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Abstract

We study DeLeeuw type theorems for certain multilinear operators on the Lebesgue spaces and on the
Hardy spaces. As applications, on the torus we obtain an analog of Lacey-Thiele's theorem on the
bilinear Hilbert transform, as well as analogies of some recent theorems on multilinear singular integrals
by Kenig-Stein and by Grafakos-Torres.

2000 Mathematics subject classification: primary 42B15,42B20, 42B25.

1. Introduction

Let K" be the n-dimensional Euclidean space and Rnm = K" x K" x • • • x R" be the
m-fold product space. Suppose that y{W) is the space of all Schwartz test functions
on W and k(uu ... ,um)is any function on K"m, where Uj e K" fory = 1 ,2 , . . . , m.
The multilinear operators Te, s > 0, associated with this A. are defined by

(1.1) Te(fuf2,...,fm)(x)

!>••• ,e«m)exp [2ni Y]{uj,x) )dux •••dum,

for all fj e y(R"),j = 1,2,... ,m, where f) is the Fourier transform of fj , i e l "
and (uj,x) is the inner product of uj andx. We denote T = Tt if e = 1.

The significance of studying such kind of multilinear operators can be illustrated by
following two simple model cases. First, in the case m = 1, T is the classical multiplier
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38 Dashan Fan and Shuichi Sato [2]

which plays very important roles in harmonic analysis and in partial differential
equations (see [S]). Secondly, the study of the case m > 1 is much more involved.
This topic can be dated back by the pioneering work of Coifman-Meyer started from
70's [CM1, CM2, CM3, CM4], as well as some recent works by Lacey-Thiele, Kenig-
Stein and many others [KeS, CG, GK, GT, GW, LT]. Readers can see these references
for more details about the background and significance in this topic. Here we list a
simple example by letting n — 1, m = 2 and taking k(u\, u2) =' k(u2 — Hi) with
X(t) = i sgn(/), where sgn(O is the sign function on R1. Then it is easy to check that

)(x) = pvn-1 / f (x - t)g(x + t)rl dt

is the bilinear Hilbert transform, which is related to a famous conjecture by Calderon
in studying certain problems of Cauchy integrals. Very recently, Lacey and Thiele
[LT, La] solved this conjecture by proving that

\\T(f,g)\\p <C | | / | | , | | s | | r

provided \/p = \/q + \/r, 1 < q, r < oo and 2/3 < p < oo.
Analogously, we can define multilinear operators on the torus. The n-torus T"

can be identified with R"/A, where A is the unit lattice which is an additive group
of points in R" having integer coordinates. Let T"m be the m-fold product space
T" x T" x • • • x T". The multilinear operators te, s > 0, on Tnm associated with the
function k are defined by

(1.2) fe ( / , , . . . J~m)(x)

for all C°°(J") functions

fj(x) = ^2akjexp(2ni(kj,x)), j = 1 , 2 ,

We denote T = Te if e = 1.
As we mentioned before, in the case m — 1, T becomes the ordinary multiplier

operator. One of the well-known results in that case is a theorem by DeLeeuw [L] (see
also [SW, page 260]) which says that if k(u) is a continuous function on R" and if
p > 1, then T is bounded on U (OT) if and only if fe is uniformly bounded on U (T")
for e > 0. This theorem was later extended to many different settings. Readers can
see [K, KT, AC, F, T, KaS] for further details of these generalizations.

The main purpose of this paper is to extend DeLeeuw's theorem to the case m > 2.
Letting \/p = £"_, \/Pj , we will establish the following theorems.
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THEOREM 1. Suppose that X is an L°°-function which is continuous on Km" except
on a countable set. Let T and Te be the multilinear operators associated with X. If

(1.3) flr,(/,,... ,fm)lLP(Tm)<.

uniformly for s > 0, where A is a constant independent of £ > 0 and fj 's, then

(1.4) \\T(fu...,fm)\\uW)<'
7 = 1

where A is a constant independent of fj's and A < A.

For a set E, denote its Lebesgue measure by fi(E). We have the following weak
type theorem.

THEOREM 2. Let T, fe, X be as in Theorem 1. / /

(1.5) M { * € T " : | f t ( / ; , / ; , . . . , / B ) ( j c ) | > a } <

where B is independent of f) 's, s > 0 and a > 0, then

(1.6) n{xeRn:\T(fuf2,...,fm

where B < B is independent of fj's, and a > 0.

Conversely, we have the following two theorems.

THEOREM 3. Suppose that X is an L°°-function on Rnm. For a fixed e0 > 0 assume
that all multi-integers (k\, k2,. • • ,km) € A x A x • • • x A are Lebesgue points of
X(s0-). If (1.4) holds, then we have

with A < A being independent ofe0>0 andfj 's.

THEOREM 4. Let s0 and X be the same as in Theorem 3. If (1.6) holds, then we
have

H{x€l" : \Uf~u... Jm)W\>a] < *

where B < B is independent ofe0 > 0, a > 0 andfj's.
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As applications ofTheorem 3, we will obtain an analog of Lacey-Thiele's theorem
for bilinear conjugate Fourier series, as well as analogies of recent works on multilinear
singular integrals by Kenig-Stein and Grafakos-Torres. It is worth remarking that
recently Grafakos and Weiss studied an alternating definition of T in a more general
amenable group and obtained some other transference results similar to Theorem 3
and Theorem 4 (see [GW]). But it seems that, by their theorems, one is not able to
obtain Lacey-Thiele's theorem on the torus. On the other hand, their method does
not work on the Hp -spaces, which we will work on later in this paper. We also want
point out a few remarks.

REMARK 1. (1) If A. is L °° and continuous on Rnm, clearly A. satisfies the condition
in Theorem 3 and Theorem 4.
(2) Since the proofs for cases m = 2 and m > 2 are essentially the same, for

the sake of simplicity, we will prove theorems for the case m = 2. We denote
fi(x) - f(x),f2(x) = g(x),fi(x) =f(x),f2(x) = g(x), andp, = q, p2 = r so
that \/p = \/q + l/r throughout this paper.
(3) The maximal operators are defined by

T*(fu... ,/„)(*) = supir.c/1,,... ,/m)(*)|,
£>0

r (/,,... ,fm)(x) = sup \ft{fu • • • ,fm)(x)\.

Noting

r (•)(*) = jirn^ sup |r,(-)(jc)|, f •(•)(*) = Urn sup | £(•)(*)|

for each x, without any changes in the proofs ofTheorem 1-Theorem 4, we may use
a limit argument to obtain Theorem 1-Theorem 4 for the maximal operators.
(4) In this paper, we do not intend to pursue the study of boundedness of T as

those in the previous papers mentioned above. What we emphasize is to establish
certain DeLeeuw type theorem, which says that, under some very mild condition, the
boundedness of T on the Euclidean spaces is equivalent to the boundedness of its
corresponding family {%} on the torus, so that one can easily obtain an analogous
theorem on f as soon as a new theorem of T is obtained.
(5) In the direction of generalization, one might expect to formulate a theorem that

transfers not only the bilinear Hilbert transform, but also the multilinear fractional
integrals in [KeS] and [GT]. It is known that, in general, DeLeeuw's theorem fails
even in the one parameter case if p ^ q (for example see [KaS]). So one might need
some extra condition to establish such a theorem.
(6) Following the ideas in [AC] and [T], it is possible to establish transference

theorem of multilinear operators between W and 1". The proof for this case is in a
different style, to avoid that this paper becomes too long, we will study this problem
in our future papers.
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The proofs of Theorem 1 and Theorem 2 use a standard argument involving the
definition of Riemann integrals (see [SW]). For completeness, we present them in
the second section. However, the duality argument used to prove Theorem 3 for the
case m — 1 (see [SW, page 260]) is difficult to adopt. We use an alternating method
to study Theorem 3 and Theorem 4 in Section 3. In Section 4, we study DeLeeuw's
theorem on the Hardy spaces by using the atomic characterization of Hp.

Finally, in this paper, we use letter ' C to denote (possibly different) constants that
are independent of the essential variables in the argument.

2. Proofs of Theorem 1 and Theorem 2

Let 9(R") = {/ e y{W) : / has compact support}. The space @{W) is dense
in the space Lp (Rn), so it is enough to show the theorem for functions f,g€ @{W).
In order to do so, define f£ and ge, for e > 0, to be the dilated and periodized versions
of/ and g, viz

Then by the Poisson summation formula we obtain

(2.2) fe = £/(£*)<>'<*•*>, ge =
teA /eA

By the definition of the Riemann integral (see also [SW]), we know that

(2.3) lime2" fe(fe, g£)(ex) = T(f, g)(x).

Let

Q= [x € IT : -1/2 <xj < 1/2, j = 1,2... , n}

be the fundamental cube on which

f f(x)dx= I f\x)dx

for all function/ on T". We choose {e} as a discrete sequence going to 0.
In order to prove Theorem 1, we choose r)(x) > 0 to be a function in

satisfying r/(0) = 1 and £ m £ A i(x + m) = 1. By Fatou's lemma, we have

\\T(f,, g)||£,(«., < liminf J niex) \s2nf£(f£, g£)(sx)\P dx.
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By changing variables on x and using the fact £ r) (x + k) = 1, it is easy to see that

\\T(f, g)\\Ln*) < liminf is2*-" J /?(x)|f£(/;, ft)(jc)|prf 1

By the assumption, we have that

\\T(f,g)\\Lp(tf) < A liminf £2n~n/p\\fe \\Li(j")\\gA\ z/(T»)-
£-•0

Finally, by [SW, page 266], we know that if s is sufficiently small, then

Thus we obtain

Theorem 1 is proved. •

We now turn to prove Theorem 2. Let XQ(*) be the characteristic function of Q.
By Fatou's lemma, we have

(2.4) e i r :|77(x)|
< lim inf u I x

= liminf e~"/x
S->0

= liminf e~" a
£-•0

G D

1'

V,

G

G Q, fe(f

£2nte(fe

)

g.)(x)

a}

< limmf Be-"

which proves Theorem 2. •

3. Proofs of Theorem 3 and Theorem 4

Let || T, || =sup{||r,(/-,g)||p : | | / | | , = | | j | | r = 1}. It is easy to see that || T£ || = ||r| |
for all e > 0. So to prove Theorem 3, without loss of generality, we may assume
e0 — I (we may make the same assumption in proving Theorem 4, for the same
reason).
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Fix a positive integer K, define the set QK by

nK = [-1/2 - 1/ff, 1/2

Let * be a function in y(Rn) satisfying supp* c QK , 0 < *(*) < 1, and
1>(x) = 1 on Q- We denote *1/Af(;c) = V(x/N) for an integer AT. For any C°°
functions / (x) = £ i € A ate2""**' and | (x) = £ v e A ^2*'<"-*>, we let

(3.1) EN(f, g)(x) = *(x/N)2f(f, g)(x) - T ( * [ / Y , Vl'»g) (x).

By checking the Fourier transform, it is easy to see that

-£„( / , g)(x) = Ty2a^e27li{k+V'X) f f *(«)*(«){*(* + u/N, v + v/N)
*6A »6A */»" •/«"

Since {at}, {&„} decay rapidly, A is L00 and all (k, v) are Lebesgue points of A., clearly
EN(f, g)(x) ^ 0 uniformly for x € W as N -> oo.

Noting f ( / , ^)(x) is a periodic function, we have

f
By the choice of * , we further obtain

Thus by (3.1), we have that if p > 1, then

and that the second integral on the right-hand side of the above inequality goes to zero
as N - • oo. On the other hand, the first integral on the right-hand side of the above
inequality is equal to
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Thus by the assumption and the choice of * , it is bounded by

"\( \-"" If |/0e)|*<k} " \ ( \g(x)\rdx
[JNaK J [JNSIK

where NSlK = [-N/2-N/K,N/2+N/K]n. Choose N such that N/K are integers.
Then as N -*• oo we have, since / and g are periodic functions, that

\fooM
Q J

\g(x)\rdx\

Letting first N -+ oo, then A" ->• oo, we prove Theorem 3 for p > 1.
For 0 < p < 1, we have

N-" I \EN(f,g)(x)\"dx.
JNQJNQ

Thus the proof is the same as that for p > 1. •

To prove Theorem 4, fixing any a > 0, we have

n{xeQ: \f(f,g)(x)\ >a} = N"1^ e N Q : \f(f,g)(x)\ > a}

= N-"n{xeNQ:\V{x/N)2f(f,g)(x)\>a}.

Thus by (3.1) and the fact that EN(f, g)(x) -*• 0 uniformly in x as N -*• oo, for
any p € (0, a) we can choose Af sufficiently large such that

fi{xeQ:\t(f,g)(x)\>a}<N-nti{xeRn:\T(Vl/"f,*1<Ng)(x)\>a-l3}.

Thus by the assumption we have

n{x<=Q:\f(f,g)(x)\>a}

B
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Since ft > 0 is arbitrary, letting K —> oo, the theorem is proved. •

We now present some applications of Theorem 3. First we consider the bilinear
Hilbert transform on the one-dimensional torus

H(f,g)(x) = p.w. t f(x-t)cot(nt)g(t+x)dt.
J-\/2

Then it is easy to check
oo oo

H(f,g)(x) =

By the known result of H(f, g) (see [LT, La]) and the proof of Theorem 3 we have

COROLLARY 1. H maps Lq(V) x Lr(V) into Lp(Jl)for 1 < q, r < oo, 2/3 <
p < oo and \/p = \/q + 1/r.

PROOF. Let k(u, v) = i sgn(u — u) and EN(f, g) be as in the proof of Theorem 3.
Note that k(u, v) = —k(v, u). Therefore, by symmetry we have

II u/N, k + v/N)e^n-."/N)t^Hv.x/n) dudv =

for all k e A, x e U. and N. So, though the points (k, k) e A are not the Lebesgue
points of k(u, v), we have EN(f, g)(x) ->• 0 uniformly in x € K as N -*• oo. Thus,
by the proof of Theorem 3 and [LT, La], we get the corollary. •

Secondly, we recall the multilinear singular integrals TK on Rnm:

TK(fu... ,fm)(x) = p.v. / fx(x -y\)---fm{x -ym)K(y^ ym)dyx • • • dym,

where K is the Calderon-Zygmund kernel (see [GT, KeS]). We define

( 3 . 2 ) fK{fu... ,fm)(x)=J2 K { k u . . . ,km)aklak2.--a

where (ku ... , km) ranges over A m \{ (0 , . . . , 0)}.

COROLLARY 2. Let K be a locally integrable function on Wm — {0} which satisfies
the size condition

(3.3) \K(uu... , K « ) | <
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the cancellation condition

(3.4) L ,„K(uu . . . , um)dui • --dun < C < oo,

for allO < R\ < R2 < 00, and the smoothness condition

(3.5) \ K ( U l , . . . , u j , . . . , u m ) - K { u u . . . , u ' j , . . . , u m ) \

\u> - u ' A s

< C -

for some 8 > 0 whenever \u.j — M' | < \iij |/2. Suppose that for some monotonically
decreasing sequence e; convergent to zero, the limit

lim f
>"*°°y«/-<|(«1 «„)!<!

(3.6) lim / K(ui,... , um)du\ • • • dun
=1

exists. Then tK maps LPl(Jn) x ••• x Lp"•{!") into LP(J") with 1 < p} < oo,

1/m < p <oo and \/p - £™=1 l/p>.

PROOF. We prove the corollary for the case m — 2. The proofs for the other
cases are essentially the same as that for the case m = 2. From [GT], we know that
IIK Hoc < C < 00. Thus by (3.4)-(3.6) it is easy to see that K is a continuous function
on K2"\{0}. We write

f(x) = ao

g(x) - b0

Then,

TK(/, g)M = f^(ao, gi)W + tK(fu bo)(x) + fK(fu

Let EN(f, g)(x) be defined as in (3.1) with TK and 7]f in place of T and 7\ re-
spectively. Since K is continuous on tR2"\{0}, we see that EN(aG, gi)(x) -*• 0,
Esif^boXx) -^ 0, £A, ( / I , g,)(x) ->• 0 uniformly in x e R" as N -> 00. Thus by
the proof of Theorem 3 and Theorem 5 in [GT], we have

This proves the corollary, since
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REMARK 2. Theorem 5 in [GT] was studied by Coifman-Meyer [CM1] if K is the
kernel in the following Corollary 3.

COROLLARY 3. Suppose that K is homogeneous of degree —nm, smooth away
from the origin, and has mean value 0 on the unit sphere in Rnm. Then TK maps
LPl(Jn) x ••• x LP-(T") into Z/(T"), with \/m < p < oo, 1 < p, < oo and

PROOF. Clearly, K satisfies (3.3)-(3.6) so that by Corollary 2, we obtain Corollary 3.
Here we note that for the kernel considered in this corollary, the boundedness of TK

used in the proof of Corollary 2 also comes from [KeS, Theorem 8]. •

REMARK 3. It is possible to extend Theorem 1 and Theorem 3 to the Lorentz spaces
so that we can obtain some weak-type estimates for TK, which are analogous to those
in [GT, Theorem 5] and [KeS, Theorem 8].

4. Bilinear operators in Hardy spaces

For j = 1, 2 , . . . , y, let A., and fij be bounded functions on K". Let Uj and Uj
be multipliers associate to A, on R" and T", respectively; Vj and Vj be multipliers
associate to fij on W." and T", respectively.

The bilinear operators By if, g)(x) is defined by, for any / , g e

(4.1) By(

Similarly, the operator BY is defined by
Y

(4.2) By{f, g)(x) = J2 Uj (/)(*) Vj(g)(x)

for all

f(x) = J^ake
2ni{k-x) e C°°(Jn), g(x) = J2 bve

2niM e

where

Uj (f)(x) = J2 a^j (k)e2"i{k'x), V; (g)(x) = J ] Kiij (v)e2"i{"'x).
*eA veA

The boundedness of bilinear operator By(f, g) on the Hardy spaces was studied by
Coifman and Grafakos in [CG] (actually, in their study, Uj's and Vj's can be general
Calderon-Zygmund operators of non-convolution type). Since there is no essential
difference between y = 1 and y > 1, for simplicity, we study the case y = 1. By the

https://doi.org/10.1017/S1446788700002263 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002263


48 Dashan Fan and Shuichi Sato [12]

definition, it is easy to see that if y = 1, then B\ (/, g) is a special case of T(f, g) and
B\{f, g) is a special case of f(f, g) with X(u, v) = Xi(u)fii(v). Therefore, naturally
we will study DeLeeuw's theorem for T(f, g) on the Hardy spaces. Below we first
review the definition of the Hardy spaces.

Let HP(R"), 0 < p < oo, be the Hardy spaces defined by [FS]

H'W) = {f e S"(W), ||4>+/ ||t,(R., < <x>},

where <&+/(*) = supl>0 |*, * / ( x ) | , <&,(*) = r"Q(x/t), and 4> € y(Rn) is a
radial function satisfying / <t> = 1. The corresponding periodic Hardy spaces are
H"(J") = {fs y'(Jn), ||4>+/lk"(R») < oo}, where *+/(*) = sup/>0 |*, *f(x)\,
*«(*) = E*6A 4>(tk)<P"M + Cr" E t € A *((* + *)/')•

In this section we will establish the following theorem.

THEOREM 5. Let X be a continuous and bounded functions on K", and T(f, g) and
T(f, g) be the same as in Section 3. Suppose \/p = \/q + l/r. If there is a C > 0
such that \\T(f,g)\\HH^ < C||/||H,(».)||g||Hr(R.)/or a/ / / e H"(R") n y{W)
and g e Hr(Rn) n y(R"), then \\f(f, g)\\H,(i-) < C\\f\\H,CI.)\\g\\Hr(l.) for all

To prove Theorem 5, we need to use the atomic characterization of the Hardy
space. A regular (p, 2, s) atom is a function a(x) supported in some ball B(x0, p)
satisfying:

(i) \\a\\2 < p-n/p+n/2;
(ii) fRna(x)P(x)dx=O

for all polynomials P(x) of degree less than or equal to 5.
The space H^s(Rn), 0 < p < 1, is the space of all distributions / e y'{W)

having the form

(4.3) f =

and satisfying

(4.4)

where each ak is a (p,2,s) atom. The 'norm' \\f\\Hrw) ls t n e infimum of all
expressions (£,\ck\

p)l/p for which we have a representation (4.3) of / . A well-
known fact (see [FS]) is that | |/ \\H;J»") = 11/II//<•(«") and in particular, ||a||w#.(R») < C,
with a constant C independent of the (p, 2, s) atom a(x) if s > [n(l/p — I)].

We also have a similar decomposition theorem for any function / G HP(J"). In
particular, suppose / € C00(T'1) and its Fourier coefficient

= f f(x)dx=0.
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Then we have the following lemma.

LEMMA 1. Suppose f € C°°(In) with ao(f) — 0. If we restrict x to Q, then for
any fixed positive integer s

fix) =

where each ak(x) is a (p, 2, s) atom satisfying ak{x + 1) = ak{x) for I e A, and

The proof can be found in [BF].
Now we are in a position to prove Theorem 5. For any / , g e C°°(T"), we have

e2j"{k-x) and g(x) =
keA veA

with rapidly decaying coefficients. Recalling that 0 < p < q and 0 < p < r and
a well-known fact Hp = Lp if p > 1, we can use the same argument as in proving
Theorem 3 to prove Theorem 5 in the case p > 1. It now suffices to show the
case 0 < p < 1 and 0 < q, r < 1, the case 0<p<q<l<r and the case
0<p<l<q<r. We prove these three cases separately.

CASE 1. 0 < p < 1 < q < r. In this case Hq = Lq and Hr = U. By definition
and the Lebesgue dominated convergence theorem, we have

Up

I f{f, g)\Hrm - Um [J wp^ |*f * f(f, g)(x)\"dx}

Thus it suffices to show

(4.5) I f sup \*,*f(f,g)0c)\pdx\ ' < ClfW^Jgl^
[JQO<I<R J

with C being independent of R > 0.
By definition, it is easy to check that, for each fixed t > 0,

*,*f(f,g)M =
k v

O, * T(f, g){x) = [[ f(u)g(v)X(u, v)4>(t(u + v))e2"iiu+v'x} du dv.
J J R"xR"
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Let QK and V1/N(x) be the same as in Section 3. For each t > 0, using <t>, * f and
<t>, * T instead of f and T in (3.1), respectively, we obtain

(4.6) £„,,(/, g)(x) = V(x/N)24>, * f(f, g)(x) - <t, * T(*x/Nf, *l/Ng)(x)

u/N, v + v/N)Q(t(k + u/N + v + v/N))

v))X(k, v)\ e2l"{u-xlN)e2ni{v-x'N)dudv.

Since {ak}, [bv] decay rapidly, X and <t> are L°° and continuous, it is clear that
EN,(f, g)(x) -> 0 uniformly forx € K" and r e [0, /?] as // -> oo. Thus we can
obtain (4.5) by emulating the proof of Theorem 3.

CASE 2. 0 < p < 1 and 0 < q, r < 1.
We note that, for a C°° function/(*) = E ak(f)e

2l'i{k-x\

f
JQ

A J Q

and

Thus

f(x)dx

> lim |<J>, *f(x)\ = |flo(/)|.

Because we can write

fix) = ao + E a**2*"*̂  = ao + / i
and ^°

g(x) = b0

we treat f(a0, b0), f(ao, g\), f(flt b0) and f(fu gi) separately. The first one is easily
estimated by the above observation. To estimate the last one, we write f and g for f\
and gi, respectively, for the sake of simplicity. Then we have f f dx = J g dx = 0

so that by Lemma 1, we can write f and g in the forms of their atomic decompositions

fix) = E ckak{x), g(x) = E fa Ov{x),

where each ak is a (q, 2, [n(l/q — 1)] + 2«) atom and each Ov is a (r, 2, [n(l/r —
1)] + 2n) atom, and
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We take
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V(x) = Y\ (1 - 4*2)+ , where f+(x) =
\f(x) if/(*)>0,
0 if/ (x) < 0.

For positive integers M and N, we denote the cube [-N/2M, N/2M)" by N Q/M.
For large Af, by (4.6) and the assumption of the theorem, we have

supj4>,*f{f,g)\^

( r I 1

= 1^"" / V2(x/N) sup \i>,* f(f,g)(x)\Pdx\
[ JNQ/2 0<t<R J

<C\N-n [ sup I*, *T(fVl"l,gV1/tl)(.x)\pdx\ +o(l).

i UP

This shows that

(4.7) sup
0</<R /.'(T")

Therefore, it suffices to show that

~n/p\

We note that

riio *i/jvir
wl II ^ " ^ IIH'(R»)-

Thus we only need to prove that for any (q,2,s) periodic atom a(x) with support in
B(x0, p) C Q,

(4.9) \\ocVl/N\\Hmn)<CNn">,

where C is a constant independent of aQc) and A'. By the definition, we have

0</<oo

sup= / su
JR" 0<(<

= / su
Jn* 0</<

L dy

dy

\xj\<N/2 [ J =

dy.
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Now if we let N = 2m + 1, then, up to a set of measure 0, the set {x e K" :
\Xj\ < m + 1/2, j = 1, 2 , . . . , n] is the union of the disjoint sets {Q + k : k =
(ku ..., k n ) , —m < kj < m , j = 1,2,... ,n} = {Qk}, w h e r e the kj's are in tegers .
Now the last integral above is bounded by

Im = C J2 f SUP f (n(l-4*,2/iV2)a(x)]cl>,(>--x)rf*
-m<k <m " 0 < ( < o ° • ' 0 * I i = i ^

Noting that a(x) is a periodic function, we easily see that XQt(x)ce(x) is an atom with
support in Qk. Also since on Qk, J~["=1(l — Axj/N2) is a polynomial of degree 2n
which is bounded by 1, clearly

A(x) = Yl (1 " 4xj/N2) XQt(x)a(x)

is a (q, 2, [n{\/q — 1)]) atom on R". So by a well-known estimate, the above integral
Im is bounded by

—m<kj <m

which shows \\a'i>l'N\\HH^) < CNn/q.
Finally we treat f(f\, b0). Let F be a C°° function supported in £2K = [—1/2 —

\/K, 1/2 + l/k] for some fixed positive constant K. Suppose that F(;c) = 1 on Q
and ||F1/A'||//,(oi«) < CNn/r. (We assume a suitable cancellation condition to get the
last property of F.) Let * be as above. Put

EN.,{f, g){x) = *(x/N)r(x/N)4>, * t(/, g)(x) - *, * r (* 1 / w / , Vl/Ng)(x)

=-T,T,a*b»e2"Hk+vx) f f * ( " ) r w
x \k(k + u/N, v + v/N)&(t(k + u/N + v + v/N))

2ni(ujc/N) 2ni(v,x/N)

Then, for any fixed R > 0, EN,,(f, §)(A:) -> 0 uniformly in x e R" and f € [0, R] as
V̂ -»• oo. Therefore, arguing as in (4.7), we have

(4.10) sup

By (4.10) and the estimates on (4.8), we see that the left-hand side is bounded by

C\\f ||H«(T»)llgll//'(T»)- Clearly, we have the same estimate for f(ao, gi).
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CASE 3. 0 < p < l , 0 < < ? < l < r . The proof for this case is an easy combination
of those for Cases 1 and 2, we leave the proof to the reader. •

The following theorem is the converse of Theorem 5.

THEOREM 6. Let X andp, q, r be as in Theorem 5, and T(f, g) and %{f ,g) be as
in Section 3. If there is a C > 0 such that

L ( T J * | | T O Jbrallf.ge
uniformly for e > 0, then

for all f € H"(R") D y(R") and g € Hr(Rn)

To prove Theorem 6, we need the following lemma.

LEMMA 2. Letf e Hp(Rn) fl ^(R") , and define/, as in (2.1). Then

See [LL, Lemma 3] for a proof.
Now we return to prove Theorem 6. Let / 6 Hq{W) n y{W) and g € Hr(Kn) n

) . As in the proof of Theorem 1, we have

Wn<J>,f * f£(f£, ge){ex) = <Dr * T(f, g)(x)

by the definition of the Riemann integral. Let rj be as in the proof of Theorem 1. By
Fatou's lemma we see that

.S)llW-)= f sup\<P, *T(f,gKx)\''dx
JK." »>O

< liminf s2np I n{ex) sup |4>tt * ft(fe, gt)(sx)\p dx
£~>0

 JR" />O

< liminf s2""-" f sup |*, * fe(f~£, ge)(x)\" dx.f
Q

By the assumption and Lemma 2, we have
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This completes the proof of Theorem 6. •

_ Finally, we point out an application of Theorem 5. Suppose that B,(/> g) and
Bi(f,g) are defined as in (4.1) and (4.2), with Ur and V, being standard Calderon-
Zygmund operators. Also assume

(UJ)(u)=f(u)X1(u), (^gXv) = g(v)fidv),

where both ki and /xt are continuous and bounded. By results in [CG] and [G] and
Theorem 5, we have

THEOREM 7. Let 0 < q, r < 1 and \/p = \/r + \/q. Assume that for some
non-negative integer K, there is an s such that

xfiBi(f,g)dx=0

for all multi-indices ft with |/3| < K, and all (r, 2, s) atoms g and (q, 2, s) atoms f.
Then for n/(n + K + 1) < p < 1, B\(f, g) can extend to a bounded operator from
//«(T") x Hr(J") into
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