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Polystable Parabolic Principal G-Bundles
and Hermitian–Einstein Connections

Indranil Biswas and Arijit Dey

Abstract. We show that there is a bijective correspondence between the polystable parabolic principal

G-bundles and solutions of the Hermitian–Einstein equation.

1 Introduction

Parabolic vector bundles on curves were introduced by C. S. Seshadri [14]. Parabolic

vector bundles on higher dimensional varieties were introduced by M. Maruyama

and K. Yokogawa in [11]. The principal bundle analog of parabolic bundles was

defined in [2]. Ramified principal bundles were defined in [3], where it was shown

that the ramified principal G-bundles on a curve are in bijective correspondence with

the parabolic principal G-bundles. The case of higher dimensions was treated in [8];

the details of this correspondence are recalled in Section 2. In [8, 9], connections on

ramified principal bundles were investigated.

J. Li established a Hitchin–Kobayashi correspondence between polystable para-

bolic vector bundles on Kähler manifolds and parabolic vector bundles satisfying the

Hermitian–Einstein equation (for parabolic vector bundles over Kähler surfaces see

[10]; this was done earlier by O. Biquard [5]). Our aim here is to extend this Hitchin–

Kobayashi correspondence to parabolic principal bundles (as mentioned above, they

are same as ramified principal bundles).

Let X be a connected complex projective manifold and D ⊂ X a simple normal

crossing divisor. The smooth locus of D will be denoted by Dsm. Let D1, . . . ,Dℓ be

the irreducible components of D (so each Di is a smooth divisor). Fix a Hermitian

structure of the line bundle OX(Di) such that the pointwise norm of the section of

OX(Di) given by the constant function 1 is strictly bounded by 1 (this is possible

because X is compact). Let fi be the continuous function on X given by the norm of

this section; it is smooth outside Di .

Fix a Kähler form ω on X. For any real number α ∈ (0, 2), let

ωα :=
2
√
−1

2 − α

ℓ∑

i=1

∂∂ f 2−α
i + Cα · ω

be the Kähler form on X, where the fi are constructed above and Cα is a sufficiently

large positive real number such that ωα is positive. The significance of this Kähler

form is explained in [10, Proposition 4.1].
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Let G be a connected reductive linear algebraic group defined over C. Letψ : EG →
X be a ramified principal G-bundle. For each point x ∈ Dsm, let nx be the order of

the isotropy group of any point z ∈ ψ−1(x) ⊂ EG for the natural action of G on EG

(it is independent of the choice of z in the fiber over x). Define δ := l.c.m.{nx}x∈Dsm .

Let EK ⊂ EG be a reduction of structure group to a maximal compact subgroup

K ⊂ G. There is a unique complex connection on EG that preserves EK (Lemma 4.1);

this connection will be denoted by ∇. Let ∇ ′ be the connection on the principal

G-bundle E ′
G := EG|X\D. The curvature of ∇ ′ will be denoted by K(∇ ′). We have

ΛωαK(∇ ′) ∈ C∞(X \ D, ad(E ′
G)),

where Λωα is the adjoint of multiplication by the Kähler form ωα, and ad(E ′
G) is the

adjoint vector bundle. The reduction EK ⊂ EG is called Hermitian–Einstein if the

above section ΛωαK(∇ ′) corresponds to some element in the center of the Lie algebra

of G.

We prove the following theorem.

Theorem 1.1 Any polystable ramified principal G-bundle EG admits a Hermitian

structure satisfying the Hermitian–Einstein equation for all α ∈ (2(1 − δ), 2) (the

number δ is defined above).

If a ramified principal G-bundle EG over X admits a Hermitian structure satisfying

the Hermitian–Einstein equation for some α ∈ (2(1 − δ), 2), then EG is polystable.

If all the parabolic Chern classes of EG vanish, then Theorem 1.1 follows from

[8, Theorem 5.2]. For G = GLn(C), Theorem 1.1 was proved in [10].

2 Preliminaries

Let X be a connected complex projective manifold. Fix a simple normal crossing

divisor D ⊂ X. So D is reduced and effective, each irreducible component of D is

smooth, and the irreducible components of D intersect transversely. Let G be a linear

algebraic group defined over C.

Let ψ : EG → X be a ramified principal G-bundle with ramification over D (see

[3, 8, 9] for the definition). We briefly recall the defining properties. The total space

EG is a smooth complex variety equipped with an algebraic right action of G

(2.1) f : EG × G → EG,

and the following conditions hold:

• ψ ◦ f = ψ ◦ p1, where p1 is the natural projection of EG × G to EG,
• for each point x ∈ X, the action of G on the reduced fiber ψ−1(x)red is transitive,
• the restriction of ψ to ψ−1(X \ D) makes ψ−1(X \ D) a principal G-bundle over

X \ D,
• for each irreducible component Di ⊂ D, the reduced inverse image ψ−1(Di)red is

a smooth divisor and

D̂ :=

ℓ∑

i=1

ψ−1(Di)red

is a normal crossing divisor on EG,
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• for any smooth point x of D, and any point z ∈ ψ−1(x), the isotropy group Gz ⊂
G, for the action of G on EG, is a finite cyclic group that acts faithfully on the

quotient line TzEG/Tzψ
−1(D)red.

Parabolic principal G-bundles were defined in [2]. We recall that a parabolic prin-

cipal G-bundle on X is a functor from the category of rational G-representations

to the category of parabolic vector bundles on X satisfying certain conditions. The

conditions in question say that the functor is compatible with standard operations

like direct sum, tensor product, taking dual, etc. (see [2, 7] for the details). There

is a natural bijective correspondence between the ramified principal G-bundles with

ramification over D and the parabolic G-bundles with D as the parabolic divisor (see

[3,8]); in [3] this correspondence was established under the assumption that the base

is a curve, but in [8], this assumption is removed. We recall below this correspon-

dence.

Let Rep(G) be the category of finite dimensional complex G-modules. Let

ψ : EG → X be a ramified principal G-bundle with ramification over D. Take any

finite-dimensional complex G-module V0. Recall that

E0
G := ψ−1(X \ D) −→ X \ D

is a usual principal G-bundle. Let E0
V := E0

G(V ) → X \ D be the associated vector

bundle. This vector bundle has a natural extension to X as a parabolic vector bundle

(its construction is similar to the construction of a parabolic vector bundle from an

orbifold vector bundle; see [6]). Therefore, we get a functor from Rep(G) to the

category of parabolic vector bundles over X with parabolic structure over D. The

parabolic principal G-bundle corresponding to EG is defined by this functor.

We will give an alternative description of the correspondence.

There is a natural bijective correspondence between parabolic vector bundles and

orbifold vector bundles [6]. Let EG be a parabolic principal G-bundle over X given

by a functor F from Rep(G) to the parabolic vector bundles over X with D as the

parabolic divisor. Using the above mentioned bijection between parabolic vector

bundles and orbifold vector bundles, there is a finite (ramified) Galois covering

η : Y −→ X

such that the functor F defines a functor from Rep(G) to the category of orbifold vec-

tor bundles over Y . Such a functor gives a principal G-bundle FG → Y equipped with

a lift of the action of the Galois group Gal(η) on Y [12, 13]. The quotient FG/Gal(η)

is a ramified principal G-bundle over X = Y/Gal(η).

Conversely, if FG → X is a ramified principal G-bundle, then there is a finite

(ramified) Galois covering η : Y → X such that the normalizer ˜FG ×X Y of the fiber

product FG ×X Y is smooth. The projection ˜FG ×X Y → Y is a principal G-bundle

equipped with an action of Gal(η). Let F0 be the functor from Rep(G) to the cate-

gory of orbifold vector bundles over Y that sends any G-module V0 to the associated

vector bundle ˜FG ×X Y (V0). But an orbifold vector bundle over Y gives a parabolic

vector bundle over X [6]. Therefore, the functor F0 gives a functor from Rep(G) to
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the category of parabolic vector bundles over X. This functor defines the parabolic

principal G-bundle corresponding to the ramified principal G-bundle FG.

Let ψ : EG → X be a ramified principal G-bundle with ramification over D. Let

H ⊂ G be a Zariski closed subgroup. Let U ⊂ X be a Zariski open subset. The

inverse image ψ−1(U ) will also be denoted by EG|U .

A reduction of structure group of EG to H over U is a subvariety EH ⊂ EG|U satisfy-

ing the following conditions:

(i) the action of H on EG preserves EH , and for each point x ∈ U , the action of H

on ψ−1(x) ∩ EH is transitive,

(ii) for each point z ∈ EH , the isotropy group of z for the action of G on EG is

contained in H.

Note that any EH satisfying the above conditions is a ramified principal H-bundle

over X with ramification over D.

3 Polystable Ramified Principal G-Bundles

In this section we assume the group G to be connected and reductive. We also fix a

polarization on X in order to define the parabolic degree of a parabolic vector bundle

(see [11] for parabolic degree).

Let P be a parabolic subgroup of the reductive group G. Therefore, G/P is a com-

plete variety. A Levi subgroup of P is a maximal connected reductive subgroup of P;

any two Levi subgroups of P are conjugate. For any character λ of P, let Lλ → G/P

be the associated line bundle. So Lλ is a quotient of G × C, where two points (z1, c1)

and (z2, c2) of G×C are identified if there is an element g ∈ P such that z2 = z1g and

c2 = λ(g)−1c1. Let Z0(G) ⊂ G be the connected component of the center of G con-

taining the identity element. It is known that Z0(G) ⊂ P. A character λ of P which

is trivial on Z0(G) is called strictly antidominant if the corresponding line bundle Lλ
over G/P is ample.

Let EG be a ramified principal G-bundle over X with ramification over D. Consider

quadruples of the form (H, λ,U , EH), where

• H ⊂ G is a proper parabolic subgroup,
• λ is a strictly antidominant character of H,
• U ⊂ X is a nonempty Zariski open subset such that the codimension of the com-

plement X \U is at least two,
• EH ⊂ EG is a reduction of structure group of EG to H over U .

Let EH(λ) → X be the ramified principal C∗-bundle obtained by extending the struc-

ture group of EH using the character λ. This ramified principal C∗-bundle defines a

parabolic line bundle over X with parabolic structure over D (see [9, p. 179]). Let

EH(λ)∗ be the parabolic line bundle corresponding to EH(λ).

The ramified principal G-bundle EG is stable (respectively, semistable) if and only

if for every quadruple (H, λ,U , EH) of the above type, par-deg(EH(λ)∗) > 0 (respec-

tively, par-deg(EH(λ)∗) ≥ 0).

Let EG be a ramified principal G-bundle over X. A reduction of structure group

EH ⊂ EG

https://doi.org/10.4153/CMB-2011-109-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-109-x


48 I. Biswas and A. Dey

to some parabolic subgroup H ⊂ G over X is called admissible if for each character

λ of H trivial on Z0(G), the associated parabolic line bundle EH(λ)∗ over X satisfies

the following condition:

par-deg(EH(λ)∗) = 0.

A ramified principal G-bundle EG over X is called polystable if either EG is stable

or there is a proper parabolic subgroup H and a reduction of structure group

EL(H) ⊂ EG

to a Levi subgroup L(H) of H over X such that the following conditions hold:

• the ramified principal L(H)-bundle EL(H) is stable,
• the reduction of structure group of EG to H, obtained by extending the structure

group of EL(H) using the inclusion of L(H) in H, is admissible.

(See [3, 8, 9].)

The bijective correspondence between the parabolic principal G-bundles and the

ramified principal G-bundles preserves polystability.

4 Hermitian–Einstein Connection on Ramified Principal G-Bundles

4.1 Connections on a Ramified Principal G-Bundle

Let

(4.1) ψ : EG → X

be a ramified principal G-bundle with ramification over D, where G is a linear alge-

braic group defined over C.

Let K ⊂ TEG be the algebraic subbundle defined by the action of G (see (2.1)). So

K is the tangent bundle of the orbits. Let

(4.2) Q := TEG/K

be the quotient bundle. Tensoring the obvious short exact sequence

0 −→ K −→ TEG −→ Q −→ 0

with Q∗, we get the short exact sequence

(4.3) 0 −→ K⊗ Q
∗ −→ TEG ⊗ Q

∗
q0

−→ Q⊗ Q
∗ −→ 0

over EG. Let OEG
→֒ Q ⊗ Q∗ be the homomorphism that sends any function g to

g · IdQ. Define

VEG
:= q−1

0 (OEG
),
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where q0 is the projection in (4.3). So we have the short exact sequence of holomor-

phic vector bundles

(4.4) 0 −→ K⊗ Q
∗ −→ VEG

q0

−→ OEG
−→ 0

over EG obtained from (4.3).

We note that the action of G on EG has natural lift to all three vector bundles in

the exact sequence in (4.4), and all the homomorphisms there commute with the

actions of G. Therefore, the direct image on X of any of the vector bundles in (4.4) is

equipped with an action of G. Define the holomorphic vector bundles

AEG
:= (ψ∗(K⊗ Q

∗))G −→ X and BEG
:= (ψ∗VEG

)G −→ X,

where ψ is the projection in (4.1). (By W G, where W is any sheaf on X equipped with

an action of G, we mean the G-invariant part of W .) From (4.4) we have the short

exact sequence of holomorphic vector bundles

(4.5) 0 −→ AEG
−→ BEG

−→ OX −→ 0

over X.

A complex connection on EG is defined to be a C∞ splitting of the short exact se-

quence in (4.5) (see [9, Definition 4.3]). See [8] for an alternative definition of con-

nection; that the two definitions are equivalent is proved in [9, Theorem 4.4].

4.2 Hermitian Structure on a Ramified Principal G-Bundle

Henceforth, we will always assume that the group G is connected and reductive. Fix

a maximal compact subgroup

(4.6) K ⊂ G.

Let ψ : EG → X be a ramified principal G-bundle with ramification over D. A

Hermitian structure on EG is a C∞ reduction of structure group of EG to the sub-

group K in (4.6). More precisely, a Hermitian structure on EG is a C∞ submanifold

EK ⊂ EG satisfying the following conditions:

(i) the action of K on EG preserves EK ,

(ii) for each point x ∈ X, the action of K on ψ−1(x) ∩ EK is transitive,

(iii) for each point z ∈ EK , the isotropy group of z, for the action of G on EG, is

contained in K.

Compare the above definition with the definition in Section 2. We note that the

third condition in the above definition holds if for each point x ∈ U , there exists a

point z ∈ ψ−1(x) ∩ EH such that Γz ⊂ H, where Γz ⊂ G is the isotropy group of z

for the action of G on EG.

Let EK ⊂ EG be a Hermitian structure, and let ∇ be a complex connection on EG.

Let

(4.7) ∇ ′ : Q −→ TEG
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be the C∞ homomorphism associated with ∇ (see (4.2) for Q). The connection ∇
is said to preserve EK if the image ∇ ′(Q)|EK

is contained in TCEK = (TREK ) ⊗R C,

where ∇ ′ is the homomorphism in (4.7).

Lemma 4.1 Let EK ⊂ EG be a Hermitian structure on a ramified principal G-bundle

EG → X. Then there is a unique complex connection on EG that preserves EK .

Proof Consider the principal G-bundle E ′
G := EG|X\D → X \ D. There is a unique

complex connection on E ′
G that preserves the Hermitian structure EK |X\D ⊂ E ′

G (it

is known as the Chern connection). Therefore, EG can have at most one complex

connection preserving EK .

To prove that there is complex connection preserving EK , we first recall that there

is a ramified finite Galois covering

(4.8) φ : Y −→ X

and an algebraic principal G-bundle

(4.9) FG −→ Y

such that the action of the Galois group Γ := Gal(φ) on Y lifts to an action of G on

FG that commutes with the action of G on FG, and EG = FG/Γ. To explain this, we

recall that in [2] it was shown that for any parabolic G-bundle E∗ over X, there is

a covering Y and a Γ-linearized principal G-bundle FG on Y that gives E∗; also, any

ramified principal G-bundle corresponds to a parabolic G-bundle. Combining these,

it follows that there is a pair (Y, FG) satisfying the above conditions.

Let q : FG → FG/Γ = EG be the quotient map. Let ẼK := q−1(EK) ⊂ FG be the

inverse image of EK . Clearly, ẼK is a C∞ reduction of the structure group of FG to K.

Therefore, there is a unique complex connection ∇̃ on FG that preserves ẼK .

The action of Γ on FG clearly preserves ẼK . Therefore, the connection ∇̃ is pre-

served by the action of Γ on FG. This immediately implies that the connection ∇̃
defines a complex connection on the ramified principal G-bundle EG. This connec-

tion on EG given by ∇̃ preserves EK because ∇̃ preserves ẼK .

4.3 Hermitian–Einstein Equation

Let D =
∑ℓ

i=1 Di be the decomposition of the divisor D into irreducible components.

For each i ∈ [1, ℓ], fix a Hermitian structure on the holomorphic line bundle OX(Di).

Let fi be the continuous function on X given by the norm of the holomorphic section

of OX(Di) defined by the constant function 1. So fi is C∞ and nowhere vanishing on

the complement X \ Di , and it vanishes on Di . Note the fi(z) can be taken to be the

distance of z from Di with respect to some Kähler metric on X of diameter less than

one.

Fix a Kähler form ω on X. For any real number α ∈ (0, 2), let

(4.10) ωα :=
2
√
−1

2 − α

ℓ∑

i=1

∂∂ f 2−α
i + Cα · ω
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be the Kähler form on X, where Cα is a sufficiently large positive real number such

that ωα is positive. (See [10, p. 451] for the details.)

Let EK ⊂ EG be a Hermitian structure on EG. Let ∇ be the unique connection

on EG that preserves EK (see Lemma 4.1). Let ∇ ′ be the connection on the principal

G-bundle E ′
G := EG|X\D. The curvature of ∇ ′ will be denoted by K(∇ ′). Let Λωα be

the adjoint of multiplication by the Kähler form ωα in (4.10). So

(4.11) ΛωαK(∇ ′) ∈ C∞(X \ D, ad(E ′
G)),

where ad(E ′
G) → X \ D is the adjoint vector bundle. We recall that ad(E ′

G) is the

vector bundle associated with the principal G-bundle E ′
G for the adjoint action of G

on the Lie algebra g = Lie(G). More precisely, ad(E ′
G) is a quotient of E ′

G × g, and

two points (z1, v1) and (z2, v2) of E ′
G ×g are identified in ad(E ′

G) if there is an element

g ∈ G such that z2 = z1g and v2 = Ad(g−1)(v1).

Let z(g) ⊂ g be the center. Since the adjoint action of G on g fixes z(g) pointwise,

each element of z(g) defines a smooth section of the vector bundle ad(E ′
G). So we

have

(4.12) z(g) ⊂ C∞(X \ D, ad(E ′
G)).

The connection ∇ on EG is called Hermitian–Einstein if there is an element v0 ∈
z(g) such that ΛωαK(∇ ′) = v0 (see (4.11) and (4.12)).

For parabolic vector bundles the above definition of a Hermitian–Einstein con-

nection coincides with the one in [10] (see [10, Definition 6.1]).

5 Hermitian–Einstein Connection and Polystable Ramified Principal
G-Bundles

5.1 Tensor Product and Semistability

A nonempty Zariski open subset U of a variety Z will be called big if the codimension

of the complement Z \U is at least two.

Let U ⊂ X be a big Zariski open subset. Let EGLm(C) → U and FGLn(C) → U be

a ramified principal GLm(C)-bundle and GLn(C)-bundle, respectively. Let E∗ and F∗

be the parabolic vector bundles over U associated with EGLm(C) and FGLn(C), respec-

tively for the standard representation (see [2] for parabolic vector bundles associated

to parabolic principal bundles). So the ranks of E∗ and F∗ are m and n, respectively.

Consider the parabolic tensor product E∗⊗F∗ (see [2] for tensor product of parabolic

vector bundles).

Lemma 5.1 If both EGLm(C) and FGLn(C) are polystable, then the parabolic vector bundle

E∗ ⊗ F∗ over U is also polystable.

Proof Recall the correspondence between ramified principal bundles and Γ-linea-

rized principal bundles for a suitable Γ (see the proof of Lemma 4.1). Also recall

that ramified principal G-bundles are identified with the parabolic G-bundles. A

parabolic G-bundle defined over a big open subset is polystable if and only if the

corresponding principal G-bundle over the covering is polystable [2, Theorem 4.3].
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Let Y be a complex projective manifold with a Kähler form such that the corre-

sponding class in H2(Y,R) lies in H2(Y,Q). Let ι : U0 →֒ Y be a big Zariski open sub-

set, and let Vi → U0, i = 1, 2, be polystable vector bundles. Consider the direct im-

age ι∗Vi → Y which is a polystable reflexive sheaf. Therefore, ι∗Vi has an admissible

Hermitian–Einstein connection [4, Theorem 3]. The admissible Hermitian–Einstein

connections on ι∗V1 and ι∗V2 together induce an admissible Hermitian–Einstein

connection on the reflexive sheaf ((ι∗V1) ⊗ (ι∗V2))∗. Therefore, the torsionfree part

of the tensor product (ι∗V1) ⊗ (ι∗V2) is polystable [4, Theorem 3].

Proposition 5.2 If both EGLm(C) and FGLn(C) are semistable, then the parabolic vector

bundle E∗ ⊗ F∗ → U is also semistable.

Proof A parabolic G-bundle defined over a big open subset is semistable if and only

if the corresponding principal G-bundle over the covering is semistable [2, Theo-

rem 4.3]. In view of Lemma 5.1, the proposition follows from [1, Lemma 2.7].

5.2 The Main Theorem

Let ψ : EG → X be a ramified principal G-bundle. For any smooth point smooth x

of D, let nx be the order of the isotropy group of any point z ∈ ψ−1(x) ⊂ EG for the

action of G (note that nx is independent of the choice of z in the fiber over x). Let

(5.1) δ := lcm{nx}x∈Dsm

be the least common multiple, where Dsm is the smooth locus of D.

Theorem 5.3 Any polystable ramified principal G-bundle EG admits a Hermitian

structure satisfying the Hermitian–Einstein equation for all α ∈ (2(1 − δ), 2).

If a ramified principal G-bundle EG over X admits a Hermitian structure satisfying

the Hermitian–Einstein equation for some α ∈ (2(1 − δ), 2), then EG is polystable.

Proof Let EG be a ramified principal G-bundle over X admitting a Hermitian struc-

ture satisfying the Hermitian–Einstein equation for some α ∈ (2(1 − δ), 2). Fix a

Hermitian structure

(5.2) EK ⊂ EG

that satisfies the Hermitian–Einstein equation for some α ∈ (2(1 − δ), 2).

Consider the adjoint representation

(5.3) ρ : G −→ GL(g).

Fix a maximal compact subgroup K̃ ⊂ GL(g) containing ρ(K). Let

(5.4) ψ̃ : EGL(g) −→ X

be the ramified principal GL(g)-bundle obtained by extending the structure group of

EG using the homomorphism ρ in (5.3). Let

(5.5) EK (K̃) = EK ×K K̃ ⊂ EGL(g)
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be the reduction of structure group of EGL(g) to K̃ given by the reduction in (5.2).

Since EK in (5.2) satisfies the Hermitian–Einstein equation, the corresponding re-

duction EK (K̃) in (5.5) also satisfies the Hermitian–Einstein equation.

For any smooth point x of D, let mx be the order of the isotropy group of any

point z ∈ ψ̃−1(x) ⊂ EGL(g) for the action of GL(g) (note that mx is independent of

the choice of z in the fiber over x). The integer mx clearly divides the integer nx in

(5.1). Therefore,

(5.6) δ̃ := lcm{mx}x∈Dsm ≤ δ,

where δ is defined in (5.1). Using (5.6) and the fact that the reduction EK (K̃) in

(5.5) satisfies the Hermitian–Einstein equation, it follows that the ramified principal

GL(g)-bundle EGL(g) is polystable [10, Theorem 6.3]. Since EGL(g) is polystable, we

conclude that the ramified principal G-bundle EG is polystable [2, Corollary 4.6].

This proves the second statement of the theorem.

To prove the first statement, let ψ : EG → X be a polystable ramified principal

G-bundle. Fix a ramified finite Galois covering φ : Y → X and a Γ-linearized princi-

pal G-bundle FG → Y corresponding to EG, where Γ = Gal(φ) (see (4.8) and (4.9)).

Since EG is polystable, it follows that the principal G-bundle FG is polystable with

respect to the pullback of the polarization on X (see [2, Theorem 4.3]). The adjoint

vector bundle ad(FG) is polystable because FG is polystable [1, Corollary 3.8]. Since

ad(FG) is polystable, the ramified principal GL(g)-bundle ψ̃ : EGL(g) → X in (5.4) is

polystable [2, Theorem 4.3]. (We note that polystability of EGL(g) can also be deduced

using Lemma 5.1 and Proposition 5.2.)

Since EGL(g) is polystable, and (5.6) holds, we know that EGL(g) admits a Hermitian

structure satisfying the Hermitian–Einstein equation for all α ∈ (2(1 − δ), 2) [10,

Theorem 6.3]. A Hermitian structure on EGL(g) satisfying the Hermitian–Einstein

equation produces a Hermitian structure on EG satisfying the Hermitian–Einstein

equation; see the proof of Theorem 3.7 in [1] for the details.
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