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REMARKS ON k-LEVIFLAT COMPLEX MANIFOLDS
B. GILLIGAN AND A. HUCKLEBERRY

0. Introduction. In the theory of functions of several complex variables
one is naturally led to study non-compact complex manifolds which have
certain types of exhaustions. For example, on a Stein manifold X there is a
strictly plurisubharmonic function ¢: X — R* so that the pseudoballs
B. = {¢ < ¢} exhaust X. Conversely, a manifold which has such an exhaustion
is Stein. The purpose of this note is to study a class of manifolds which have
exhaustions along the lines of those on holomorphically convex manifolds,
namely the k-Leviflat complex manifolds. Unlike the Stein case, the Levi form
may have positive dimensional 0-eigenspaces. In the holomorphically convex
case these are tangent to the generic fiber of the Remmert reduction.

Definition. A complex manifold X is said to be k-Leviflat if it possesses a
proper exhaustion function ¢: X — R* so that for ¢ >0 and for every
p € {¢ = ¢} the Leviform L(¢)(p) (i.e. the full complex IHessian of ¢ restricted
to the complex tangent space of thé surface {¢ = ¢} at p) is positive semi-
definite with rank & — 1.

If £ = u, then the hypersurfaces {¢ = ¢} above can be defined by strictly
plurisubharmonic functions. In this setting it is a well-known (although deep)
fact that X is a proper modification of a Stein space |4]. For & < #n it is clear
that X is not a Stein space. In fact, there exist at most % analytically indepen-
dent holomorphic functions on a k-Ieviflat manifold [9].

Furthermore, it is quite possible for a given k-Leviflat manifold to possess
no non-constant holomorphic functions. This is precisely the case for ‘‘reduced
groups’’ C"/T,,,, where T,,, is a lattice of rank n -+ m and 0 < m £ n (see
[13]). So, contrary to the case when & = #, if £ < n then X may or may not be
holomorphically convex.

The first part of this paper is devoted to giving necessary and sufficient
conditions for a k-Leviflat manifold to be holomorphically convex. For a
statement of this theorem we need the notion of the rank of a function algebra:
Let A4 be a set of holomorphic functions on a complex manifold X and let
x € X. Then the level set of 4 at x is

L(A).;: ={y ¢ X|f(y) = f(x) forall f € A}.

It turns out that L(A), is an analytic subvariety of X and the rank of 4 ut x,

Received February 23, 1978. This research was partially supported by NRC Operating
Grant A-8739 and by NSF Grant MCS 75-07086A01.

881

https://doi.org/10.41 53/CJM—1 979-083-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-083-1

882 B. GILLIGAN AND A. HUCKLEBERRY

rank,4, is defined to be the codimension of L(A4), at x. Moreover rank A4:
= max,cy(rank,4).

THEOREM 1. Let X be a k-Leviflat complex manifold. Then X is holomorphically
convex if and only if rank, 0 (X) = k for all x in some neighborhood of infinity.

This theorem was proved in [7] under rather strong additional assumptions
on the exhaustion (e.g. plurisubharmonic!).

The theory of k-Leviflat manifolds is certainly not void of examples (e.g. see
(7], [9], [10]). However the interesting such seem to be either holomorphically
convex or every holomorphic function is constant. Of course it is possible to
make trivial combinations of these. But there are numerous non-trivial
examples (in fact big classes of complex homogeneous spaces) which are
k-Leviflat, but where the holomorphic separation map (see [3]) is not proper
and 0 < rank@ (X) < k. The second point of this note is to give a detailed
description of one such homogeneous space.

The third point of this paper is to make some remarks which pertain to
mapping properties of bounded domains in k-Leviflat spaces. 1t is known that
if @ is a bounded domain in a Stein manifold X and 99 is smooth, then  is not
equivalent to the total space of a holomorphic fiber bundle whose base and fiber
are positive dimensional [8]. Of course an example of this is the fact that the
ball and the polydisk in C" are inequivalent. Now many k-Leviflat manifolds
arise as bundle spaces and in fact contain bounded domains which are them-
selves disk bundles. Hence the above inequivalency theorem can not be carried
over verbatim. However we are able to prove the following:

THEOREM 2. Let X be a k-Leviflat manifold and @ C C X be a bounded domain
with dQ smooth. Assume that Q s big enough to have non-empty intersection with
the region of X where the hypersurfaces {¢ = c} are k-Leviflat. Then Q is not
holomorphically equivalent to the total space E of a holomorphic fiber bundle
F — E —B where codimg [l and codimeB are both less than k.

We note that the trivial product of a k-dimensional ball and any compact
complex manifold of dimension n — k, where n = 2k, shows that the inequali-
ties on codimension are both needed. We also remark that the Stein case
(i.e. n-Leviflat) is contained in this theorem, because the codimension con-
ditions reduce to the base and fiber being positive dimensional.

A key ingredient for all of the above is that the k-Leviflat hypersurfaces
{¢ = ¢} are compact CR-manifolds which are foliated by (# — k)-dimensional
complex manifolds. Such foliations have not been studied in great detail, but
the standard examples have vector spaces or parabolic manifolds (e.g. C*) as
leaves. We end this paper by noting a rather general procedure by which one
can generate k-Leviflat manifolds where the typical leaf of the CR-foliation can
be chosen from a very large class; in particular it could be hyperbolic. This says
that the classical argument for the non-existence of analytic functions (e.g.
“Grauert’s example’’, [5]) which uses the parabolic nature of the leaves does
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not work in general. It in fact seems necessary to use something like the func-
tion algebra techniques of [9].

1. The proof of theorem 1. Up to a certain point, the proof is the same as

in [7]. Thus we try to be as brief as possible. We begin by collecting some func-
tion algebra facts. If K is a subset of a complex space, then the analytic
dimension of K is the smallest integer k such that K is contained in a countable
union of k-dimensional local analytic sets. If K is a compact subset of G™ with
analytic dimension k and S is the Shilov boundary of ¢ (K), then S also has
analytic dimension k. This is a consequence of a much more general theorem
in [7].

Let X be an n-dimensional, k-Leviflat manifold with exhaustion function
¢e: X > R*. Let B.: = {¢ < ¢} and S.;: = {¢ = ¢} be the pseudoball and
pseudosphere of radius ¢ respectively. For ¢ large enough, S, is a k-Leviflat
hypersurface and is therefore foliated by (n — k)-dimensional complex mani-
folds (see [2] for basic properties of such foliations). Our first goal is to prove
that if rank,@ (X) = k for all ¥ near infinity, then X is holomorphically
convex. For this we first note that there is a holomorphic separation map

F: X — G n = dimgX,

such that F(x) = F(y) exactly when f(x) = f(y) for every f € 0 (X). From
now on we assume that for x € X\B,, the rank of F at x is k, and that for
¢ = ¢o we also have S, a k-Leviflat hypersurface.

The main idea of the proof of this direction of the theorem is to show that
the leaves of the foliation of S, are compact and agree with the connected
components of the fibers of F. For this let K: = F(S,). Since rank F = k,
the analytic dimension of K is also k. Let.¥: = {x € X|rank(dF) < k}. Then
the analytic dimension of F(%’) is at most k¥ — 1. In particular, since the
Shilov boundary of & (K) has analytic dimension k, there is a peak point
g € K\F(¥). Let p € S,besuch that F(p) = ¢q. Denote by #,, the leaf of the
foliation which contains p. If F|.#, were non-constant, then K would contain
a local analytic set through ¢. This can’t happen, because ¢ is a peak point. So
F('/ﬂp) = {q}.

Now let % be the union of the leaves of the foliation of .S, which do not
intersect . and which are compact. Obviously the above #, is contained in
& . If #, is any leaf in &, then the connected component. % , of the fiber of
F at x must coincide with _#,. Thus there is a neighborhood U of such an.#,
and a neighborhood U’ of F(x) in G*"*! so that F|U: U — U’ is a proper map
[14]. We may take U small enough so that U M. = @.

We want to show that the fibers of F|U which have non-empty intersection
with S, in fact coincide with leaves of the foliation of S.. Suppose there is such
a fiber % ,, vy € S,, which has non-empty intersection with S,. for some ¢’ > ¢.
By taking ¢’ larger if necessary, we may assume that maxe¢|#, = ¢. Further
we may take a curve x,, 0 <t < 1, in .S, so that xy = x, x; = y and such that
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max<p|9~_,,t < ¢ for all t < 1. Let ¥ € %, be such that ¢(y') = ¢’. Since
F,NY =0, we may choose coordinates zi, . .., 2, in a polydisk neighbor-
hood A of ¥’ so that

Fo N A= {(z:t),...,z0)} X A,
where A’ is the (n — k)-dimensional polydisk
{(Zk,‘,], N ,Zn)l ]Z]'| <1 for all]}, t > [{).

Now we can redefine the hypersurface {¢ = ¢’} by a Diederich-Fornaess ex-
haustion ¢ [1], where ¢ is continuous on AN {¢ < ¢’} = {Y £ 0} and ¢ is
strictly plurisubharmonic and negative on A M {o < ¢} = (Y < 0}.

Now let ¢, be the function defined on A" by restricting tof/‘_rl M Ain the
obvious way, t, < t < 1, and let r,: = sup,<,(¥,). Since {r,} is a hounded,
non-decreasing sequence of subharmonic functions, the limit r: = lim, 7,
exists and is subharmonic. But 7(0) = 0 = supa: 7. So r = 0. Thus.% , N
A C S, and consequently %, = %, = M, . Since % , has non-trivial inter-
section with .S, this is contrary to ¢’ > ¢. Thus for all y € UM S, we have
%, C B.. An argument exactly the same as the above leads to a contradiction
under the assumption that.#,  S..

We have now shown that if #, is a leaf in %', then for every y ¢ UN S, it
follows that.% , is contained in %" and thus #, = .% , is compact. Hence % is
open. Now if /1 = S\% had interior, then we could apply the same argu-
ment as above (e.g. K: = F() has analytic dimension k, etc.). Thus we
would find a compact leaf in .4 which hasempty intersection with.%. But such
a leaf must be in %. Hence % is also dense.

Let.#, be an arbitrary leaf in S,. Since % is dense,.#, is locally the limit
of compact leaves on which I is constant. Thus I is constant on .#, and,
since rank,/” = k, it follows that .#, is compact. Ience every leaf of the
foliation of S, is compact.

If a branch & of a fiber of I’ were transversal to some S,, ¢ > ¢y, then &
would have non-empty intersection with infinitely many of the compact leaves
of the foliation of S.. This can’t happen, because rank, /" = k for all x ¢ S,.
Therefore, for x € X\B,,, the component.% , of the fiber of I at x and the leaf
A, must coincide. Furthermore, for all x € X, the component .# , must be
compact. In particular we have the Stein factorization of F, o: X — X',
where X’ is a normal complex space and ¢ is a proper, surjective holomorphic
map whose fibers are just the connected components of the fibers of F. Note
that X’\¢ (B,) must be a manifold, because on X\B, the fibers of ¢ are just the
leaves of the foliations. Moreover there is an exhaustion ¢': X’ — R+ of X’
so that on X\B, we have ¢ = ¢’ 0 ¢. Thus the Levi form of ¢’ is positive
definite on X'\¢(B,) and X’ must be Stein. Consequently X itself is holo-
morphically convex, and ¢: X — X’ is just the Remmert reduction.

We have shown that if X satisfies the rank condition, then it is holomor-
phically convex. Conversely if X is holomorphically convex, then the fibers of
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the separation map must be compact. Let # be a branch of such a fiber so that
maxe|Z4 = ¢ > ¢p. Then B C B, and # NS, D {p}. The existence of a
(k — 1)-dimensional positive eigenspace of L(¢)(p) rules out & being less
than k-codimensional. Thus if ¢(x) > ¢ then rank,F = k. But the general
results on analytic dependency show that rank F < k.

2. A homogeneous example. In this section we give an example of a
5-dimensional manifold X which is 3-Leviflat and which possesses only 2
independent holomorphic functions. The separation map realizes X as a
principal abelian group bundle over C* X C*. This bundle is not even topo-
logically trivial. The generic fiber of the separation map is a reduced group
having no non-constant analytic functions. The manifold X is homogeneous,
being realizable as C® modulo a certain elementary discrete group of affine
transformations. Although we only give this one example, we note that there
1s obviously a large class of such Leviflat afine manifolds.

Let
1 21 23 25
. )0 1 2z oz -
0O 0 o0 1

It is obvious that G is a nilpotent complex Lie group with underlying manifold
C®. Our example X will be G/ T, where I' where isa certain discrete subgroup of G.
At this point we should note that a structure theorem for nilpotent homogeneous
spaces (i.e. G/H, where G is a connected nilpotent complex Lie group and H
is a closed subgroup) has been proved in [3]: Let X = G/H, where G is nil-
potent. Then there exists a closed subgroup J in Gso that J D H,G/H — G/J
is the holomorphic separation map, J/H is a principal abelian group tower with
O (J/H) = G, and G/J is a Stein principal abelian group tower.

Let ¢;, 1 £ ¢ = 5, be the element of G which has 6;; in the spot for the
z;-variable. Let

1 0 a 1 1 6 17 0
fo10 0y _ [o100
“"loo1 of ¥loo1 o) »ERQ

000 1 000 1

and let T be the discrete subgroup of G generated by the e¢;'s, v and 6. If
f € O(G/T), then its lift to G (which we also denote by f) must be periodic
under the action of T. The fact that f must be periodic under the action of the
subgroup generated by e3, ¢;, and v implies that f is a constant function of z3
and z;. Hence the periodicity with respect to e, and § further shows that f is
independent of z;.

We have shown that f being periodic under the action of T reduces to saying
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that f depends only on 2z, and z4, and that f(z: 4+ n, 2, + m) = f(z., 2,) for all
integral # and m. In particular if X: = G/T, then rank? (X) = 2. The holo-
morphic separation map is G/T' — G/J, where J/ = L - T and

1 21 23 25
01 0 0

L=<to 0o 1 o] =€C
00 0 1

This realizes X as a holomorphic fiber bundle over C* X C* whose fiber is
the reduced group L/L M T which is equivalent to C? modulo the lattice

I" = <<]-v Oy O)v (Oy 17 O)y (01 Ov 1)7 (07 a, i(l)» ([)y iy O>>Z'

An easy calculation using the natural exhaustion by tube neighborhoods about
the maximal compact subgroup shows that the fiber C3/T" is itself 1-Leviflat
and possesses no non-constant holomorphic functions.

Before constructing a 3-Leviflat exhaustion of X, we would like to point out
that X and its flatness arose in a non-trivial way. In particular the bundle
.

X =G/T -G/J =C*XC*

is not even topologically trivial. To see this just note that if it were trivial,
then X would be homotopic to a real torus, and thus 7 (X) would be abelian.
However T'is a non-abelian group.

We will now construct the exhaustion ¢. Let 2 = (21, ..., 2;) € G = G¥,
where the group operation is given by the matrix multiplication above. The
group T “spans’ a connected real subgroup G of G so that T C G and G/T
is compact [12]. If z; = x; + 1y;, then

z = Z;=1 X4€; + iylieii + iyﬁ()’.") + iyl()/l + iy‘zez + l.yl(fl

with the first three terms in G, and the last three terms normal to G. Define
ez, ..., 2) = (3) + (v)2 + (v)2 It is easy to check that ¢ is G-invar-
iant. Hence ¢ pushes down to an exhaustion of the quotient ¢: G/T' — R+,
One should think of the pseudoballs as tubular neighborhoods of G/T' in X.

The full complex Hessian of ¢ computed in the coordinates (zy, ..., 2;5) of
the universal cover G is always the constant diagonal matrix d(1/2,1/2,0, 1/2,
0). Since the pseudospheres are all foliated by leaves corresponding to the space
(e3, e5)¢ in G, and since the rank of the full Hessian is always 3, it is clear that
the rank of the Levi form is always 2. Hence the exhaustion ¢: X — R+
realizes X as a 3-Leviflat manifold.

3. Proof of theorem 2. Let F — E — B be a holomorphic fiber bundle with
entire space E, base B, and fiber F. Let X be a complex manifold and @ C X
a bounded domain in X with 9Q at least twice differentiable. Suppose that
p € dQissuch that the Levi form of a defining function ¢ for dQ in a neighbor-
hood U of p has rank k£ — 1 at . The main remark of thissection is the following.
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ProrositioN. Let F — E — B, X, and Q be as above and suppose that Q s
holomorphically equivalent to E. Then either codimgF = k or codimgB 2 k.

Proof. We take (z1,...,2,) to be coordinates on a polydisk neighborhood
U of p, where p corresponds to 0 and the function ¢: U — R defines 40 N U

Gie. ONU =1{p =0}, 0N U= {p <0}, and dp # 0 on U). Since
rankL(¢)(0) = k — 1, we may choose the coordinates so that if H =
{2500 =0,...,3, =0}, then 90N\ (HN U) is a strongly pseudoconvex
hypersurface in H M U. Suppose codimgF < k. For ¢ € @ we may use the
assumed holomorphic equivalence to speak of the fiber F, of E through q. If
g € H, then dimg(F, N\ H) = 1.

To simplify notation, let U' = HN U, ¢ = QN U’, ¢’ be the restricted
defining function, and for ¢ ¢ U’ let ¥,/ = F, N\ U’. Let F, be the closure of
F, in €. Suppose that for all ¢ € U’ no point of {¢’ = 0} is in F,”. This will
lead to a contradiction: Let f € & (U’) be a peaking function at 0 satisfying
fO) =1, |fle=1,|flovne = 1/2 (| f|s denotes the sup-norm of f on the
set S.). Hence, for ¢ € U’ sufficiently near 0, f |F,/ must take its maximum at
an interior point of F,/. This is the desired contradiction. So some point in
dQ, which we might as well assume is 0, is in the closure of some F,’.

Now let m: £ — B be the bundle projection, F, = #='(b), and W be a
neighborhood of b in B so that there is a polydisk A of the appropriate dimen-
sion and a holomorphic trivialization 7: F X A — 7#—'(WW) of the bundle over
W with 7(F X {0}) = F,. Let {x,} C F be a sequence so that 7(x,, 0) =
pm — p. Let 7,,: A — Q be defined by z — 7(x,, 2). By Montel’s Theorem, a
subsequence r,,, converges compactly toa map 7': A — 9Q with 7°(0) = p.

We will now suppose that codimgB < k and derive a contradiction. Under
this assumption, the fact that L(¢)(p) has rank & — 1 at p implies that
rank:d7" < dimgA for all £ € A. By taking A smaller if necessary we may
assume that 7°(A) C U. Letting (¢, ..., &) be the coordinates of A and
T = (t,...,t,), we have the jacobian matrix (9¢;/9¢;). Let D(T) be the
determinant of any one of the (¢ X d)-minors of this jacobian. It is clear that
D(T) = 0. Furthermore if x, is any sequence in F,” with x,, — x € 02/, then
the rank of any limiting map can not be maximal and thus any (d X d)-minor
must vanish identically.

Let p’ € F,/. Then we can write 7(p’, £) = (71(¢), ..., 7%(¢)) and consider
any associated function D(p"): = D(r)(p’, 0) as a holomorphic function of p’
in F,/. Clearly D(x,,) — 0 as x,, = x € 8Q'. Now let f € & (U’) be a peaking
function at 0: f(0) = 1, [f|e = 1,|flovrne = 1/2. Let K be the closure of
F,/in @ and suppose that D is not identically zero on K. Define

Let K" = KN {f > 4/5}. Note that &, = 0 on Q" N K. Hence
|hn'K = |hnlaU’ﬂK é (2/3)n
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Then i, =0 as n — o0. But if x € K’, then [k, (x)] > (16/15)" — 0. Since
K’ # 0, this is the desired contradiction. That is, we have shown that if
codimgF < k then codimgB = k.

The proof of Theorem 2 is now quite simple: Let @ be a relatively compact
bounded domain in a k-Leviflat manifold X so that dQ is at least twice dif-
ferentiable. Further assume that ¢: X — R+ is the k-Leviflat exhaustion of X
and that maxe|Q = ¢; > ¢, where S, is k-Leviflat for all ¢ > ¢,. Then in par-
ticular there exists p € dQ so that ¢(p) = ¢;. Thus L) (p) has at least a
(k — 1)-dimensional positive eigenspace, where ¢ is a defining function for
dQ near p. The proof is now immediate from the above proposition.

Remark 1. In the known examples the assumption that Q is big enough to
get into the k-Leviflat range of ¢ seems to always be satisfied, hecause .S, is
k-Leviflat for all ¢ > 0 and {¢ = 0} has no interior.

Remark 2. In the next section we note how to construct a number of k-
Leviflat manifolds which contain holomorphically fibered bounded domains.
But in fact both inequalities of Theorem 2 are violated.

4. Some examples. In this section we want to point out that there are many

possibilities for leaves in the k-Leviflat hypersurfaces. In particular it is quite
possible to have hyperbolic manifolds (see [11] for generalities) as leaves. Thus
any argument using Liouville’s Theorem on the leaves will not work in general.
Our examples will arise as foliated bundle spaces. This type of example is
well-known in the differentiable setting.

Let X be a compact complex manifold, S' be the circle group, and let
p: m1(X) — S! be a representation. If .U is the universal cover of X, then one
can construct a line bundle on X as follows:

where # is the standard projection, (%, 2) ~ (7, £) whenever ¥ = v () and
£ = p(y Yz forsomey € (X),and ris the induced map. It is easy to check that
7: L. — X is a holomorphic line bundle which is trivial over a cover { U} so that
the transition functions {f;;} are constant with modulus 1. Thus the trivial
functionshy: = 1 € C°(U,)satisfy b, = | fi;]72h;on U; M U, and consequently
they yield a hermitian metric on L.

Let ¢: L — R* be the exhaustion of L given by this metric (i.e. ¢(p) =
log||p]]?). Since up to appropriate constants the Levi form of the exhaustion
and the Chern form c¢(L) of the bundle relative to this metric are just
ddlog (h;), it is clear that ¢(L) = 0 and that the exhaustion realizes L as a
1-Leviflat complex manifold.

Let S: = {¢ = 1} be the unit pseudosphere in L. Then S is foliated by
complex manifolds which have real codimension 1 in S. Let .# be a leaf of this
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foliation. Then w|#: A4 — X realizes # as a covering space of X. Let \ be a
closed loop in.# (with hase point x,). Then y: = w()\) is a closed loop in X
such that p(y) = 1 € S' (This follows directly from the definition of the bundle,
because N\ begins and ends at x,.). So in particular if =;(X)/ker(p) is non-

trivial, then .# is a non-trivial cover of X. For example, if b,(X) % 0, then
one can always represent H,(X, Z) faithfully (i.e. ker(p) = [m;: m]) and thus
the cover.# — X is infinite, implying the non-compactness of 4.

If 71 (X)) is abelian, then the above observation shows that one can construct
L so that the leaf # is the universal cover X of X. Now if 4 is an abelian
variety of dimension at least 3 in some projective space and X is a complete
intersection in 4 given by hyperplanes with dimgX = 2, then an application
of the Lefschetz Theorem shows that m(X) is a free abelian group. Hence
M = X is non-compact. Furthermore, if 4 is simple (so that X can’t be a
torus), then recent work of Green [6] proves that X is hyperbolic.

As a closing remark we note that if =;(X) is nilpotent, then one can construct

a non-trivial tower of line bundle spaces (corresponding to the central series of
w1 (X)) which is k-Leviflat.

REFERENCES

1. K. Diederich and J. E. Fornaess, Pseudoconvex domains: Bounded strictly plurisubharmonic
exhaustion functions, Inv. Math. 39 (2) (1977), 129-141.
2. M. Freeman, Local complex foliations of real submanifolds, Math. Ann. 209 (1974), 1-30.
3. B. Gilligan and A. Huckleberry, On non-compact complex nil-manifolds, (to appear).
4. H. Grauert, On Levi's problem and the imbedding of real-analytic manifolds, Ann. Math. 68
(1958), 460-472.
5. ——— Die Bedeutung des Levischen Problems fiir die analytische und algebraische Geometrie,
Pro. Int. Cong. Math. Stockholm (1962), 86-101.
6. M. Green, Holomorphic maps into complex tori, (to appear in Amer. J. of Math.)
7. A. Huckleberry, The Levi problem on pseudoconvex manifolds which are not strongly pseudo-
convex, Math. Ann. 219 (1976), 127-137.
— Holomorphic fibrations of bounded domains, Math. Ann. 227 (1977), 61-66.
9. A. Huckleberry and R. Nirenberg, On k-pseudoflat complex spaces, Math. Ann. 200 (1973),
1-10.
10. H. Kazama, On pseudoconvexity of complex abelian Lie groups, J. Math. Soc. Japan, 25 (2)
(1973), 329-333.
11. S. Kobayashi, Hyperbolic manifolds and holomorphic mappings (Marcel Dekker, Inc., New
York, 1970).
12. Y. Matsushima, On the discrete subgroups and homogeneous spaces of nilpotent Lie groups,
Nagoya Math. J. 2 (1951), 95-110.
13. A. Morimoto, Non-compact complex Lie groups without non-constant holomorphic functions,
Proceedings of the Conference on Complex Analysis, Minneapolis (1964), 256-272.
14. K. Stein, Analytische Zerlegungen komplexer Raume, Math. Ann. 132 (1956), 63-93.

@

University of Regina,
Regina, Saskatchewan;
University of Notre Dame,
Notre Dame, Indiana

https://doi.org/10.4153/CJM-1979-083-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-083-1

