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PROXIMAL PROPER EFFICIENCY FOR
MINIMISATION WITH RESPECT TO NORMAL CONES

C.S. LALITHA AND RUCHI ARORA

This paper is devoted to the study of a new kind of proper efficiency in terms of
proximal normal cones for vector minimisation. This new notion called proximal
proper efficiency is used to obtain a scalar characterisation when a set related to
the criterion set is a nonconvex set. Proximal proper efficiency is related with the
well known notions of Benson and Borwein proper efficiency which are defined in the
literature in terms of tangent cones. The study is further extended to characterise
Benson and Borwein proper efficiency in terms of normal cones assuming convexity
of a related set.

1. INTRODUCTION

The presence of an objective function with more than one criterion is a very com-
mon feature in many decision making problems. The concept of optimal solutions to
such a multiobjective optimisation problem is not as trivial as in the case of a single
objective optimisation problem. It is usually related to the preference attitudes of the
decision makers. One of the most fundamental concepts is that of efficient solution or
nondominated solution.

Kuhn-Tucker [9] observed that not every efficient point can be characterised by a
scalar optimisation problem even if the decision set is convex. In order to avoid such un-
desirable efficient solutions Kuhn-Tucker [9] introduced the notion of proper efficiency.
Later GeofFrion [7] defined proper efficiency by eliminating unbounded tradeoffs between
the objectives and related it to Kuhn-Tucker proper efficiency. This concept was further
generalised by Borwein [2] and Benson [1] with respect to domination sets which are
closed convex cones. Borwein's proper efficiency is given in terms of contingent cone
whereas Benson's proper efficiency is given in terms of projecting cone. According to
Henig [8] a point is properly efficient if the decision set can be separated from the dom-
ination cone with origin in the point. Henig [8] considered the notion of global and
local properness and established the equivalence of global (local) properness and Ben-
son's (Borwein's) properness. In the same paper it is also shown that whenever the set of
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global proper efficient points is nonempty it is identical with the set of local proper effi-
cient points. In one of the recent papers by Miettinen and Makela [10], a characterisation
of Henig's proper efficiency, with the nonnegative orthant as the domination set, is given
in terms of normal cones of the feasible criterion set of a multiobjective optimisation
problem.

The paper is organised as follows. Section 2 presents various notions of tangent and
normal cones. In Section 3 we introduce a new notion of proper efficiency involving a
proximal normal cone [5] and relate it with both Benson and Borwein proper efficiency.
It is shown that proximal proper efficiency refines Borwein's proper efficiency and is inde-
pendent of Benson's proper efficiency. In Section 4 we scalarise proximal proper efficiency
for the case where the translation of the criterion set by the underlying cone is assumed
to be locally star shaped; thus relaxing the convexity assumptions usually required to
provide such characterisation (see [14]). It is also observed that scalar characterisation is
not valid in the case of Benson proper efficiency under local star shapedness assumption.
Section 5 deals with characterisation of Benson and Borwein proper efficiency in terms
of normal cones assuming the convexity of a set related to the criterion set. It is also
observed that a complete characterisation is not possible for the Benson proper efficiency
for the nonconvex case.

2. PRELIMINARIES

A set C C Rp is said to be a cone if Ac e C for any c € C, A ^ 0 and A e R. A cone
C is said to be pointed if C n ( - C ) = {0}, and convex if C + C C C. The positive dual
cone of a set A C Rp is defined as

A" = {deRP\(d,a)>0, VaeA}

and the strict positive dual cone of A is defined as

A'0 = {d € Rp | (d,a) > 0, V a e A \ {0}} .

The cone generated by A, denoted by cone^, is defined as

cone>l = {Xa | A > 0, A e R, a € A} .

For further details refer to the book by Rockafellar [11]. The following implications follow

immediately from the above definitions.

LEMMA 2 . 1 . If C is a pointed convex cone in RP then

(0 {-cy = -c*
(ii) C'° + C C C*°.

LEMMA 2 . 2 . If A and B are subsets ofR? such that AC B then B* C A'.
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Several kinds of tangent cones have been considered by various authors in the liter-

ature. We now give the definition of two types of tangent cones.

Let A be a set in R? and 5 6 / 1 . The contingent cone or Bouligand tangent cone to

A at a, (see [12]), denoted by T(A,a), is defined as

T(A, a) - {d e R? | 3 tj \. 0, dj -*• d with dj € A such that a + tjdj € A} .

The Clarke tangent cone to A at 5, (Clarke [4]) denoted by Tc(A,a) is denned as

Tc(A,a) = {d € RF | V tj I 0, a, -» a with a, € A, 3 dj ->• d

such that a,j + tjdj 6 A} .

Both contingent and Clarke tangent cones are closed and

(1) TC(A, a) C T{A, a) C cl cone(yl - a) .

The tangent cone Tc(A,a) is a convex cone whereas T(A,a) is not necessarily convex.
However if A is a convex set then (see Borwein and Lewis [3, Corollary 6.3.7])

(2) Tc(A,a) = T{A,a) = c\cone(A-a).

The notion of tangential regularity has been considered by Miettinen and Makela
[10] and Borwein and Lewis [3]. According to them a set A is said to be tangentially
regular at 5 if T(A, a) — Tc(A, a). It is obvious that a convex set A is tangentially regular
at each of its points.

Normal cones play an important role in the field of optimisation, and have been
introduced in various ways. One way of defining a normal cone is as the negative dual of
the tangent cone. Accordingly the contingent normal cone to A at o, denoted by N(A,a)

is the negative dual of T(A,a), that is

N(A,a) = {deR"\(d,h)^0,V he T(A,a)}

and the Clarke normal cone to A at a, denoted by Nc(A,a) is the negative dual of

Tc(A,a), that is

NC(A, a) = {deR»\{d,h)^0,V he Tc(A,a)} .

From Lemma 2.1(i) it follows that

(3) N(A,a) = -T(A,a)'

and
Nc(A,a) =-Tc(A,ay.
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By Lemma 2.2 and relation (1) it follows that N(A,a) C Nc(A,a).

Proximal normals are direction vectors pointing outward from a set obtained by
taking the projection of a point onto the set. The collection of all such perpendicular
vectors at a point generates the proximal normal cone to the set at that point. We now
give some notations and definitions from Clarke, Ledyaev, Stern and Wolenski [5]

Let Y be a closed set in EP and x be a point not lying in Y. Let y be projection of
i onto Y, that is,

\\x-V\\ = mm \\x - u||.

The vector x — y is a proximal normal direction to Y at y and any nonnegative multiple
of such vector is called a proximal normal to Y at y. The set of all such vectors form the
proximal normal cone to Y at y and is denoted by NP(Y,y).

If Y is a closed convex set then N(Y,y), Nc(Y,y) and Np(Y,y) coincide. Every
proximal normal cone is a contingent normal cone, however the converse may not be
necessarily true. For details and examples refer to Rockafellar and Wets [13]. Also we
have Nc(Y, y) — co {lim& | & G NP(Y, yt), y{ —• y} where co A denotes the closed convex
hull of A (see [5, Theorem 6.1]).

The following result gives a characterisation for the proximal normal vector in the
form of an inequality.

LEMMA 2 . 3 . ([5]) A vector £ belongs to NP(Y, y) if and only if there exists

a = a(£, y) ^ 0 such that

In particular if Y is a convex set then

( S , 2 / - y K 0 V y€Y.

3. PROXIMAL PROPER EFFICIENCY

Let Y be a set in Rpa.nd C be a closed convex pointed cone in EP. A point y e Y is
said to be an efficient point of Y if (Y — y) n (—C) = {0}. A point y € Y is said to be
a Borwein proper efficient point (see [2]) of Y if T(Y + C,y)D (-C) = {0} and Benson

proper efficient point (see [11]) of Y if clcone(F + C - y) D (-C) = {0}.

We denote the set of efficient, Borwein proper efficient, Benson proper efficient so-
lutions of Y by Efffr, C], Bor[y, C], Ben[Y, C], respectively. It can be seen that

(4) Ben[y, C) C Bor[y, C] C Eff [Y, C).

If Y + C is a convex set then by (2) we have
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We now introduce the notion of proper efficiency in terms of the proximal normal
cone and study its relation with Borwein and Benson proper efficiency

DEFINITION 3 .1 : Let Y be a closed set in R?. A point y e Y is called a proximal

proper efficient point of Y if

(i) y eEff[Y,C]

(ii) NP(Y + C,y)n(-C'°)?<t>.
The set of all proximal proper efficient points of Y is denoted by Pr[V, C].

The following theorem establishes that every proximal proper efficient point of a
closed set Y is a Borwein proper efficient point of Y.

THEOREM 3 . 1 . For a closed subset Y ofRP, Pr[F, C] C Bor[Y, C).

P R O O F : Let y € Pr[Y, C}. By definition {Y - y) n ( - C ) = {0} and NP(Y + C,y)
n(-C*°)^<j>. LetheNp(Y + C,y)n(-C'°). Since h e NP{Y + C,y), by Lemma 2.3,
there exists a ^ 0 such that

(5) (h,y-y)^a\\y-yf V y€Y + C.

If y $ Bor[y,C] then there exists d ^ 0 such that d € T{Y + C,y) D (-C). As
d € T(Y + C,y), there exist tj I 0, y, € Y, Cj G C with yj + c, -»• d such that
y + <j(2/; + Cj) € y + C. Hence from (5) it follows that

(^tjiyj + Cj)) ^ a\\tj(yj + Cj)\\
2 .

Assuming tj > 0, we have

{Kyj + cfi^otjWyj + Cjf,

which on taking limit j —• co implies (ft, d) ^ 0. Also since d 6 — C \ {0} and h € -C*°
we have {h, d) > 0 which is a contradiction. Hence it follows that y € Bor[F, C). D

We now give examples to illustrate that a Benson proper efficient point is not nec-
essarily a proximal proper efficient point and vice versa.

E X A M P L E 3 .1 . Let C = R\ and let Y = {(yuy2) | 2y2 ^ -y i}u{( j / i , j/2) 12/2 > - 2 y i } .
It can be seen that y = (0 ,0 )6 Ben[y,C] as clcone(y + C - y ) = Y a n d y n ( - C ) = {0}.
However y <£ Pi[Y,C] as NP(Y + C,y) = {0}.

REMARK 3.1. As Ben[y, C] C Bor[y, C] we have in the above example y = (0,0)
€ Bor[y, C] and y ^ Pr[y, C] establishing that Bor[y, C] <£ Pr[Y, C].

E X A M P L E 3.2. Let C = R\ and let Y = {(yi,y2) \ yi < 0, y2 Z 1} U R\. Since for
y = (0,0), clcone(y + C - y) = {(yuy2) \ J/2 > 0} and clcone(y + C - y) D ( - C )
= {(2/1,2/2) I yi ^ 0,iy2 = 0} # {0} the point y ^ Ben[y,C]. Clearly -C*° = {(yi,y2) |
2/i < 0,y2 < 0} and NP(Y + C,y) = -C, hence y e Pr[y,C].

Figure 1 summarises the result so far.
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Bor[y,q

[6]

Figure 1: Relation among Benson, Borwein and proximal proper efficient points

4. SCALARISATION

We now scalarise proximal proper efficient points by vectors in the strict dual cone
of C. For this purpose we require the following notations as given in Sawaragi, Nakayama
and Tanino [14, Section 3.4]. Let

S>Y = {y | <M,y> = inf{(M,y> | V € Y}} .

Geometrically S^Y is the set of supporting points of Y with the inner normal vector /i.
It can be seen that SailY = S^Y for a > 0. Let

D[Y,C)= (J SJT.
cec-°

We now investigate the relation between £>[Y,C] and Pr[Y, C].

THEOREM 4 . 1 . For a closed set Y in RP, D[Y, C] C Pr[r, C].

PROOF: Let y e D[Y, C). Then there exists /j, e C'° such that y e SUY, that is,

(6) < M , y K < M , y > V yeY.

Let if possible, y $ Eff[F, C). Then there exists d / 0 such that d G (Y - y) D (-C), that
is, there exists y e Y such that d = y — y and d e -C. As \x e C*° we have (/i, d) < 0,
that is (n,y — y) < 0 which contradicts (6). Hence y G Eff[K, C]. We shall now show
that — fi G Np(Y + C, j/). For any c G C we have (— î, c) ^ 0 which together with (6)
yields

(-/n, y + c - y) ^ 0 V y G F .

Hence -/x G NP(Y + C, y). Thus, y G Pr[F, C] as - / i € iVp(K + C, y) n (-C*0). D
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R E M A R K 4 .1 . In [14] it has been established that if C is a closed convex cone in RP
then D[Y,C] C Ben[y,C]. By (4) it is also obvious that D[Y,C) C Bor[y,C].

We now have the notion of local star shapedness introduced by Ewing [6]. A set A
in Rp is said to be locally star shaped at x* € A if for any x € A, there exists a(x,x*)
where 0 < a(x,x') ^ 1 such that (1 - A)i* + Xx e A for 0 < A < a(x,x*). A is
said to be locally star shaped if it is locally star shaped at each of its points. From the
definition it is obvious that if a(x, x*) = 1 for every x, x* € A then the set A is a convex
set. Thus every convex set is locally star shaped but the converse may not necessarily
be true. A simple example of a locally star shaped set which is not convex is the set of
union of two disjoint open intervals in R.

A set A is said to be a C-convex set (see [14, Definition 2.1.9]) if A + C is a convex
set. Clearly, as observed above, if A is a C-convex set then A + C is a locally star shaped
set.

THEOREM 4 . 2 . For a closed set Y in RP ify € Pr[F, C] and Y + C is locally star
shaped at y, then y € D[Y, C).

PROOF: Since y € Pr[F,C], there exists h e -C*° such that h € NP(Y + C,y). By
proximal normal inequality there exists a ^ 0 such that

(7) (h,y-y)^a\\y-y\\2 V yeY + C.

As Y + C is locally star shaped at y, for any y G Y, there exists a(y,y) where
0 < o(y, y) ^ 1 such that y + X(y - y) € Y + C for 0 < A < a(y,y). Hence from
(7) it is obvious that

As A > 0, we get
(h,y-y)^<rX\\y-y\\2 V y e K .

On taking limit A -* 0+, we have for every y e Y, (h, y - y) ^ 0. Let fi = — h, then
H € C*° and (/x,y) ^ (n,y), V y € Y, that is y € S^Y. Since fj, € C*° it follows that

yeD[Y,C}. U

The following example illustrates that the above theorem does not hold in the ab-

sence of local star shapedness.

EXAMPLE 4.1. Let C = R\ and Y = {(2/1,2/2) I V2 = -yi,0 < 2/1 ^ 2}u {(j/1,2/2) I
1/2 = 2, - 2 ^ 2/1 < 0}. It can be seen that Y+C is not locally star shaped at y — (0,0) as
(l-X)y + \y<£ V + C for 0 < A < 1 where y = (-1,2). As NP(Y + C,y) = -C it follows
that y € PT[Y,C]. NOW C'° = {(/i i ,^) I Mi > O.M2 > 0} and for fi = (/xi,M2) e C'°

{ ( - 2 ' 2 ) } i f / * i ^ 2

{(2,-2)} if//i<M2-
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Thus D[Y, C) = { ( -2 ,2) , (2, - 2 ) } and hence y $ D[Y, C\.

R E M A R K 4.2. In Sawaragi, Nakayama and Tanino [14] it has been shown that if C is
a closed convex pointed cone and Y is a C-convex set, then Ben[F, C] C D[Y,C). As
Ben[r, C] = Bor[y, C], if Y + C is a convex set, it follows that Bor[y, C] C D[Y, C] if C
is a closed convex pointed cone in Y and Y is a C-convex set.

We now give an example to illustrate C-convexity cannot be replaced by local star
shapedness for Benson proper efficient points.

E X A M P L E 4.2. Let C = R\ and Y = {(2/1,2/2) I 2/2 = -2/1,-2 < 2/1 < 0}u {(yi,y2) |
7/2 = -2j/i , 0 ^ 2/1 ^ 2}. Note that Y + C is a locally star shaped at y = (0,0) but Y is
not a C-convex set. Also

clcone(F + C-y)=T(Y + C,y) = {(1/1,1/2) 12/2 ^ -J/i, - 2 < Vl < 0}

U {(3/1,2/2) 12/2 5= -2yi ,O^2/ i ^ 2 } .

Hence y € Ben[V, C](Bor[r, C]) as clcone(y + C -y)f\ ( -C) = {0}. For fj, = (/iX, ^ )

€ C * °

. = f { ( -2 ,2)} if m > 2M2 or 2/ia > Mi ^ (3/2)/i.

I {(2, - 4 ) } if (3/2)/i2 > MI > M2 or Mi < M2 •

so we have £>[V,C] = {(-2 ,2) , (2, - 4 ) } and hence y $ D[Y,C}. In this example it may
also be seen that y $ Pr[F,C] as NP(Y + C,y) = {0}.

5. CHARACTERISATION OF BENSON AND BORWEIN PROPER EFFICIENCY IN TERMS

OF NORMAL CONES

Recently Miettinen and Makela [10] characterised proper efficiency in the sense of
Henig [8], for a multiobjective optimisation problem with the help of normal cones for
both the cases when the feasible criterion set is convex as well as nonconvex (see [8,
Theorem 4 and Theorem 9]). Motivated by this result, in this section, we give similar
characterisation for Benson and Borwein proper efficient points in terms of normal cones.
We first discuss the case when Y + C is a convex set where Y C Rf and C is a convex
pointed cone in BP. We require the following lemma which follows from [11, Corollary
16.4.2] where the result is given for negative dual cone.

LEMMA 5 . 1 . Let C\, C2 , . . . , C m be nonempty convex cones in Rp. Then

(ci Ci n d c2 n . . . n ci cmy = ci(c; + c; + ... + c^).

THEOREM 5 . 1 . LetY+C be a convex set in Rp. Then y e Boi[Y, C] (Ben[F, C])
if and only ifN{Y + C,y)n (-C*0) £ <t>.
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P R O O F : If y G Bor[F,C] then by definition we have T{Y + C,y) D ( - C ) = {0}
which implies (T(Y + C,y) D ( - C ) ) * = ({0})*. Using Lemma 5.1 and (3) we have
-N(Y + C,y) + ( - C ) * = RP. Now by Lemma 2.1 (i) it follows that

(8) -N(Y + C,y)-C* = R".

Let x G C*° CRP then by (8) there exists h € N(Y + C, y), c G C* such that -h-c = x.
Using Lemma 2.1 (ii) we have -h = x + c G C*° + C* C C*°. Hence h G N{Y + C,y)
n (-C*0) that is Af(y + C,y) n (-C*0) # 0.

Conversely, let AT(F + C, y) Q (-C*0) # <£. Let h G N(Y + C,y) D (-C*0). Let us
suppose that j / ^ Bor[y, C], that is there exists d ̂  0 such that d 6 T(y + C, y) n (-C).
As /i e AT(y + C, y) and d € T(K + C, y) we have (h, d) ^ 0. Also since d € -C \ {0}
and /i G -C*° it follows that (h, d) > 0 which is a contradiction. Hence it follows that
y G Bor[Y, C]. The proof is complete since Ben[Y, C] = Bor[y, C] when Y + C is a convex
set. D

We now generalise the above result when Y + C is no longer a convex set.

THEOREM 5 . 2 . Jfj/G Bor[y,C](Ben[y,C]) tien NC(Y + C,y) n(-C"°) / (/>.

PROOF: If y G Bor[y,C](Ben[y,C]) then T ( r + C,y) n (-C) = {0} (clcone
(y + C - y) n (-C) = {0}). Using the relation (2) we have TC{Y + C,y)n (-C) = {0}.
Proceeding as in Theorem 5.1 we get the required result. D

THEOREM 5 . 3 . If Y + C is tangentially regular at y and NC(Y + C,y)n(-C*0)
^4> theny G Bor[y,C].

PROOF: If Y + C is tangentially regular at y, then (T{Y+C,y))* = (TC(Y+C,y))'
that is, N(Y + C,y) = NC(Y + C,y). By the given hypothesis we have N(Y + C,y)
n (—C*°) / (j>. Rest of the proof follows as in the converse part of Theorem 5.1. D

The following example illustrates that the above theorem may not necessarily hold
for Benson proper efficient point even if Y + C is tangentially regular.

EXAMPLE 5.1. Consider the set C and Y considered in Example 3.2. It was ob-
served that y = (0,0) £ Ben[y,C]. Also Y is tangentially regular at y as T(Y + C,y)
= TC{Y + C,y) = R\. As N{Y + C,y) = -C we have that N{Y + C,y)n (-C'°) ? 0.
Since T{Y + C,y)n ( - C ) = {0} it follows tha t y G Bor[y,C].

We thus observe tha t a complete characterisation is not available for Benson proper

efficiency when Y + C is a nonconvex set.

6. C O N C L U S I O N S

One of the major advantages of proximal proper efficiency is tha t a scalar charac-
terisation is possible even when the criterion set is not necessarily convex. Unlike the
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case with Benson and Borwein proper efficiency we only require the translation of the
criterion set by the underlying cone to be locally star shaped. The geometric nature of
proximal normal cone facilitates the identification of the improper solutions. However
the only limitation with proximal proper efficiency in comparison with the other similar
notions, is that, the underlying set to has to be a closed set.
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