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REPRESENTATION OF SPINOR EXCEPTIONAL INTEGERS
BY TERNARY QUADRATIC FORMS

A. G. EARNEST

§ 0. Introduction

The existence and basic properties of what are now referred to as
spinor exceptional integers for a genus of integral ternary quadratic
forms were first observed in the 1950's by Jones and Watson [7] and
Kneser [8] in the context of indefinite forms. The study of these integers
and their generalizations has been undertaken by a number of authors
in recent years, and has contributed significantly to the understanding
of representation properties unique to ternary forms. In this direction,
the present author proved in a previous paper [4] that if c is a primitive
spinor exceptional integer for a genus of integral ternary quadratic forms
and / is some form in this genus, then a form in the spinor genus of /
primitively represents c if and only if / primitively represents an integer
of the type cf, for some odd positive integer t, relatively prime to the
discriminant d, which satisfies the condition that the Jacobi symbol
(-~cd/t) equals 1.

In Section 1 of the present paper we prove that, in the context
described in the previous paragraph, the Jacobi symbol (—cd/t) precisely
determines which integers of the type cf are primitively represented by
any given spinor genus. As the spinor genus and isometry class coincide
for indefinite ternary forms, this result directly gives information regard-
ing the integers represented by such a form. However, since a spinor
genus of positive definite ternary forms can contain many isometry classes,
these definite forms can fail to represent values represented by their
spinor genus. We prove in Section 2 that a positive definite ternary form
can fail to primitively represent at most a finite number of integers of
the type cf for which the value of the Jacobi symbol (—cd/i) is compat-
ible for primitive representation by the spinor genus of the form. In
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28 A. G. EARNEST

Section 3 we drop the assumption that c is a primitive spinor exceptional
integer for the genus, and use the results of the preceding sections to
produce an infinite family of integers of the type cf primitively represented
by the form under the assumption only that c is squarefree.

The theorem quoted in the first paragraph of this introduction has
been generalized by Benham and Hsia [1] to the setting of quadratic
lattices over the rings of integers of arbitrary algebraic number fields.
With necessary notational changes, the theorem carries over to that
context with the Jacobi symbol {—cdjt) being replaced by an appropriate
Artin symbol. The results of Section 1 of the present paper can be
phrased in this generality as well. However, as the remainder of the
paper deals with the classical case of forms over the rational integers,
we prefer to adopt that context consistently throughout.

We will use the geometric language of quadratic spaces and lattices,
with unexplained terminology and notation following that of O'Meara's
book [9]. We work always within a fixed nondegenerate quadratic space
(V, Q) of dimension 3 over the field Q of rational numbers. We denote
by B( , ) the symmetric bilinear form related to Q by Q(x + y) = Q(x)
+ Q(y) + 2B(x, y) for x, y e V. The lattices L considered will be Z-lattices
on V (i.e., finitely generated Z-modules contained in V whose vectors
span V) with the additional assumptions that Q(x) e Z for all xeL and
the ideal generated by all such values equals Z. Such lattices correspond
(as in [9; § 41c]) to primitive integral ternary quadratic forms. For a
lattice L having Z-basis {xί9 x2, x3}, define the discriminant dL of L to be
4 det (B(Xi, Xj)). The discriminants of all lattices considered here will be
the same, with their common value denoted simply by d.

The set of all integers represented (primitively) by a lattice L will
be denoted by Q(L) (Q*(L), respectively). For an integer c and a genus
or spinor genus X of lattices, we will write c e Q(X), or c e Q*(X), if there
exists at least one lattice K in X such that c e Q(K), or ce Q*(K), re-
spectively.

The integer c is a spinor exceptional integer for a genus G of ternary
lattices if c e Q(G) but there exists at least one spinor genus S contained
in G such that c&Q(S); c is a primitive spinor exceptional integer if ce
Q*(G) but there exists at least one S such that c & Q*(S). The spinor
exceptional integers for a genus can be determined by local information
using the necessary and sufficient conditions of Schulze-Pillot [11], which
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TERNARY QUADRATIC FORMS 29

are summarized in (3.1)-(3.3) of this paper. These integers are truly ex-
ceptional in the sense that they occur only in finitely many square classes
for any given genus. However, within any such square class all but at
most finitely many of the integers are spinor exceptional. In fact, if c
is a spinor exceptional integer for the genus G, then so is cf for all odd
integers t relatively prime to the discriminant (see e.g. [14]). Further
properties of these integers will be summarized, with pertinent references,
as they are needed. It should be noted that what we refer to here for
the sake of clarity and consistency with the current literature as "prim-
itive spinor exceptional integers" are called simply "exceptional integers"
in the books of Watson [14] and Cassels [2].

§ 1. Representation by the spinor genus

The main result of this section is:

THEOREM 1. Let c be a primitive spinor exceptional integer for a genus

G of ternary quadratic lattices, and let S be a spinor genus contained in G.

Let s be a fixed positive integer relatively prime to 2d for which cs2 e Q*(S).

If t is any positive integer relatively prime to 2d, then cf e Q*(S) if and

only if ( — cd/s) = (—edit) (interpreting here (alb) = + 1 in case b = 1).

As the proof of this theorem rests on the key Proposition 1.2 of the
previous paper [4], we will first recall the setting and content of that
proposition and then present a slightly modified version of its proof, for
which I am indebted to Dr. Schulze-Pillot [12]. The revised proof has
the advantage of eliminating the need for the approximation of local bases,
replacing this step by a more standard construction.

For the statement of the proposition, we use the notation of ideles
and split rotations as described in [9], In particular, Jv will denote the
split rotation group of V and JQ the full idele group of Q. Let Θ: Jv ->
JQIJQ be the mapping obtained by applying the local spinor norm mappings
to each coordinate of an element of Jv. For an integer t, define an idele
j(t) coordinatewise by

1 if ordp t is even, or p = oo
J\y)p i . n i . -IT

[p it ordp t is odd.

PROPOSITION 1. Let L be a ternary quadratic lattice and let c be an in-

teger. If cf e Q*(L) for some integer t with gcd (t, 2d) = 1, then c e Q*(ΣL)

for some Σ eJv with θ(Σ) = j(t)J2

Q.
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Proof. Let υ be a primitive vector of L with Q(v) = cf. If p is a

prime dividing J, then p%2d by hypothesis. It follows from the local

theory that for each such p, there exists a Z^-basis x[p\ x(

2

p\ xip) for Lp

for which the matrix

(J J ) < - d > , and i; = cftc<*> + i* ί* .

Consider the lattice if on V having localizations

+ zp(r'*<*>) + zp*ί*>, i fp\ t

P, if Pit.

I t is eas i ly c h e c k e d t h a t t'xυ is a pr imi t ive v e c t o r of K. F o r p\t, Kp =

σpLp where σ p e 0 + ( V p ) is defined by σp(x[p)) = ps*x[p\ σp(x(

2

p)) = p~s*x(

2

p)

and σp(x^p)) = xip) where sp = ordp£. By [9; 55: 1], the spinor norm of σp

is pSpQ2

p- Define the element Σ of Jv by

iΐp\t

Iάp

Then ΣL = K and Θ{Σ) = j(t)J$. D

Before proving Theorem 1, it is helpful to recall some terminology

and basic results concerning spinor exceptional integers. If c is a prim-

itive spinor exceptional integer for a genus G, then c is primitively rep-

resented by exactly half of the spinor genera of G; thus, we say that

the set of spinor genera of G is partitioned into two c-half-genera. This

partitioning can be described quite precisely. To do so, consider the

subgroup Nc of JQ defined by

Nc = {j e JQ: (jp, —cd)p = + 1 for all primes p),

where ( , ) p denotes the Hubert symbol. When c is a primitive spinor

exceptional integer for G, the group index [JQ: PDNCJQ] equals 2 (here

L is a lattice in G; JQ depends only upon G), and two spinor genera S

and T of G lie in the same c-half-genus (i.e., both primitively represent

c or both fail to do so) if and only if S = ΣT for some Σ eJv with Θ(Σ)

c: PDNCJQ. Note that the subgroup Nc depends only upon the square

class of c; thus, the splitting of G into cί2-half-genera for any t with

gcd (t, 2d) = 1 is the same as the splitting into c-half-genera. For the

particular ideles j(t) introduced earlier, containment in the index 2
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TERNARY QUADRATIC FORMS 31

subgroup PDNCJQ can be described as follows:

LEMMA 1 [4; Lemma 2.1]. Suppose c is a primitive spinor exceptional
integer for G and t is a positive integer with gcd (t, 2d) = 1. Then j(t)
ePDNcJ% if and only if (~cdjt) = +1.

Proof of Theorem 1. Since (t, 2d) = 1, G primitively represents cf.
So there is some spinor genus, say T, in G for which cf e Q*(T). S
primitively represents cf if and only if S is in the same c£2-half-genus,
or, equivalently, the same c-half-genus, as T According to Proposition 1
and Lemma 1, £ and T are in the same c-half-genus if and only if
{-cdjt) = (-cdls). D

If L is an indefinite ternary lattice, then the isometry class and
spinor genus of L coincide as a consequence of the Stong Approximation
Theorem for Rotations [9; 104: 4]. Hence, we have:

COROLLARY. Let L be an indefinite ternary lattice, and let c be a
primitive spinor exceptional integer for gen (L). Let s be a fixed positive
integer relatively prime to 2d for which cs2 e Q*(L). If t is any positive
integer relatively prime to 2d, then cfeQ*(L) if and only if ( — cd/t) =
(-cdls).

In light of this result, consider the problem of determining whether
a particular integer is primitively represented by an indefinite ternary
lattice. Even for small values, such a problem is quite formidable from
a computational standpoint since no bounds can be imposed on the values
of the indeterminates required to produce such a representation.

By local computation alone it is routine to determine whether the
given integer satisfies the necessary condition that it be primitively re-
presented by the genus of the lattice. If this necessary condition is met,
it can be further determined by the local conditions to be given in (3.1)-
(3.3) whether the integer in question is a primitive spinor exceptional
integer for the genus. If not, the issue is settled, since the integer is
then primitively represented by every lattice in the genus. So only the
integers in a square class of primitive spinor exceptional integers require
further analysis. For the integers in such a square class, the above
corollary shows that the question can be resolved by producing a primitive
representation of any integer in the square class.

We illustrate the method of the preceding paragraph by analyzing
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an example considered by Siegel in [13; p. 52].

EXAMPLE 1. Consider the lattices L and K corresponding to the
forms / = x2 - 2/ + 64s2 and g = (2x + zf - 2f + 16z\ respectively. L
and K are representatives of the only two isometry classes in their genus.
Applying the criteria given in (3.1)-(3.3), it can be shown that the only
primitive spinor exceptional integers for this genus are the odd squares.
To see which odd squares are represented by L and which by K, it suf-
fices to observe that 1 e Q*(L) and use the above corollary. In this case,
c = 1 and d — — 29; so (—cd/t) = (2/ί). Hence, for an odd positive integer
t, f is primitively represented by L if and only if t ~ ± 1 (mod 8), and f
is primitively represented by K if and only if t = ±3 (mod 8).

§ 2. Representation of spinor exceptional integers by positive defi-
nite forms

We turn our attention in this section to the positive definite case,
where the added difficulty that a particular spinor genus can contain
many isometry classes arises. In general when it is known that the
spinor genus of a lattice L represents some integer c, there are standard
methods which can be used to draw conclusions concerning values of the
type cf represented by L itself. For example, if p is any prime at which
Vp is isotropic, then it can be shown that L represents some integer of
the type cp2k.

It has been conjectured by Cassels [3] that in fact a positive definite
ternary lattice represents all but at most finitely many of the integers
represented by its spinor genus. While this conjecture as stated is false,
it is very likely that the analogous statement for primitive representations
is true. In this direction, the main theorem of this section is:

THEOREM 2. Let L be a positive definite ternary lattice and let c be a

primitive spinor exceptional integer for gen (L). Then L primitively repre-

sents all but at most finitely many of the integers of the type c?,(t, 2d) — 1,

which are primitively represented by spn (L).

For the proof of this result we will follow the method of Peters [10],
who uses techniques of Linnik and Malyshev to prove a partial and
conditional analogue for positive definite ternary lattices to the well-
known result (see e.g. [2]) that a positive definite lattice in 4 or more
variables primitively represents all sufficiently large integers which are
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primitively represented by its genus.
For the remainder of this section L will denote a fixed positive definite

ternary lattice. If L has Z-basis {xu x2, x3}, let d2 be the greatest common
divisor of the 2 x 2-subdeterminants of the matrix (2B(xi9 Xj)). Let D =
Wd/dl (with d as in Section 0). The relationship between D and the
norm form of a quaternion order associated to L is described in [10; p. 68],
For a lattice K and an integer a we denote the number of primitive
vectors x in K with Q(x) = a by A*(a, K). Finally, for a positive integer
J, let H(Δ) be the number of proper equivalence classes of primitive
positive definite binary quadratic forms of discriminant Δ.

With these notations established, we begin by isolating from [10;
Section 5] the crucial step in the application of the methods of Linnik
and Malyshev:

PROPOSITION 2. Let p be a prime for which p \ 2Ώ and Vp is isotropic,
and let C be a collection of integers. If there exist constants £oeN and a,
depending on p and L, such that for each c eC,

(2.1) A*(cp2\ L) > aH{2dc)

holds for some integer ί {which depends on c) between 0 and £Q, then L
primitively represents all but at most finitely many ceC satisfying (—Dc/p)

1

To relate the hypothesis of Proposition 2 to spinor genus representa-
tions, it is necessary to recall the definitions and basic properties of the
weight of representations within a genus or spinor genus. If L = Lu ,
Lh are representatives for the distinct isometry classes in gen (L), then
for an integer a define

(2.2) A*(α, gen(L)) = w~" ± A*(α, Lτ) |O(Lτ)V
ι

ί = l

where

Moreover, if K e gen (L) and K = K19 , Ks are representatives for the
distinct isometry classes in spn(if), define

(2.3) A*(μ, spn (K)) = z(K)-> ± A*(a, Ks
. 7 = 1

where
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From (2.2) and (2.3), one can immediately derive

(2.4) wA*(a, gen (L)) = ± z(Mk)A*(a, spn (Mk)),

where Mί9 , Mg are representatives of the distinct spinor genera in

gen(L). A basic theorem of Kneser [8] shows that either the values

A*(a, spn (Mk)) are equal for all k = 1, , g, or there are exactly two

such values, each taken on by exactly half of the k's (see also [5]). In

particular, if c is a primitive spinor exceptional integer for gen(L) and

c e Q*(spn (L)), then A*(c, spn (K)) = A*(c, spn (L)) for every K in the c-

half-genus of L.

Proof of Theorem 2. Let T denote the set of all positive integers t

which are relatively prime to 2d and for which ct2 e Q*(spn (L)). By [10;

Satz 3.1] there exists a constant β, depending only on gen(L), for which

(2.5) A*(ct\ gen (L)) > βH(2dc?)

holds for all t e T. With the notations of the previous paragraph, we

obtain from (2.4) and (2.5) that

(2.6) Σ z(Mk)A*(ct\ spn (Mk)) > wβH(2dc?)
fc = l

holds for all teT. Since ct2 is a primitive spinor exceptional integer for

gen(L) for each teT, half of the A*(ct2, spn(Mk)) are equal zero, and the

other half are all equal to the same nonzero value. Since A*(ct2, spn (L))

Φ 0 for t e Γ, if follows from (2.6) that

(2.7) A*(ct\ spn (L)) > ϊH(2dc?)

holds for all ί e ϊ7, where Γ is a constant depending on gen (L). It follows

from (2.3) that there exists a constant δ, depending on L, such that for

each t e T there exists a lattice K(t) e spn (L) for which

(2.8) A*(ct2, K(t)) > δH(2dcf) .

Now let p be a prime for which Vp is isotropic and ( — Dcjp) = 1.

Let jfiΓj, , i£, be representatives of the distinct isometry classes in spn(L).

By [9; 104: 5], there exists a natural number £0 (depending on p and L)

such that phKi c: L for all ί = 1, , s. In particular, every vector x
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counted in A*(c£2, K{t)) in (2.8) satisfies p*°x e L. So for each such x,

there exists an £ between 0 and £0 for which p£x is a primitive vector of

L. From (2.8) we obtain that there exists a constant a depending on p

and L such that, for each te T, there exists an integer £ between 0 and

£0 for which

(2.9) A*(cfpu, L) > aH(2dcf)

holds. The theorem now follows by applying Proposition 2 to the collec-

tion C of integers of the type cf, teT. •

Remark. The removal of the assumption that c is a primitive spinor

exceptional integer for gen (L) in Theorem 2 would necessitate considera-

tion of integers a for which A*(a, spn (if)) takes on two different values,

say Ax and Λ2, as K ranges through representatives for the spinor genera

in gen(L). From this point of view, it would be of interest to know to

what extent Λx and Λ2 could differ. Specifically, suppose that c and L

are fixed, with c e Q*(gen (L)), and write Λκ{t) — A*(cf, spn (K)) and AM(f)

= A*(cf, spn (M)), for lattices K and M in gen (L). If the ratio Λκ(t)/ΛM(t)

could be bounded independently of t, then the argument of the proof of

Theorem 2 could be extended to encompass the integers of the type cf

for such c.

§ 3. Representation of cf for squarefree integers c

The results of this section were motivated by a conjecture of B. W.

Jones [6] that if / is a primitive ternary quadratic form which primitively

represents a square relatively prime to twice the discriminant of /, then

/ primitively represents an infinite number of squares of primes. Using

the results of the first two sections of this paper, we will show that in

fact there is a choice of ε = ± 1 such that under the above assumptions

/ primitively represents all but at most finitely many of all squares f

with (t, 2d) = 1 which satisfy (-d/t) = e.

This is a special case of the following result for integers of the type

cf where c is only assumed to be squarefree.

THEOREM 3. Let L be a ternary quadratic lattice and let c be a square-

free integer which is primitively represented by the genus of L. Then, for

at least one choice of ε = ± 1 , L primitively represents all but at most finitely

many integers of the type cf with (t, 2d) — 1 which satisfy ( — cd/t) = ε.
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If c is a primitive spinor exceptional integer for gen(L), then Theo-

rem 3 follows immediately either from the Corollary to Theorem 1 (for

the indefinite case) or from Theorem 2 (for the definite case). So it re-

mains to study the case that c is not a primitive spinor exceptional

integer. For this purpose, it is necessary to use the precise local condi-

tions which characterize such integers, as determined by Schulze-Pillot

[11]. We will state these conditions here for reference.

Let c e Q(gen (L)), c Φ 0. For a rational prime p, let x be a fixed

vector of Lp for which Q(x) = c. Denote by Θ(LP, c) the subgroup of Qp

which is generated by all aeQp for which there exists a σe O+(VP) with

α e θ(σ) and x e σ(Lp). Let (Nc)p = {β e Qp: (β, -cd)p = 1}, and let JL be the

subgroup of Jv consisting of those Σ for which Σp e O+(LP) for all finite

primes p. With other notations as in Section 1, necessary and sufficient

conditions under which c is a spinor exceptional integer for gen(L) are

as follows [11; Satz 2]:

(3.1) -cdeQ2

(3.2) Θ(JL) c Nc

and

(3.3) Θ(LP, c) = {Nc)p

where (3.3) must hold for all rational primes p.

Proof of Theorem 3. As noted above, it suffices to consider the case

that c is not a primitive spinor exceptional integer for gen (L). So assume

that at least one of the conditions (3.1)-(3.3) is violated. It is shown by

Peters [10] that the hypotheses of Proposition 2 are satisfied by the col-

lection C consisting of all integers for which either (3.1) or (3.2) is

violated. Thus, we may further restrict to the case that (3.1) and (3.2)

are satisfied for c, but (3.3) is violated.

If (—cd) e Ql for some prime p, then Θ(LP9 c) = (Nc)p holds as a con-

sequence of the containments (Nc)p c: Θ(LP, c) c: Qp. So we assume for the

remainder of the proof that (-cd) <£ Q2

P and that Θ(O+(LP)) c (Nc)p. Under

these assumptions, the conditions under which the equality Θ(LP, c) = (Nc)p

is violated for an odd prime p are enumerated in [11; Satz 3], A check

of the four cases of that theorem shows that these conditions never hold

when ordp c — 0 or 1. As we are assuming that c is squarefree, these

are the only possibilities for ordp c here. We conclude that under our
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hypotheses and the restrictions of the previous paragraph, the equality

θ(Lp9 c) = (Nc)p holds for all odd primes p.

It remains to consider those integers c for which Θ(L2, c) Φ (Nc)2.

For such integers, we will show that there exists a sublattice ΊJ of L for

which c e Q*(gen (I/)) and (3.1)-(3.3) are satisfied by c and U. Moreover,

L' is constructed in such a way that (U)p = Lp for all odd primes p.

So if x is a primitive vector of U with Q(x) = cf for some odd integer

t, then x is also a primitive vector of L. The result then follows since

c is a spinor exceptional integer (thus, a primitive spinor exceptional

integer) for gen(Z/).

To complete the proof, we turn to the technical details of the con-

struction of a sublattice K of LL for which Θ(K, c) = (Nc)2 and c e Q*(K).

The sublattice JJ of the previous paragraph is then produced as that

global lattice on the space QL satisfying

Lp i f P i s θ d d

Of course, we need only consider the case of an integer c for which

d(L2, c) Φ (ΛΓC)2. The possibilities for c and the local structure of L2 under

which this can occur appear in the various cases and subcases of [11;

Satz 4].

Consider first the case that ord2 c = 0. By surveying the subcases of

case (a) (subcase (i)) and case (c) of [11; Satz 4] one sees that #(L2, c) Φ

(Nc)2 can occur only if L has a 2-adic splitting of the type Lz = <bu 2
rb2>

2sb3}, say in Z2-basis {ul9 u2, uΆ}, where bu b2 and 63 are 2-adic units, r

and s are integers with 0 < r < s, and r < 4. In fact, as ce Q*(L2), we

may take bλ = c in this splitting. Consider the sublattice K = Z2ux +

Z2(βu2) + Z2(8uz) of L2. Since Θ(O+(K)) c Θ(O+(L2)) c (Nc)2 and c e Q*(K)

by construction, it now follows from [11; Satz 4] that Θ(K, c) — (Nc)2.

Finally, we consider the case that ord2 c = 1. If Θ(L2, c) Φ (Nc)2 for

such an integer c, then the conditions of some subcase of case (a) (subcase

(ii)) or case (b) of [11 Satz 4] must be satisfied. First, note that subcases

(a) and (ΐ) of case (a) (subcase (ii)) occur only when ord2 c > 2. Also,

subcases (i), (ii) and (iii) of case (b) fail to occur. In these three subcases

L2 must have the splitting L2 = (bu 2r62, 2S63) with r even. So if r > 2,

L2 can primitively represent no element of 2C72 (U2 denotes the group of

units of Z2). If r = 0, the cases are ruled out by explicit computation of
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the spinor norm groups 0(O+(L2)), Θ(O+(K)) and Θ(O+(K')), with K and Kf

as in the statement of [11; Satz 4]. To resolve subcase (β) of case (a)

(subcase (ii)), consider the required splitting of L2 as A(2, 2) J_ <26>,

with b e U2, say in Z2-basis {ul9 u2, uz}. As c e Q*(A(2, 2)), the sublattice

K — Z2ux + Z2u2 + Z3(2us) of L2 has the desired properties. The last case

to consider is that of subcase (iv) of case (b), where L2 has the splitting

L2 = <61? 262, 2
S63> in Z2-basis {uu u2, w3}, with bu b2 and 63 in U2 and s

an odd integer. If x = 2]Li Atut is a primitive vector of L2 with Q(x) = c,

then Aί e 2Z2 and A2 e U2. So c/2 is primitively represented by the lattice

L2 obtained from L2 by considering the quadratic mapping on L2 to be

Q(x) = | Q(x) for x e L2 (i.e., L2 is the lattice L2 scaled by ^ in the ter-

minology of [9]). As ord2 (c/2) = 0, consideration of L2 reverts back to a

case resolved previously. This exhausts all possible cases and completes

the proof. •
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