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Abstract An elegant result of Ryan gives a characterization of weakly compact operators from a Banach
space A into c0(X), the space of null sequences in a Banach space X. It would be a useful tool if the
analogue of Ryan’s result were valid when c0(X) is replaced by c(X), the space of convergent sequences
in X. This seems plausible and has been assumed to be true by some authors. Unfortunately, it is false
in general; Ylinen has produced a counterexample. But when A is a C∗-algebra, or, more generally, when
the dual of A is weakly sequentially complete, we show that the desired extension of Ryan’s result does
hold. The latter result turns out to be ‘best possible’.
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1. Introduction

The origin of this paper stems from observing that some results on non-commutative,
finitely additive vector measures (i.e. weakly compact operators from a C∗-algebra to
a Banach space) do not depend on the domain being a C∗-algebra but are essentially
Banach space results.

Let A and X be Banach spaces and let (Tn) (n = 1, 2, . . . ) be a sequence of weakly
compact operators mapping A into X. For each z ∈ A∗∗ let (T ∗∗

n z) (n = 1, 2, . . . ) be a
Cauchy sequence. Since, for each n, Tn is weakly compact, the range of T ∗∗

n is in X. By
the uniform boundedness theorem there is a bounded operator T# : A∗∗ �→ X such that
limn→∞ T ∗∗

n z = T#z for each z in A∗∗. It would be natural to expect T# to be weakly
compact but, in general, this is false. This follows from the following example constructed
by Ylinen [6].

In [6, Proposition 2.1], A = l1 = X. For each n, Tn : l1 �→ l1 is defined by

Tn(x1, x2, . . . , xk, . . . ) = (x1, x2, . . . , xn, 0, 0, . . . ).
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Then each Tn is weakly compact (because its range is finite dimensional). Ylinen proves
that (T ∗∗

n z) (n = 1, 2, . . . ) converges for each z in the dual of l∞ but the pointwise limit
of the sequence of operators (Tn) (n = 1, 2, . . . ) is not weakly compact.

However, if A is a C∗-algebra, then there does exist a weakly compact operator T : A �→
X such that limn→∞ T ∗∗

n z = T ∗∗z for each z in A∗∗. This is an immediate consequence
of [1, Corollary 3.3]. In this note we show that a positive result is also obtained if A∗ is
weakly complete. (We recall that the dual of a C∗-algebra is always weakly complete.)
We shall also see that, in a sense made precise here, the latter result is ‘best possible’.

Ryan [4] characterized weakly compact operators from a Banach space A into c0(X),
the space of null sequences in a Banach space X (see Proposition 3.4 below). When c0(X)
is replaced by c(X), the space of convergent sequences in X, the natural extension of
Ryan’s characterization does not hold, in general. But when X∗ is weakly (sequentially)
complete, then we show, in § 3, that Ryan’s characterization can be generalized success-
fully by applying the results we obtain in § 2. This can then be applied to underpin some
fundamental work on weak compactness and multilinear operators on Banach spaces [3].

2. Convergent sequences of weakly compact operators

Let us recall that a Banach space Z is said to be weakly complete if, whenever (zn)
(n = 1, 2, . . . ) is a sequence in Z such that (φzn) (n = 1, 2, . . . ) is a Cauchy sequence
for every φ in Z∗, then there exists z in Z such that φzn → φz for every φ in Z∗. Some
authors use the term weakly sequentially complete for the same property.

Theorem 2.1. Let A be a Banach space such that A∗ is weakly complete. Let X be
a Banach space and let (Tn) (n = 1, 2, . . . ) be a sequence of weakly compact operators
from A into X. Let (T ∗∗

n z) (n = 1, 2, . . . ) be a Cauchy sequence for each z in A∗∗. Then
there exists a weakly compact operator T such that ‖(T ∗∗−T ∗∗

n )z‖ → 0 for each z in A∗∗.

Proof. Since Tn is weakly compact, T ∗∗
n maps A∗∗ into X. Let T#z = lim T ∗∗

n z for
each z in A∗∗. Then, by the uniform boundedness theorem, T# is a bounded linear
operator from A∗∗ into X. Let T be the restriction of T# to A.

Fix φ ∈ X∗. Then, for each z ∈ A∗∗,

lim
n→∞

〈T ∗∗
n z, φ〉 = 〈T#z, φ〉.

So

lim
n→∞

〈z, T ∗
nφ〉 = 〈T#z, φ〉.

So (T ∗
nφ) (n = 1, 2, . . . ) is a weakly Cauchy sequence in A∗. By the hypothesis that A∗ is

weakly complete, it follows that there exists a unique α ∈ A∗ such that 〈z, α〉 = 〈T#z, φ〉
for all z in A∗∗.

All that is now needed is to show that T ∗∗ = T#. Since this has been a source of error
in the past we wish to avoid being too glib and so give a detailed elementary argument.

Let (zt) be a net in A∗∗ which converges to 0 in the σ(A∗∗, A∗)-topology. So 〈zt, α〉 → 0.
Thus 〈T#zt, φ〉 → 0 for each φ in X∗. So T# is a continuous map of A∗∗, equipped with
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the weak∗-topology, to X equipped with the weak topology. Since the norm closed unit
ball of A∗∗ is weak∗ compact, the image of the unit ball of A∗∗ under the map T# is
weakly compact. Hence T#, and its restriction to A, T , is weakly compact. Thus, by
Lemma VI.2.3 and Theorem VI.4.2 of [2], T ∗∗ is weak∗ to weak continuous from A∗∗ to
X. By Goldstine’s theorem (see [2, Theorem V.4.5]), the norm closed unit ball of A is
weak∗-dense in the norm closed unit ball of A∗∗. Hence T# = T ∗∗. �

Remark. Let A be a C∗-algebra. Its dual is then the predual of a von Neumann algebra
and so, by [5, Corollary III.5.2], the dual of A is weakly complete. Hence Theorem 2.1
applies whenever A is a C∗-algebra.

It turns out that Theorem 2.1 is ‘best possible’. To make this claim precise it is con-
venient to introduce the following definition.

Definition 2.2. Let X be a Banach space. A Banach space A is said to have the weak
compactness stability property with respect to X if, given any sequence of weakly compact
operators (Tn) (n = 1, 2, . . . ), each mapping A into X, and with (T ∗∗

n z) (n = 1, 2, . . . ) a
Cauchy sequence for each z in A∗∗, there exists a weakly compact operator T such that
limn→∞T ∗∗

n z = T ∗∗z for each z in A∗∗.

Proposition 2.3. Let A be a Banach space with the weak compactness stability
property with respect to some non-zero Banach space X. Then A∗ is weakly complete.

Proof. Let (φn) (n = 1, 2, . . . ) be a weakly Cauchy sequence in A∗. Then, for each z in
A∗∗, limn→∞〈z, φn〉 exists. By the uniform boundedness theorem, there exists a bounded
linear functional ψ# on A∗∗ such that ψ#(z) = limn→∞〈z, φn〉 for each z in A∗∗.

Since X is a non-zero Banach space it contains a non-zero element x0. For each n, let
Tn : A �→ X be defined by

Tn(a) = 〈a, φn〉x0.

Then Tn has a one-dimensional range and so is (weakly) compact. Furthermore,
T ∗∗

n (z) = 〈z, φn〉x0 for each z in A∗∗. It now follows from the weak compactness sta-
bility property for X that there exists a weakly compact operator T mapping A into X,
such that

T ∗∗(z) = lim
n→∞

T ∗∗
n (z) = lim

n→∞
〈z, φn〉x0 = ψ#(z)x0 for each z in A∗∗.

Since T is weakly compact, then, as remarked in the proof of Theorem 2.1, T ∗∗ is
weak∗ to weak continuous as a map from A∗∗ to X. Thus ψ# is a weak∗ continuous linear
functional on A∗∗. So, by [2, Theorem V.3.9], ψ# may be identified with an element of
A∗. Hence (φn) (n = 1, 2, . . . ) is weakly convergent. Thus A∗ is weakly complete. �

Corollary 2.4. Let A be a Banach space. Then the following conditions are equivalent:

(i) A∗ is weakly complete;

(ii) A has the weak compactness stability property with respect to some Banach space
of non-zero dimension;
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(iii) A has the weak compactness stability property with respect to every Banach
space X.

Proof. By Theorem 2.1, (i) implies (iii). Trivially (iii) implies (ii). By Proposition 2.3,
(ii) implies (i). �

3. Extending Ryan’s lemma

For any Banach space X, let c(X) be the Banach space of all (norm) convergent sequences
in X, equipped with the supremum norm. Those elements of c(X) which are sequences
in X converging (in norm) to 0 form a closed subspace which is denoted by c0(X).

For each positive integer n, let Tn be a bounded linear operator from a Banach space
A into a Banach space X. Let lim Tna exist for each a in A. Then (Tna) (n = 1, 2, . . . )
is a vector in c(X). Let T∞ be the linear map from A into X defined by T∞a = lim Tna

for each a in A. We use T to denote the operator from A to c(X) associated with the
sequence (Tn) (n = 1, 2, . . . ) and defined by T (a) = (Tna) (n = 1, 2, . . . ). By applying the
uniform boundedness theorem we see that T∞ and T are both bounded linear operators.
Conversely, every bounded operator from A into c(X) arises in this way from a sequence
of operators from A into X.

Let us recall [4] that, for 1 � p < ∞ and X an arbitrary Banach space, lp(X) is the
Banach space whose points are the sequences x = (xn) (n = 1, 2, . . . ) in X for which∑∞

1 ‖xn‖p < ∞. The norm of x is defined to be (
∑∞

1 ‖xn‖p)1/p. Also, l∞(X) is defined
to be the Banach space whose points are all bounded sequences in X and where the norm
of x = (xn) (n = 1, 2, . . . ) is defined to be sup{‖xn‖ : 1 � n}.

Given φ = (φ0, φ1, . . . ) in l1(X∗) and x = (xn) (n = 1, 2, . . . ) in c(X), let

Lφ(x) = φ0(lim xn) +
∞∑

n=1

〈xn, φn〉.

Straightforward calculations then show that Lφ is a bounded linear functional on c(X)
and its norm is

∑∞
n=0 ‖φn‖. Furthermore, the map φ �→ Lφ can be shown to be a sur-

jective isometry of l1(X∗) onto c(X)∗.
Then the canonical bilinear form 〈· , ·〉 arising from the dual pair (c(X), c(X)∗), where

l1(X∗) and c(X)∗ are isometrically isomorphic by the map φ �→ Lφ described above, is
given by

〈x, Lφ〉 =
〈

lim
n→∞

xn, φ0

〉
+

∞∑
n=1

〈xn, φn〉

for each x = (x1, x2, . . . ) ∈ c(X) and φ = (φ0, φ1, . . . ) ∈ l1(X∗).
It follows from the remarks in [4] that the dual of l1(X∗) can be identified in a natural

way with l∞(X∗∗). Thus c(X)∗∗ can be identified with l∞(X∗∗). Let � be the canonical
embedding of X into X∗∗. Then a sequence (xn) (n = 1, 2, . . . ) in c(X) is mapped to
(lim �xn, �x1, �x2, . . . ) in l∞(X∗∗).

Lemma 3.1. Let T be a bounded operator from a Banach space A into c(X) and let
Tn (n = 1, 2, . . . ) and T∞ be the operators from A into X associated with T as above.
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Fix L in c(X)∗. Then let φ = (φ0, φ1, . . . ) be the corresponding element of l1(X∗). Then,
for each z ∈ A∗∗,

〈T ∗∗z, L〉 = 〈T ∗∗
∞ z, φ0〉 +

∞∑
n=1

〈T ∗∗
n z, φn〉.

Proof. For each a ∈ A,

〈T a, L〉 = 〈T∞a, φ0〉 +
∞∑

n=1

〈Tna, φn〉.

Now let z be in the unit ball of A∗∗. Then, by Goldstine’s theorem (see above) there
is a net (at) in the unit ball of A which converges weak∗ to z. Then T at → T ∗∗z in the
weak∗ topology of c(X)∗∗. So 〈T at, L〉 → 〈T ∗∗z, L〉. Similarly, for each N ,

〈T∞at, φ0〉 +
N∑

n=1

〈Tnat, φn〉 → 〈T ∗∗
∞ z, φ0〉 +

N∑
n=1

〈T ∗∗
n z, φn〉.

Choose ε > 0. Choose N large enough to ensure that

‖T ‖
∞∑

n=N+1

‖φn‖ � ε.

Then for any w in the unit ball of A∗∗,
∣∣∣∣

∞∑
n=N+1

〈T ∗∗
n w, φn〉

∣∣∣∣ � ‖T ‖
∞∑

n=N+1

‖φn‖ � ε.

From this it follows by routine arguments that

〈T ∗∗z, L〉 = 〈T ∗∗
∞ z, φ0〉 +

∞∑
n=1

〈T ∗∗
n z, φn〉.

�

We have seen that c(X)∗∗ can be identified with l∞(X∗∗). When this identification is
made appropriately, we have the following corollary.

Corollary 3.2. For each z in A∗∗ we have

T ∗∗(z) = (T ∗∗
∞ z, T ∗∗

1 z, T ∗∗
2 z, . . . , T ∗∗

n z, . . . ).

The following lemma was, in essence, proved by Ylinen [6]. For the convenience of the
reader, we give a brief proof here as an application of Corollary 3.2.

Lemma 3.3. Let A and X be Banach spaces and let T be a weakly compact operator
from A into c(X). Let (Tn) (n = 1, 2, . . . ) be the sequence of operators from A into X

such that T (a) = (Tna) (n = 1, 2, . . . ) for each a in A. Then each Tn is weakly compact.
Also, T∞, the pointwise limit of (Tn) (n = 1, 2, . . . ), is weakly compact. Furthermore,
lim T ∗∗

n (z) = T ∗∗
∞ z for each z in A∗∗.
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Proof. We recall that the product of a bounded operator and a weakly compact
operator is weakly compact. Let πn be the canonical projection of c(X) onto the nth
coordinate. Then Tn = πnT . Hence Tn is weakly compact. Let π∞ be the operator which
maps (a1, a2, . . . ) in c(X) to lim an. Then T∞ = π∞T and so is also weakly compact.

Since T is a weakly compact operator from A into c(X), T ∗∗ maps A∗∗ into the
canonical image of c(X) in the second dual c(X)∗∗. Hence, for every z ∈ A∗∗, there exists
x = (x1, x2, . . . ) in c(X) such that

〈(x1, x2, . . . ), Lφ〉 = 〈(φ0, φ1, φ2, . . . ), (T ∗∗
∞ z, T ∗∗

1 z, T ∗∗
2 z, . . . )〉

for all φ = (φ0, φ1, φ2, . . . ).
Now take any φ ∈ X∗ and consider

φ(k) = (δk,nφ)∞
n=0 ∈ l1(X∗) for k = 0, 1, 2, . . . .

Then we have
〈xk, φ〉 = 〈φ, T ∗∗

k z〉

for all k � 1 and 〈
lim

k→∞
xk, φ

〉
= 〈φ, T ∗∗

∞ z〉,

that is, �xn = T ∗∗
n z for all n and limn→∞ �xn = T ∗∗

∞ z. Hence it follows that

‖T ∗∗
n z − T ∗∗

∞ z‖ → 0, n → ∞.

�

Proposition 3.4 (Ryan [4]). Let A and X be Banach spaces. Let (Tn) (n = 1, 2, . . . )
be a sequence of bounded operators from A into X. Let ‖Tnz‖ → 0 for each z in A. Then T

is a weakly compact operator from A into c0(X) if, and only if, each Tn is weakly compact
and ‖T ∗∗

n z‖ → 0 for each z in A∗∗. When T is weakly compact, T ∗∗(z) = (T ∗∗
n (z))

(n = 1, 2, . . . ) for each z in A∗∗.

Proposition 3.4 is a special case of the following result, which is essentially due to
Ylinen [6].

Proposition 3.5. Let A and X be Banach spaces and let T be a bounded operator
from A into c(X). Let (Tn) (n = 1, 2, . . . ) be the sequence of operators from A into X

such that T (a) = (Tna) (n = 1, 2, . . . ) for each a in A and let T∞ be the operator from
A into X which is defined by T∞a = lim Tna for each a ∈ A. Then T is weakly compact
if and only if the following conditions are satisfied.

(i) For each n, Tn is weakly compact.

(ii) For each z in A∗∗, lim T ∗∗
n (z) = T ∗∗

∞ (z).

(iii) The operator T∞ is weakly compact.
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Proof. By Lemma 3.3, when T is weakly compact the three conditions are satisfied.
Now suppose that the conditions are satisfied. So, for each z in A∗∗, condition (iii)

implies that T ∗∗
∞ z is in X and condition (i) implies that T ∗∗

n z is in X for each n. Hence,
by condition (ii), (T ∗∗

∞ z, T ∗∗
1 z, T ∗∗

2 z, . . . , T ∗∗
n z, . . . ) is in the canonical image of c(X) in

c(X)∗∗. Hence, by Corollary 3.2, T ∗∗ maps A∗∗ into c(X). So T is weakly compact. �

Theorem 3.6. Let X be any Banach space. Let A be a Banach space whose dual
space, A∗, is weakly complete. Let (Tn) (n = 1, 2, . . . ) be a sequence of weakly compact
operators from A into X such that (T ∗∗

n (z)) (n = 1, 2, . . . ) is a Cauchy sequence for each
z in A∗∗. Then T is a weakly compact operator from A into c(X).

Proof. Because the dual of A is weakly complete, Theorem 2.1 implies the existence
of a weakly compact operator T∞ : A �→ X such that T ∗∗

n (z) → T ∗∗
∞ (z) for each z in A∗∗.

So conditions (i)–(iii) of Proposition 3.5 are satisfied. �

Remark. If A∗ is not weakly complete, then it follows from Proposition 2.3 that we
can find a sequence of weakly compact operators, (Tn) (n = 1, 2, . . . ), each mapping A

into c, such that (T ∗∗
n (z)) (n = 1, 2, . . . ) is a convergent sequence for each z in A∗∗ but

T∞ is not weakly compact (where T∞(a) = limTn(a) for each a in A). It then follows
from Proposition 3.5 that T is not weakly compact. So the hypothesis that A∗ is weakly
complete is essential for the validity of Theorem 3.6.
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