

will be explicitly determined as bilinear forms in the
xh, Vh (h = 0, . . ., n — 1)

with coefficients given by (4).
Before proceeding to the very simple proofs, we give an example.

Take n = 3 in (1), and write

Yj, f \X) — XQ Cjf y - p Xx Cj^ r + i ~r X2 Cjf r + 21

so that B(x) = B (x0, xv x2) is the determinant to be discussed. From
(4) with n = 3, we find, on calculating the Yjt r {x),

XQ K3X2 — IC3 X^ -\- ftj fC3 X%

X5 \X) ^== X-[ XQ &2 X% 1C2 X^ - p \/Ci K2 — tC%) X2

X2 Xi fcj X2 XQ K^ XI -f- (IC j — K2) X%

and this is equal to the product

(x0 + eax1 + e\ x2) (x0 + olXl + e\ xt) (x0 + e2 Xl + e% x2)
where 0O, dx, 62 are the roots of

63 + kt d2 + k2 6 + k3 = 0.
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When &! = &2 =0, k3= — 1, the determinantbecomes

2 1 0 ' 1 2 0 ;

and we may take 0O = 1, 0X = w, 02 = a>2, where a> is a complex root of
83 - 1 = 0.

3. To obtain the linear factors of the determinant (12) we write

or, by (9),

Multiply (14) throughout by 1, 6, 62, .. . , d"-1, reduce the right hand
members by (8), change all signs in the resultant set of n equations,
and eliminate 1, 6, 62, . . . , 6n~1, and thus obtain the characteristic
equation for fi in the form

(15) P •£»<)> 0 -Oj> 0 • •

— -Do, n-i —B\, n-\ P tin- i> n -1

= 0.

Say this is

so that

Dn=(-1)»

•"Oi ) i - i -"i> n - i - O J I - I > n — l

But X>n= (—1)™ times the product of all the conjugates (including /3)
of p. Hence the determinant (12), or B (b0, bv . . . , bn-^},is the
product

(16) "n [6o + &10,- + . . . + &,n_10t-«-1],
4 = 0

where 0,- (i = 0, . . . , n — 1) are the roots of (1).

4. To see that the factorization in §3 becomes Spottiswoode's for
a circulant in the case indicated in (13), we have in that case

cj, sn+h = 0 if h 4= j ,
= 1 if h=j,

where
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Hence the now become

-"o> 1 = On — \>

-D» —1> o = = " n - i> -On —1> l = = bn-ii

and (12) degenerates to the circulant

b1 b0

. . . 6
0

which, by interchanges of rows, followed by the like for columns, is

b0 hi b2 . . . bn-1

& „ _ ! b0 b 1 . . . 6 n _ 2

6j 52 63 . . . b0

the usual form. Since the equation (1) is now 6n — 1 = 0, the factor-
ization (16) degenerates to Spottiswoode's.

5. It will be of interest to give the explicit forms of the
ZJ (j = 0, . . . , n — 1) in the composition (14). These follow at once
from applying to the product

(xo + x16+... + xn-.t 6«-i) (y0 + yx 9 + . . . + yn., 0"-1)

the reduction formula (8). The result is as follows. Define the
functions p, P, by

n - l
Vj{x,y) = S x,yj-s(j = 0, 1, .. . , n 1);

s=0

n-r-l
Pn+r(x,y)= 2 xr+s yH-s(r = 0, 1, ..., n — 2);

s = l
2n-2

Ph{x,y) s 2 cA ) (^(a- , ?/)(A = 0, 1, . . . . n— 1).

Then the required values are

zh = Ph (x, y) (A = 0, 1, . . . , » - ! ) .
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