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Abstract
In small samples, maximum likelihood (ML) estimates of logit model coefficients have substantial bias
away from zero. As a solution, we remind political scientists of Firth’s (1993, Biometrika, 80, 27–38)
penalized maximum likelihood (PML) estimator. Prior research has described and used PML, especially
in the context of separation, but its small sample properties remain under-appreciated. The PML estimator
eliminates most of the bias and, perhaps more importantly, greatly reduces the variance of the usual ML
estimator. Thus, researchers do not face a bias-variance tradeoff when choosing between the ML and PML
estimators—the PML estimator has a smaller bias and a smaller variance. We use Monte Carlo simula-
tions and a re-analysis of George and Epstein (1992, American Political Science Review, 86, 323–337)
to show that the PML estimator offers a substantial improvement in small samples (e.g., 50 observations)
and noticeable improvement even in larger samples (e.g., 1000 observations).

Keywords: Maximum likelihood estimation (MLE)

Logit and probit models have become a staple in quantitative political and social science—
nearly as common as linear regression (Krueger and Lewis-Beck, 2008). And although the
usual maximum likelihood (ML) estimates of logit and probit model coefficients have excellent
large-sample properties, these estimates behave quite poorly in small samples. Because the
researcher cannot always collect more data, this raises an important question: How can a
researcher obtain reasonable estimates of logit and probit model coefficients using only a small sam-
ple? In this paper, we remind political scientists that Firth’s (1993) penalized maximum likelihood
(PML) estimator greatly reduces the small-sample bias of ML estimates of logit model coefficients.
We show that the PML estimator nearly eliminates the bias, which can be substantial. But even
more importantly, the PML estimator dramatically reduces the variance of the ML estimator. Of
course, the inflated bias and variance of the ML estimator lead to a larger overall mean-squared
error (MSE). Using an example from published research (George and Epstein, 1992), we illustrate
the differences in the ML and PML estimators. Moreover, we offer Monte Carlo evidence that the
PML estimator offers a substantial improvement in small samples (e.g., 100 observations) and
noticeable improvement even in large samples (e.g., 1000 observations).

1. The big problem with small samples
When working with a binary outcome yi, the researcher typically models probability of an event,
so that

Pr(yi) = Pr(yi = 1|Xi) = g−1(Xib),
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where y represents a vector of binary outcomes, X represents a matrix of explanatory
variables and a constant, b represents a vector of model coefficients, and g−1 represents some
inverse-link function that maps R into [0, 1]. When g−1 represents the inverse-logit function
logit−1(a) = 1/(1+ e−a) or the cumulative normal distribution function
F(a) = �a

−1 (1/
����
2p

√
)e−(x2/2)dx, then we refer to Equation 1 as a logit or probit model, respect-

ively. To simplify the exposition, we focus on logit models because the canonical logit link
function induces nicer theoretical properties (McCullagh and Nelder, 1989: 31–32). In practice,
though, Kosmidis and Firth (2009) show that the ideas we discuss apply equally well to probit
models.

To develop the ML estimator of the logit model, we can derive the likelihood function

Pr(y|b) = L(b|y) =
∏n
i=1

1
1+ e−Xib

( )yi

1− 1
1+ e−Xib

( )1−yi
[ ]

and, as usual, take the natural logarithm of both sides to obtain the log-likelihood function

log L(b|y) =
∑n
i=1

yi log
1

1+ e−Xib

( )
+ (1− yi) log 1− 1

1+ e−Xib

( )[ ]
.

The researcher can obtain the ML estimate b̂mle by finding the vector b that maximizes log L
given y and X (King, 1998).1

The ML estimator has excellent properties in large samples. It is asymptotically unbiased, so
that E(b̂mle) ≈ btrue when the sample is large (Casella and Berger, 2002: 470; Wooldridge, 2002:
391–395). It is also asymptotically efficient, so that the asymptotic variance of the ML estimate
obtains the Cramer–Rao lower bound (Casella and Berger, 2002: 472, 516; Greene, 2012: 513–
523). For small samples, though, the ML estimator of logit model coefficients does not work
well—the ML estimates have substantial bias away from zero (Long, 1997: 53–54).

Long (1997: 54) offers a rough heuristic about appropriate sample sizes: “It is risky to use ML
with samples smaller than 100, while samples larger than 500 seem adequate.”2 This presents the
researcher with a problem: When dealing with small samples, how can she obtain reasonable esti-
mates of logit model coefficients?

2. An easy solution for the big problem
The statistics literature offers a simple solution to the problem of bias. Firth (1993) suggests pen-
alizing the usual likelihood function L(b|y) by a factor equal to the square root of the determinant
of the information matrix |I(b)|1/2, which produces a “penalized” likelihood function
L∗(b|y) = L(b|y)|I(b)|1/2 (see also Kosmidis and Firth 2009; Kosmidis 2014).3 It turns out
that this penalty is equivalent to Jeffreys’ (1946) prior for the logit model (Firth 1993; Poirier
1994). We take the natural logarithm of both sides to obtain the penalized log-likelihood function:

log L∗(b|y) =
∑n
i=1

yi log
1

1+ e−Xib

( )
+ (1− yi) log 1− 1

1+ e−Xib

( )[ ]
+ 1

2
log |I(b)|. (1)

1In practice, we use iteratively reweighted least squares to fit logit models in this paper, the default behavior of glm() in R.
2Making the problem worse, King and Zeng (2001) point out that ML estimates have substantial bias for much larger

sample sizes if the event of interest occurs only rarely.
3The statistics literature offers other approaches to bias reduction and correction as well. See Kosmidis (2014) for a useful

overview.
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Then the researcher can find the PML estimate b̂pmle by finding the vector b that maximizes
log L∗.4,5

Zorn (2005) suggests PML for solving the problem of separation, but the broader and more
important application to small sample problems seems to remain under-appreciated in political
science.6 Most importantly, though, we show that the small-sample bias should be of secondary
concern to the small-sample variance of ML. Fortunately, PML reduces both the bias and the
variance of the ML estimates of logit model coefficients.

A researcher can implement PML as easily as ML, but PML estimates of logit model coeffi-
cients have a smaller bias (Firth, 1993) and a smaller variance (Copas, 1988; Kosmidis 2007:
49).7 This is important. When choosing among estimators, researchers often face a tradeoff
between bias and variance (Hastie et al., 2013: 37–38), but there is no bias-variance tradeoff
between ML and PML estimators. The PML estimator exhibits both lower bias and lower variance.

Two concepts from statistical theory illuminate the improvement offered by the PML estimator
over the ML estimator. Suppose two estimators A and B, with a quadratic loss function so that
the risk functions RA and RB (i.e., the expected loss) correspond to the MSE. If RA ≤ RB for
all parameter values and the inequality holds strictly for at least some parameter values, then
we can refer to estimator B as inadmissible and say that estimator A dominates estimator B
(Leonard and Hsu, 1999: 143–146; DeGroot and Schervish, 2012: 458). Now suppose a quadratic
loss function for the logit model coefficients, such that Rmle = E[(b̂mle − btrue)2] and
Rpmle = E[(b̂pmle − btrue)2]. In this case, the inequality holds strictly for all btrue so that
Rpmle , Rmle. For logit models, then, we can describe the ML estimator as inadmissible and
say that the PML estimator dominates the ML estimator.

The intuition of the bias reduction is subtle. First, consider the source of the bias, illustrated in
Figure 1. Calculate the score function s as the gradient (or first-derivative) of the log-likelihood
with respect to b so that s(y, b) = ∇ log L(b|y). Note that solving s(y, b̂mle) = 0 is equivalent to
finding b̂mle that maximizes log L(b|y). Now recall that at the true parameter vector btrue, the
expected value of the score function is zero so that E[s(y, btrue)] = 0 (Greene, 2012: 517). By
the law of total probability, this implies that

E s(y, btrue)|s(y, btrue) . 0
[ ] = −E s(y, btrue)|s(y, btrue) , 0

[ ]
, (2)

which is highlighted by (i) in Figure 1.

4For details on numerical optimization of the log-likelihood and penalized log-likelihood functions, we refer readers to an
especially clear discussion in Gill (2000, Ch. 5) and the references therein and Kosmidis and Firth (2009: 799).

5One might also consider least squares (LS) in the context of small samples, even with a binary outcome. Indeed, in testing
the null hypotheses that an explanatory variable has no effect, LS and PML (with profile likelihood tests) perform nearly
identically. However, for a variety of reasons, researchers might like to obtain approximately unbiased estimates of logit coef-
ficients. We take this assumption as a starting point of our paper. Depending on the data, the correct model, and quantity of
interest, LS might offer a reasonable or terrible alternative to a logit model estimated with ML. For example, LS does a rea-
sonable job of estimating the average marginal effect (across all observations), but a horrible job of estimating risk ratios.
Given that substantive political scientists are increasingly critical of analyses that focus exclusively on p-values (King
et al., 2000; Rainey, 2014; Gross, 2015; McCaskey and Rainey, 2015), we view LS only as a non-default choice that only
works well in special cases.

6King and Zeng (2001), Zorn (2005), and Rainey (2016) each mention, but do not focus on, the small-sample properties of
PML. Although we are aware of many published papers that use PML to address the problem of separation (e.g., Barrilleaux
and Rainey, 2014; Leeman and Mares, 2014; Bell and Miller, 2015; Vining et al., 2015), and one published paper (Chacha and
Powell, 2017) and one unpublished paper (Kaplow and Gartzke, 2015) that use PML to address the related problem of rare
events (King and Zeng, 2001), we are aware of no published study in political science using PML for bias reduction specif-
ically in small samples in logit models. We are aware of one published paper using PML for bias reduction: Betz (2018) uses
PML to estimate a Poisson regression model.

7The PML estimates are easy to calculate in R using the logistf (Heinze et al., 2013) or brglm (Kosmidis, 2017a) packages
and in Stata with the firthlogit (Coveney, 2015) module. See the online appendix for examples.
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However, if the score function s is decreasing and curved in the area around btrue
j so that

s′′j = ∂2s(y, b)/∂2bj . 0 (see Figure 1), then a high miss s(y, btrue) . 0 (top dashed line in
Figure 1) implies an estimate well above the true value, so that b̂mle ≫ btrue, and a low miss
(bottom dashed line in Figure 1) s(y, btrue) , 0 implies an estimate only slightly below the
true value, so that b̂mle , btrue. In effect, the curved (convex) score function pulls low misses clo-
ser the true value and pushes high misses even further from the true value. This dynamic, which
is highlighted by (ii) in Figure 1, implies that low misses and high misses do not cancel and that
the ML estimate is too large on average. A similar logic applies for s′′j , 0. Therefore, due to the
curvature in the score function s, the high and low misses of b̂mle do not cancel out, so that
E(b̂mle

j ) . btrue
j when s′′j . 0 and E(b̂mle) , btrue

j when s′′j , 0. Cox and Snell (1968: 251–252)
derive a formal statement of this bias of order n−1, which we denote as biasn−1 (btrue).

Now consider the bias reduction strategy. At first glance, one may simply decide to subtract
biasn−1 (btrue) from the estimate b̂mle. However, note that the bias depends on the true parameter.
Because researchers do not know the true parameter, this is not the most effective strategy.8

However, Firth (1993) suggests modifying the score function, so that s∗(y, b) = s(y, b)− g(b),
where g shifts the score function upward or downward. Firth (1993) shows that one good choice
of g takes gj = (1/2)trace[I−1(∂I/∂bj)] = (∂/∂bj)( log |I(b)|). Integrating, we can see that solving
s∗(y, b̂pmle) = 0 is equivalent to finding b̂pmle that maximizes log L∗(b|y) with respect to b.

The intuition of the variance reduction is straightforward. Because PML shrinks the ML
estimates toward zero, the PML estimates must have a smaller variance than the ML estimates.
If we imagine the PML estimates as trapped between zero and the ML estimates, then the
PML estimates must be less variable.

Figure 1. Illustration of the source of the bias using the score functions for two hypothetical samples shown with dashed
lines. Notice that, when evaluated at btrue, the score functions cancel on average (Equation 2). However, the nonlinearity of
the score function pushes the ML estimate of the high miss (top line) relatively further from the true value. On the other
hand, the nonlinearity of the score function pulls the ML estimate of the low miss (bottom line) relatively closer.

8However, Anderson and Richardson (1979) explore the option of correcting the bias by using b̂mle − biasn−1 (b̂mle). See
Kosmidis (2014: esp. 190) for further discussion.
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What can we say about the relative performance of the ML and PML estimators? Theoretically,
we can say that the PML estimator dominates the ML estimator because the PML estimator has
lower bias and variance regardless of the sample size. That is, the PML estimator always outper-
forms the ML estimator, and least in terms of the bias, variance, and MSE. However, both esti-
mators are asymptotically unbiased and efficient, so the difference between the two estimators
becomes negligible as the sample size grows large. In small samples, though, Monte Carlo simu-
lations show substantial improvements that should appeal to substantive researchers.

3. The big improvements from an easy solution
To show that the size of reductions in bias, variance, and MSE should draw the attention of sub-
stantive researchers, we conduct a Monte Carlo simulation comparing the sampling distributions
of the ML and PML estimates. These simulations demonstrate three features of the ML and PML
estimators:

(1) In small samples, the ML estimator exhibits a large bias. The PML estimator is nearly
unbiased, regardless of sample size.

(2) In small samples, the variance of the ML estimator is much larger than the variance of the
PML estimator.

(3) The increased bias and variance of the ML estimator implies that the PML estimator also
has a smaller MSE. Importantly, though, the variance makes a much greater contribution
to the MSE than the bias.

In our simulation, the true data generating process corresponds to
Pr (yi = 1) = 1/(1+ e−Xib), where i [ 1, 2, . . . , n and Xb = bcons + 0.5x1 +

∑k
j=2 0.2xj, and

we focus on the coefficient for x1 as the coefficient of interest. We draw each fixed xj independ-
ently from a normal distribution with mean of zero and standard deviation of one and vary the
sample size N from 30 to 210, the number of explanatory variables k from 3 to 6 to 9, and the
intercept bcons from −1 to −0.5 to 0 (which, in turn, varies the proportion of events Pcons from
about 0.28 to 0.38 to 0.50).9

Each parameter in our simulation varies the amount of information in the data set. The bio-
statistics literature uses the number of events per explanatory variable (1/k)

∑
yi as a measure of

the information in the data set (e.g., Peduzzi et al., 1996; Vittinghoff and McCulloch, 2007), and
each parameter of our simulation varies this quantity, where (N × Pcons)/k ≈ (1/k)

∑
yi. For

each combination of the simulation parameters, we draw 50,000 data sets and use each data
set to estimate the logit model coefficients using ML and PML. To avoid an unfair comparison,
we exclude the ML estimates where separation occurs (Zorn, 2005). We keep all the PML esti-
mates. Replacing the ML estimates with the PML estimates when separation occurs dampens
the difference between the estimators and keeping all the ML estimates exaggerates the differ-
ences. From these estimates, we compute the percent bias and variance of the ML and PML esti-
mators, as well as the MSE inflation of the ML estimator compared to the PML estimator.

3.1 Bias

We calculate the percent bias = 100%× (E(b̂)/btrue − 1) as the intercept bcons, the number of
explanatory variables k, and the sample size N vary. Figure 2 shows the results. The sample
size varies across the horizontal-axis of each plot and each panel shows a distinct combination
of intercept and number of variables in the model. Across the range of the parameters of our sam-
ple, the bias of the ML estimate varies from about 122 percent (bcons = −0.5, k = 9, and N = 30)

9Creating a correlation among the xj ’s has the same effect as decreasing the sample size.
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to around 3 percent (bcons = −1, k = 3, and N = 210). The bias in the PML estimate, on the
other hand, is much smaller. For the worst-case scenario (bcons = −0.5, k = 9, and N = 30),
the ML estimate has an upward bias of about 122 percent, while the PML estimate has an upward
bias of only about 12 percent.10

3.2 Variance

In many cases, estimators tradeoff bias and variance, but the PML estimator reduces both. In add-
ition to nearly eliminating the bias, Figure 3 shows that the PML estimator also substantially
reduces the variance, especially for the smaller sample sizes. For bcons = −1 and N = 30, the
variance of the ML estimator is about 99, 178, and 436 percent larger than the PML estimator
for three, six, and nine variables, respectively. Doubling the sample size to N = 60, the variance
remains about 25, 58, and 117 percent larger, respectively. Even for a larger sample of N = 210,
the variance of the ML estimator is about 6, 10, and 14 percent larger than the PML estimator.11

3.3 Mean-squared error

However, neither the bias nor the variance serves as a complete summary of the performance of
an estimator. The MSE, though, combines the bias and variance into an overall measure of the
accuracy, where

MSE(b̂) = E[(b̂− btrue)2]

= Var(b̂)+ [Bias(b̂)]2.
(3)

Since the bias and the variance of the ML estimator exceeds the bias and variance the PML esti-
mator, the ML estimator must have a larger MSE, so that MSE(b̂mle)−MSE(b̂pmle) . 0.

Figure 2. Substantial bias of b̂mle and the near unbiasedness of b̂pmle.

10The online appendix shows the expected value and (absolute) bias of these estimates.
11The online appendix shows the variance inflation = 100%× (Var(b̂mle)/Var(b̂pmle)− 1).
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We care about the magnitude of this difference, though, not the sign. To summarize the mag-
nitude, we compute the percent increase in the MSE of the ML estimator compared to the PML
estimator. We refer to this quantity as the “MSE inflation,” where

MSE inflation = 100%×MSE(b̂
mle

)−MSE(b̂
pmle

)

MSE(b̂
pmle

)
. (4)

An MSE inflation of zero indicates that the ML and PML estimators perform equally well, but
because the PML estimator dominates the ML estimator, the MSE inflation is strictly greater than
zero. Figure 4 shows the MSE inflation for each combination of the parameter simulations on the
log10 scale. Notice that for the worst-case scenario (bcons = −1, k = 9, and N = 30), the MSE of
the ML estimates is about 721 percent larger than the MSE of the PML estimates. The MSE inflation
only barely drops below 10 percent for the most information-rich parameter combinations (e.g.,
bcons = 0, k = 3, and N = 210). The MSE inflation exceeds 100 percent for about 11 percent of
the simulation parameter combinations, 50 percent for about 21 percent of the combinations, and
25 percent for about 45 percent of the combinations. These large sacrifices in MSE should command
the attention of researchers working with binary outcomes and small data sets.

However, the larger bias and variance of the ML estimator do not contribute equally to the
MSE inflation. Substituting Equation 3 into Equation 4 for MSE(b̂

mle
) and MSE(b̂

pmle
) and

rearranging, we obtain

MSE inflation= 100%× Var(b̂ )

Var(b̂
pmle

)+ [Bias(b̂
pmle

)]2

︷���������������������︸︸���������������������︷contribution of variance

+100%× [Bias(b̂ )]2

Var(b̂
pmle

)+ [Bias(b̂
pmle

)]2

︷���������������������︸︸���������������������︷contribution of bias

−100%,

which additively separates the contribution of the bias and variance to the MSE inflation. If we
wanted, we could simply plug in the simulation estimates of the bias and variance of each

Figure 3. Smaller variance of b̂pmle compared to b̂mle.
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estimator to obtain the contribution of each. But notice that we can easily compare the relative
contributions of the bias and variance using the ratio

relative contribution of variance= contribution of variance
contribution of bias

. (5)

Figure 5 shows the relative contribution of the variance. Values less than 1 indicate that the bias
makes a greater contribution and values greater than 1 indicate that the variance makes a greater
contribution. In each case, the relative contribution of the variance is much larger than 1. For
N= 30, the contribution of the variance is between 4 and 17 times larger than the contribution
of the bias. For N= 210, the contribution of the variance is between 27 and 166 times larger than
the contribution of the bias. In spite of the attention paid to the small sample bias in ML esti-
mates of logit model coefficients, the small sample variance is a more important problem to
address, at least in terms of the accuracy of the estimator. Fortunately, the PML estimator greatly
reduces the bias and variance, resulting in a much smaller MSE, especially for small samples.

These simulation results show that the bias, variance, and MSE of the ML estimates of logit
model coefficients are not trivial in small samples. Researchers cannot safely ignore these pro-
blems. Fortunately, researchers can implement the PML estimator with little to no added effort
and obtain substantial improvements over the usual ML estimator. And these improvements are
not limited to Monte Carlo studies. In the example application that follows, we show that the
PML estimator leads to substantial reductions in the magnitude of the coefficient estimates
and in the width of the confidence intervals.

4. The substantive importance of the big improvements
To illustrate the substantive importance of using the PML estimator, we reanalyze a portion of the
statistical analysis in George and Epstein (1992).12 We re-estimate the integrated model of US

Figure 4. Percent increase in the MSE of b̂mle compared to b̂pmle.

12In the online appendix, we include a re-analysis of Weisiger (2014) with similar results.
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Supreme Court decisions developed by George and Epstein (1992) and find substantial differ-
ences in the ML and PML coefficient estimates and the confidence intervals.

George and Epstein (1992) combine the legal and extralegal models of Court decision-making in
order to overcome the complementary idiosyncratic shortcomings of each. The legal model posits stare
decisis, or the rule of law, as the key determinant of future decisions, while the extralegal model takes a
behavioralist approach containing an array of sociological, psychological, and political factors.

The authors model the probability of a conservative decision in favor of the death penalty as a
function of a variety of legal and extralegal factors. George and Epstein use a small sample of 64
Court decisions involving capital punishment from 1971 to 1988. The data set has only 29 events
(i.e., conservative decisions). They originally use the ML estimator, and we reproduce their esti-
mates exactly. For comparison, we also estimate the model with the PML estimator that we rec-
ommend. Figure 6 shows the coefficient estimates for each method. In all cases, the PML estimate
is smaller than the ML estimate. Each coefficient decreases by at least 25 percent with three
decreasing by more than 40 percent. Additionally, the PML estimator substantially reduces the
width of all the confidence intervals. Three of the 11 coefficients lose statistical significance.

Because we do not know the true model, we cannot know which of these sets of coefficients is
better. However, we can use out-of-sample prediction to help adjudicate between these two methods.
We use leave-one-out cross-validation and summarize the prediction errors using Brier and log
scores, for which smaller values indicate better predictive ability.13 The ML estimates produce a
Brier score of 0.17, and the PML estimates lower the Brier score by 7 percent to 0.16. Similarly,
the ML estimates produce a log score of 0.89, while the PML estimates lower the log score by 41
percent to 0.53. The PML estimates outperform the ML estimates for both approaches to scoring,
and this provides good evidence that the PML estimates better capture the data generating process.

Because we estimate a logit model, we are likely more interested in the functions of the coeffi-
cients rather than the coefficients themselves (King et al., 2000). For an example, we take George

Figure 5. Relative contribution of the variance and bias to the MSE inflation. The relative contribution is defined in
Equation 5.

13The Brier score is calculated as
∑n

i=1 (yi − pi)
2, where i indexes the observations, yi [ {0, 1} represents the actual out-

come, and pi [ (0, 1) represents the estimated probability that yi = 1. The log score as −∑n
i=1 log (ri), where

ri = yipi + (1− yi)(1− pi). Notice that because we are logging ri [ [0, 1],
∑n

i=1 log (ri) is always negative and smaller
(i.e., more negative) values indicate worse fit. Notice that we use the negative of

∑n
i=1 log (ri), so that, like the Brier score,

larger values indicate a worse fit.
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and Epstein’s integrated model of Court decisions and calculate a first difference and risk ratio as
the repeat-player status of the state varies, setting all other explanatory variables at their sample
medians. George and Epstein hypothesize that repeat players have greater expertise and are more
likely to win the case. Figure 7 shows the estimates of the quantities of interest.

The PML estimator pools the estimated probabilities toward one-half. When the state is not a
repeat player, the PML estimates suggest a 17 percent chance of a conservative decision while ML
estimates suggest only a 6 percent chance. However, when the state is a repeat player, the PML
estimates suggest that the Court has a 69 percent chance of a conservative decision compared to
the 68 percent chance suggested by ML. Thus, PML also provides smaller effect sizes for both the
first difference and the risk ratio. PML decreases the estimated first difference by 17 percent from
0.63 to 0.52 and the risk ratio by 67 percent from 12.3 to 4.0.

This example application clearly highlights the differences between the ML and PML estima-
tors. The PML estimator shrinks the coefficient estimates and confidence intervals substantially.
Theoretically, we know that these estimates have a smaller bias, variance, and MSE. Practically,
though, this shrinkage manifests in smaller coefficient estimates, smaller confidence intervals,
and better out-of-sample predictions. And these improvements come at almost no cost
to researchers. The PML estimator is nearly trivial to implement but dominates the ML
estimator—the PML estimator always has lower bias, lower variance, and lower MSE.

5. Recommendations to substantive researchers
Throughout this paper, we emphasize one key point—when using small samples to estimate logit
and probit models, the PML estimator offers a substantial improvement over the usual ML esti-
mator. But what actions should substantive researchers take in response to our methodological
point? In particular, at what sample sizes should researchers consider switching from the ML esti-
mator to the PML estimator?

5.1 Concrete advice about sample sizes

Prior research suggests two rules of thumb about sample sizes. First, Peduzzi et al. (1996) recom-
mend about ten events per explanatory variable, although Vittinghoff and McCulloch (2007) sug-
gest relaxing this rule. Second, Long (1997: 54) suggests that “it is risky to use ML with samples

Figure 6. Coefficients for a logit model estimating US Supreme Court Decisions by both ML and PML.
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smaller than 100, while samples larger than 500 seem adequate.” In both of these cases, the alter-
native to a logit or probit model seems to be no regression at all. Here, though, we present the
PML estimator as an alternative, so we have room to make more conservative recommendations.

On the grounds that the PML estimator dominates the ML estimator, we might recommend
that researchers always use the PML estimator. But we do not want or expect researchers to switch
from the common and well-understood ML estimator to the PML estimator without a clear,
meaningful improvement in the estimates. Although the PML estimator is theoretically superior,
it includes practical costs. Indeed, even though the R packages brglm (Kosmidis, 2017a), brglm2
(Kosmidis, 2017b), and logistf (Heinze and Ploner, 2016) and the Stata module FIRTHLOGIT
(Coveney, 2015) make fitting these models quick and easy, this approach might require research-
ers to write custom software to compute quantities of interest. Furthermore, the theory behind the
approach is less familiar to most researchers and their readers. Finally, these models are much
more computationally demanding. Although the computational demands of a single PML fit
are trivial, the costs might become prohibitive for procedures requiring many fits, such as boot-
strap or Monte Carlo simulations. With these practical costs in mind, we use a Monte Carlo
simulation to develop rules of thumb that link the amount of information in the data set to
the cost of using ML rather than PML.

We measure the cost of using ML rather than PML as the MSE inflation defined in Equation 4:
the percent increase in the MSE when using ML rather than PML. The MSE inflation summarizes
the relative inaccuracy of the ML estimator compared to the PML estimator.

To measure the information in a data set, the biostatistics literature suggests using the number
of events per explanatory variable (1/k)

∑
yi (e.g., Peduzzi et al. 1996; Vittinghoff and McCulloch

2007). However, we modify this metric slightly and consider the minimum of the number of
events and the number of non-events. This modified measure, which we denote as j, has the
attractive property of being invariant to flipping the coding of events and non-events. Indeed,

Figure 7. Quantities of interest for the effect of the solicitor general filing a brief amicus curiae on the probability of a
decision in favor of capital punishment.
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one could not magically increase the information in a conflict data set by coding peace-years as
ones and conflict-years as zeros. With this in mind, we use a measure of information j that takes
the minimum of the events and non-events per explanatory variable, so that

j = 1
k
min

∑n
i=1

yi,
∑n
i=1

(1− yi)

[ ]
. (6)

The cost of using ML rather than PML decreases continuously with the amount of information
in the data set, but to make concrete suggestions, we break the costs into three categories: sub-
stantial, noticeable, and negligible. We use the following cutoffs:

(1) Negligible: If the MSE inflation probably falls below 3 percent, then we refer to the cost as
negligible.

(2) Noticeable: If the MSE inflation of ML probably falls below 10 percent, but not probably
below 3 percent, then we refer to the cost as noticeable.

(3) Substantial: If the MSE inflation of ML might rise above 10 percent, then we refer then the
cost as substantial.

To develop our recommendations, we estimate the MSE inflation for a wide range of hypothet-
ical analyses across which the true coefficients, the number of explanatory variables, and the sam-
ple size varies.

To create each hypothetical analysis, we do the following:

(1) Choose the number of covariates k randomly from a uniform distribution from 3 to 12.
(2) Choose the sample size n randomly from a uniform distribution from 200 to 3000.
(3) Choose the intercept bcons randomly from a uniform distribution from −4 to 4.
(4) Choose the slope coefficients b1, . . . , bk randomly from a normal distribution with mean

0 and standard deviation 0.5.
(5) Choose a covariance matrix S for the explanatory variables randomly using the method

developed by Joe (2006) such that the variances along the diagonal range from 0.25 to 2.
(6) Choose the explanatory variables x1, x2, . . . , xk randomly from a multivariate normal dis-

tribution with mean 0 and covariance matrix S.
(7) If these choices produce a data set with (a) less than 20 percent events or non-events or

(b) separation (Zorn 2005), then we discard this analysis.

Note that researchers should not apply our rules of thumb to rare events data (King and Zeng,
2001), because the recommendations are overly conservative in that scenario. As the sample size
increases, the MSE inflation drops, even if j is held constant. By the design of our simulation
study, our guidelines apply to events more common than 20 percent and less common than
80 percent. However, researchers using rare events data should view our recommendations as
conservative; as the sample size increases, the MSE inflation tends to shrink relative to j.14

For each hypothetical analysis, we simulate 2000 data sets and compute the MSE inflation of
the ML estimator relative to the PML estimator using Equation 3. We then use quantile regression
to model the 90th percentile as a function of the information j in the data set. This quantile
regression allows us to estimate the amount of information that researchers need before the
MSE inflation “probably” (i.e., about a 90 percent chance) falls below some threshold. We
then calculate the thresholds at which the MSE inflation probably falls below 10 and 3 percent.

14A more complicated, but precise, set of rules might rely on sample size and j, but then they are no longer rules of thumb
and fail to provide simple guidelines.
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Table 1 shows the thresholds and Figure 8 shows the MSE for each hypothetical analysis and the
quantile regression fits.

Interestingly, ML requires more information to estimate the intercept bcons accurately relative
to PML than the slope coefficients b1, . . . , bk (see King and Zeng, 2001). Because of this, we
calculate the cutoffs separately for the intercept and slope coefficients.

If the researcher simply wants accurate estimates of the slope coefficients, then she risks sub-
stantial costs when using ML with j ≤ 16 and noticeable costs when using ML with j ≤ 57. If the
researcher also wants an accurate estimate of the intercept, then she risks substantial costs when
using ML with j ≤ 35 and noticeable costs when using ML when j ≤ 92. Researchers should
treat these thresholds as rough rules of thumb—not strict guidelines. Indeed, the MSE inflation
depends on a complex interaction of many features of the analysis, including the number of cov-
ariates, their distribution, the magnitude of their effects, the correlation among them, and the
sample size. However, these (rough) rules accomplish two goals. First, they provide researchers
with a rough idea of when the choice of estimator might matter. Second, they highlight that ana-
lysis with samples typically considered “large enough” for ML might benefit from using PML
instead.

Importantly, the cost of ML only becomes negligible for all model coefficients when j . 92—
this threshold diverges quite a bit from the prior rules of thumb. For simplicity, assume the
researcher wants to include eight explanatory variables in her model. In the best case scenario
of 50 percent events, she should definitely use the PML estimator with fewer than 8×16

0.5 = 256
observations and ideally use the PML estimator with fewer than 8×57

0.5 = 912 observations. But
if she would also like accurate estimates of the intercept, then these thresholds increase to
8×35
0.5 = 560 and 8×92

0.5 = 1, 472 observations. Many logit and probit models estimated using survey
data have fewer than 1500 observations and these studies risk a noticeable cost by using the ML
estimator rather than the PML estimator. Furthermore, these estimates assume 50 percent events.
As the number of events drifts toward 0 or 100 percent or the number of variables increases, then
the researcher needs even more observations.

5.2 Concrete advice about estimators

When estimating a model of a binary outcome with a small sample, a researcher faces several
options. First, she might avoid analyzing the data altogether because she realizes that ML esti-
mates of logit model coefficients have significant bias. We see this as the least attractive option.
Even small data sets contain information and avoiding these data sets leads to a lost opportunity.

Second, the researcher might proceed with the biased and inaccurate estimation using ML. We
also see this option as unattractive, because simple improvements can dramatically shrink the bias
and variance of the estimates.

Third, the researcher might use least squares to estimate a linear probability model (LPM). If
the probability of an event is a linear function of the explanatory variables, then this approach is
reasonable, as long as the researcher takes steps to correct the standard errors. However, in most
cases, using an “S”-shaped inverse-link function (i.e., logit or probit) makes the most theoretical
sense, so that marginal effects shrink toward zero as the probability of an event approaches zero
or one (e.g., Long, 1997: 34–47; Berry et al., 2010). Long (1997: 40) writes: “In my opinion, the
most serious problem with the LPM is its functional form.” Additionally, the LPM sometimes
produces nonsense probabilities that fall outside the [0, 1] interval and nonsense risk ratios
that fall below zero. If the researcher is willing to accept these nonsense quantities and assume
that the functional form is linear, then the LPM offers a reasonable choice. However, we agree
with Long (1997) that without evidence to the contrary, the logit or probit model offers a
more plausible functional form.

Fourth, the researcher might use a bootstrap procedure (Efron, 1979) to correct the bias of the
ML estimates. Although in general the bootstrap presents a risk of inflating the variance when
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correcting the bias (Efron and Tibshirani, 1993: esp. 138–139), simulations suggest that the pro-
cedure works comparably to PML in some cases for estimating logit model coefficients. However,
the bias-corrected bootstrap has a major disadvantage. When a subset of the bootstrapped data
sets have separation (Zorn, 2005), which is highly likely with small data sets, then the bootstrap
procedure produces unreliable estimates. In this scenario, the bias and variance can be much lar-
ger than even the ML estimates and sometimes wildly incorrect. Given the extra complexity of the
bootstrap procedure and the risk of unreliable estimates, the bias-corrected bootstrap is not par-
ticularly attractive.

Finally, the researcher might simply use PML, which allows the theoretically-appealing
“S”-shaped functional form and fast estimation while greatly reducing the bias and variance.
Indeed, the PML estimates always have a smaller bias and variance than the ML estimates.
These substantial improvements come at almost no cost to the researcher in learning new con-
cepts or software beyond ML and simple commands in R and/or Stata.15 We see this as the most
attractive option. Whenever researchers have concerns about bias and variance due to a small
sample, a simple switch to a PML estimator can quickly ameliorate any concerns with little to
no added difficulty for researchers or their readers.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psrm.2021.9.
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comments. We conducted these analyses with R 3.2.2. All data and computer code necessary to reproduce our results are
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Table 1. Thresholds at which the cost of ML relative to PML becomes substantial, noticeable, and negligible when
estimating the slope coefficients and the intercept

Acceptable inaccuracy Slope coefficients Intercept

Substantial j , 16 j , 35
Noticeable 16 ≤ j , 57 35 ≤ j , 92
Negligible j ≥ 57 j ≥ 92

Figure 8. MSE inflation as the information in the data set increases. The left panel shows the MSE inflation for the slope
coefficients and the right panel shows the MSE inflation for the intercept.

15The online appendix offers a quick overview of computing PML estimates in R and Stata, respectively.
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