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Abstract

This paper gives a numerical method for estimating the Hausdorff-Besicovitch dimension
where this differs from the fractal (or capacity or box-counting) dimension. The method
has been implemented, and numerical results obtained for the set [\/n \ n e N} and the
Cantor set. Comments about the practical use of the estimation algorithms are made.

1. Introduction

The Hausdorff-Besicovitch dimension is one of a number of "dimensions" that can
be ascribed to closed bounded sets in W [1]. The other main dimension is known as
either the fractal, or box-counting dimension, or the capacity of the set [7]. While for
certain self-similar sets these quantities are equal [5], they are not identical in general.

The Hausdorff-Besicovitch dimension (or HB dimension) is defined in terms of a
d-dimensional Hausdorff measure defined by

Jt?d(A) = Hminf V(diam U,)"

where the infimum is taken over all countable covers {Uj} of A with diameter Uj <S.
Note that the above limit exists since the infimum taken as a function of S is non-
decreasing as S decreases. It is easily shown (see [1]) that Jt%(A), considered as a
function of d, is non-increasing. The Hausdorff-Besicovitch dimension is given by

dimw A = inf{d | Jfd(A) = 0} = sup{d \ Jt?d(A) = +oo).

Note that the infimum and the supremum have the same value.
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The lower-fractal dimension is given by similar formulae to those for the Hausdorff-
Besicovitch dimension. There is a "fractal measure"

= lim sup i n f V (diam Uj)d

s i o M ) j

where the infimum is taken over covers where diam Uj = S for each Uj in the cover,
instead of over covers where diam Uj < S as in the Hausdorff-Besicovitch dimension.
Then the fractal dimension is given by

A = inf{d | &d(A) = 0} = sup[d | &d(A) = +oo}.

This is equivalent to the definition

,. . ,. log N(S)
dimF A = hm sup -———

n o log(l/5)
where N(S) is the minimum number of sets of diameter 8 (or smaller) required to
cover A.

The lower-fractal dimension is given by
. log N(S)

dim^f A = hminf -——-r-.
no log(l/5)

Numerical methods for estimating the upper- and lower-fractal dimensions are well
known and are commonly based on "box-counting" methods where the covering(s) are
taken to be hyper-cubes organised on a regular grid in K" [9]. As long as dim^ A =
dimLFA it can be shown that box-counting methods do indeed give estimates that
converge to dimf A as the fineness of the grid goes to zero.

For any closed bounded set A c K" the following inequalities hold (see [10,
p. 279]):

dimw A < dimLF A < dimf A.

However, these quantities are often different. For example, consider

Ba = { 0 ) U ( l / n ° | n 6 N ) C [0, 1].

The set has lower-fractal dimension 1/(1 + a) [10], but has Hausdorff-Besicovitch
dimension zero.

The problem addressed here is to give numerical methods for estimating the
Hausdorff-Besicovitch dimension where it is different to the fractal dimension. Recent
work has been directed at improving algorithms for estimating the fractal dimension,
or related quantities such as the information dimension. See, for example, Hunt and
Sullivan [4], Hunt [3], and Hall and Wood [2]. Direct estimation of the Hausdorff-
Besicovitch dimension by numerical methods without knowledge of the nature of the
generation process has not been described in the literature, either in the work of Hunt
or elsewhere.
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1.1. Form of input to algorithms The model of computation used here is that
some source (typically a simulation) will generate output as a sequence of points Xo,
X], . . . , xN,... where xt e 1". The set that is described by this sequence is

A = {XO.XLXZ, . . . } .

The sets for which we will seek to estimate dimensions are thus always closed. It will
also be assumed that they are bounded. Note that there is no point in considering the
problem of estimating the Hausdorff-Besicovitch dimension of {xo, Xi, x2 , . . .} itself
as the Hausdorff-Besicovitch dimension of a countable set is always zero.

Note that at any stage of the computation, only a finite number of points could
have been used. Both the Hausdorff-Besicovitch and fractal dimensions of such a
finite set are zero. This means that we need to relate the amount of data that has been
"seen" to the resolution used in the algorithms. The problem of estimating how much
data is needed for obtaining good results has been studied by others, most notably by
F. Hunt [3] who takes a statistical approach to this problem. To obtain the results in
[3], however, one needs to make the assumption that the "samples" x* are taken more
or less independently according to a probability distribution on the set. While these
results are most important, this assumption about the source of the samples is not
made. This avoids spurious questions about what probability distribution to impose
on Ba. On the other hand, no estimate of the number of samples needed for a precise
estimate of the Hausdorff-Besicovitch dimension is attempted here, except to say that
it is dependent on the set and the way it is generated, in as yet unspecified ways.

2. Box-counting for the Hausdorff-Besicovitch dimension

Box-counting approaches to dimension operate in terms of grids or nested sequences
of grids in W and use rectangular covers based on these grids. First, assume that the
set A lies in [0, 1]". Then consider a sequence of grids in each co-ordinate where the
Xr'th grid consists of points i/2k for i = 0,1,... , 2*. Associated with the fc'th grid is
a family of hypercubes

Rkdi, i2, . . . , i») = [2-*i,, 2"*(i, + 1)] x [2-*i2f 2-*(i2 + 1)] x • • •

x [2-*v 2-*(/n + 1)]

where 0 < ip < 2* for p = 1 , . . . , n. The index vector (/, /„) will be denoted
by i. To simplify later calculations, we use the l°° metric in K" given by

d(x, y) = max \xt - yt\ = ||x - yH^.
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This metric is equivalent to the Euclidean metric with

x - y||2 < ||x - ylloo < ||x - y||2.

Equivalent metrics give equivalent Hausdorff-Besicovitch and fractal dimensions as
if d\ and d2 are two metrics where (l/c)dx(x, y) < d2(\,y) < cdi(\,y), then the
corresponding Hausdorff measures satisfy

Similar results hold for the lower- and upper-fractal dimensions.
In the l°° norm on OS", the rectangular sets all have diameter 2~k. If we have

an arbitrary set E C [0, 1]" of diameter < 2~k then consider the set of rectangles
Rk(i) which intersect E. There are no more than 2" of such rectangles that E can
intersect: if E intersects Rk(i) and RkQ) m e n \jp — ip I < 1 for all p. Of course E
must intersect at least one such rectangle if E ^ 0. From this it can be shown (after
considerable work) that the restriction to covers consisting of gridded rectangular sets
gives identical fractal dimensions. A proof of this can be developed following that of
Theorem 1.

Given A c [0, 1]" and k, let

A* =

Clearly A C Ak, and for A closed, A = f^\k Ak. Note that as Ak is a finite union of
rectangles, there is only a finite amount of data needed to reconstruct Ak. The number
of data points needed for this depends not only on k and A, but also on the method
of generating the x,'s. This upper bound on the amount of data needed is, however,
extremely conservative; it is not necessary to reproduce Ak in its entirety to obtain
good estimates of the dimension.

For estimating the Hausdorff-Besicovitch dimension, information about covers
with rectangles from different levels is needed. Since the resolution used should be
limited for finite data, we need to have a maximum limit on k, which is denoted kmax.
Since the Hausdorff-Besicovitch dimension is defined in terms of coverings by sets
whose diameter is bounded above, the discrete coverings must be constructed from
rectangles with k > kmin; instead of taking 8 I 0, we take &min —> oo. Clearly, we also
need to take £max —> oo, and increase the amount of data, correspondingly.

2.1. Numerically estimating Jt?d(A) The next task is to consider the problem of
obtaining estimates of the Hausdorff measure of a set A C [0, 1] using these nested
rectangular covers. Recall that

= limsupinf(diam Uj)d.
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We now replace the infimum by an infimum over covers of gridded rectangular sets
Rk{i) where kmin < k < kmax. This infimum can be computed efficiently using a
dynamic programming algorithm by virtue of the hierarchical nature of these gridded
sets.

For efficient implementations, 2"-ary trees should be used. (In one, two and three
dimensions these are known as binary, quad-, and oct-trees respectively.) The root of
these trees is on level zero and corresponds to the rectangle [0, 1)"; at level k each node
corresponds to Rk (i) for some i and contains pointers to rectangles on level k + 1 . Each
rectangle that is "hit" by a data point x, is "marked". (In efficient implementations,
"marked" means "created". This approach and a fast O(N) algorithm based on
multiway trees for estimating the fractal dimension is described by Hunt and Sullivan
[4], who ascribe it to a private communication of F. Varosi. This was rediscovered more
recently by Molteno [8].) Once the sequence (xo, X i , . . . , \N) has been incorporated
into the tree, the estimates of J4?d(A) are computed for various d. This is done by the
following algorithm. Note that the "level" of a node in the tree is the distance in arcs
from the root of the tree.

function H,measure(d, node, kmin, kmm)
begin

k <— level of node
\ik = kmax then

return 2~kd

measure <- £ s ; j c h i l d o f n o ^ H.measure(d, s, kmin, km3X)
if k > kmin then

if 2~kd < measure then
measure <— 2~kd

return measure
end

FIGURE 1. Algorithm for estimating ̂ ( A ) .

This algorithm is, in fact, a dynamic programming algorithm to find the optimal
covering amongst covers consisting of the /?*(i) sets.

Consider what happens as kmin increases. Since for increasing kmin the optimisation
is done over a smaller family of covers, the Hausdorff measure estimate must increase.
The compensatory action is to increase &max, which increases the family of covers over
which the optimisation is performed and therefore reduces the Hausdorff measure
estimate. If we set k^n = m̂ax and take this to infinity we just get the fractal
dimension. If we set &max = kmin + I and we take kmM to infinity the lower bound on
the resulting measure is 2~'d times the fractal "measure" of A. It is therefore necessary
to consider schemes where &max — &min becomes arbitrarily large.
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2.2. Convergence results The main result of this section is that the Hausdorff
measure can be estimated to within a constant factor by the above algorithm.

THEOREM 1. Assume that A is compact, and Rk(i) is "marked" whenever A f~l
Rk(i) •£ 0. If d > 0 and J%t(A) < +oo, then for any e > 0 there is a function
&max = kmax(kmin, A, n, d) and positive constants C\ and c2 where for sufficiently
large kmin,

H.measure(root, d, &min, fc^,*) < c2(.Jfd(A) + e).

Further, under the same conditions, except that Jf?d(A) — +oo, then

lim H.measure{root, d, k^n, &max) = +oo.
*min-*-O°

Some points should be made: The hypothesis that A is compact (that is, closed and
bounded in OS") cannot be significantly weakened. Regarding boundedness, without
this assumption there is no guarantee that any of the approximate calculations would
converge to a finite value. Regarding the assumption that A is closed, if A = [0, l]flQ
then Ak = [0, 1] for all k and the algorithm has no way of distinguishing between
A (which is countable and therefore has Hausdorff-Besicovitch dimension zero) and
[0, 1 ] which has dimension one.

It should also be noted that the theorem requires that "£max is sufficiently large for
given /fcmin". It may be possible to weaken this assumption, but it is not clear how to at
this stage; or it may be possible to weaken it for certain classes of sets.

Note that no "rate" of convergence is proven for this algorithm.

PROOF. We begin by assuming that Jf?d(A) < +oo. The case where ^ ( A ) = +oo
will be dealt with later.

Step 0. Without loss of generality, assume that the || • ||oo norm is used to define the
metric, and that the Hausdorff measure is defined in terms of this metric.

Step 1. Note that the algorithm in Figure 1 also generates, implicitly, a cover of the
set A which will be denoted {Wj}. If S = 2~*™n then

inf V(diam U,)d < Y"(diam W,)"
{Uj),diamUj<S*—' ' ~ 4-^ '

j j

since the infimum is taken over all covers of A with maximum diameter < S = 2~tmin.
Step 2. To obtain a reverse inequality let e > 0 be given, and consider

= lim inf Y\diam U, ) d .
HO \Uj\, diam Uj <S ^—' 'HO \Uj\, diam Uj <S

j
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Choose 8 > 0 such that

Y^ e/3."if Y^(diam Uj)

Suppose that {Uj} is a covering of A where diam Uj < 8, then

Y^Cdiam f/;>d < inf V(diam U, )d + e/3
j i

for given t > 0. With an arbitrarily small increase in the sum this covering can be
made an open covering (replacing Uj with the set of points of distance less than t]j
from Uj for a sequence rjj sufficiently small and decreasing sufficiently fast). Since
A is compact, this open covering has a finite sub-covering {U[,..., U'N}.

Choose knun for the grids such that k^ > log2 (1 /S). We now find a gridded covering
{Vj',..., V'M} where the diam Vj < 2"*™" which gives a sum within a constant of that
for the covering [U[,..., U'N}. For each Uj choose k = \ log2 (1 / diam Uj) ] , and find
gridded rectangles of diameter 2~k which intersect Uj. Note that we need

> max^ ("log2 (1/diam Uj)] .

There are at most 2" of these gridded rectangles. The diameter of these gridded
rectangles is also at most twice that of Uj. Thus

j)d < 2" J ] (2d iam Uj)d = 2n+d ^ ( d i a m Uj)d < 2n

J J j

Since the gridded covering {Wj} defined through the above algorithm minimises this
sum over all gridded coverings over the prescribed range of levels kmin to km^, we get
the inequalities (using the above values of jfcmin and fcmax)

Taking S > 0 sufficiently small we obtain the desired result for J4?d(A) < +oo.
Step 3. To show that H.measure(root, d, kmin, kmlLX) approaches +oo as &min -*• oo,

the above proof can be modified by choosing, for any M > 0 a finite value S where
the inf,^,, diimUj<s £,. (diam Uj)d > M. Thus for 2"*™" < S, the gridded cover {Wj}
computed by the algorithm, ][ \ (diam Wj)d > M. Hence the computed approximation
to the Hausdorff measure must go to infinity as k^n ->• oo.

To use this result to estimate Hausdorff-Besicovitch dimensions we need to relate
the Hausdorff measure to the corresponding dimension. The Hausdorff-Besicovitch
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dimension of A is the value d* where Jfd.-f(A) = +00 and J%>+f(A) = 0 for any
€ > 0. Since the estimates from H^measure can be made to approach zero and infinity
respectively for d = d* — e and d = d* + e, it follows that it can be used to estimate
the Hausdorff-Besicovitch dimension.

Note that the case d = 0 is a fairly simple special case to consider; then
and ^o(A) are both just the counting measure (that is, J#o(A) — &o(A) = #A).

3. Practical procedures

The algorithm in Figure 1 has been implemented in ' C [6] based on a sparse
2"-ary tree implementation of a conventional box-counting estimator for the fractal
dimension similar to the procedure described by Molteno [8]. The main test example is
the set Bx = {\/n \n = 1, 2 , . . . } U {0}. This set is a compact subset of [0, 1] and has
fractal dimension 1/2 but Hausdorff-Besicovitch dimension zero (being countable).
For comparison with a set where the fractal and Hausdorff dimensions are the same,
some tests were performed for the standard Cantor set as generated by the iterated
function system [x M> X / 3 , X H-> 1 — x/3}; both functions having probability 1/2,
and with initial value zero.

As always with these methods care must be taken to match the amount of data with
the resolution (that is, kmin and &max) used for the estimation procedures.

Coupled with the Hausdorff-Besicovitch dimension estimator is a fractal dimen-
sion estimator, which uses a number of heuristics to achieve an accuracy of about
0.01 to 0.02 for most medium- to low-dimensional fractals. For Bx = [l/n \
1 < n < 105} U {0} it gave an estimate of the fractal dimension of 0.4968, which
has a relative error of about 0.6%.

Probably the simplest approach to estimating d* is to find (given kmin and £max) the
valued where H-measure(root, d, kmin, &max) = 1. With sufficient data and sufficiently
large kmin and fcmax (with fcmax sufficiently large given kmin) we can make d approach d*.
However, this suffers from a lack of accuracy and/or convergence speed that makes it
less useful than the following approach. On the test example Bu using 10 points to
approximate B\, this technique gave an estimate of dimw Bx of 0.3, compared with the
true value of zero, and fractal dimension of 0.5. This could be used as an indication
that the Hausdorff-Besicovitch dimension may be lower than the fractal dimension,
but it is not a sharp indication of this.

A better way to use the Hausdorff measure estimation procedure in practice appears
to be in a diagnostic fashion. Figure 2 was generated by computing the 3%d(B{)
estimates for different values of d and for different values of fcmax < 15 given k^n = 5.
Note that since the dynamic programming algorithm gives the minimising gridded
cover using levels &min < k < &max, keeping kmin constant and increasing £max can never
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10 12 14 16

FIGURE 2. Plot of Jifd{B{) estimates vs.

increase the estimate of j4?d(A). If J#j(A) > 0, however, the plot of the estimates
should flatten out, at least for sufficiently large values of kmm. If Jffj(A) = 0, then
there the estimates will approach zero as as fcmax goes to infinity.

If d is the true Hausdorff-Besicovitch dimension then it would be expected that the
volume vs. kmm graph would be fairly flat. In this case it appears that the estimates
computed indicate a low Hausdorff-Besicovitch dimension, probably much less than
«» 1/2 as indicated by the fractal dimension estimator.

In constrast, the Cantor set has both Hausdorff and fractal dimensions equal to
log 2/ log 3 as 0.6309. This is using the standard construction where the middle third
of the unit interval is deleted, then the middle third of the remaining intervals, and so
on. This is a useful test, as the true Hausdorff-Besicovitch dimension is positive, and
we need to understand the behaviour of these plots for d < dimw C, where C is the
Cantor set.

The Cantor set was approximated by 105 points, generated by an iterated function
system using the functions [x \-> x/3, x (->• 1 — x/3} with each function chosen with
probability 1/2, and intial point zero.

The above comment that if Jifd(A) > 0, then the curves of the estimates against
jfcmax flatten out, can be confirmed by the plots for the Cantor set in Figure 3. The
curves in Figure 3 appear to indicate that the Hausdorff-Besicovitch dimension of the
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Cantor set: dim = 0.6309

[10]

8 10 12 14 16 18 20

FIGURE 3. Plot of Jffd(_C) estimates vs. kmax.

Cantor set lies between 0.60 and 0.65; the fractal dimension estimate is 0.6302. Note
that the curves between those for d = 0.6 and d = 0.65 are for the values d = 0.61,
0.62, 0.63 and 0.64. These estimates are monotone in d as is expected. The range
of 0.6 to 0.65 is still a little larger than would be preferred. However, this is still at
most a range of 0.03 from the true Hausdorff-Besicovitch dimension, which is a 5%
difference. More refined analysis of these plots using heuristics such as "No more
than 10% drop over the range &max = 10 to fc^ = 20" would undoubtedly get much
closer to the true value. Using such heuristics has not been pursued here as this is
vulnerable to "fiddling the heuristic" to match the expected result. On the other hand,
higher accuracy could be expected of more refined versions of this algorithm.

This seems to confirm the ability of the algorithm to act as a practical diagnostic tool
for indicating if the Hausdorff-Besicovitch dimension and the fractal dimension are
significantly different. It may even become a useful tool for estimating the Hausdorff-
Besicovitch dimension directly.
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