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Abstract

Parents share half of their genes with their children, but they also share background social factors and actively help shape their child’s envi-
ronment — making it difficult to disentangle genetic and environmental causes of parent-offspring similarity. While adoption and extended
twin family designs have been extremely useful for distinguishing genetic and nongenetic parental influences, these designs entail stringent
assumptions about phenotypic similarity between relatives and require samples that are difficult to collect and therefore are typically small and
not publicly shared. Here, we describe these traditional designs, as well as modern approaches that use large, publicly available genome-wide
data sets to estimate parental effects. We focus in particular on an approach we recently developed, structural equation modeling (SEM)-
polygenic score (PGS), that instantiates the logic of modern PGS-based methods within the flexible SEM framework used in traditional
designs. Genetically informative designs such as SEM-PGS rely on different and, in some cases, less rigid assumptions than traditional
approaches; thus, they allow researchers to capitalize on new data sources and answer questions that could not previously be investigated.
We believe that SEM-PGS and similar approaches can lead to improved insight into how nature and nurture combine to create the incredible

diversity underlying human behavior.
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There is a substantial body of evidence showing that one of the
most potent predictors of psychopathology is having a parent
who experiences psychiatric illness themselves (Leverton, 2003;
Stein et al.,, 2014). Nonetheless, while offspring resemble their
parents on a wide variety of traits — from psychiatric illness to
physical and social outcomes - the underlying causes of parent-
offspring similarity have proven difficult for scientists to disen-
tangle. Parents share half of their genetic effects with their children,
leading to increased similarity for heritable traits. However,
parents also tend to share relevant environmental influences with
their children and will typically play an active role in shaping their
children’s rearing environment - factors that may have enduring
influences on certain offspring traits. Despite fueling scientific
debate for over a century, this discrepancy between nature and
nurture has seen little resolution and thus continues to be of
interest for researchers and laypeople alike.

For much of the early 20th century, the notion of hereditari-
anism occupied a highly prominent role in the scientific commu-
nity, largely as a result of the publication of Charles Darwin’s On
the Origin of Species and the recognition of Gregor Mendel’s work
on inheritance (Cravens, 1978). As a result, individual differences
in psychiatric illness, cognitive ability, criminality, and alcoholism,
as well as perceived racial and sex differences, were primarily
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attributed to genetic causes and thus believed to be beyond envi-
ronmental intervention - a viewpoint that, for decades to come,
had a massive influence on the field of psychiatry and on policy
decisions around the globe (Cooper, 2001; Honeycutt, 2019).
However, this prominence began to fade over time as the
proceeding decades saw a (perhaps reactionary) paradigm shift,
particularly within the nascent behavioral sciences. Specifically,
the reigning hypotheses regarding behavior began to tilt heavily
toward nurturing explanations, such that parenting practices were
viewed as central in shaping nearly all aspects of an individual’s
behavioral and cognitive traits. As a perhaps unintended conse-
quence of this paradigm, parents (especially mothers) were blamed
for their offspring’s developmental difficulties, atypical behaviors,
and psychiatric illnesses. Maternal coldness, for example, was seen
as the salient cause of later autism and schizophrenia in their
offspring (Fromm-Reichmann, 1948; Kanner, 1949). These views
began to be jettisoned in the 1970s as strong evidence for genetic
and other biological influences on traits became difficult to ignore.
In particular, twin studies — which allowed researchers to system-
atically quantify the roles of nature and nurture for individual
human traits — seemed to consistently arrive at the same conclu-
sion: evidence of substantial heritability was the norm across
outcomes, whereas evidence of shared environmental effects
(of which parental influences should be a part) was scant for many
of the most studied traits, including cognitive ability, personality,
and various neuropsychiatric disorders. Based on these findings,
some scientists have again returned to the hereditarianist view-
point that DNA is the primary driver in shaping who we are
(Plomin, 2019).
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Table 1. Summary of several genetically informed approaches of estimating parental effects
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Utilizes: Can estimate/account for:
Measured  Structural
Genomic  Equation Genetic
Requires Data Modeling Vertical Transmission Nurture Assortative Mating
Classical Twin Twin pairs No Yes No No No
Design
Extended Twin  Twin pairs, and various No Yes Yes Yes Only if AM is phenotypically driven
Family Designs  combinations of the twins’ children, and at equilibrium; biased otherwise
parents, and spouses
Adoption Study  Adoptees and their adoptive No Yes Yes Yes Only if AM is phenotypically driven
parents; biological parents can and at equilibrium; biased otherwise
also be included
Kong et al. Offspring and their parents Yes No Theoretically yes, Yes Only if AM is phenotypically driven
(2018) (i.e., Trios) but has yet to be and has gone on for 1 generation;
used for this biased otherwise
Relatedness Offspring and their parents Yes No Yes Yes No
Disequilibrium (i.e., Trios)
Regression
Trio-GCTA Offspring and their parents Yes No Yes Yes No
(i.e., Trios)
SEM-PGS Offspring and their parents Yes Yes Yes Yes Yes

(i.e., Trios)

One of the most prominent discrepancies between the methods above lies in their respective abilities to estimate various types of assortative mating (AM). While AM can, and often is, driven by
phenotypic similarity between mates, it may also be due to similarity on nonheritable environmental factors (such as one’s birthplace), or on genetic similarity. This distinction is important, as
phenotypically (but not environmentally) driven AM will alter the genetic architecture of traits in a given population, biasing the estimates of trait heritability from a variety of study designs.

However, despite its influence and continued use in examining
nature and nurture, the classical twin design (see Table 1) is a poor
tool for examining parental influences. The estimates of shared
environmental influences from twin studies, which parental
influences should contribute to, are often biased - downwardly
in the presence of nonadditive genetic variance (e.g., interactions
between variants) and upwardly in the presence of nonrandom
mating (Keller & Coventry, 2005; Cloninger et al, 1979;
Dalmaijer, in prep). Furthermore, estimates of shared environ-
mental effects from twin studies only capture the aspects of
parenting that induce similarity across offspring, which may not
be a major contributor to the totality of parental influences for
certain traits (Turkheimer & Waldron, 2000). Similarly, studies
of adult twins will underestimate parental influences that fade over
time, which could still be important to an individual’s develop-
mental trajectory. Finally, twin studies require the assumption that
the genetic and environmental influences on a trait are indepen-
dent of one another, complicating the interpretation of results
when this assumption is unmet.

This final assumption, regarding the independence of genetic
and environmental factors, has proven particularly challenging
in the context of understanding parental influences. When a herit-
able parental trait is having a direct influence on an offspring trait
via the offspring’s rearing environment (a phenomenon termed
vertical transmission; see Table 2), genetic and environmental
factors are predicted to become correlated. This is because, in cases
of vertical transmission, parents who exhibit a given heritable trait
(e.g., antisocial behavior) not only provide to their children the
genes that predispose to this trait but also a rearing environment
that predisposes to it as well (e.g., one characterized by volatility,
aggression, and callousness; Hart et al., 2021). This co-inheritance
of genetic and environmental causal factors leads to a correlation
between genetic and environmental influences, traditionally
referred to as a passive gene-environment correlation in the
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behavioral genetics literature and more recently termed genetic
nurture (see Figure 1). Although most genetically informed designs
are unable to detect it, genetic nurture is a lurking presence that can
bias genetic and environmental effect size estimates if unaccounted
for. In studies of measured genetic polymorphisms, for example,
effect size estimates will capture both the genetic effects of the
polymorphism as well as any correlated effects of the rearing
environment, leading to upwardly biased estimates for every truly
associated polymorphism across the genome. Thus, it is important
that genetic influences, vertical transmission, and genetic nurture
be accounted for in order to tease apart the various factors that
impact complex trait variation.

Fortunately, several designs have been developed that can
disambiguate genetic effects, genetic nurture, and vertical trans-
mission, producing estimates that are likely to be less biased in
the presence of these factors. Here, we provide a brief nontechnical
overview of traditional and recent approaches for examining the
sources of parent-offspring similarity, with a particular focus on
our own approach, structural equation model (SEM)-polygenic
score (PGS). As described below, SEM-PGS builds upon recent
insights into how to use parent and offspring PGSs to elucidate
the cause of parent-offspring similarity, but does so using SEMs
and other principals developed in extended twin family designs
in an effort to derive estimates that are less biased than previous
approaches (Balbona et al., 2021).

Traditional approaches to understanding parental
influences

Extended twin family designs

Extended twin family designs (see Table 1) are extensions of the
classical twin design that disambiguate the sources of similarity
between close relatives, including parent and offspring, by
modeling data from twin pairs and the twins’ family members.
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Table 2. Glossary of key genetics terms

Term Definition

Heritability (h?) The proportion of variance in a trait that is due to genetic variation between individuals as opposed to environmental

variation. “Heritable” traits are thus those that have, at least to some extent, an underlying genetic basis

Additive genetic effects The proportion of heritability contributed by the sum of multiple genetic variants’ individual effects. In contrast,
nonadditive genetic effects include genetic dominance effects and epistasis (multiplicative interactions between two or
more genetic variants). Additive genetic effects are what is typically being captured in estimates of heritability from GWAS,

and from many twin-based studies.

Vertical transmission (VT) The direct influence of a parental trait on an offspring trait, mediated by the offspring’s rearing environment (i.e., the

home environment that parents help to create and shape)

Genetic nurture Also referred to as passive gene-environment correlation; the covariance between an individual’s genetic effects and their

rearing environment (both of which are generally provided by one’s biological parents)

Assortative mating (AM) The tendency for people to preferentially mate with others who are similar to themselves. This preference may be
conscious or unconscious, and the similarity may be with regard to the individuals’ phenotypes, genotypes, and/or

environmental backgrounds

Often referred to as a ‘polygenic risk score’; a score that reflects an individual’s relative genetic predisposition for a trait.
PGSs are derived as the weighted sum of trait-increasing alleles within an individual’s genome, with the weights being
derived from GWAS results

Polygenic Score (PGS)

Genome-Wide Association
Study (GWAS)

A hypothesis-free observational study that examines the extent to which each individual genetic variant in a given subset
is associated with a trait; the specific variants used are typically single nucleotide polymorphisms (SNPs), chosen based on
their minor allele frequency in the population

While the different types of extended twin family designs vary in
their specifics, they all utilize parents and offspring, along with the
various genetic relationships induced by including both identical
and fraternal twins in the data. For example, the Children of
Twins design is a type of extended twin family design that models
data from pairs of adult twins and their offspring. The logic behind
this approach is that the children of identical twins are as geneti-
cally related to their parent (who may influence a given trait via
vertical transmission) as they are to their aunt/uncle (who does
not influence the trait via vertical transmission), while the children
of fraternal twins share the usual degree of genetic relationships;
thus, part of the evidence for vertical transmission comes from
higher parent-offspring than avuncular covariance among
identical twins. Many other such unique relationships exist in
extended twin family designs that, when fit simultaneously,
allow researchers to derive potentially unbiased estimates of the
variation due to several sources of relative similarity, including
vertical transmission, genetic nurture, and additive genetic effects
(Keller et al., 2010).

Altering the types of relatives included in these models allows
researchers to address different potential causes of trait variation,
making extended twin family designs adaptable to the data and
question of interest (see Figure 2). Moreover, by modeling data
from either the parents or spouses of twins, these models can
account for the complicating influences of assortative mating -
the tendency for mates to be more alike on various traits than
expected by chance — which we discuss in greater detail below.
Much of the flexibility and extensibility of extended twin family
designs have been made possible by the use of SEM (Wright,
1934), which provides a number of advantages over other
approaches (reviewed in Table 3). Nonetheless, several issues limit
the utility of these designs. Foremost, the information used to esti-
mate parameters in extended twin family design models comes
solely from covariances between relatives’ phenotypes — genotypes
are unmeasured and thus genetic (co)variances must be inferred
from phenotypic (co)variances — which means that the accuracy
of estimates depends strongly on a number of difficult-to-verify
assumptions about the causes of phenotypic similarity between
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Figure 1. The co-occurrence of genetic transmission and vertical transmission will
necessarily result in passive gene-environment covariance. In this example, highly
educated parents provide to their child not only genes conducive to higher education
but also a rearing environment that values and prioritizes education. This environment
may include parental activities such as reading to the child, assisting with homework,
or encouraging a positive attitude toward schooling. Thus, the offspring’s environment
is influenced by the parental genes, causing the offspring’s genes and environment to
be correlated with one another rather than independent - a phenomenon termed
“passive GE correlation” (or more recently, “genetic nurture”) in the behavioral
genetics literature.

various relative types (Eaves, 1976; Keller et al., 2010). Related
to this, extended twin family designs typically account for one
particular type of assortative mating — equilibrium primary pheno-
typic assortative mating - which occurs when individuals are
mating based on phenotypic similarity, and have done so for many
generations. However, assortment may have only begun in the last
generation or two, and it may be due to similarity in nonheritable
background social factors (e.g., geographic location). Such alterna-
tive types of assortative mating are possible (if not typical) and can
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Table 3. Advantages of using structural equation models, taken in part from Keller et al. (2009) and Kline (2016)

Advantages of Structural Equation Modeling

1. SEMs can be easily adapted to the type of data at hand, what that data says about model assumptions, and the research questions of interest.

2. By finding estimates jointly rather than individually, the mathematical expectations of potential complex (e.g., recursive) relationships between variables

can be greatly simplified. This can help reduce otherwise intractable math.

3. SEM directs focus to effect sizes and model evaluation rather than p-value thresholds.

4. SEMs require the user to carefully consider and describe the hypothesized causal processes underlying relationships in observed data.

5. Any model will be biased to the degree that its assumptions are unmet, but such assumptions are often implicit or ignored. SEMs encourage that model

assumptions are made explicit and encourages testing of those assumptions.

[<2]

. Hypothesized causal processes and assumptions can be easily communicated via path diagrams - pictorial representations of causal models.
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Figure 2. An illustration of how extended twin family designs build upon the classical twin design framework. The classical twin design (shown above in blue) compares cova-
riances between identical/monozygotic (MZ) and fraternal/dizygotic (DZ) twins’ traits in order to estimate three sources of trait variation: (1) additive genetic factors, which are
shared completely by identical twins and 50% by fraternal twins; (2) common/shared environmental factors, which are completely shared by both identical and fraternal twin
pairs; and (3) unique/nonshared environmental factors, which are definitionally unique to each individual. By adding in twins’ offspring (shown in pink), the model becomes a
Children of Twins design, in which vertical transmission and genetic nurture are estimable. Finally, incorporating the twins’ partners (shown in green), provides additional infor-
mation on vertical transmission/genetic nurture and allows for the effects of assortative mating to be fully accounted for, avoiding a potentially large source of bias; in lieu of the
twins’ partners this information can also be obtained by modeling data from the twins’ parents.

lead to serious biases when they occur (Keller et al., 2010). Third,
extended twin family designs require samples that are difficult to
collect and so are typically small and not publicly shared. Finally,
the incorporation of additional relative classes improves statistical
power and reduces bias, but it comes with the cost of immense
added complexity and often requires larger sample sizes to achieve
sufficient power (McAdams et al., 2014; Posthuma & Boomsma,
2000). These latter two limitations are barriers of entry to the wide-
spread use of extended twin family designs and limit the number of
findings that exist based on them.

Adoption studies

Because of their power and simplicity, adoption studies have long
been viewed as a gold standard for disambiguating the factors that
lead to parent-offspring similarity (Horn et al., 1979). This design
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capitalizes on the assumption that, in cases of adoption, similarity
between offspring and their biological parents is due to genetic (but
not environmental) causes, whereas similarity between offspring
and their adoptive parents is due to environmental (but not
genetic) causes. Therefore, assuming that the child’s genotype is
uncorrelated with that of their adoptive parents (i.e., that there
was no selective placement) and that no vertical transmission
occurred between the biological parent and their child prior to
adoption, estimates of vertical transmission using adopted children
should be free from genetic influences or bias due to genetic
nurture (Jaffee et al., 2012; Rutter et al, 2001). Additionally,
estimates of the magnitude of genetic effects can be obtained by
examining the covariance between biological parents and their
adopted-away offspring, or by comparing covariances within
adoptive families to those within demographically matched
biological families.
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While powerful, adoption studies share many of the limitations
of extended twin family designs: their estimates depend strongly on
assumptions about the underlying causes of phenotypic covariance
between relatives, they typically do not account for assortative
mating, and they require samples that are difficult to collect and
are therefore often small and proprietary. The assumption that
biological parent-adopted away offspring similarity is due solely
to genetic factors can be especially problematic given evidence that
the prenatal environment (provided by the biological mother)
plays a vital role in the development of many traits — especially
those relevant to an individual’s physical and neuropsychiatric
health (Salam et al, 2014). Additionally, the assumption that
adoptees are placed randomly is often difficult to verify, given that
parents and adopted offspring who are genetically uncorrelated for
the trait of interest (e.g., educational attainment) may still be genet-
ically correlated on a separate, potentially relevant variable (e.g.,
intelligence or a dimension of personality); violations of this
assumption can upwardly bias estimations of vertical transmission
(Shih et al., 2004). Finally, the generalizability of adoption studies
can be limited by the restricted range of adoptive home environ-
ments and by the potential genetic and environmental dissimilarity
of adoptees to the general public (Rhee & Waldman, 2002). Despite
these limitations, adoption studies remain an important tool for
understanding the causes of parent-offspring similarity.

Recent approaches that use measured genetic data
to understand parental influences

In addition to those listed in Table 3, one of the great strengths of
SEMs is their ability to represent unobserved parameters as latent
variables - variables that, despite not being measured themselves
(or in some cases being impossible to measure at all), still serve as
hypothesized sources of variation among the measured variables.
In the case of extended twin family designs and adoption studies,
latent variables are used to model the influence of genetic
factors on trait variation without requiring the collection of any
genotypic data; thus, SEM made the study of genetic and environ-
mental effects possible for the decades prior to human genome
sequencing.

Nonetheless, in recent years, researchers have found creative
means through which measured genomic data, particularly poly-
genic scores (PGSs, also referred to as “polygenic risk scores”),
can be used to estimate both genetic and nongenetic parental
influences. An individual’s PGS serves as an indicator of their
genetic predisposition toward a given trait and is calculated as
the count of trait-increasing alleles present in their genome,
weighted by each allele’s degree of association with the trait
(for a review, see Wray et al., 2021). The weights used in calculating
PGSs are based on results from genome-wide association studies
(GWAS, pronounced “gee-wos”) — hypothesis-free observational
studies that examine differences in allele frequencies between
cases and controls, or between people with different values on a
continuous trait. Once calculated, PGSs are first validated using
cohorts with known case/control status, after which they can be
used for prediction in independent samples. Thus, by condensing
the effects of many genetic variants (typically millions) into a single
summative value for each individual in a sample, PGSs are
a highly valuable, user-friendly tool for examining the genetic
underpinnings of complex traits; this is particularly true for the
study of psychiatric disorders, nearly all of which have been
found to result from massively complex and polygenic etiologies
(Hyman, 2018).
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While PGSs have great potential for the study, detection, and
treatment of psychiatric disorders, there remain several important
considerations with regard to their use. First, the predictive ability
of PGSs is greatly attenuated when used in samples that differ
ancestrally from that of the original GWAS. Given that a
significant majority of GWAS to-date have been conducted in indi-
viduals of European descent, this unfortunately means that across
most traits, PGS accuracy greatly suffers when applied in non-
European samples — a problem that limits their applicability in
clinical and research settings, and one that researchers are working
to mitigate through the recruitment of larger and more diverse
GWAS samples (Martin et al., 2019; Peterson et al, 2019).
Additionally, across all ancestry groups, PGS explain a fraction
of total trait variation (Eichler et al., 2010). The reasons for this
are twofold: First, polygenic risk scores are only capturing one type
of genetic contribution to risk (i.e., the additive effect of measured
genetic variants), and genetic contributions are only one compo-
nent of overall risk (Turley et al., 2021). Second, each variant’s
effect size estimate contains a somewhat large degree of error rela-
tive to its true effect, and this error is ultimately summed across the
genome when creating a PGS. Importantly, while the relative
degree of this estimation error depends in part on the sample size
used for the initial GWAS (with larger samples being associated
with a decrease in noise and corresponding increase in the
PGS’s predictive ability), the size of the sample in which the
PGS is being applied has no impact on the predictive ability of
the PGS. Nonetheless, even when derived from large samples,
PGS predictive power is typically some fraction (e.g., 1%-50%)
of the total trait heritability (Eichler et al., 2010), making PGSs
an imperfect (though reliable) reflection of an individual’s genetic
predisposition toward a given outcome.

Despite these limitations, a growing number of publications
have used PGSs to elucidate the role of nongenetic parental effects.
Here, we focus on the best-known approach, introduced by Kong
et al. (2018) as a means to estimate the degree of genetic nurture
underlying variation in educational attainment.

Kong et al. (2018) and other recent approaches

The Kong et al. study used genetic and phenotypic data from ~22K
Icelandic trios (i.e., offspring, their mothers, and their fathers) to
divide each parent’s genotype into two groups: the set of alleles that
the parent transmitted to their child (which are therefore shared
between the parent and offspring), and the set of alleles that the
parent did not transmit to their child. The authors then created
separate educational attainment PGSs from each of these four sets
of alleles, such that there were two transmitted haplotypic PGSs
(one from the father and one from the mother, together
comprising the offspring’s full PGS) and two nontransmitted
haplotypic PGSs for each family (see Figure 3).

Unlike the transmitted PGSs (denoted PGSy), the nontrans-
mitted PGSs (PGSnr) are, by definition, genetically unrelated to
the offspring. Therefore, assuming that any potential confounding
influences (e.g., assortative mating and population stratification)
have been properly controlled for, associations between PGSyt
and the offspring trait cannot be due to shared genetics. This asso-
ciation is instead most likely due to PGSyr's influence on the
parental trait, which in turn influences the offspring trait via
vertical transmission. In this way, the Kong et al. approach shares
logic with the adoption design. Specifically, PGSyt serves a role
analogous to that of an adoptive parent (who influences the
offspring via nongenetic means), whereas PGSt serves a role


https://doi.org/10.1017/S0954579422000761

Development and Psychopathology

Paternal Genotype

Figure 3. Schematic of the Kong et al. approach
(adapted from Kong et al., 2018) For each
parents-offspring trio in their sample, Kong
et al. constructed four PGSs (each illustrated

above as semi-ellipses): Two from the portion |
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Maternal Genotype

of the genome that parents transmitted to their
child (depicted using solid colors) and two from
the portion of the genome that parents did not
transmit to their children (depicted as striped).
Both the transmitted and nontransmitted
PGS’s directly influence the parental traits,
which in turn have an effect on the offspring’s
phenotype via vertical transmission/genetic
nurture. However, only the two transmitted
PGSs - which together form the offspring’s full
PGS - have a direct effect on the offspring trait
that is not mediated by the familial environ-
ment. Thus, by comparing the transmitted and
nontransmitted PGSs’ associations with the
offspring’s phenotype, researchers can estimate
the relative magnitudes of genetic nurture and
direct genetic effects.

Father’s
Trait

Vertical

analogous to that of a typical biological parent (who influences the
offspring via both genetic and nongenetic means). By comparing
the association of PGSt with the offspring phenotype to the asso-
ciation of PGSyt with the offspring phenotype, direct genetic
effects can be parsed from the genetic nurture effect.

It is worth noting that the Kong et al. study was not the first to
utilize transmitted and nontransmitted PGSs to examine parent—
offspring similarity. To our knowledge, this insight was first
proposed by Zhang et al. (2015) for Mendelian Randomization
studies - an approach that uses genetic associations as instru-
mental variables in order to test causal hypotheses regarding the
effects of modifiable risk factors on outcomes (for a review, see
Davies et al. (2018)). Warrington et al. (2018) and Evans et al.
(2019) later built upon this idea by incorporating PGSs of mothers
and offspring into SEMs, thereby properly accounting for the
recursive relationships that arise in this context, such as genetic
effects upon which the PGS is based being overestimated due to
genetic nurture. Nonetheless, the work by Kong et al. built upon
these previous approaches in several important ways. Unlike other
studies (which viewed genetic nurture as a nuisance variable to be
controlled for), Kong et al. chose to focus on genetic nurture itself,
thereby attempting to estimate its full effect and compare it to the
direct genetic effect. Kong et al., also incorporated data from
fathers as well as mothers to distinguish paternal versus maternal
genetic nurture effects. Additionally, unlike past methods, Kong
et al. attempted to control for the potentially confounding
influences of assortative mating. Because assortment on heritable
traits implies that mates have correlated genotypes, a single gener-
ation of assortment will result in the genes an individual received
from one parent being correlated with the genes they received from
the other parent; meanwhile, if assortment has gone on for more
than one generation, the trait-associated genes within each parent’s
genome will be correlated with one another, adding an additional
layer of complexity (Figure 4a). Thus, if assortative mating is not
accounted for in the Kong et al. approach, a portion of the genetic
nurture estimate (i.e., the association between PGSyt and the
offspring’s phenotype) could actually be driven by direct genetic
effects via correlations between PGSyt and PGSy, resulting in
potential serious bias in the estimates of direct genetic effects,
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genetic nurture, and vertical transmission (Kim et al., 2021).
This bias may be further exacerbated by the increase in population
phenotypic variance that assortment induces (Figure 4b), which —
depending on the study design — may be misattributed to either
genetic (in studies using genome-wide approaches) or environ-
mental (in many studies using twin-based approaches) sources
if assortment is unaccounted for.

Despite its important advances, the Kong et al. approach also
has its limitations. First, its estimates of genetic nurture and direct
genetic effects are only the portions of those effects captured by the
PGS; they are therefore downwardly biased to the degree that the
PGS fails to explain the full trait heritability, which (for the reasons
discussed above) implies a substantial downward bias for all traits
currently. Second, Kong et al. stopped at estimating genetic nurture
and did not attempt to estimate the vertical transmission effect
itself, despite having the necessary information to do so. Third,
the authors found evidence suggesting that assortative mating
on their trait of interest (education level) did not occur until the
sample’s parental generation, and that this assortment was based
on between-mate phenotypic similarity, rather than background
environmental similarity. As a result, their approach only accounts
for this one specific type of assortment and will be biased under
alternative scenarios. Finally, much of the math presented by
Kong et al. was derived from first principals which, while impres-
sive, means that it largely only applies to the specific case for which
it was derived. As a result, it cannot easily be extended to other
situations (e.g., multiple generations of assortative mating) or data
structures (e.g., inclusion of other relative types).

Since the publication of the Kong et al. (2018) study, approaches
such as relatedness disequilibrium regression (Young et al., 2018)
and trio-based genome-wide complex trait analysis (trio-GCTA;
Eilertsen et al., 2021) have attempted to estimate parental
influences using genomic similarity at genome-wide polymor-
phisms between all individuals in samples of trios. While related-
ness disequilibrium regression and trio-GCTA are intended to
estimate the full additive and genetic nurture influences without
bias, they underestimate the full variance due to vertical
transmission because they only capture the portion of the vertical
transmission effect that is correlated with parental genotype
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Figure 4. Assortative mating increases the phenotypic variance in a population and will lead to correlated genotypes within and between mates. (a) Adapted from Kong et al.
(2018). For heritable traits, assortative mating implies that mates have correlated genotypes. Therefore, a single generation of assortment (i.e., in the offspring’s parental gener-
ation) will lead to covariances between parents’ genotypes, such that the genes inherited from one parent will covary with the genes inherited from the other parent. If assortment
has occurred for more than one generation (i.e., in both the parental and grandparental generations and perhaps before), the genes inherited from one parent will also be
correlated with the other genes inherited from that same parent. For example, the genes originally passed down from one’s maternal grandmother will be correlated with those
from their maternal grandfather, both of which are later transmitted to the offspring by their mother. (b) For arandom mating population, quantitative traits - in this example, hue
from blue to red - will adopt a normal distribution over time, such that most people will fall somewhere in the middle of the trait’s distribution with few individuals on the
extremes. Conversely, the variation in traits under assortative mating will increase because alleles of similar effects will tend to congregate in the same genomes. At the extreme,
as illustrated here, trait distributions can become bimodal over time (although assortative mating this extreme is probably rare).

(Young et al., 2018); for a trait with low heritability, this underes-
timation can be severe. Moreover, these approaches do not account
for assortative mating, which will bias all the estimates in various
ways. For example, it is estimated that the heritability of height
reported in Young et al (2018) was 20% lower than its true value
(Kemper et al., 2021) due to the influence of assortative mating.

SEM-PGS models

We recently developed a series of models for estimating parental
effects that instantiate the underlying logic of Kong et al. (2018)
into a series of SEMs that are based on principals developed in
the extended twin family design literature (Figure 5a; Balbona et al.,
2021). We believe that this instantiation is simple but consequen-
tial, turning Kong et al.’s insight for a specific analysis into a novel
and extensible genetically informative design. Figure 5b shows a
basic SEM-PGS model that illustrates many of the core ideas
common to all the models. As shown, all SEM-PGS models use
at least the following five observed pieces of information (depicted
as squares in the diagram): the nontransmitted maternal and
paternal haplotypic PGSs (PGSxt,m and PGSy, respectively),
the transmitted maternal and paternal haplotypic PGSs (PGSt
and PGSrp), and the offspring phenotype (Y,). Meanwhile,
paternal, maternal, and offspring familial environments (F,, Fy,
and F,, respectively) are modeled as latent variables (depicted as
circles). Note that the parental phenotypes (Y, and Y,;) are also
operationalized as latent variables in this model. Thus, SEM-
PGS does not require observed parental traits to estimate vertical
transmission, although including them is useful for estimation of
the full direct genetic and genetic nurture effects.
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These observed variables create a 5-by-5 variance-covariance
matrix from which seven parameters are estimable: (1) d, the direct
effect of a PGS on the individual’s phenotype; (2) £, the direct effect
of a parental phenotype on an offspring phenotype (i.e., vertical
transmission); (3) g, the increase in PGS (co)variances that results
from assortative mating in the previous generation(s); (4) w, the
covariance between PGSs and their rearing environment
(i.e. genetic nurture); (5) u, the assortative mating coefficient;
(6) Vi, the proportion of phenotypic variance due to vertical trans-
mission; and (7) V,, the residual phenotypic variance. All of these
parameters can be estimated using model-fitting software (such as
OpenMx; Boker et al., 2011), which attempts to mimic as closely as
possible the observed variance-covariance matrix with the one
implied by the maximum likelihood estimates of the model’s
unknown parameters.

The use of SEM in SEM-PGS has several important advantages.
First, SEM-PGS is designed to estimate Vy while controlling for
genes shared between parents and offspring. Unlike trio-GCTA,
relatedness disequilibrium regression, and the Kong approach,
SEM-PGS estimates, the full Vi - that is, the total variation in
an offspring trait due to vertical transmission from a parental trait
- even when the PGSs being used have poor predictive ability.
Second, SEMs provide a set of rules that simplify otherwise
near-intractable recursive mathematical equations in models
involving vertical transmission and assortative mating. The
simplicity of SEM-PGS allows its models to be readily extended
or adapted depending on the data. Third, although SEM-PGS
was designed with trio data in mind, we have shown that by using
full information maximum likelihood (Schafer & Graham, 2002),
our estimates are unbiased by data missing at random (Kim et al.,
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Figure 5. SEM-PGS utilizes many of the same constructs used in extended twin family designs and obtains its estimates via path tracing. (a) As shown, many of the elements of the
SEM-PGS models are also common to extended twin family designs. As with extended twin family designs, SEM-PGS models each individual’s additive genetic effects, their familial
environmental effects, and the covariance between the two (i.e., genetic nurture). Both approaches also model the effects of the individuals’ unique/nonshared environments and
use data on partners (in this case, the offspring’s parents) to account for assortative mating. Of course, they differ from extended twin family designs in their utilization of
measured genetic data - specifically their use of transmitted (shown as solid colors) and nontransmitted (shown as striped) PGSs as hypothesized sources of phenotypic variation.
(b) SEMs can be depicted using path diagrams, such as the one shown above, in which hypothesized relationships between observed variables are shown. In path diagrams,
single-headed arrows signify causal relationships from one variable to another, with their associated path coefficients (e.g., 8 above) being akin to partial regression coefficients.
Double-headed arrows, meanwhile, signify covariances between two variables, or variances when connecting a variable to itself. To determine expected (co)variances between
two variables using a path diagram, one must identify all ‘legitimate’ paths - that is, paths which abide by a given set of rules (described in Balbona et al., 2021 and elsewhere) -
that connect the two variables (for expected covariances) or that connect a variable to itself (for expected variances). For example, in examining the covariance between PGSy,
and Y,, one of the legitimate paths would be PGSyr, = Y, = F, = Y,, one of the genetic nurture paths. Another path would be PGSyr,, = Yp = Ym = PGSy, = Yo, illustrating how
assortative mating induces a correlation between nontransmitted alleles and the offspring trait via the transmitted alleles.

2021). Therefore, SEM-PGS does not require trio data, but  Individual-level data can also be leveraged to boost statistical
can instead be used on data containing relative pairs (including  power. Fourth, as already noted, assortative mating is a potential
parent-offspring, spouse, and sibling pairs), such as what confounder of estimates in all the designs discussed above.
exists sporadically in large biobanks like the UK Biobank.  SEM-PGS models can detect and fully account for different types
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of assortative mating, including assortment that is at equilibrium
(having occurred for many generations) or at disequilibrium
(having begun relatively relatively) and assortment that is based
on phenotypic, background environmental, or genetic similarity.

In Kim et al. (2021), we demonstrate that all of the
specific SEM-PGS models we developed work as designed,
producing unbiased estimates when their assumptions are met.
Nevertheless, as with any model, SEM-PGS has important limita-
tions and caveats that need to be considered in conducting analyses
and interpreting results. First and most obviously, while SEM-PGS
models require less stringent assumptions than previous
approaches, their estimates can still be biased when assumptions
are unmet or its model is misspecified. For example, current
SEM-PGS models assume that the PGS is as predictive in offspring
as it is in parents, which could be violated if gene-by-age inter-
actions exist. While the flexibility of the SEM-PGS approach would
allow for this type of situation to be modeled if it is detected,
estimates from SEM-PGS would be biased otherwise; thus, rather
than applying SEM-PGS to data “out of the box”, it is important to
carefully vet its assumptions and make adjustments accordingly.
Second, while SEM-PGS estimates of V7 (the proportion of pheno-
typic variance due to vertical transmission) should be unbiased
regardless of the PGSs predictive ability, the standard errors for
those estimates will increase as the PGSs predictive ability
decreases (Kim et al., 2021). Therefore, for parental effects to
be precisely estimated, PGSs need to be adequately predictive
(e.g., ¥ > ~.05 for a sample size of 8K trios or 16K parent-offspring
pairs, or > > ~.02 for 30K trios or 60K parent-offspring pairs).
A corollary of this limitation is that SEM-PGS can only examine
parental traits for which relatively large external GWASs (and
therefore adequately predictive PGSs) exist. While the number
of traits analyzed in GWAS and their sample sizes are growing
rapidly, many traits relevant to parenting remain unexamined
in GWAS.

In addition to these limitations, an important caveat regarding
the interpretation of SEM-PGS estimates should also be noted: esti-
mates of Vi from SEM-PGS do not capture the variance of the
entire influence of parents on a given offspring trait, but rather
the impact that the parental trait being captured by the PGSs has
on the offspring trait. For example, if one were to examine
influences of parental depression on offspring depression using
SEM-PGS, the estimates of Vy would capture the influence of
parental depression — as well as any traits genetically related to
parental depression — on offspring depression, while being blind
to the role of other parental traits (e.g., externalizing disorders)
to the degree that they are genetically uncorrelated with depres-
sion. We view this issue as both a strength and a limitation to
the model - a strength because insight into the specificity of the
influences of parental traits is itself important, and a limitation
because the total influence of vertical transmission on a trait will
be underestimated. Nonetheless, to partially address this issue,
we are currently working on multivariate extensions of the current
univariate SEM-PGS models that would allow for the estimation of
a parental trait’s influence on a different offspring trait. While
previous genetically informed studies have found evidence of
cross-trait parental effects (de Zeeuw et al., 2020; Kong et al.,
2018; Pingault et al., 2021; Torvik et al,, 2020), these studies have
not been conducted multivariately. Instead, they have inserted
different parental (e.g., educational attainment) and offspring
(e.g., health) traits into an otherwise univariate model - an
approach that does not properly account for within-trait genetic
nurture and vertical transmission, cross-trait genetic effects,
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or assortative mating. Thus, extending SEM-PGS models to be
multivariate using standard techniques developed in the behavioral
genetics literature (Vogler & Cockerham, 1985) will hopefully
improve our understanding of cross-trait parent-offspring
associations.

Discussion

Given the enormous economic, social, and personal burden that
psychiatric illness places on individuals and on society, examining
the factors that contribute to its onset and trajectory is of immense
societal importance (Eaton et al., 2008). This is particularly true
psychiatric illness in children, which has been found to negatively
affect healthy development and to increase the risk of later adult-
hood illness and dysfunction (Copeland et al., 2021). At present,
about one in six US children aged 2-8 years has a diagnosed
mental, behavioral, or developmental disorder (Cree, 2018), and
this rate increases to nearly one in two by adolescence with depres-
sion and anxiety making up a majority of cases (Ghandour et al.,
2019; Merikangas et al., 2009). Understanding the causes of child-
hood psychopathology - as well as the consequences that parental
psychopathology has on the offspring’s development - is therefore
crucial.

To this end, the last decade has seen an explosion of research on
the topic of parental influences, and with good reason - recent
studies that control for shared genetics between parents and
offspring are providing mounting evidence for the direct roles that
parental behavior has on offspring traits (Jami et al., 2021). While
most of these studies have relied upon traditional (e.g., adoption
and extended twin-family) approaches, a growing number of
newer designs have repurposed measured genetic data to better
elucidate the causes of parent-offspring similarity. It is in this vein
that we recently developed SEM-PGS - an approach for estimating
parental effects that builds upon both traditional SEM-based
designs and newer approaches that utilize genome-wide data. Of
course, SEM-PGS is one of many newer methods that takes advan-
tage of the power and flexibility of SEM to model measured geno-
typic data (e.g., Grotzinger et al., 2019; Warrington et al., 2018).
With the introduction of such approaches, the gap between
measured genetic and traditional family-based approaches appears
to be narrowing - part of an exciting evolution underway in the
field of behavioral genetics and one that will allow enduring
questions to be answered in new ways. While we celebrate this
transition, we caution against the notion that approaches that
use genomic data will replace traditional ones or that either
approach is superior to the other. As both approaches carry their
own strengths, limitations, and assumptions, the triangulation of
results will provide a clearer understanding of the phenomena
under study. Thus, the various approaches in behavioral genetics,
both traditional and novel, are complementary, not competing
(Friedman et al., 2021).

The study of parental effects using genetically informative
designs is important for many reasons. Most obviously, a central
goal of behavioral genetics (and the behavioral sciences broadly)
is to accurately estimate the various causes of human behavioral
variation, particularly with regard to traits that negatively impact
an individual’s health and development. Having designs that can
accurately capture how parents influence offspring and the
strength and durability of such influences is crucial to this goal.
Related to this, the presence of vertical transmission for a trait
implies the existence of genetic nurture, which in turn implies
that genetic influences for such traits are overestimated by
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many existing genome-wide approaches (such as GWAS).
Understanding which traits are influenced by vertical transmission
is therefore important for interpretation of GWAS results
and methods that rely on GWAS data, such as genome-based
restricted maximum likelihood (GREML, a widely used approach
for estimating additive genetic variance; Yang et al, 2011).
Furthermore, access to designs that accurately estimate parental
influences can help correct erroneous prior conclusions regarding
the negligible influence of vertical transmission for certain traits,
while potentially also corroborating its seeming lack of importance
for other traits. Having such designs at scientists’ disposal may also
direct focus to traits that are more likely to be influenced by vertical
transmission or on developmental periods where such influences
are greater.

Finally, in addition to the above points, understanding that
certain traits are, in part, influenced by parenting is important
to know as it is potentially actionable information. Breaking the
chain of transmission in a single individual can reverberate down
the generations. Thus, to the degree that risk for psychiatric illness
is inherited via vertical transmission, interventions aimed at
improving the functioning of parents with psychiatric illness
would also reduce the burden in their children and potentially their
grandchildren.
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