ON THETA FUNCTIONS AND ABELIAN VARIETIES
OVER VALUATION FIELDS OF RANK ONE

(I) THETA FUNCTIONS AND ABELIAN FUNCTIONS
OF CHARACTERISTIC p(>0)

HISASI MORIKAWA

To Ricuarp BrAuger on his 60th Birthday

It may safely said that one of the most important problems in modern
algebraic geometry is to elevate theory of abelian functions to the same level
as theory of elliptic functions beyond the modern formulation: of classical
results. Being concerned in such a problem, we feel that one of the serious
points is the lack of knowladge on the explicit expressions of abelian varieties
and their law of compositions by means of their canonical systems of coordi-
nates: Such expressions correspond to the cubic relation PP=47 - &P -
of Weierstrass’ ¥-functions and their addition formulae in theory of elliptic
functions.

In Part (I) we have introduced theta functions and abelian functions over
fields of characteristic p with valuations of rank one,” and have shown that
for each positive symmetric bimultiplicative function ¢ valued in a valuation
field of rank one there exists an abelian variety A, such that A, is embedded
in a projective space by means of theta functions of some type with period
(E, q.

In the present part (II) first we shall give the explicit addition formulae

of the following abelian functions of characteristic p(=>3)
{Og, (%) = 3L gi, 01(qlu)/F[0, 01(qlu)|ps: M)

as an immediate consequence from the fact that {,[8;, 01(q|%)} form a base
of theta functions of type (p, 1) with period (E, q); the explicit addition

formulae are comparatively simple, and they may be considered as the formulae

Received January 10, 1962,
1) We shall freely use the notations and results in Part (I), [2].
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given by the reduction mod p of the explicit addition formulae of abelian
functions of characteristic zero with a general module in some sense. As
corollaries of the explicit addition formulae we have a system of equations
satisfied by {#g,(1)*™", @g,(#)}; these equations are considered as a part of
equations defining the locus of (3,[8i, 01(qlw), ..., 3s[8s, 01(glu)) over the
field of coefficients, where 7 is the dimension of A;.  We, however, are not
able to decide now whether the system generates all the relations of
{@g,(1)*7, @g,(u)} or not.

In the next section we shall give the explicit expressions of invariant
differentials and invariant derivations of the abelian variety A, of éharacteristic
H(>0) by mean of abelian functions {@g(u)}; these expressions are quite
simple as we shall see in Theorem 3, 4 and 5.

2,

In §3, following Bolza,” we shall introduce w¥-functions by means of the

canonical base {Dy, ..., D/} of invariant derivations in §2 as follows:

Dy, (500, 01 (gl %)
Pgip...gi{@l®) = = (Dg,, - - - Dgis-l)( 919[7(), 0]q|%) )

(1<, oo, is<p; s=2).

We shall first show the following simple formula on a derivation D of a field

of characteristic p:

Do p<7y>_ )= D"ym - (2;&){ 0.

Putting v =90, 01(gl%) and D=D}, (1<i<7), in the above formula, we
shall see that

D0, 0D (glw) \* _ DHSL0, 01 (glu) _ |
( 300, 01(qu) ) 900, 07(ql ) = Toeialglu),
r
(1<i<y),

and {D{(#0, 0D (qls)/30, 0J(gla)|1<i<r} form a system of canonical
Kummer-generators of separable unramified (p, . . ., p)-covering of the abelian

variety A, with period (E, q). From this expression of ¥Tp-tes..prc(ql|n)
v
follows

2) See [11, p. 327.
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'b”p—le,...p—xei(q] n) = Tp-1¢s. p-10ss (1<i<r; v=1,2,...).
e et
p+y vl

This shows that there exist only finite number of ¥-functions of characteristic
p(>0).

It seems to the author that the addition formulae in §1 will be a starting
point of the study of moduli of abelian varieties of characteristic p(=>3) and
the study of details of ¥-functions of characteristic p(>>0) in §3 will also

make rich the theory of abstract abelian varieties.

§ 1. The explicit addition formulae of abelian
functions 6f characteristic >3

1.1. In the present section we assume that the characteristic p of the
universal domain is not less than three. We shall now repeat some notations
in (I):

Mo : a vector space of dimension 7 over the field @ of rational numbers;

M : the module of all the vectors in M, with integral coordinates;

£: an algebraically closed field 'complete with respect to a valuation » of
rank one (valued in the additive grodp of real numbers). We assume that a
mapping (&, m/n)—~&™" of 2*xQ onto 2" is given as follows: i) If m is an
integer, £™ is the ordinary m-th power, ii) (&)W = gmminw iy (gq)™"
=gminymin iv) 1¥2 =1, v) if (m, p) =1, 1¥" is a primitive #-th root of unity.

q: a function on My x M, valued in £ such that i) g(m, n) = q(n, m), ii)
g(m+m', 1) =qg(m, nglu’, n), iii) v('q(m, m)) >0 for every m=0 in Niy;

q(n), (neM,) : the function on M, defined by g(n)(m) =q(n, m)?;

u: a variable function on My such that w#(m+n) =u(m)uln), ie., for a
base (my,..., m;) of My u(my),..., u(m,) are analytically independent
variables;

K,: the field of abelian functions with period (E, g) and with coefficients
in 2.

1.2. We choose a complete system {8,=(0), 8., . . ., 85} of representatives
of p7'M/M and denote by G,-l/z the element in {4, ..., 8} such that 2%;1/2
—~g;eM. Since p 2, there always exists such a vector 82

We put

(1) 308, 01(qla) = > q(m=+8;, m+8)ulm+8), (1<ig<p).
meN
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Then ¥[8;, 01(gl%) (1<i<p") are converging series on #. It is obvious that
JLgi, 01(qlu) does not depend of the choice of the representative g; of p~'M/M,
and 9[4;, 0J(gl#)? is nothing but the theta series #,[8;, 01(q|%) =m2 q(m+g;,
plm+8))u(p(m+g)) introduced in §2 (I). By virtue of Theorer:si2 in §2 (1)
{98, 01(qlu)|1<i<p"} form a base of theta functions of type (p,1). Since
1 is the only one p-th root of unity we may put

(2) I4;, O](q]1)=m§ﬁq(m+8i, m+8), (1<i<p).
We denote briefly
(3) Og,(0) = 9[8;, 01(qlu)/ 3,00, 01(qlw), (1<i<p).
We shall show some properties of #[8;, OJ(qld).
Lemma 1.
(4) 306;, 01(qlu™) =3[ —8;, 01(qlwn),

(5) 908:, 01(glg(n)z) = qn, 1) u(n) " 306;, 01(qlu),

(neM; 1<i<p).
Proof. From (1) it follows

I8, 0)(gla™) = > g(m+a;, m+8)u( —m—4g)

mem

= > g(—m+8, —m+6)u(m—g)
men

= > glm—¢;, m—g)u(m—¢)
men

=9 -8, 01(qlu),

and for any n in M
e, 01(glgn)u) = mT_;_Y‘_.mq(m +6;, m=+8)g(n, m+6;) %(m+4a;)

=q(n, n)"u(n)“m}—]mq(m +u+4+6;, m+n+6)u(m+n+46)
EAA
=q(n, 1) tu(n) " 908, 01(qlu).

LemMma 2.
(6) I8, 01(qlq(8)u) =q(;, 8;)  u(8;)" I08; +8;, 01(glu), (1<4 j<p™).
Proof. From (1) it follows

J06;, 01(qlgl(giu) = mzmq( m+8;, m+6)q(8;, m+8) u(m+a;)
=)
= qlgj, a;)“u(qj)'lmezimq(m + 8+ gj, m+6;+8;) w(m+ 8 +6;)
= q(8;, ;)" u(8;) " 908 + 85, 01(qla).
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LEMMA 3.
90, 01(gl1) =0.

Proof. Since v(g(m, m)) >0 for m=0 and 90, 01(¢q|1) = mE(qu(m, m), we
) (=3
have »(3[0, 0](¢l1)) = »(1) =0, and thus $[0, 01(¢|1) =0.

LemMa 4. The (p, p)-matrix (808; +8;, 01(q|1)) of which (i, 7)-element is
I8+ 65, 01(q|1) is non-singular.

Proof. Since v(g(m+6;, m+4)>0 for every m+8;%0, it follows that
v(308: + 95, 01(g|1) =0 if and only if ¢;+9; M. Hence det (I[8; +a;, 01(g|1))
= +9[0, 0J(¢l1)p + ¢ with an element ¢ such that »(¢)>0. This shows that
v(det (3[8; + 8;, 01(gl1)) =0, and thus det (J[8; +8;, 01(g|1)) =0.

Lemma 5. Fu, v) =900, 01(qI1)*da:, 01(qluw)d0, 01(qluv)d0e2, 0]
(qlu)"'zﬂ[gil/ 2, 01(qlv)? is a theta function of type (p, 1) as a function of
both u and v.

Proof. Since g+ (p — 2)9.-1/2 = pg.yz +(8; =2 g'!/z e M, the function F(#%, v) in
Lemma 5 is expressed as follows:

- %Emcm,nu(m)v(n). On the other hand, if for any n in M we put g(n)u
instead of # in F(u, v), by virture of Lemma 1 we have

Flgww, v) =g, n) " u(m) o) 9L0, 01(g|1)*58:, 01(g|uv)
a(n, 1) " o(n) 900, 01(gluv™) g(n, 1) ™% u(n) =2~
9002, 01(qlw)*™*9Lai’2, 01(qlv)?™
=q(n, 1) ?u(n)? F(u, v).
Since J[0, 01(qluv™) =200, 01(qglvu"'), we have F(u, v) =F(v, u), and tHus
F(u, ¢in)v) = F(g(n)v, u) = q(n, n) ?v(n)"?F(u, v). This completes the proof
of Lemma 5.
1.3. We shall first show the addition formulae of J{8:, 01(q|#).

THEOREM 1. If p>=3, we have the following formulae :

) 900, 01(gl1)*808;, 01(qluv) 90, 01(qlu™)
,. 90e?, 01(qlw?~*908}?, 01(qlv)™?
= 2 co-gp,0-gr 9005, 01(qlw)? 38, 01(glo)?,  (1<i<p),

where {cg; 0} are the unique solutions of the following linear equutions in
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{Agjnﬂt) .

® 35 908+ 04, 03(al D) 90+ 04, 01(al1) g, 5,
=900, 01(g|1)*3Le; + 6, 01(q|1) Ia; —a, 01(qil)
300;, 01(g|D?7*3Ma;, 01(gl P2 (<4, 1<P).

Moreover {cg;q,} satisfy
9) Coo = Cogy (1<, 1<),
Proof. We put briefly

Fg,(%, v) =910, 01(q]1)*3[a:, 01(gl|uv) [0, 01(qlur™")
S6/2, 01(glw)? 25062, 02 2 (glw), (1<i<d).

It is sufficient to prove Theorem 1 for independent varible # and ». Since
{9[6:;, 01(qlu)|1<i<p"} and {(I[9;, 0](glv)|1<i<p"} form bases of theta
functions of type (p, 1) of % and v, respectively, by virtue of Lemma 5, we

have

»

Fou(w, ) = 3 eu, 0,908, 01(g|w)?3La,, 01(qlo)".

Putting g(8s) # and g(8:)v instead of # and », by virtue of Lemma 2 we have

Fy,(q(@n)n, q(8)v)
=3[0, 01(g|1)*q(@n + 8k, 8k + 8&) ™ %(@h + 8) "0 (84 + ) "
I8 + 8, 01(q|uv)q(8n — 8k, 81— 0) " 2u(8s — 8) 0(8s —ap) "
9084 — 8k, 01(qluv™) q(8s, 8n) P~ u(8s)~#7®
I8x, 01(q12)?7?q(8r, )~ v(8r) " ?"2 I8, 01(q|v)?~?
= q(8s, 9) 2 q(8k, 8x) "2 u(as) ?v(8x) 290, 0](¢l1)?
WLk + 8k, 01(qluv) L84 — &, 01(qluv™)
L0k, 01(glu)* L8k, 01(qlv)*7?,

and
J.Iz:rllcﬂj,gzﬂ[gj, 01(q | q(8r)u)? 98, 01(q!|q(8e)v)?
= q(8, 85) 72 q(8k, 8) P u(0) P v(gy) 2
,%1 ca;, 39085 + 8x, 01(qlu)? 9L+ 8, 01(ql2)”.
Hence

https://doi.org/10.1017/50027763000023850 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000023850

ON THETA FUNCTIONS AND ABELIAN VARIETIES 237

#00, 01(q11)*Ian + 8, 01(qluv) I8 — 8, 01(qluv™)
I08x, 01 (glu)? 298k, 01(qlv)?™?

i, 1=1
= ]E cg;, 00005 + 91, 01(q | )2 308 + 8, 01(qlv)?.
I/r

Putting 9x =6, = 9}/ % we have
o
Falu, v)= > ca;,0 9085 + 8112, 01(ql )?90ai + 672, 01(ql0)?
p')’
= Aéjlcgj—g},g,—g;fﬂ[gi, 03(glw)?5L8;, 01(glv)?.
J, =

Putting #=v =1, we have
810, 01(q1 1) 065+ 8, 01(q]1) IL8x — 8k, 01(gl1)
) B8k, 01(gl P28, 01(gl1)?™*
= 3¢, 0. 008; + 8, 01(q| 12306+ e, 01(gI1)?,  (1<h, k<P).

This is nothing but the system of equations (8). Since by virtue of Lemma 4
the (p”, p)-matrix (J08; +¢;, 01(g[1)) is non-singular, the (p*”, p*")-matrix of
which ((4, 7), (h, k))-element is 908; + 84, 01(g]1) I[a;+ 8, 01(gl1) is also non-

singular, because the (»*", $*")-matrix is the tensor product
(8 + 95, 01(q11)) ® (F[8 + 8, 01(ql1)).

This shows that {cq;,q} are the unique solutions ef (8). Since Fy,(u, v)-
= Fg,(v, u), we get the formula (9).
As Corollaries of Theorem 1 we shall show some theta relations.

Putting v =1 in (7), we get
CoroLLARY 1.
910, 01(q1)* 90872, 01(q11)**508;, 01(qln)
910, 01(qlw) 3672, 01(qlw)?™
= 3 cggramg 908, 011 D208, 01(glw)?,  (L<i<p),

Jy =1

T

and
00, 01(g| D? 0, 01(qlu)?
1
= _Elcgj,gﬂ?[ﬂf, 01(q11)?90a;, 01(qln)?.
s L=
Putting » =«™' in (7), we have
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CoroLLARY 2.
12) 310, 01(q!1)*308:, 01(q/1) 3[0, 01(gl u?)
82, 61(q1 w90 - a2, 01(alw)?"
- jflzllc,;j-g;/z,g,-g;eza[aj, 01(ql )3T — 81, 01(ql)”.
Making the product (12) for ¢; and (12) for 8, we have
CORrROLLARY 3.
(13) 306, 01(q11)SL62, 01(qlw)*~*SL - 87’2, 01(qlu)?™
5 couadl, 01(alw? 9L -0, 01(alw)?
=900, 01(q|1) I3[0, 01(q|u)**™®

pr
jglcgj_g;é,g,_g;ﬁﬂ[ﬁj. 01(qlw)?IL — a1, 01(qlw)?,

1<i<yp).

1.4. Let us now translate (7),..., (13) in the relations of the abelian
functions {®g,(%)}.

THEOREM 2. If p=3, we have the following addition formulae:
" b
(,‘T‘:’: o~} au- D, (10) 0g,(0))

i p’
¢925 (u)p—z ¢Q“/2 (v)P—Z(,$lcgj_gl mgj(u) wgl(v) )

(14) Og(uv) = -

(15) Og(u™) =0-g(u), (@A<i<P),

where the coefficient {cg, g} are the unique solution of the system of linear
equations:

3

(16) | 35 dgw 0 Pgyran(1) Ogirgu(1) = Ogyeqi(1)P™ B;-g (177" + Bg, (1) + 0 (1),

a<jigpn.

Proof. Since 90, 01(gl1) %0 and &[0, 0J(g|%) =0, we may divive (7) for

8; by (7) for 8,. Making the p-th powers of both sides of the quotient of (7)

for ¢; by (7) for 8, we have (14). Dividing (8) by #[0, 01(¢|1)%2, we get (16).
(15) is a consequence from (4). .

The formulae (14) and (16) are a system of explicit expression of the

normal law of composition on the locus of (F[8:, 01(gl%), . . ., Fsl8s 01(ql %))
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over 2.
-1

Putting v =%~" in (14), we get

CorOLLARY 1.

o" b

an ¢g.,-(1)( '21 cg;,0:0g;(n) @-gl(u)) D' (u)lt'—zﬂ-g}'2 (u)?7?
75 1=
o" »
= (j%ICgJ_g}é_gl_g”fz Dg,(u) w-gl(u)) , (A=<i<p).
Putting » =1 in (31), we have
CoROLLARY 2.
. - " b

(18) 0g,(u) Og: (w)?™* @5 (1)? (1;‘1 cg;» g, Dg;(1) @gl(u))

" »
= (33 corg0rai00, (D 00 ) s A<i<p).

(17) is the system of relations of {®g(%), @g,(1)} which is the explicit
expression of the axiom: x+ ( —x) =0, and (18) is the system of relations of
{@q,(), 0g;(1)} which is the explicite expression of the axiom: x+0=0.

We shall now seek relations of {®@g,(%), @4,(1)} other than (17) and (18).

COROLLARY 3.

" ?

(19) Qgi‘-’ +gj(1)ﬂ_2¢gi+gj(u) @gi? (u)p_2<h§)‘élcgh. 73 @gh(u) wgll"'ﬁj(l))
. Ll b

= 00,1205, (w) ( 33 cr-agy-a; Py, (@) ¢gk+gj(1)) )
n, k=1
(1<q, 7<p).
Proof. Putting v =¢q(8;) in (7), we have
" 4
0g,(uq(8;)) Og’: ()~ Dy (Q(Qj))p—z( h%, ¢, 8 Dy (%) ¢gk(Q(gj)))

o b
=( > cor-ugu-o} i 0u (@) 2,(a(6)))

h, k=1

On the other hand, by virtue of (22) in Lemma 2, we have 0g(%q(8;))
= 0g;+9;(u)/Dg;(x). Hence it follows

Bgirg;(16) Dglt ()2 72 Dgt 1g,(1)? z(h%lcgh.sk%h(u)%kw(l))

" )
= 0g,(w) 0g,(1) - ( 33 cau-gy00-5 00,10 0g,g,(1)) -
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This proves Corollary 3.

§ 2. Invariant derivations and invariant differcntials

2.1. We shall denote by ¢, ..., ¢ the unit vectors and denote by x:(m)
the #-th coordinate madulo p of m in My, i.e. m = Dx;(m)e; mod ».¥ Let us
i=1

denote by D} the 2-linear mapping of the field 2(z) = 2({#(m)|meM}) into
itself such that

(20) Di(u(m)) = x;(m) w(m), (meM),
(1) Di(¢§) =0, (£€9).
Lemma 1. Di, ..., D) are derivations of 2(u)/%.
Proof. From the deﬁnition of D}, it follows for any m, neM

Di(u(m)z(n)) = Di(u(m +1n)) = x(m+n)z(m +n) = (x(m) + x:(n)) () 2(n)
= x;(m)a(m)un) + 2(m) % () u(n) = Dj(u(m))uln) + 2(m)Di(u(n)).

This proves Lemma 1.

The derivations Dj, . .., D; are naturally extended to the derivations of
the field 2(u) ($08;, 01(glu), . . ., Ps[8, 01(ql%)) such that D;(3,[8;, 01)(q!|%)
= % (p8;) 35085, 01(qln), (1<i<r; 1<j<p”). We denote by the same notation
the extended derivation.

LeMMa 2. (u(éi)'ldu(ei))(D,'-) =di;, (1<4, j<7).

Proof. From the definition of the differential du(e;) follows
(w(e)) " du(e)) (D)) = u(e;) "  Di(ule;)) = x;(&) = ).

Let us operate D} on the theta’s {#;[8;, 01(q!#%)}.

Lemma 3. Di(3,08;, 01(qlu)) = x:(p8;) 35[8;, 01(q| %),
(1<i<r; 1<),

Proof. Since 3,08, 01(qlu) = mg}i}mq(p(m +8;), wm+8;)u(pm+p8;) and
A

x:(pm) =0 for m in M, it follows
Di (8085, 01(qla) =ng;ﬁx.‘(pm+j>9j)q(P(m+8j), m+8;) u(pm + pg;)

= x:(p8;) 95085, 01(qln).

3 We consider x:(m) (i=1, 2,..., ») as elements of the Galois Feld GF(p).
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Lemma 4. Di(0g;(u)) = xi($8;) Ogln), (1<i<7r; 1<j<p).
Proof. From Lemma 3 follows

Di(0g,(u)) = 3,0, 017%(q|2) (Di(I5[4;, 01(qlu) 3,00, 01(qlu)
— 95087, 01(q| ) Di(5[0, 01(qlu))
= 9,00, 01(qlu) " 2x;( p8;)3,[8;, 01(q|2)P,[0, 01(qla)
= %:(p4;) Og,(%).

We shall now express #(e;) ' du(e;) by means of ;.

LemmMa 5.
(22) Og; () ™' dDg; () = gxi(pgj) u(e;) " du(e:),
(23) Qp—l c,-(u)—ld@p-x e,-(u) = u(ei)'ldu(e;), (1 <i<r;1 Sj _<_ﬂr)

Proof. By virtue of Lemma 2 and 4 it follows

(0g,(2) ' dDg;(u)) ™ (D7) = x%:(p8;) = gx;’(ﬁgj)((u(ei)~ld(u(ei))(D;):
(1<i<r; 1-7<p).
Since (D}, ..., DJ) is the 2(x)-base of all the derivations of 2(2)/2, we have
Og,(n) ' dOg,(u) = gxi(pgj) wu(e:) Fdule;).

COROLLARY.

Og,(u) " dlg,(u) = };:xf(pgj) Dp-10(u) ' dOp-1c(n), (1<i<r; 1<7<P).

e

2.2. By virtue the first part of the proof of Theorem 3 in §3(I) the field

K, of abelian functions is separably algebraic over 2(@p-te,, . . ., @p-t¢,), and

thus any derivation of 2(®p-1¢,, .. ., mp—lor)‘ is uniquely extended to a deriva-
tion of K.

By virtue of Lemma 4 Di, ..., D; map 2(0p-1¢,, . . . , Op-1¢,) into itself,
and thus the restrictions Df,..., D of Di,..., D} on 2(®)p-1¢c)y ...,
Op-1c,) are derivations of Q(Pp-1¢,, ..., @p-1c.). We denote by Dy, ..., D
the extensions of Df,..., Df to K, respectively. Since D;(@p-1¢,)
=0;j0p-10,(n), (1<i<y), {Dy, ..., D} is a K;-base of derivations of K,/2.

For any multiplicative function 7 on M,"” we denote by Ty the mapping

Y We mean by a multiplicative function x on ¢ a function on My valued in the
multiplicatnie group 2%=0-—{0} of 2 such that X(ni-n)=X(m)%(n), (M, nE€Mg).
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of K, defined by
(TN (w) =fwl™), (feKy.

Ty is extended to K,(#) such that Txu(m) = #(m) 7~ (m).
If a derivation D of K,/# satisfies

(25) Ty-1oDoTy=D (for every X),

we call D an invariant derivation of K,/2. If a differential o = >, fi(#)dg:(u)
i=1
of K,/ satisfies

(25") Zi.:fi(u) dgi(u) = gﬁ(ul"l)dg;(ul") (for every X),

we call v an invariant differential (of degree one).

TueoreM 3. (D, ..., D} is a base of invariant derivations of K,/Q such
that
(26) Di(@p-1¢5) = 6ij Op-1c), 1<i j<n).

Proof. The last assertion is nothing but Lemma 4. We shall show that

D; is invariant. For any 2 it follows

(Tx-1 © D} o Ty) (w(m)) = Ty-: o DE(X(m) " u(m))
= Ty=1(m) ™ % (m) u(m)
= x;(m) u(m) = Di(u(m)).
Hence we have (Ty-10D;}oTx)(f) = D;(f) for every f€ K,, and thus D; is an
invariant derivation of K,/2. Conversely assume D = > k;(%)D; is an invariant
i=1

derivation of K,/®2. Then it follows
Ty-soDjoTy=Ty-10 gh:‘(%)l)i oTx
= SIh(X) (Tt o Di o T) = >3 hi(t) Di.
i=1 i=

Since {(Di, ..., D:} is a K,base of all the derivations of K,/2, we have
hiu?) =hi(u) (1<i<7) for any X. This shows that {hi(u)} are constants
{¢;} in 2, and thus we conclude that {D),..., D,} is a base of invariant
derivations of K,/Q.

Let us now translate Theorem 3 in the language of invariant differentials.

THEOREM 4. {0pl1¢,dDp1ey, . . ., Optre dDp-1e,} is a base of invariant differ-
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entials of K,;/2.
As a consequence of Theorem 3 we can characterize invariant derivations

as follows:

THEOREM 5. A derivation D of K,/Q is an invariant derivation if and only
if D(Dp-1¢;) =ci@p-1c,, (1<i<7), with constants {ci} in 2.

Proof.  Assume D(0p-1¢;) =ciOp-1e, with ¢ €82, (1<i<7).  Then
(p— gc,' Di)(0p-e) =0, (1<j<7). Since Ku/@(Opse,, - . ., Opmte,) is sepa-

rably algebraic, we have D= >)¢c;D;. Conversely if D is an invariant deriva-
1=1

tion of K,/2. Then by virtue of Theorm 3 we have D = >)¢; D; with ¢; in &,
i=1
and thus D(@p-1¢,) =¢i, (1<i< 7).

§ 8. P-functions of characteristic >0 and p-Kummer generators
3.1. Let {Di, ..., Dy} be the canonical base of invariant derivation of
K,/ 2 in §2 such that Di(@p-1c,(gl %)) = 8ij0p-1c,(glu), (1 <4, j<7), where we
indicate q in @s-1¢,(gl ) explicitely instead of @p-1¢,(%) in §2. We shall denote
by Dg, the invariant derivation defined by

@27 Dg, = gxi(Pgl)Di, (rT<1<p).

Let D), ..., D be the derivations in §2 such that D}(x(m)) = x,(in) 2(m) for
me M, and Dy, be the derivation gx;(pgz)D,‘. We shall denote by ¢” the
positive symmetric bimultiplicative function on M, defined by ¢?(m, n)
=g(pm, n), (m, neM,). We shall denote by Dj(#[0, 01)(gl%) the Dg-deriva-
tive of 910, 01(gl»). Following Bolza,® we shall define ¥-functions as follows:

(28) Tong(alu) = — Déz( ng;g)[;oé]o(];}](g)['w )

_ Dg, (910, 01)(ql %) D4, (300, 01)(g|u) — Dy, Dg,(IL0, 01)(q|u)B[0, 01(qlw)
- 9[0, 0](q|=)* ’

(<4, j<p).
We shall first show that ¥g,q,(¢l#%) is an abelian function in K.

Lemma 1. Dg, (900, 01)(qlu) Dg, (910, 01)(qlu)
— DDy, (900, 01) (gl =) 900, 01(qlz),  (1<id, <P,
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are theta functions of type (2, 1).

Proof. We denote briefly by {¢g, g,(#)} the quantities in Lemma 1. Since
¢g,,9; 18 bilinear in ¢; and 8;, it is sufficient to prove that gs-te, p-1e;, (1<14, < 7),
are theta functions of type (2,1). Since Di(z(ir)) =zxi(m)a(m), (meM), for
every n< M we have

D910, 01) (gl g(m) ) =mEwai(m)q(m, m) q(n, m)?u(m)
= g(n, n)“lu(n)"(mgJz Zi(m+1) gm+n, m+n)u(m+n)
- xf(n)mé‘.mq(m +n, m+n)u(m4n)}
=q(n, 1) aln) Y D;(B[0, 01) (g|%) — % ()30, 01(qlu)},
and
D; Dj(310, 0])(‘”0(“")“:‘59;32 x:(m) x;(m) g(m, m)g(n, m)*u(m)
=q(n, n)"u(n)"l(mgﬂx,-(m +n)xi(m+n)glm+n, m4+n)ulm+n)
- x;(n)mg_.‘ﬂxj(m +n)g(m-+n, m+n)u(m+n)
- xf(n)mgn xi(m+n) g(m+n, m+n)u(m+n)
+ xi(n) xj(}l)‘ngmq(xn +n, m4n)u(m-+n)}
= q(n, 1) " u() "N D! D;(I10, 01)(glu) — xi(n) DHS0, 01) (gl2)
— x;(n) Di ([0, 01) (gl %) + %(n) %(n) $L0, 01(qlw) ).
This shows that for every ne M
dpres, pre{algu) = g(n, W) 2u(n) Pgp-renpre(@ln), (1<, j<7).
Hence we have proved Lemma 1.

Dividing ¢g,,g;(gl%) by J[0, 01(g|%)?, we have

ProrosiTioN 1. Vg,.q/qlw), (1<i, j<p"), are abelian functions in K, such
that 910, 01(glu)®* Pg,q/(qlu) are theta functions of type (2,1).

We denote by ¥g..q,(ql#) the higher derivatives Dg, - - - Dg;,_(¥q;,_,.0:)»
(1<, ...,4<p). Since Dy(f) = Dg,(f) for every f in 2(@p-1e,, . . . , Op-1c,),
Pas,...0.(q %) is independent of the order of the indecis 4, . . ., 4.

CorOLLARY. Pg,.g,(qle), (1<id;, ..., is<p"; s=2), are abelian functions
in K, such that 910, 01(q|u)°® ¥g,..q.,(qlu) are theta functions of type (s, 1).

Proof. Since g, g, is an abelian function in K, such that g¢g, _ g (%)

=900, 01(ql %)’ ¥g;,_,5.(ql%) is a theta function of type (2,1), we see that
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Pgip..,0;, i an abelian function in K, and 800, 01(q|u)* Pg,...q;,(q]%) =IO,
01(ql#)*(Dg, Dy, - * * Dyg,,_,) (I3[0, 01(glu)*$q,,_ 4, (#)) is expressed as a series
m§ emufm). Hence 90, 01(ql#)°¥g,,...q,,(ql#) is a theta function of type
(s,ﬂla). This complete the proof of Corollary.

3.2. We shall now prove the following simple formula on a derivation of
a field of characteristic p, and shall apply it to the invariant derivations of K,
and the theta function 30, 01(q) ).

LemMma 2. If D is a derivation of a field of characteristic p, we have

(29) pri( By D) *Qf,%)f-

for every non-zero y.

Proof. It is sufficient to prove for y such that y, D(y), ..., D’(y) are
independent over the prime field. Since y?(D””'(y™'D(y)) is a polynomial in
y, D(y), ..., D?’(»), we may put

Dﬁ“l(_QLyl) — Df;‘f’y‘) + _i'l:‘%f,‘pch...ilel(y) o e e DP(.}’)

y b
. »
where the summation >} runs over {i, . ..,ip|0<i1< - -+ <ip, DG =p).
I =---=ip l=1
Since D? is also a derivation, operating D on D’ (»™'D(y)) and y 'D?(»),
we have
-1if DY) \\ _ s/ D(»)\ _ D*"'(3)y — D(»)D(»)
(5 2L - (D) - 2P0
and

D?() D?" ' (y) - D?(y)D(»)
D(__,,_?__): P (y ,y,,y )(y

This shows that

> Aci,...ipDil(y) -+« D¥(9)) =0.

=Sy

D(
Let us introduce the lexical order in the set { (s, . . ., ) [0<H1< * - <ip<p;
14 ) .
,2:-1""1 =p}. Let D'(y)- - - D’*(y) be the first term in the lexical order such that

¢+ 7,%0. Then D*(y) - - - D/*"*(y)D’**'(y) is the first term to appear in
DC 3 cii,D(y) - - - D?(»). Since D( 3} Cir..iy D () <+ - DP(¥)) =0,
1’: ll

= .
Q== n=o=i
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the multiplicity of D’?(y) in D*(y) - - - D’*(y) must be divided by p. On the
14 . .
othe hand le;:p, hence D’*(y) - - - D’?(y) = D(¥)®. Since D(y)? is the first
=1 .
term in 3 ¢, D"() - -+ D?(y), other terms D"(y) - -+ D*(y) satisfy
TE N T

1=

14 N .
1< < v v <ip. From Xlg=p it follows >} ¢i,..i,D"(y) - - - D*(y)
(=1 =iy

=¢D?(y) with a constant ¢. By the simple culculation we see ¢ = (—-1)?"'(p
—1)!. Since (p—1)! =.—1 mod p, we have c= —1. This shows

-1 D(») D?(9)y*™' ~ D(y)?
D? (_y_y) = «_,...y_%ﬂmm.-l’m

LemMMA 3. If D? =D, we have

(30) - Dw( Dj(’y) ) = ( D;y) )‘” -‘_Qj(’_y_l

This is an immediate consequence from Lemma 2.

3.3. Let us now apply the formula (29) to [0, 01(¢g|%) and Dg,, (1<I<p").

LemMma 4. D§,= Dy, D{ =Dy, (1<1<p").

Proof. Since Di(@p-1cj(qlu)) = 8ij0p1e,(qlu), we have DF(Dsp-1c;(qlu))
=0ijOp-1¢,(ql#) = Di(@p-1¢,(qlu)), (1<4, j<p"). This shows that the deriva-
tions D? — D; vanish on 2(@s-:c,, . . ., @p-1¢,), and thus they vanish on K,

r b r

Hence D?=D;, (1<i<7). Therefore D= (le;(ﬁﬂz)D;) = gxi(pﬁ:)pl)?
= le;( p9)D;=Dy,. Since D; can be considered the extension of D; to the
derivation of K,(%) such that Dj(#(m)) = x;(m)%(m) for me M, by the same

reason as D; we have Di¥ = D, (1<i<7), and thus D{ = Dj,.

Let us now culculate Dg, (800, 01)(qlx).

LeEMMA 5.
(B DRI, 0D(glw) = 33 (Zmlpm) x(p0)”) o0, 01(@” | w),
(32) D P30, 01) (gl %) = DE(S10, 01)(qlu),

1<1<p52=0,1,2,...).

Proof. (32) is an immediate consequence from (31). Since Di(u(m')

= x;(m) w(m) for me M and Dy, = i_‘;xi(PGI)D;, it follows
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D310, 01) (qlw)
= SxWDF(E 33 a(n o), p(n-+8)u(p(m+5))

= sz,(paz)x,(mh)“ Z a(p(m+8), p(m+65))u(p(m+8s))

=1i=1

= S (S m0o0) w50, 01(a? 0.

LemMa 6. (D30, 01)(gla)|11<i<r; 0<»<p—1} form a base of theta
Sfunctions of type (p, 1) with period q°.

Proof. By virtue of Lemma 5 we see
pr
Di*(S10, 01 (glw) = 23%:(p8s) 35084, 01(g”|w).

Since the (p”, p")-matrix (% (p84)*) of which ((i, »), h)-element is %(p8s)" is
non-singular, we see that {D;"(3[0, 0])(¢|%)} form a base of theta function of
type (p, 1) with period q" |

Since 900, 01(q|%) = Eﬂp[g;., 01(q?| ), putting D = Dg, and y = #[0,01(q | %)
in (30), we have

THEOREM 6.

(33) Por.alalw) = Xa(a®10)? = Xg(a® | w),

»

where

(Ex,(pgz) (960 )95Lon, 01(e” )
(34) Xo(q?|u) = S i

E 19p[gh , 0] (q’ | %)

1<1<ph)
COROLLARY 1.
(35) Tor...0q | u) = ¥q...0(qlu), 1<1<p"5v=1,2,...).

vtV v+l

Proof. 1t is sufficient to prove

(36) ng...gz(q lu) = Taala | ), a<gigy).

v+1

Since Tg...g alglu) = Dg,(rg, a(gl%)), by virtue of Theorem 6, we have

1’+1 P
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A b
vo..ailq|w) = Dy PalLo 01) (gl %) (Dgzw[o, 0])(q|u)) )

900, 01(q[=) 90, 0](q|=)

_ oy ( Du(B00, 01 (qlu) \ _
—Dg;\ 919[0, 01(q|u) >—?glﬂt(4|u)-

v+l

COROLLARY 2.

(87) Ta...alglu) = %xi(ﬁgl)'0°p—1ei...p—1e¢(q l2). (<i<ph.

v v

Proof. By virtue of Theorem 6, we have

_ (D300, 0D (ql®) \* _ D80, 01)(qlu)
Toalalw) = (Pl Srrn ™)~ P

14

( %) DASIO, 0])(q|u)> 32 %i(p6) Di(OL0, 01) (g )
S0, 01(q%) B S0, 01(qT=)

%i( P8P Pp-rcs..p-re,(q ] 20).
\_V__v

Since x($8;), (1<i<7), belong to the prime-field GF(p), we get (37).
We shall explain the meaning of the formula (33) in theory of separable

unramified covering of the abelian variety A, with period (E, q).

THEOREM 7.

(38) ng(q”lq”(ghm)=Xg,<q”|u)—gx,-(pm)x,-(pgh), (1<1, h<p).

Proof. From (34) it follows

»

234 58,) 5 (£04) 30, 01(q” | g”@n)n)
900, 01(ala?(8n)u)
Z:,in(ﬁgz)xi(.bgk) a(p(m +8e), p(m + 6))q(p8s, p(m+8)u(p(m + a))

=

i"M’

i

1

Xg,(qplq”(ﬁh)u) L

— f=1k=1 megn o
. 90, 01(q=)
r P
Ex(Pgl)xx(ng)q(Pgh, 291) " u( p85) " Ip[8k + 84, 01(g?| %)
B a(p3k, p8r)~"u(P8x) T IL0, 01(aln)
r "

%i( 98, %i( P8k — p8s) Fp[3k, 01 (¢ | u)

-
-
=

-

. 0, 01(q =)
r v
12,?3""1’90 %i(p9r) P58k, OJ(q”Iu)
T N (] R
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) gzs,,[gk, 01(¢? | u)
—_ (Z}x_,(j)gz) xi(l)gh) ) ,(9[0’ OJ(QI %)

= Xg(q® | q(@n) %) — éxi(pﬂz) %:(58n).

We denote by Kg» the field of abelian functions with coefficients in £ and
with period ¢?, and denote by A the abelian variety with period g,. Then
from Theorem 6 and 7 it follows

TueoreM 8. Kpo/K, is a separable abelian extension of type (p, ..., p)

generated by the quantities Xp—1e,(qpln), . . ., Xp-re, (g°|u) satisfying

Xp—lei(Qé | u)p - Xp-le,-(q l u) = Tp*lei ..... bt e,-(q l u)y
14

Xp-10,(g° 1 @° @) n) = Xp-1¢,(q%| ) — %:(p81),
(1<i<r; 1KIL<P).
Proof. Let {Xp-1e,(g°|%)} be the quantities in Theorem 6. It is sufficient

to prove Kgp=K(Xp-1e,(@®|n), ..., Xp-cld’|n)). Since Xp-1¢,(q”|u)
= DH([0, 01)(ql»)d[0, 01(g|%) ", we have

D300, 01)(qlu)
J[0, 01(ql=)

_ D/.(\_,DJ;(?,@,..._OJ,(q_ly? ) (_Qf;(_l’l[_o-,_ 0.]._?,‘_4._|y2_>2
TN IL0, 0)(gln) [0, 01(gq|«)

= D,"(Xp—xei(qplu)) + Xp—xc,-(gplu)z
- D:'(Tp-l e,-,...,p-le,(ql %)) + Xp—lei(qpl u)z-

This shows that D?($[0, 01)(gl#)d[0, 01(ql#)™, (1<i<7r), belong to
Ky Xp-1e,(@® ), . .., Xp-1e,(g®|%)). Hence by virtue of Lemma 6 it follows
that

Dp-1e,(g® | ) = 3L p 7 e, 01(g? | %) /I3[0, 01(g? %), (1<i<7),

belong to Ko(Xp-1e,(g?%), . .., Xp-1e,(¢g’|u)). By virtue of Theorem 3 in
§3 (I) Kp is separable over 2(@p-ic(q®|u), ..., Op (g°|w)). Hence
Kp| K Xp— (@®\u), . .., Xp-1 (g®|u)) is separable, and thus Kgp/K, is
seperable. On the other hand the natural homomorphism 1 of A, onto Aq
induced by the identity map ¥ -7 of multiplicative functions on T, has the
kernel A™*(0) with p"-elements corresponding to the multiplicative functions

a’(8), . .., q?@r). This means that the separable degree of Ky over K; is
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?", and thus [Kp: K1 =2". By virtue of Theorem 7 it follows [Ky(Xp-1 ,(g” | %),
.oy Xp-1 )4l w) 0 K.l=2". Hence we conclude Kp = Ky(Xp-: ,(¢?lu), . . .,
Xp-1 (g?l ).
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