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LOCALIZATION OF RIGHT NOETHERIAN RINGS 
AT SEMIPRIME IDEALS 

J. LAMBEK AND G. MICHLER 

In [11] and [12] we investigated the process of localization of right Noetherian 
rings R at prime ideals. We shall now extend these investigations to semiprime 
ideals N of R. 

In Section 2 we show that localizing at the injective right R-modu\e E(R/N) 
is the same as localizing with respect to the multiplicative set 

V(N) = {c e R\VreR(cr G N^r 6 N)}. 

We say we are localizing at N and call the localization h : R —> RN the 
ring of right quotients of R at N. 

Extending a theorem of Heinicke [7] we show that the localization functor 
QN is right exact if and only if the iV-closure N of h(N) in RN is such that 
RN/N is a finite direct sum of simple ^ -modules containing at least one 
representative of each isomorphism class of simple ^-modules . In Theorem 2.6 
we prove that R satisfies the right Ore condition with respect to ^ (N) if and 
only if N is the Jacobson radical of RN and RN/N is semisimple Artinian. 
Another equivalent statement asserts that N is a two-sided ideal and QN is 
right exact. 

In Section 3 we consider Small's characterization of those right Noetherian 
rings which are right orders in right Artinian rings. Our Theorem 3.3 asserts 
that, if N is any semiprime ideal of the right Noetherian ring R, then RN is a 
right Artinian classical ring of right fractions of R with respect to & (N) if 
and only if some power of N is iV-torsion and 

Vr€fl(3 c£<g(N)Cr = 0 => 3 c'€V(N)rc' = 0). 

These two conditions are trivially satisfied when 'if (N) consists of regular 
elements, hence one obtains Small's Theorem as a corollary. We also show that, 
when N is the prime radical of the right Noetherian ring R and QN is right 
exact, then RN is right Artinian. 

In Sections 4 and 5 we generalize the results of [12] to semiprime ideals. In 
Proposition 4.3 we consider a right Noetherian ring R with a semiprime ideal N 
such that R/N is semisimple Artinian. If I is the injective hull E(R/N), we 
show that on any finitely generated right i?-module the iV-adic and 7-adic 
topologies coincide if and only if N has the Artin-Rees property: for every right 
ideal E of R there is a natural number n such that E C\ Nn Ç EN. It then also 
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follows if N is the Jacobson radical then every right ideal of R is closed in the 
iV-adic topology, as in the commutative case. Such a ring is called a classical 
semilocal ring. 

Results of earlier sections are applied to establish Theorem 5.3: if N is a 
semiprime ideal of the right Noetherian ring R then the ring RN of right 
quotients of R at N is a classical semilocal ring if and only if N has the right 
symbolic Artin-Rees property. This property was introduced by Goldie [4] for 
prime ideals of right and left Noetherian rings and is here extended to semi-
prime ideals of right Noetherian rings. It follows from [10] that the iV-adic 
completion RN of RN is the bicommutator of E(R/N). 

Throughout this paper, R will be an associative ring with 1. E(A) denotes 
the injective hull of the right i^-module A. 

The authors are endebted to Bill Schelter for his critical reading of the 
manuscript and for several helpful suggestions, to Allan Heinicke for spotting 
a false example and to one referee for his constructive criticism. 

1. Localization at an injective. In this section we recall some definitions, 
notations and results that depend on a given injective right i^-module / . (For 
details see [9].) 

A right i?-module A is called I-torsion if Hom^^l , / ) = 0. We note that A 
is E(B)-torsion if and only if 

(1) V « € A V W * 3 T&lar = 0 & br * 0). 

(See [9, Proposition 0.2].) A is called I-torsionfree if it is isomorphic to a 
submodule of some power of I. A is called I-divisible if E(A)/A is I-torsionfree. 

The I-torsion submodule of A is given by 

Tj(A) = {a e A\HomB(aR,I) = 0}, 

and the I-divisible hull DZ(A) is given by 

DT(A)/A = TX(E(A)/A). 

By the localization of A at I we mean the i^-module homomorphism 
h:A->AI = QI(A) = DX(A/T7(-4)). One also calls Ax the module of 
quotients of A at I and QT the quotient functor. Qz is a left exact functor of 
Mod R into itself. 

I t is well-known that Rr is a ring, the ring of quotients of R at I, and that 
h:R—>Rr is a ring homomorphism. Moreover, every I-torsionfree and 
/-divisible /^-module is an R/-module, and every i^-homomorphism between 
such is an R/-homomorphism. 

A right ideal D of R is called I-dense if R/D is Z-torsion. The /-dense right 
ideals of R form an idempotent filter 2iïx in the sense of Gabriel [2]. Conversely 
every idempotent filter 2f of right ideals may be obtained from an injective 
i^-module / such that 2f = @j. (See [9].) 
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Let h : A —» A z be the localization of A at / . Assume that N is an I-closed 
submodule of A, that is, that A/N is /-torsionfree. Let 

N = {qeAj\q-%(N) e@z}. 

Then N is called the I-closure of A (N) in 4̂ 7. We note that 

N/h(N) = Tz(AI/h(N))1 NC\h(A) = h(N), N = h~*(N). 

PROPOSITION 1.1. Let I be any infective right R-module, and N an I-closed 
submodule of the right R-module A. Then there exist canonical monomorphisms 

A/N-*Aj/N-> (A/N)z. 

Moreover, A Z/N —» (A/N) z is an isomorphism if and only if A Z/N is I-divisible. 

Proof. Let p be the canonical projection Az —> Az/N and consider the 
composite homomorphism 

A^AJ-^AJ/N. 

Its kernel is h~l (N) = N, and therefore the induced mapping hf : A/N —> A T/N 
is a monomorphism. 

Next, consider the following diagram with two exact rows and two com­
mutative squares: 

0 >N > A > A/N >0 

h h' 

0 >N tAj—tAj/N >0. 
P 

Suppose f:Aj/N-+I and fh' = 0. Then fp:Az->I and fph = 0. Since 
Az/h(A) is /-torsion, it follows that fp = 0. Since p is an epimorphism, we 
h a v e / = 0. Thus 

cokA' = (Az/N)/imhf 

is /-torsion. If K is any submodule of Az/N such that K C\ im h' = 0, then K 
is both /-torsion and /-torsionfree, hence zero. Thus Az/N is an essential 
extension of A/N, and wre may regard Az/N as an i^-submodule of (A/N)z. 

Finally, if Az/N is /-divisible, the monomorphism Az/N —> (A/N)z is 
clearly an isomorphism. 

Remark 1.2. The hypothesis that Az/N is /-divisible is fulfilled whenever 
Qz is exact. (See [10] for examples.) When R is right Noetherian, Qz is exact 
if and only if it preserves all colimits, or equivalently, all R/-modules are 
/-torsionfree. Walker and Walker [20] have shown that Qz preserves all 
colimits if and only if DRZ = i^7 for all D Ç Qi z. When this is the case, it also 
follows that Rz is flat as a left i^-module and that Rz is right Noetherian. 
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From this remark one easily deduces the following: 

LEMMA 1.3. If N is any I-closed submodule of A, then NRT C N, with equality 
holding when Qj preserves all colimits. 

2. Localization at a semiprime ideal. Following Goldie [5], we associate 
with any two-sided ideal N of R the multiplicatively closed set 

<tf(N) = {c G R\Vr&cr$ N}. 

This set (called cêk' (N) in [5]) determines the idempotent filter SfN of right 
ideals D such that 

\/rzRr-Wr\ &(N) 9*0. 

For convenience, we collect here some results by Goldie which will be 
referred to frequently. 

LEMMA 2.1. Let N be a semiprime ideal of the right Noetherian ring R. Then 
(1) (^(N) + N)/N is the set of regular elements of R/N; 
(2) a right ideal D of R containing N meets & (N) if and only if D/N is an 

essential right ideal of R/N; 
(3) R/N satisfies the right Ore condition with respect to Cif (N) -j- N)/N; 
(4) R/N has a classical ring of right quotients Qci(R/N); 
(5) for each c G &(N), cR + N G 9N. 

Proof. (1) follows from the definition of tf (N) and [3, Lemma 3.8]. (2) is [3, 
Theorem 3.9]. (3) and (4) are [3, Theorem 4.1]. (5) is an immediate conse­
quence of (3) and appears in [4, Lemma 3.1]. 

PROPOSITION 2.2. If N is a semiprime ideal of the right Noetherian ring R, then 

Proof. Assume that D G S^N- T O show that D G ^E{RIN), we require that 
R/D be E(R/N)-torsion, that is, by §1 (1), that 

VreRVstNlceR(rc G D & se <2 N). 

By assumption, we may pick c G fë (N) such that re G D, then se G N, by 
definition of <i£(N). 

Conversely, assume that D G &E(R/N)- Let r, r' G R and r $ N. Again, 
by§ l (1), 

3 ^nirr't G D & rt ï N). 

This means that (r~lD + N)/N is an essential right ideal of R/N. By Lemma 
2.1, r~lD + N meets ^( iV) , say c = d + n, for c G ^(N), d G r~lD, n G N. 
Then d G r~lD ntf(N), hence D G 9N. 

In view of Proposition 2.2, we write N-torsion, N-torsionfree, N-divisible, 
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N-dense and N-closed instead of E(R/N)~torsion, etc. We also write TN(A)% 

DN(A), AN, RN and QN in place of TE(R/N)(A) etc. 
T h e following could be deduced from Proposition 1.1, bu t it seems more 

instruct ive to prove it directly. 

L E M M A 2.3. Let N be a semiprime ideal of the right Noetherian ring R, and 
assume that its N-closure N in RN is an ideal in RN. Then there exists a ring 
monomorphism r : RN/N' •—> Qci(R/N), where Qcl(R/N) is the classical ring of 
quotients of R/N. 

We may write 

R/N ç RN/N C Qcl{R/N) ç QN{R/N). 

Proof. We may assume tha t R is iV-torsionfree. Hence for every q G RN 
there exists c G & (N) such tha t qc G R. Define r : RN/N - » Qcl{R/N) by 
T([Ç]) = M W " 1 - T o check t h a t r is a mapping, suppose q G N, then 
qc (z N C\ R = N. T o see t ha t r is one-to-one, suppose qc G iV; then 
q(cR + iV) ÇI iV, hence q is in the iV-closure of N, by Lemma 2.1, and there­
fore g G iV. If gi and q2 G ^ , we may pick a single c G *£ (N) such t h a t 
gxc G R and g2c G i^, and from this it follows t ha t r is addit ive. 

Finally, we will show tha t r preserves multiplication. Let gi, g2 G RN be 
given, then there exist cu c2 G *if (N) such t ha t giCi and q2c2 G i^. Now i?/iV 
satisfies the right Ore condition with respect to *if (N) modulo N (see Lemma 
2.1), hence we can find c G të (N) and r G R so t ha t Cir — g2c2c G i\f. Then 
gi^ir — q\q2c2c G iV, since iV is an ideal. Pick c' G & (N) such tha t q\Cxrc' — 
qiq2c2ccf G iV. Then 

^( [g i^] ) = [gig2c2^ /][^2^ /]~1 

= [gicifc/][c2cc/]-1 

= [gi^i][ci]-1[g2^2][c2]-1 

= r([gi])r([g2]) . 

PROPOSITION 2.4. Le^ N be a semiprime ideal of the right Noetherian ring R. 
Then a right ideal A of R containing N is N-closed if and only if A /N is a right 
complement. Moreover a right ideal A is maximal among right ideals not meeting 
*& (N) if and only if A /N is a maximal right complement. 

Proof. Suppose A contains N, B is the iV-closure of A and r G B. Then 
rD C A for some iV-dense right ideal D. Now D meets *$ (TV), and so re G A for 
some c G & (N). If r Ç? N then re Ç? N, hence B/N is an essential extension of 
A/N. If A/N is a r ight complement, B/N = A/N, hence B = A. 

Conversely, suppose B/N is an essential extension of A/N. Then , for any 
r G B, r~lA is an essential r ight ideal of R, hence meets ^(N), by Lemma 2 .1 . 
Therefore B/A is iV-torsion. If A is iV-closed, it follows t ha t B = A, hence 
A/N is a right complement. 
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Suppose A is maximal among right ideals not meeting fë(N). Then A + N 
does not meet *% (N), hence N Ç A. Suppose rD C ^4, where J? is iV-dense 
and r (? .4. Then 4̂ + rR meets ^ (N), say c = a + rs, where a £ A, s £ R. 
Now s-lD meets ^( iV) , say scf 6 £> for some c' € ^( iV) . Therefore a / = 
ac' + rsc' £ A + rD Q A, a, contradiction. Thus A is iV-closed. If B properly 
contains A, B meets ^ (N), hence 5 is iV-dense, by Lemma 2.1. Thus 4̂ is 
maximal among proper iV-closed right ideals containing N. 

Conversely, let A be maximal among proper iV-closed right ideals containing 
N. Then A is not iV-dense, hence A does not meet *$ (N). Suppose B contains A, 
then the iV-closure of B is R, hence B is iV-dense, and so B meets ^ (N). Thus 
A is maximal among right ideals not meeting ^ (N). 

The following generalizes a result by Heinicke [7, Theorem 4.3]. 

PROPOSITION 2.5. Let N be a semiprime ideal of the right No ether ian ring R. 
Then the localization functor QN is right exact if and only if the N-dosure N of N 
in RN is such that 

(1) RN/N is a direct sum of a finite number of simple RN-modules, and 
(2) every simple RN-module is isomorphic to one of these. 
If furthermore A is an R/N-module, then QN(A) is a direct sum of simple 

RN-modules. 

Proof. We may assume that R is iV-torsionfree. 
First, suppose QN is right exact. Then it follows from Proposition 1.1 and 

Remark 1.2 that 

R/N ç RN/N = (R/N)N. 

Let Ui/N © U2/N © . . . © Ud/N be a maximal direct sum of uniform sub-
modules of R/N, hence an essential right ideal of R/N. By Lemma 2.1, 
Ui + . . . + Ud contains an element of ^ (N), hence is iV-dense in R, as it 
contains N. Therefore 

RN/N=QN(R/N) 

= QN(U,/N © . . . © Ua/N) 

^ QsWi/N) © . . . © QN(Ua/N). 

We shall prove that the direct summands are simple ^ -modules . 
Let U/N be a uniform submodule of R/N, we may as well assume it to be 

iV-closed, and B any nonzero i^v-submodule of QN(U/N). Since QN is exact, by 
Remark 1.2, B is torsionfree and divisible as an i^-module, hence iV-closed, 
and therefore B Pi ( U/N) = V/N is a nonzero iV-closed submodule of U/N. 
By Proposition 2.4, V/N is a complement right ideal, hence V = U. There­
fore, B contains U/N, and so B = QN(B) = QN(U/N). 

Now suppose A is any simple ^ - m o d u l e . Since QN is exact, A is iV-torsion-
free as an i^-module, hence HornR(A, E(R/N)) 5* 0. But both A and E(R/N) 
are N-torsionfree and iV-divisible, hence we may write this HomRN(A, E (R/N) ) 
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^ 0. Since 

E(R/N) ^E(Ui/N) X . . . X E(Ud/N), 

there exists i G {1, . . . , d) such t ha t H o m % ( i , E(Ut/N)) 9e 0. Since 4̂ is 
simple, we m a y write A C E(Ut/N), hence ^ meets QN(Ut/N) C E(Ut/N). 
Since QN(UJN) is simple, 4 = QN{Ut/N). 

W e have thus shown t h a t r ight exactness of CAT implies (1) and (2). Con­
versely, assume (1) and (2). By (2), the injective hull of the ^ - m o d u l e 
RN/N is a cogenerator of Mod RN. If we can show it is iV-torsionfree, it will 
follow t h a t every i ^ - m o d u l e is iV-torsionfree, hence t ha t QN is exact. 

In view of (1), it suffices to show t h a t the injective hull of every simple 
^ - m o d u l e A is iV-torsionfree as an i^-module. Let T be its iV-torsion sub-
module, we shall show t h a t T = 0, using an argument due to Heinicke [7, 
p . 710]. 

Suppose T ?£ 0, then A C TRN. Therefore any element a of A could be 
wri t ten as a = txq± + . . . + tnqn, where tt G T and qt G RN, and so we could 
find D G $IN such t h a t aD C T. Bu t then the element a would be iV-torsion, 
whereas we know from (2) t h a t A is iV-torsionfree. 

Finally, to prove the last assertion of the proposition, let A be an R/N-
module. Since QN(A) = QN(A/TN(A)), we may assume t h a t A is N-torsion-
free. Then every nonzero submodule of A contains a uniform R/N-module U 
which is isomorphic to a uniform right ideal of R/N. (For, if 0 9e a G A, 
aR being i^-torsionfree, i t easily follows from Lemma 2.1 t h a t a~lQ/N is not 
an essential r ight ideal of R/N. Pick a uniform right ideal V/N of R/N such 
t h a t a~l0/N r\ V/N = 0, then U = a(V/N) is isomorphic to V/N.) B y 
Zorn's Lemma, there is a maximal direct sum 5 of such uniform R/N-sub-
modules U of A. T h u s A is an essential extension of S, hence A/S is N-torsion. 
Since QN is exact, QN(A)/QN(S) ^ QN(A/S) = 0, hence QN{A) = QN(S). 
Since QN commutes with direct sums, QN(S) is the direct sum of the QN(U), 
and these are simple ^ - m o d u l e s , as above. 

According to Gabriel [2, p . 415], a ring homomorphism h : R —> i ? 2 is called 
a (classical) ring of right fractions with respect to the multiplicative set 2 if 
and only if 

(a) for all r £ R, h(r) = 0 => there exists a G 2 such t ha t ra = 0, 
(b) for all (7 G S, h (a) is invertible, 
(c) for all q G i^s there exists o- G 2 such t h a t g^(V) G &CR). 

He showed t ha t such an R? exists (and is unique up to isomorphism) if and only if 

(*) VTÇRV*&3 t'es! *'&r<r' = err', 

the so-called right Ore condition with respect to 2 , and 

(**) VTZRQ 9&*r = 0 => 3 . 'eznr ' = 0) . 

T h e following is well-known. 

Remark 2.6. When i£ is right Noetherian, (*) implies (**). 
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Proof. Suppose ar = 0. Pick the natural number n such that the right 
annihilator of an is maximal. By (*), there exist rr G R and a' G 2 such that 
(7-V = ra , hence an+lrf = ara' = 0. But the right annihilator of an+l contains 
that of an, hence coincides with it, and therefore anr' — 0, whence ra' = 0. 

With the help of Proposition 2.5, we can now prove the main result of this 
section, which generalizes [11, Theorem 5.6] and Heinicke's result [7, Theorem 
4.6]. 

THEOREM 2.7. Let N be a semiprime ideal of the right Noetherian ring R, and 
let N be the N-closure of N in RN. Then the following statements are equivalent: 

(1) R satisfies the right Ore condition with respect to ^ (N). 
(2) QN is right exact and N is a two-sided ideal of RN. 
(3) N is the Jacobson radical of RN and RN/N is a semisimple Artinian ring. 
(4) N/cN is N-torsion for every c G & (N). 
Furthermore, if these equivalent conditions hold, there is a commutative diagram: 

R >RN 

R/N >RN/N^Qcl(R/N). 

Proof. We show (1) => (2) => (3) => (4) =» (1). 
Assume (1). By Remark 2.6, R —> R<g(N) is a classical ring of fractions of R 

with respect to & (N). I t is easily seen that R^(N) = RN- Let D G &N, then D 
meets fë (N), say c G D C\ ^ (N). By condition (b) above, h(c) is invertible 
in RN, hence RN Ç ch{c)~lRN Ç DRN. By Remark 1.2, QN is exact. By Lemma 
1.3, NRN = N. An easy computation using the right Ore condition then 
shows that N is a two-sided ideal. 

Assume (2). By Proposition 2.5, RN/N is a finite direct sum of simple right 
i^v-submodules, hence it is a semisimple Artinian ring. Let M be any maximal 
right ideal of RN, then, again by Proposition 2.5, RN/M is isomorphic to a 
submodule of RN/N. It follows that M is the kernel of some i^-hoiriomorphism 
RN —> RN/N. Suppose this homomorphism sends 1 onto [q] ; then M = 
{qf G RN\[qq'] = 0} = q-1N 2 N. Hence N is contained in the Jacobson 
radical of RN. Since RN/N is semiprimitive, N is the Jacobson radical. 

Assume (3). Then RN/N is the direct sum of a finite number of minimal 
right ideals, hence of simple i^-niodules. Let A be any simple i^-niodule. By 
Nakayama's lemma, AN ^ A, hence AN = 0, and so A is also a simple 
RN/N-modu\e, hence is isomorphic to one of the direct summands of RN/N. 
By Proposition 2.5, QN is right exact. Let c £ &(N); then cR + N G 2fN, by 
Lemma 2.1, hence cRN + N = (cR + N)RN = i^» by Lemma 1.3 and 
Remark 1.2. Since N is the Jacobson radical, cRN = RN. Therefore cR G &N, 
and so R/cR is iV-torsion. But then so is N/cN = iV/(d? f~\ N) ^ 
(cR + N)/cR. 

Assume (4), and take c G ^(N). Then (cR + N)/cR 9Ë N/cN is TV-torsion, 
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and so is R/(cR + N), by Lemma 2.1. Therefore R/cR is iV-torsion, that is, 
for all r £ R, r~l(cR) meets *% (N). This is just another way of stating the 
right Ore condition. 

Finally, we invoke Proposition 1.1 and Lemma 2.3 to show that (2) implies 
that RN/N É= Qd(R/N). The proof of the theorem is now complete. 

As a first application of Theorem 2.7 we give a variation of the characteriza­
tion of right orders in semilocal rings by Faith [1]. The ring R is called semilocal 
if it is semisimple Artinian modulo its Jacobson radical. 

COROLLARY 2.8. The right Noetherian ring R is a right order in a semilocal 
ring S if and only if there exists a semiprime ideal N of R such that *& (N) is the 
set of all regular elements of R and R satisfies the right Ore condition with respect 
to *$ (N). Moreover, N is then the intersection of R with the Jacobson radical of S. 

Proof. In view of Theorem 2.7, the two conditions are clearly sufficient. 
Conversely, let R be a right order in a semilocal ring 5 with Jacobson radical / . 
Put N — J P R, then N is a semiprime ideal of R, since every prime ideal of 5 
intersects R in a prime ideal of R [5, (2.18), p. 247]. 

Suppose c Ç *£ (N) and cq £ J, where qd £ R for some regular element d of 
R. Then cqd £ J C\ R = N, hence qd £ N and therefore g £ / . Since S/J is 
semisimple Artinian, it follows that [c] is a unit in S/J, and therefore c is a unit 
in S, hence regular in R. Thus all elements of ^f (N) are regular. 

Conversely, if c is regular in R, then [c] is a unit in S/J. If cr £ N Ç / , then 
r £ J r\R = N. Thus c £ <if(N). Therefore, all regular elements are in <% (N). 

3. Artinian localization. Given a semiprime ideal N of the right Noetherian 
ring R, we shall investigate when the ring RN of right quotients at N is right 
Artinian. As a corollary, we will obtain Small's theorem when R is a right order 
in a right Artinian ring. 

First, we require a well-known lemma. 

LEMMA 3.1. Let R be a right Noetherian ring, A a two-sided ideal of R, and 
c £ ^ (0) a right regular element of R. Then cA is essential in A. 

Proof. Otherwise A contains cA + B, where cA C\ B = 0 and B ^ 0. But 
cA is isomorphic to A and contains c2A + cB, where c2A Pi cB = 0 and cB ^ 0. 
We continue in this manner and obtain an "infinite" direct sum B + cB + 
c2B + . . . , which would violate the maximal condition. 

PROPOSITION 3.2. Let R be a right Noetherian ring, N a semiprime ideal, and 
assume that there exists an ideal K Ç N such that & (N) Ç ^ (K) and a natural 
number m such that Nm Ç K. Then R satisfies the right Ore condition with 
respect to & (N) if and only if K/cK is N-torsion for each c Ç *& (N). 

Proof. Let us write 

Nk = {n G N\nNm-k ç K) 

for k = 1, . . . , m. Then clearly Ni = N and Nm = K. 
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Take any c G fâ (N) and suppose cr G Nk. Then cr G N (hence r G N) and 
cr G iVm"* Ç X, so that rNm~k C X, that is, r G #*. Thus & (N) C ^(JV t ) . 

Now let us look at condition (4) of Theorem 2.7. N/cN is iV-torsion if and 
only if each of N/(N2 + cN) and (N2 + cJVJ/cJV 9É iV2/(dV H iV2) = N2/cN2 

are iV-torsion. 
Similarly, N2/cN2 is iV-torsion if and only if each of N2/(NZ + cN2) and 

Nz/cNz are iV-torsion. Iterating this argument, we reduce the problem to 
showing that all Nk/(Nk+1 + cNk) and Nm/cNm = K/cK are N-torsion. 

Let Dk = Nk+i + cNk. We claim that Nk/Dk is N-torsion for each k = 1, 
. . . , m — 1. Take any « G Nk, we wish to show that n~lDk meets ^ (N). In 
view of Lemma 2.1, it suffices to show that n~lDk/N is essential in R/N. 
Note that 

nN C JV*iV C JVt+1 Ç P t C iV, Ç iV Ç « - i ^ Ç R. 

Given r g iV, we seek s £ R such that rs d N and nrs G At-
Since c is a right regular element modulo Nk+i, Lemma 3.1 tells us that 

cNk/Nk+i is essential in Nk/Nk+i. Hence Dk/Nk+Ï is essential in Nk/Nk+1. Thus, 
if nr (? Nk+i, we can find 5 G R such that nrs (? Nk+i, hence rs G N and 
?zrs G Dk. If however ^r G Nk+1, we just take 5 = 1. 

The proof is now complete. 

THEOREM 3.3. Let R be right Noetherian, N a semiprime ideal of R. Then RN 

is a right Artinian classical ring of right fractions of R with respect to ^f(iV), 
if and only if 

(a) some power of N is N-torsion, and 
(b) <g(N) satisfies 

(**) VreaG cev(N)Cr = 0 => 3 c'&mrc' = 0). 

Proof. First, we show the sufficiency of the conditions. Suppose c G *$ (N)y 

r G i^, andcr G TN(R). Then, for each 5 G i?, there exists c' G ^ (iV) such that 
crsc' = 0. By (**), there exists c" G & (N) such that rsc'c" = 0, hence 
r G ZVCR). Thus ^( iV) ç ^(7V(i?) ) . 

Take X = TN(R). Then iVw Ç i£ for some natural number m. Moreover, 
K is iV-torsion. Therefore, R satisfies the right Ore condition with respect to 
fâÇN), by Proposition 3.2. Thus R —> RN is a classical ring of right fractions 
with respect to *$ (N), in view of Remark 2.6. 

Furthermore, Theorem 2.7 asserts that N is the Jacobson radical of RN and 
RN/N is semisimple Artinian. Since QN is right exact, RN is right Noetherian 
and N — NRN. Thus N is nilpotent, and so RN is right Artinian, by Hopkins' 
Theorem. 

Conversely, assume that h : R —> RN is a classical ring of right fractions 
with respect to *$ (N) and that RN is right Artinian. 
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Then R satisfies Gabriel's condition (**) as in § 2. Furthermore, h(N) = 
h(R) r\ N is nilpotent. Thus Nm C TN(R) for some natural number m. 

Theorem 3.3 contains the crux of Small's Theorem [17; 18] and could have 
been proved with the help of the latter, which may be stated as follows: 

COROLLARY 3.4. Let R be a right Noetherian ring with prime radical N. Then 
R is a right order in a right Artinian ring if and only if every element of *$ (N) is 
regular in R. 

Proof. The necessity of the condition is an immediate consequence of Corol­
lary 2.8. Conversely, suppose every element of & (N) is regular in R. Then 
clearly R is iV-torsionfree. By Levitski's Theorem, Nk = 0 for some positive 
integer k. Therefore, Theorem 3.3 applies, h : R—> RN is a classical ring of right 
fractions of R with respect to *£ {N), h is injective and RN is right Artinian. It 
will follow that RN = Qci(R) if we show that all regular elements of R are in 
<if(N). 

Suppose c is a regular element of R. Then c is right regular in RN. As RN is 
right Artinian, c is a right unit in RN, that is, cq = 1 for some q £ RN- Since c 
is right regular in RN, also qc = 1. Suppose cr G N, then r = qcr £ RNN C N, 
hence r £ N C\ R = N. Thus c € &(N). 

An immediate consequence of Corollary 3.4 is the following: 

COROLLARY 3.5. Let R be a right Noetherian ring with prime radical N. 
Suppose R is N-torsionfree and satisfies the right Ore condition with respect to 
*io (N). Then R satisfies the right Ore condition with respect to the set of all regular 
elements of R. 

COROLLARY 3.6. Let N be a semiprime ideal of the right Noetherian ring R and 
suppose that some power of N is N-torsion. If QN is exact then RN is right Artinian. 

Proof. We may assume that R is 7V-torsionfree. Let aN denote iV-closure in 
RN, then 

RN 2 *AN) = N 3 aN(N2) 2 . . . 3 aN(Nm) = *„(0) = 0 

for some natural number m. Consider 

Ah = (N« + aN(Nk+1))/vANk+l) 
^Nk/(Nkr\aN(Nk+1)). 

This is a finitely generated i^/iV-module, it is iV-torsionfree, and its iV-closure is 

QN(Ak) = aN(Ak) = aN(Nk)/<rN(Nk+i). 

By Proposition 2.5, this is a direct sum of simple ^-modules , hence we obtain 
a composition series for RN. 

4. Classical semilocal rings. If N is an ideal of R and / = E(R/N), we 
shall be comparing two topologies on an i^-module G: 
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(a) the 7V-adic topology, which has a fundamental system of open neighbor­
hoods of zero consisting of submodules of the form GNn, n any natura l number , 

(b) the I-adic topology, which has a fundamental system of open neighbor­
hoods of zero consisting of kernels of h o m o m o r p h i s m s / : G —> In, n finite. 

Before s tat ing the main result of this section, we require two lemmas: 

L E M M A 4 .1 . Let R be a right Noetherian ring, N an ideal such that R/N is 
semisimple Artinian, and I = E(R/N). Then, on any finitely generated R-
module G, the N-adic topology is contained in the I-adic topology. 

Proof. W e claim t h a t GNn Ç ̂ , the class of all 7^-modules isomorphic to 
submodules of finite powers of I. S i n c e ^ " is closed under module extensions, it 
suffices to show t h a t GNk/GNk+^ £ ^ , for k = 0, . . . , n - 1. P u t H = GNk; 
then H/HN is an R/N-modu\e, hence a finite direct sum of minimal r ight ideals 
of R/N. Since R/N C I, H/HN C P. 

T h e following is the same as [12, Lemma 4], bu t we give the proof for 
completeness. 

L E M M A 4.2. Suppose N is an ideal of R and every finitely generated right ideal 
of R is closed in the N-adic topology. Then N is small. 

Proof. Suppose E is any right ideal of R such t h a t N + E = R. Wi thou t 
loss in generality, we may take E to be finitely generated. Now N = RN = 
N2 + EN, hence N2 + E = N2 + EN + E = N + E=R. Similarly iV3 + 
E = R, and so on. Hence the iV-adic closure Pl?=i(-E + Nn) of E is also R. 
Since E is closed, E = R. 

PROPOSITION 4.3. Let R be right Noetherian, N an ideal of R such that R/N is 
semisimple Artinian, I = E{R/N). Then the following statements are equivalent: 

(a) For any right ideal E of R there exists a natural number n such 
that £ Pi Nn Q EN. 

(b) For every element i G I there exists a natural number n such that iNn = 0. 
(c) On every finitely generated right R-module the N-adic and I-adic topologies 

coincide. 
Moreover, these equivalent conditions together with the assertion that N is the 

Jacob son radical of R are equivalent to the following: 
(d) Every right ideal of R is closed in the N-adic topology. 

Definition. A semilocal ring R with Jacobson radical N satisfying the equi­
valent conditions (a) to (d) above will be called a classical right semilocal ring. 

Proof. Assume (a) . Let i 6 I, p u t E = {r Ç R\irN = 0} , and pick n such 
t h a t EH Nn ÇZ EN. Suppose iNn ^ 0, then iNn meets R/N, hence there exists 
r € Nn such t h a t 0 9* ir £ R/N. B u t then irN = 0, hence r G E C\ Nn Ç EN, 

and so ir = 0, a contradict ion. T h u s (a) =» (b) . 
Assume (b) . Let G be a finitely generated r ight i^-module, / : G —> In any 

i^-homomorphism, pk : In —» I the canonical projections for k = 1, . . . , n. 
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Then pkf(G)Nmik) = 0 for some m(k). Let m = max { w ( l ) , . . . , m(n)} ; then 
f(G)Nm = 0, hence Ker/contains GiV™. Therefore the 7-adic topology on G is 
contained in the iV-adic one. The converse is true by Lemma 4.1. Thus (b) =» (c). 

Assume (c). Let E be any right ideal of R. Since R is right Noetherian, E is 
finitely generated. Now EN is an open subset of E in the iV-adic topology, 
hence in the 7-adic topology. Now the /-adic topology of any submodule of R 
is induced by that of R, hence EN = E C\ V, where V is an open subset of R 
in the 7-adic topology, hence in the iV'-adic topology. Therefore Nn C V for 
some n.andsoEn Nn QEC\ F Ç EN. Thus (c) => (a). 

Assume (d). Since R/N is right Artinian, the finitely generated R/N-modu\e 
E/EN is also Artinian. Pick n such that 

((E H Nn) + EN)/EN = (E H (iV* + EN))/EN 

is minimal. Now £7V is closed, hence 

Therefore 

((£ H iVw) + EN)/EN = (EH EN)/EN = 0, 

hence 

Er\Nn <^EC\ (Nn + EN) ç £iV. 

Thus (d) => (a). 
Clearly, iV contains the Jacobson radical of R. Therefore, by Lemma 4.2, it is 

the Jacobson radical, when (d) holds. 
Assume (a) and suppose that N is the Jacobson radical. Then (d) follows as 

in [12, Theorem (5), (*) => (**)]. Indeed, let F be any right ideal and E its 
7V-adic closure. Pick n as in (a) ; then 

E Ç (F + Nn) H E = F + (iVw H £ ) C F + £iV, 

hence £ / £ C (E/F)N, and so E = F, by Nakayama's Lemma. 

Note that all the assumptions of Proposition 4.3 are used only in the impli­
cation (b) => (c). (c) => (d) depends only on R being right Noetherian, 
(d) =» (a) also on i?/iV being right Artinian, and (a) => (b) holds without any 
assumptions whatsoever. 

5. Semiprime ideals with the Artin-Rees property. Before turning to 
the main theme of this section, we shall establish the following: 

LEMMA 5.1. Let Rbe a right Noetherian ring, N a semiprime ideal such that R 
satisfies the right Ore condition with respect to & (N). Then, for each natural 
number k, Nk/h(Nk) is N-torsion. 
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Proof. For k = 1 this follows from the definition of N. Assume the result for 
k; we shall prove it for k + 1. Given any element q G Nk+1, we seek an element 
c G fê(N) such that qc G h(Nk+1). Without loss in generality, we may consider 
q = <Zi#2, where q\ G Nk and g2 G iV. (For i^jv is closed under finite inter­
sections.) By inductional assumption, qiCi G h(Nk). Also q2c2 = h(n), n £ N. 
By the right Ore condition, we can find c' G ^ (N) and n' £ R such that 
CiTî' = ne' G iV, hence also n' G iV. Therefore 

Given a semiprime ideal iV in the right Noetherian ring R, we define a closure 
operation pN on right ideals and a closure operation X^ on left ideals. 

For any right ideal E, PNE/E = TN(R/E). In other words, pNE = 
{r G R\r~lE G 9N\. 

For any left ideal F, \NF is the smallest left ideal Ff containing F such that 

LEMMA 5.2. Le£ i£ 6e rig&J Noetherian, N a semiprime ideal, and A any ideal of 
R. Then pNA and \NA are ideals, and \NpN\NA = pN\NA. If N has the right Ore 
property, then pN\^A = pNA. 

Proof. (1) Suppose r G pNA, s G R. Then there exists D G 2iïN such that 
rD CI A, hence srD C A, hence sr G PNA. 

(2) Let B = {r e R\rR Ç X ^ } , then 5 is an ideal and A Œ B CZ \NA. 
We will show that & (N) Ç <^(5). Indeed, suppose c Ç ^( iV) , r G i^, and 
or G B. Then cri£ CZ X ^ , hence ri? C \NA, hence r £ B. Thus X ŷl = B. 

(3) We will show that & (N) C ^ ( P i V X ^ ) . Suppose c G ^( iV) , r ^ , 
or G pN\NA. Then, for all s £ R, there exists c' G të (N) such that crsc' G X^-4, 
hence rsc' G X ^ , hence r G pNXNA. Therefore c G *if(pN\NA). 

(4) Now assume the right Ore condition for ^ (N). We will first show that 

For this argument we may as well assume that A = pNA. Suppose c G *£ (N), 
r G R, and cr G A. Pick a natural number n such that c~M = {r G i?|cV G 4̂} 
is maximal. By the Ore condition, there exists c' G *lf (N) and r' G JR such that 
cV = re', hence cn+1r' = cre' G A. But c~(n+1)^ = c~M, hence cV G -4, that 
is, re' G -4. Thus r G p ^ . 

Now it follows that \NpNA = pNA. Therefore XNA CZ pNA, hence pN\NA C 
pAr̂ 4, and our proof is complete. 

Part (4) of the above proof is essentially the same as that of the implication 
(*) =» (**) in Remark 2.6. 

THEOREM 5.3. Let R be a right Noetherian ring, N a semiprime ideal, I = 
E (R/N). Then the following statements are equivalent: 

(1) For each right ideal E of R there exists a natural number n such that 
EC\ \NNn C pN(EN). 
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(2) For each element i 6 I there exists a natural number n such that i\NNn = 0. 
(3) N is an ideal of RN and (RN, N) is a classical right semilocal ring. 
Moreover these conditions imply that R satisfies the right Ore condition with 

respect to &(N). 

One might put condition (1) into words by saying that N has the right 
symbolic Artin-Rees property. 

Proof. Assume (1). Let V be an essential submodule of / for which VN = 0, 
and let E = i~xV = {r 6 R\ir £ V}. Pick n such that E C\ \NNn Ç pN{EN). 
Suppose i\NNn j* 0; then i\NNn C\ V ^ 0. Thus there exists r G XNNn such 
that 0 y£ ir £ V, hence r 6 XNNn C\ E Ç pN(EN). Therefore there exists a 
right ideal D such that R/D is iV-torsion and rD Ç EN, hence irD = 0, and so 
ir = 0, a contradiction. Thus (1) =» (2). 

Assume (2). We shall prove first of all that N has the right Ore property. 
Take any cÇ ^ (N) ; we wish to show that R/cR is torsion. Suppose icR = 0, 
we will show that iR = 0. We know that i(cR + \NNn) = 0, so it suffices to 
show that cR + \NNn £ 9N. 

Consider the ring R/XNNn. Clearly N is nilpotent modulo \NNn. Moreover, 
all elements of fë (N) are right regular modulo \NNn, that is, all elements of 
^{N/\NNn) are right regular. By Corollary 3.4 (Small's Theorem), N/\NNn 

has the right Ore property. Take any r £ R; then there exist c' Ç fë(N) and 
r' £ R such that cr' - re' Ç \NNn. Therefore r~l{cR + \NNn) meets <if(N), 
as was to be shown. 

Thus N has the right Ore property. By Theorem 2.7, N is the Jacobson 
radical and RN/N is semisimple Artinian. Also RN is right Noetherian. It 
remains to verify one of the equivalent conditions of Proposition 4.3 for 
(RN, N). We shall verify condition (b). 

Let V be the injective hull of RN/N as an ^ -module . I t is an essential 
extension of RN/N also as an i?-module, hence F Q I = E(R/N). Take any 
i Ç T'; then by (2) there exists a natural number n such that i\NNn = 0. 
A fortiori, iNn = 0. But, by Lemma 5.1, Nn/h{Nn) is iV-torsion, hence iNn = 0. 
Thus (2) =» (3). 

Assume (3). Then N is the Jacobson radical of RN, by Proposition 4.3, and 
R satisfies the right Ore condition with respect to ^(N), by Theorem 2.7. 

Let E be any right ideal of R. By Lemma 1.3, £ = ERNy N = NRN, EN = 
ENRN. By (3), there exists n such that 

Ër\Nn^ËN = ERNNRN = EN. 

For the moment, let <rN denote "iV-closure in RN
JJ, that is, for any right ideal A 

of RN, <TNA/A = TN(RN/A). Then clearly 

aN(A H B) = aNA C\ <TNB, h~l<TNA = pNh~lA, E = <jNhE. 

Thus we have 

E C\ <jNNn Ç aN(Ë H Nn) Ç aNÊN = EN. 
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Apply h~l to this and note that 

E S PNE = PNh~lË = hrl(jNË = h~lË 

and, by Lemma 5.2, that 

^NNn ç p ^ i V » = P;vAn £ PNU-1^ = h-ldNNn
y 

hence 

£ H X^A" C h~l(EN) = h-laN(EN) = pNh~l{EN) = p(£A). 

Thus (3) =» (1). 

Remark 5.4. Condition (3) of Theorem 5.3 can be relaxed as follows: 
(3') A is an ideal, RN/N is semisimple Artinian and, for every finitely 

generated right ideal E of RN, there exists a natural number n such that 

EHNn^ EN. 
This is almost the same as (3), except that we do not assert that RN is right 

Noetherian, and that A is the Jacobson radical of RN. We shall deduce from 
(3') that R satisfies the right Ore condition with respect to *$ (N). 

Put Nk = h~l{Nk). We claim that N/Nk has the right Ore property in 
R/Nk. This follows from 3.4, since N/Nk is clearly nilpotent (because Nk Ç Nk) 
and semiprime, and since & (N/Nk) C ^ ( 0 ) , as we shall now show. 

Suppose [c] G &(N/Nk), then one easily calculates that c G ^ ( A ) . We 
prove by induction on k that RNc + Nk = RN. This is so for k = 1, since 
RN/N = Qci(R/N), by Proposition 2.3. Assume the result for k; then 

RN = RNC + Nk = i ^ c + A*(i?vc + A) = i ^ c + A*+*. 

Now suppose r £ R and [c][r] = 0, that is cr G A&, then &(r) G RNcr + Afc C 
A*, hence r G A^, and so [r] = 0. Thus [c] G ^ ( 0 ) , as claimed. 

We shall now establish the right Ore condition for fë (N) in R. Let r G R} 

c G ^ ( A ) . By the above, for each natural number k, there exist r̂  G i?, 
ĉ  G të (N) such that re* — cr* = uk G A*. Let .P be the right ideal of R 
generated by the uk. Since R is right Noetherian, there exists a natural number 
m such that 

F = uxR + . . . + umR. 

By (3')» there exists a natural number n such that 

FRn C\ Nn Ç FA. 

Now A («J G F i ^ H Aw, hence 

m 

A;=I 

where ç* G A. Pick d G ^ ( A ) such that all qkd £ N C\ h(R) = h(N), say 
gad = &(»*), nk G A. 
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Now, following an idea of Goldie's, put 

m m 

c' = cnd - ]T cknkt r1 = rnd - £ ) r^k-
fc=l k=l 

Then h(cr' — re') = 0, hence there exists d' 6 *$(N) such that (crf — rc')d' = 
0, that is, c(r'df) = r(c'df), and our proof is complete. 
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