Spectrophotometry of Selected AGN Seyfert Galaxy AKN 564

L.S. Slavcheva, B.M. Mihov, G.T. Petrov, R.S. Bachev

Institute for Astronomy, Bulgarian Academy of Sciences, lslav@astro.bas.bg

Akn 564 ($\alpha_{1950} = 22^{h}40^{m}18.3^{s}$, $\delta_{1950} = 29^{\circ}27'47''$) is a Sy1.5G SBb type galaxy. According to Zwicky (1966) it has a photographic magnitude $m_p = 14.4$ and a redshift of 0.025. The spectra of the galaxy were obtained at the 2.6-m telescope of the Crimean Astrophysical Observatory with a spectrograph having a dispersion of 100 A mm⁻¹. They were processed with the help of SPEC and LONG packages integrated in MIDAS. As a result of the spectrophotometry we obtain the fluxes at $\lambda\lambda$ 4363, 4959, 5007 A: I(4363), I(4959), I(5007). The spectrum of the galaxy in $\lambda\lambda$ 4000-7000 is shown in Figure 1. We use the relation of the fluxes of those narrow forbidden emission lines:

$$R = [j(\lambda 4959) + j(\lambda 5007)]/j(\lambda 4363)$$
(1)

$$= [8.32exp(3.29 \times 10^4/T]/(1 + 4.5 \times 10^{-4}Ne/T^{1/2},$$
(2)

sensitive at a greater extent to the electron temperature T_e than to the electron density n_e . The value of R=74.3 we got, having a typical value of $n_e=5\times10^5~{\rm cm}^{-3}$ for the NLR (Narrow Line Region), leads to the estimation of a typical temperature of $T_e=10^4~{\rm K}.$

We can evaluate the effective volume V_{eff} and respectively the size R_{eff} , the mass M_g and the kinetic energy E_k of the emitting gas in the NLR with $n_e=5\times10^5~{\rm cm}^{-3}$ and $T_e=10^4{\rm K}$ assumed and I(5007) measured via the equations (Dibay 1980):

$$L(H_{\beta}) = 4\pi R^2 (1+z)^2 I(H_{\beta});$$
(3)

$$V_{\text{eff}} = R^2 I(H_\beta) / j(H_\beta); \tag{4}$$

$$R = cz/H; (5)$$

$$V_{\rm eff} = fV; \tag{6}$$

$$R_{\rm eff} = (3V_{\rm eff}/4)^{1/3};\tag{7}$$

$$M_{\rm g} = n_{\rm e} m_{\rm p} V_{\rm eff} / M_{\rm o}; \tag{8}$$

$$E_{k} = 1/2M_{g}v^{2} = 1/4M_{g}FWHM;$$
(9)

$$M_{\rm c} = 3v_{\rm v}^2 R/G,\tag{10}$$

where V is the geometrical volume of the region, $f \approx 10^{-3}$ is the filling factor and j is the emmission coefficient.

 T_e and n_e in the BRL (Broad Line Region) cannot be estimated directly. We accept representative of the BLR values of $n_e = 5 \times 10^5$ cm⁻³ and $T_e =$ $10^4 \rm K$ acquired by comparing photoionizational models with some observational parameters. As a result we evaluate $\rm V_{eff},~R_{eff},~M_g,~E_k$ and the mass of the central object $\rm M_c,$ all of them given in the following table:

NLR		BLR	
n _e , [cm ⁻³]	5×10^{5}	n _e , [cm ⁻³]	109
T _e , [K]	10^{4}	T _e , [K]	104
I([OIII] λ 5007), [erg.cm ⁻² .s ⁻¹]	1.04×10^{-12}	$I(H_{\beta}), [erg.cm^{-2}.s^{-1}]$	5.85×10^{-13}
FWHM([OIII] λ5007), [cm.s ⁻¹]	663x10 ⁵	$FWHM(H_{\beta}), [cm.s^{-1}]$	899 x10 ⁵
L([OIII] λ 5007), [erg.s ⁻¹]	9.18 x10 ⁴¹	$L(H_{\beta}), [erg.s^{-1}]$	5.18 x10 ⁴¹
$j([OIII] \lambda 5007), [erg.cm^{-3}.s^{-1}]$	1.15 x10 ⁻¹⁹	$j(H_{\beta}), [erg.cm^{-3}.s^{-1}]$	6.63 x10 ⁻⁹
V _{eff} , [cm ³]	1.6 x10 ⁵⁵	V _{eff} , [cm ³]	6.19 x10 ⁴⁸
R, [pc]	5	R, [pc]	0.037
Mg, [Mo]	6.68×10^3	Mg, [Mo]	5.17
E _k , [erg]	7.34×10^{51}	E _k , [erg]	1.04×10^{49}
		M _c [Mo]	0.52×10^7

The errors of the fluxes are about 7×10^{-15} erg cm⁻² s⁻¹ and the errors of the other parameters are about 10-30 %.

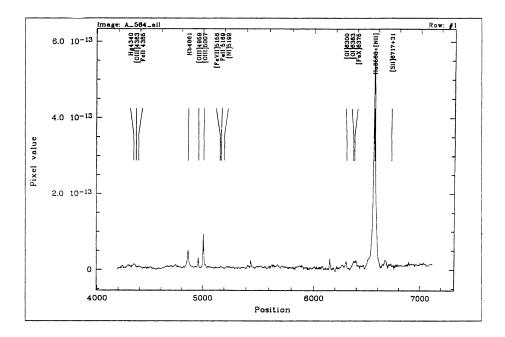


Figure 1. Energy distribution in $\lambda\lambda$ 4000-7000 A for Akn564. The data reduction was made by MIDAS 95NOV packages. The strongest forbidden and permitted lines are marked.

References

Arakelian, M., 1975, Publ.Bjurak.Obs., 47, 3 Dibay, E., 1980, Astron. J., , 57, 677 Zwicky, F., 1966, Ap.J., , 143, 192