LOCALIZATION OF RIGHT NOETHERIAN RINGS AT SEMIPRIME IDEALS

J. LAMBEK AND G. MICHLER

In [11] and [12] we investigated the process of localization of right Noetherian rings R at prime ideals. We shall now extend these investigations to semiprime ideals N of R.

In Section 2 we show that localizing at the injective right *R*-module E(R/N) is the same as localizing with respect to the multiplicative set

$$\mathscr{C}(N) = \{ c \in R | \forall_{r \in R} (cr \in N \Longrightarrow r \in N) \}.$$

We say we are *localizing at* N and call the localization $h: R \to R_N$ the ring of right quotients of R at N.

Extending a theorem of Heinicke [7] we show that the localization functor Q_N is right exact if and only if the N-closure \tilde{N} of h(N) in R_N is such that R_N/\tilde{N} is a finite direct sum of simple R_N -modules containing at least one representative of each isomorphism class of simple R_N -modules. In Theorem 2.6 we prove that R satisfies the right Ore condition with respect to $\mathscr{C}(N)$ if and only if \tilde{N} is the Jacobson radical of R_N and R_N/\tilde{N} is semisimple Artinian. Another equivalent statement asserts that \tilde{N} is a two-sided ideal and Q_N is right exact.

In Section 3 we consider Small's characterization of those right Noetherian rings which are right orders in right Artinian rings. Our Theorem 3.3 asserts that, if N is any semiprime ideal of the right Noetherian ring R, then R_N is a right Artinian classical ring of right fractions of R with respect to $\mathscr{C}(N)$ if and only if some power of N is N-torsion and

$$\forall_{r\in R} (\exists_{c\in\mathscr{C}(N)} cr = 0 \Longrightarrow \exists_{c'\in\mathscr{C}(N)} rc' = 0).$$

These two conditions are trivially satisfied when $\mathscr{C}(N)$ consists of regular elements, hence one obtains Small's Theorem as a corollary. We also show that, when N is the prime radical of the right Noetherian ring R and Q_N is right exact, then R_N is right Artinian.

In Sections 4 and 5 we generalize the results of [12] to semiprime ideals. In Proposition 4.3 we consider a right Noetherian ring R with a semiprime ideal Nsuch that R/N is semisimple Artinian. If I is the injective hull E(R/N), we show that on any finitely generated right R-module the N-adic and I-adic topologies coincide if and only if N has the Artin-Rees property: for every right ideal E of R there is a natural number n such that $E \cap N^n \subseteq EN$. It then also

Received January 31, 1973 and in revised form, July 3, 1973.

follows if N is the Jacobson radical then every right ideal of R is closed in the N-adic topology, as in the commutative case. Such a ring is called a *classical* semilocal ring.

Results of earlier sections are applied to establish Theorem 5.3: if N is a semiprime ideal of the right Noetherian ring R then the ring R_N of right quotients of R at N is a classical semilocal ring if and only if N has the *right symbolic Artin-Rees property*. This property was introduced by Goldie [4] for prime ideals of right and left Noetherian rings and is here extended to semiprime ideals of right Noetherian rings. It follows from [10] that the \tilde{N} -adic completion \hat{R}_N of R_N is the bicommutator of E(R/N).

Throughout this paper, R will be an associative ring with 1. E(A) denotes the injective hull of the right R-module A.

The authors are endebted to Bill Schelter for his critical reading of the manuscript and for several helpful suggestions, to Allan Heinicke for spotting a false example and to one referee for his constructive criticism.

1. Localization at an injective. In this section we recall some definitions, notations and results that depend on a given injective right R-module I. (For details see [9].)

A right *R*-module *A* is called *I*-torsion if $\operatorname{Hom}_{R}(A, I) = 0$. We note that *A* is E(B)-torsion if and only if

(1)
$$\forall_{a \in A} \forall_{0 \neq b \in B} \exists_{r \in R} (ar = 0 \& br \neq 0).$$

(See [9, Proposition 0.2].) A is called *I*-torsionfree if it is isomorphic to a submodule of some power of I. A is called *I*-divisible if E(A)/A is *I*-torsionfree.

The *I*-torsion submodule of A is given by

$$T_{I}(A) = \{a \in A | \operatorname{Hom}_{R}(aR, I) = 0\},\$$

and the *I*-divisible hull $D_I(A)$ is given by

$$D_I(A)/A = T_I(E(A)/A).$$

By the localization of A at I we mean the R-module homomorphism $h: A \to A_I = Q_I(A) = D_I(A/T_I(A))$. One also calls A_I the module of quotients of A at I and Q_I the quotient functor. Q_I is a left exact functor of Mod R into itself.

It is well-known that R_I is a ring, the ring of quotients of R at I, and that $h: R \to R_I$ is a ring homomorphism. Moreover, every I-torsionfree and I-divisible R-module is an R_I -module, and every R-homomorphism between such is an R_I -homomorphism.

A right ideal D of R is called *I*-dense if R/D is *I*-torsion. The *I*-dense right ideals of R form an idempotent filter \mathcal{D}_I in the sense of Gabriel [2]. Conversely every idempotent filter \mathcal{D} of right ideals may be obtained from an injective R-module I such that $\mathcal{D} = \mathcal{D}_I$. (See [9].)

Let $h: A \to A_I$ be the localization of A at I. Assume that N is an *I-closed* submodule of A, that is, that A/N is *I*-torsionfree. Let

$$\widetilde{N} = \{ q \in A_I | q^{-1}h(N) \in \mathscr{D}_I \}.$$

Then \tilde{N} is called the *I*-closure of h(N) in A_I . We note that

$$\widetilde{N}/h(N) = T_I(A_I/h(N)), \quad \widetilde{N} \cap h(A) = h(N), \quad N = h^{-1}(\widetilde{N}).$$

PROPOSITION 1.1. Let I be any injective right R-module, and N an I-closed submodule of the right R-module A. Then there exist canonical monomorphisms

$$A/N \to A_I/N \to (A/N)_I$$
.

Moreover, $A_I/\tilde{N} \rightarrow (A/N)_I$ is an isomorphism if and only if A_I/N is I-divisible.

Proof. Let p be the canonical projection $A_I \to A_I / \tilde{N}$ and consider the composite homomorphism

$$A \xrightarrow{h} A_I \xrightarrow{p} A_I / \tilde{N}.$$

Its kernel is $h^{-1}(\tilde{N}) = N$, and therefore the induced mapping $h' : A/N \to A_I/\tilde{N}$ is a monomorphism.

Next, consider the following diagram with two exact rows and two commutative squares:

$$\begin{array}{cccc} 0 & \longrightarrow & N & \longrightarrow & A & \longrightarrow & A/N & \longrightarrow & 0 \\ & & & & & & \downarrow & & & \downarrow & h' \\ 0 & \longrightarrow & \tilde{N} & \longrightarrow & A_I & \longrightarrow & A_I/\tilde{N} & \longrightarrow & 0 \end{array}$$

Suppose $f: A_I / \tilde{N} \to I$ and fh' = 0. Then $fp: A_I \to I$ and fph = 0. Since $A_I / h(A)$ is *I*-torsion, it follows that fp = 0. Since p is an epimorphism, we have f = 0. Thus

$$\operatorname{cok} h' = (A_I / \tilde{N}) / \operatorname{im} h'$$

is *I*-torsion. If K is any submodule of A_I/\tilde{N} such that $K \cap \operatorname{im} h' = 0$, then K is both *I*-torsion and *I*-torsionfree, hence zero. Thus A_I/\tilde{N} is an essential extension of A/N, and we may regard A_I/\tilde{N} as an *R*-submodule of $(A/N)_I$.

Finally, if A_I/\tilde{N} is *I*-divisible, the monomorphism $A_I/\tilde{N} \to (A/N)_I$ is clearly an isomorphism.

Remark 1.2. The hypothesis that A_I/\tilde{N} is *I*-divisible is fulfilled whenever Q_I is exact. (See [10] for examples.) When *R* is right Noetherian, Q_I is exact if and only if it preserves all colimits, or equivalently, all R_I -modules are *I*-torsionfree. Walker and Walker [20] have shown that Q_I preserves all colimits if and only if $DR_I = R_I$ for all $D \in \mathcal{D}_I$. When this is the case, it also follows that R_I is flat as a left *R*-module and that R_I is right Noetherian.

From this remark one easily deduces the following:

LEMMA 1.3. If N is any I-closed submodule of A, then $NR_I \subseteq \tilde{N}$, with equality holding when Q_I preserves all colimits.

2. Localization at a semiprime ideal. Following Goldie [5], we associate with any two-sided ideal N of R the multiplicatively closed set

 $\mathscr{C}(N) = \{ \mathbf{c} \in R | \forall_{r \notin N} cr \notin N \}.$

This set (called $\mathscr{C}'(N)$ in [5]) determines the idempotent filter \mathscr{D}_N of right ideals D such that

 $\forall_{r\in R} r^{-1}D \cap \mathscr{C}(N) \neq \emptyset.$

For convenience, we collect here some results by Goldie which will be referred to frequently.

LEMMA 2.1. Let N be a semiprime ideal of the right Noetherian ring R. Then (1) $(\mathcal{C}(N) + N)/N$ is the set of regular elements of R/N;

(2) a right ideal D of R containing N meets $\mathscr{C}(N)$ if and only if D/N is an essential right ideal of R/N;

(3) R/N satisfies the right Ore condition with respect to $(\mathscr{C}(N) + N)/N$;

(4) R/N has a classical ring of right quotients $Q_{cl}(R/N)$;

(5) for each $c \in \mathscr{C}(N)$, $cR + N \in \mathscr{D}_N$.

Proof. (1) follows from the definition of $\mathscr{C}(N)$ and [3, Lemma 3.8]. (2) is [3, Theorem 3.9]. (3) and (4) are [3, Theorem 4.1]. (5) is an immediate consequence of (3) and appears in [4, Lemma 3.1].

PROPOSITION 2.2. If N is a semiprime ideal of the right Noetherian ring R, then

 $\mathcal{D}_{E(R/N)} = \mathcal{D}_N.$

Proof. Assume that $D \in \mathscr{D}_N$. To show that $D \in \mathscr{D}_{E(R/N)}$, we require that R/D be E(R/N)-torsion, that is, by §1 (1), that

 $\forall_{r\in R} \forall_{s\notin N} \exists_{c\in R} (rc \in D \& sc \notin N).$

By assumption, we may pick $c \in \mathscr{C}(N)$ such that $rc \in D$, then $sc \notin N$, by definition of $\mathscr{C}(N)$.

Conversely, assume that $D \in \mathscr{D}_{E(R/N)}$. Let $r, r' \in R$ and $r \notin N$. Again, by §1 (1),

 $\exists_{t\in \mathbf{R}}(rr't\in D \& rt \notin N).$

This means that $(r^{-1}D + N)/N$ is an essential right ideal of R/N. By Lemma 2.1, $r^{-1}D + N$ meets $\mathscr{C}(N)$, say c = d + n, for $c \in \mathscr{C}(N)$, $d \in r^{-1}D$, $n \in N$. Then $d \in r^{-1}D \cap \mathscr{C}(N)$, hence $D \in \mathscr{D}_N$.

In view of Proposition 2.2, we write N-torsion, N-torsionfree, N-divisible,

N-dense and *N*-closed instead of E(R/N)-torsion, etc. We also write $T_N(A)$, $D_N(A)$, A_N , R_N and Q_N in place of $T_{E(R/N)}(A)$ etc.

The following could be deduced from Proposition 1.1, but it seems more instructive to prove it directly.

LEMMA 2.3. Let N be a semiprime ideal of the right Noetherian ring R, and assume that its N-closure \tilde{N} in R_N is an ideal in R_N . Then there exists a ring monomorphism $\tau : R_N/\tilde{N} \to Q_{cl}(R/N)$, where $Q_{cl}(R/N)$ is the classical ring of quotients of R/N.

We may write

 $R/N \subseteq R_N/\tilde{N} \subseteq Q_{cl}(R/N) \subseteq Q_N(R/N).$

Proof. We may assume that R is N-torsionfree. Hence for every $q \in R_N$ there exists $c \in \mathscr{C}(N)$ such that $qc \in R$. Define $\tau : R_N/\tilde{N} \to Q_{cl}(R/N)$ by $\tau([q]) = [qc][c]^{-1}$. To check that τ is a mapping, suppose $q \in \tilde{N}$, then $qc \in \tilde{N} \cap R = N$. To see that τ is one-to-one, suppose $qc \in N$; then $q(cR + N) \subseteq \tilde{N}$, hence q is in the N-closure of \tilde{N} , by Lemma 2.1, and therefore $q \in \tilde{N}$. If q_1 and $q_2 \in R_N$, we may pick a single $c \in \mathscr{C}(N)$ such that $q_1c \in R$ and $q_2c \in R$, and from this it follows that τ is additive.

Finally, we will show that τ preserves multiplication. Let $q_1, q_2 \in R_N$ be given, then there exist $c_1, c_2 \in \mathscr{C}(N)$ such that q_1c_1 and $q_2c_2 \in R$. Now R/N satisfies the right Ore condition with respect to $\mathscr{C}(N)$ modulo N (see Lemma 2.1), hence we can find $c \in \mathscr{C}(N)$ and $r \in R$ so that $c_1r - q_2c_2c \in N$. Then $q_1c_1r - q_1q_2c_2c \in \tilde{N}$, since \tilde{N} is an ideal. Pick $c' \in \mathscr{C}(N)$ such that $q_1c_1rc' - q_1q_2c_2cc' \in N$. Then

$$\begin{aligned} \tau([q_1q_2]) &= [q_1q_2c_2cc'][c_2cc']^{-1} \\ &= [q_1c_1rc'][c_2cc']^{-1} \\ &= [q_1c_1][r][c]^{-1}[c_2]^{-1} \\ &= [q_1c_1][c_1]^{-1}[q_2c_2][c_2]^{-1} \\ &= \tau([q_1])\tau([q_2]). \end{aligned}$$

PROPOSITION 2.4. Let N be a semiprime ideal of the right Noetherian ring R. Then a right ideal A of R containing N is N-closed if and only if A/N is a right complement. Moreover a right ideal A is maximal among right ideals not meeting $\mathscr{C}(N)$ if and only if A/N is a maximal right complement.

Proof. Suppose A contains N, B is the N-closure of A and $r \in B$. Then $rD \subseteq A$ for some N-dense right ideal D. Now D meets $\mathscr{C}(N)$, and so $rc \in A$ for some $c \in \mathscr{C}(N)$. If $r \notin N$ then $rc \notin N$, hence B/N is an essential extension of A/N. If A/N is a right complement, B/N = A/N, hence B = A.

Conversely, suppose B/N is an essential extension of A/N. Then, for any $r \in B$, $r^{-1}A$ is an essential right ideal of R, hence meets $\mathscr{C}(N)$, by Lemma 2.1. Therefore B/A is N-torsion. If A is N-closed, it follows that B = A, hence A/N is a right complement.

Suppose A is maximal among right ideals not meeting $\mathscr{C}(N)$. Then A + N does not meet $\mathscr{C}(N)$, hence $N \subseteq A$. Suppose $rD \subseteq A$, where D is N-dense and $r \notin A$. Then A + rR meets $\mathscr{C}(N)$, say c = a + rs, where $a \in A, s \in R$. Now $s^{-1}D$ meets $\mathscr{C}(N)$, say $sc' \in D$ for some $c' \in \mathscr{C}(N)$. Therefore $cc' = ac' + rsc' \in A + rD \subseteq A$, a contradiction. Thus A is N-closed. If B properly contains A, B meets $\mathscr{C}(N)$, hence B is N-dense, by Lemma 2.1. Thus A is maximal among proper N-closed right ideals containing N.

Conversely, let A be maximal among proper N-closed right ideals containing N. Then A is not N-dense, hence A does not meet $\mathscr{C}(N)$. Suppose B contains A, then the N-closure of B is R, hence B is N-dense, and so B meets $\mathscr{C}(N)$. Thus A is maximal among right ideals not meeting $\mathscr{C}(N)$.

The following generalizes a result by Heinicke [7, Theorem 4.3].

PROPOSITION 2.5. Let N be a semiprime ideal of the right Noetherian ring R. Then the localization functor Q_N is right exact if and only if the N-closure \tilde{N} of N in R_N is such that

(1) R_N/\tilde{N} is a direct sum of a finite number of simple R_N -modules, and

(2) every simple R_N -module is isomorphic to one of these.

If furthermore A is an R/N-module, then $Q_N(A)$ is a direct sum of simple R_N -modules.

Proof. We may assume that *R* is *N*-torsionfree.

First, suppose Q_N is right exact. Then it follows from Proposition 1.1 and Remark 1.2 that

$$R/N \subseteq R_N/\tilde{N} = (R/N)_N.$$

Let $U_1/N \oplus U_2/N \oplus \ldots \oplus U_d/N$ be a maximal direct sum of uniform submodules of R/N, hence an essential right ideal of R/N. By Lemma 2.1, $U_1 + \ldots + U_d$ contains an element of $\mathscr{C}(N)$, hence is N-dense in R, as it contains N. Therefore

$$R_N/\tilde{N} = Q_N(R/N)$$

= $Q_N(U_1/N \oplus \ldots \oplus U_d/N)$
 $\cong O_N(U_1/N) \oplus \ldots \oplus O_N(U_d/N).$

We shall prove that the direct summands are simple R_N -modules.

Let U/N be a uniform submodule of R/N, we may as well assume it to be *N*-closed, and *B* any nonzero R_N -submodule of $Q_N(U/N)$. Since Q_N is exact, by Remark 1.2, *B* is torsionfree and divisible as an *R*-module, hence *N*-closed, and therefore $B \cap (U/N) = V/N$ is a nonzero *N*-closed submodule of U/N. By Proposition 2.4, V/N is a complement right ideal, hence V = U. Therefore, *B* contains U/N, and so $B = Q_N(B) = Q_N(U/N)$.

Now suppose A is any simple R_N -module. Since Q_N is exact, A is N-torsionfree as an R-module, hence $\operatorname{Hom}_R(A, E(R/N)) \neq 0$. But both A and E(R/N)are N-torsionfree and N-divisible, hence we may write this $\operatorname{Hom}_{R_N}(A, E(R/N))$

 \neq 0. Since

$E(R/N) \cong E(U_1/N) \times \ldots \times E(U_d/N),$

there exists $i \in \{1, \ldots, d\}$ such that $\operatorname{Hom}_{R_N}(A, E(U_i/N)) \neq 0$. Since A is simple, we may write $A \subseteq E(U_i/N)$, hence A meets $Q_N(U_i/N) \subseteq E(U_i/N)$. Since $Q_N(U_i/N)$ is simple, $A = Q_N(U_i/N)$.

We have thus shown that right exactness of Q_N implies (1) and (2). Conversely, assume (1) and (2). By (2), the injective hull of the R_N -module R_N/\tilde{N} is a cogenerator of Mod R_N . If we can show it is N-torsionfree, it will follow that every R_N -module is N-torsionfree, hence that Q_N is exact.

In view of (1), it suffices to show that the injective hull of every simple R_N -module A is N-torsionfree as an R-module. Let T be its N-torsion submodule, we shall show that T = 0, using an argument due to Heinicke [7, p. 710].

Suppose $T \neq 0$, then $A \subseteq TR_N$. Therefore any element a of A could be written as $a = t_1q_1 + \ldots + t_nq_n$, where $t_i \in T$ and $q_i \in R_N$, and so we could find $D \in \mathcal{D}_N$ such that $aD \subseteq T$. But then the element a would be N-torsion, whereas we know from (2) that A is N-torsionfree.

Finally, to prove the last assertion of the proposition, let A be an R/Nmodule. Since $Q_N(A) = Q_N(A/T_N(A))$, we may assume that A is N-torsionfree. Then every nonzero submodule of A contains a uniform R/N-module Uwhich is isomorphic to a uniform right ideal of R/N. (For, if $0 \neq a \in A$, aR being N-torsionfree, it easily follows from Lemma 2.1 that $a^{-1}0/N$ is not an essential right ideal of R/N. Pick a uniform right ideal V/N of R/N such that $a^{-1}0/N \cap V/N = 0$, then U = a(V/N) is isomorphic to V/N.) By Zorn's Lemma, there is a maximal direct sum S of such uniform R/N-submodules U of A. Thus A is an essential extension of S, hence A/S is N-torsion. Since Q_N is exact, $Q_N(A)/Q_N(S) \cong Q_N(A/S) = 0$, hence $Q_N(A) = Q_N(S)$. Since Q_N commutes with direct sums, $Q_N(S)$ is the direct sum of the $Q_N(U)$, and these are simple R_N -modules, as above.

According to Gabriel [2, p. 415], a ring homomorphism $h: R \to R_{\Sigma}$ is called a *(classical) ring of right fractions* with respect to the multiplicative set Σ if and only if

(a) for all $r \in R$, $h(r) = 0 \Rightarrow$ there exists $\sigma \in \Sigma$ such that $r\sigma = 0$,

(b) for all $\sigma \in \Sigma$, $h(\sigma)$ is invertible,

(c) for all $q \in R_{\Sigma}$ there exists $\sigma \in \Sigma$ such that $qh(\sigma) \in h(R)$.

He showed that such an R_{Σ} exists (and is unique up to isomorphism) if and only if

(*)
$$\forall_{r \in R} \forall_{\sigma \in \Sigma} \exists_{r' \in R} \exists_{\sigma' \in \Sigma} r \sigma' = \sigma r',$$

the so-called *right Ore condition* with respect to Σ , and

 $(^{**}) \quad \forall_{r \in \mathbb{R}} (\exists_{\sigma \in \Sigma} \sigma r = 0 \Longrightarrow \exists_{\sigma' \in \Sigma} r \sigma' = 0).$

The following is well-known.

Remark 2.6. When R is right Noetherian, (*) implies (**).

Proof. Suppose $\sigma r = 0$. Pick the natural number n such that the right annihilator of σ^n is maximal. By (*), there exist $r' \in R$ and $\sigma' \in \Sigma$ such that $\sigma^n r' = r\sigma'$, hence $\sigma^{n+1}r' = \sigma r\sigma' = 0$. But the right annihilator of σ^{n+1} contains that of σ^n , hence coincides with it, and therefore $\sigma^n r' = 0$, whence $r\sigma' = 0$.

With the help of Proposition 2.5, we can now prove the main result of this section, which generalizes [11, Theorem 5.6] and Heinicke's result [7, Theorem 4.6].

THEOREM 2.7. Let N be a semiprime ideal of the right Noetherian ring R, and let \tilde{N} be the N-closure of N in R_N . Then the following statements are equivalent:

R satisfies the right Ore condition with respect to C(N).
 Q_N is right exact and Ñ is a two-sided ideal of R_N.

(2) Q_N is right chart and 1, is a fact order that $G_{N}(1)$. (3) \tilde{N} is the Jacobson radical of R_N and R_N/\tilde{N} is a semisimple Artinian ring.

(4) N/cN is N-torsion for every $c \in \mathscr{C}(N)$.

Furthermore, if these equivalent conditions hold, there is a commutative diagram:

$$\begin{array}{c} R \longrightarrow R_N \\ \downarrow \qquad \qquad \downarrow \\ R/N \longrightarrow R_N/\tilde{N} \cong Q_{el}(R/N). \end{array}$$

Proof. We show $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1)$.

Assume (1). By Remark 2.6, $R \to R_{\mathscr{C}(N)}$ is a classical ring of fractions of R with respect to $\mathscr{C}(N)$. It is easily seen that $R_{\mathscr{C}(N)} = R_N$. Let $D \in \mathscr{D}_N$, then D meets $\mathscr{C}(N)$, say $c \in D \cap \mathscr{C}(N)$. By condition (b) above, h(c) is invertible in R_N , hence $R_N \subseteq ch(c)^{-1}R_N \subseteq DR_N$. By Remark 1.2, Q_N is exact. By Lemma 1.3, $NR_N = \tilde{N}$. An easy computation using the right Ore condition then shows that \tilde{N} is a two-sided ideal.

Assume (2). By Proposition 2.5, R_N/\tilde{N} is a finite direct sum of simple right R_N -submodules, hence it is a semisimple Artinian ring. Let M be any maximal right ideal of R_N , then, again by Proposition 2.5, R_N/M is isomorphic to a submodule of R_N/\tilde{N} . It follows that M is the kernel of some R_N -homomorphism $R_N \to R_N/\tilde{N}$. Suppose this homomorphism sends 1 onto [q]; then $M = \{q' \in R_N | [qq'] = 0\} = q^{-1}\tilde{N} \supseteq \tilde{N}$. Hence \tilde{N} is contained in the Jacobson radical of R_N . Since R_N/\tilde{N} is semiprimitive, \tilde{N} is the Jacobson radical.

Assume (3). Then R_N/\tilde{N} is the direct sum of a finite number of minimal right ideals, hence of simple R_N -modules. Let A be any simple R_N -module. By Nakayama's lemma, $A\tilde{N} \neq A$, hence $A\tilde{N} = 0$, and so A is also a simple R_N/\tilde{N} -module, hence is isomorphic to one of the direct summands of R_N/\tilde{N} . By Proposition 2.5, Q_N is right exact. Let $c \in \mathscr{C}(N)$; then $cR + N \in \mathscr{D}_N$, by Lemma 2.1, hence $cR_N + \tilde{N} = (cR + N)R_N = R_N$, by Lemma 1.3 and Remark 1.2. Since \tilde{N} is the Jacobson radical, $cR_N = R_N$. Therefore $cR \in \mathscr{D}_N$, and so R/cR is N-torsion. But then so is $N/cN = N/(cR \cap N) \cong (cR + N)/cR$.

Assume (4), and take $c \in \mathscr{C}(N)$. Then $(cR + N)/cR \cong N/cN$ is N-torsion,

and so is R/(cR + N), by Lemma 2.1. Therefore R/cR is N-torsion, that is, for all $r \in R$, $r^{-1}(cR)$ meets $\mathscr{C}(N)$. This is just another way of stating the right Ore condition.

Finally, we invoke Proposition 1.1 and Lemma 2.3 to show that (2) implies that $R_N/\tilde{N} \cong Q_{cl}(R/N)$. The proof of the theorem is now complete.

As a first application of Theorem 2.7 we give a variation of the characterization of right orders in semilocal rings by Faith [1]. The ring R is called *semilocal* if it is semisimple Artinian modulo its Jacobson radical.

COROLLARY 2.8. The right Noetherian ring R is a right order in a semilocal ring S if and only if there exists a semiprime ideal N of R such that $\mathscr{C}(N)$ is the set of all regular elements of R and R satisfies the right Ore condition with respect to $\mathscr{C}(N)$. Moreover, N is then the intersection of R with the Jacobson radical of S.

Proof. In view of Theorem 2.7, the two conditions are clearly sufficient. Conversely, let R be a right order in a semilocal ring S with Jacobson radical J. Put $N = J \cap R$, then N is a semiprime ideal of R, since every prime ideal of S intersects R in a prime ideal of R [5, (2.18), p. 247].

Suppose $c \in \mathscr{C}(N)$ and $cq \in J$, where $qd \in R$ for some regular element d of R. Then $cqd \in J \cap R = N$, hence $qd \in N$ and therefore $q \in J$. Since S/J is semisimple Artinian, it follows that [c] is a unit in S/J, and therefore c is a unit in S, hence regular in R. Thus all elements of $\mathscr{C}(N)$ are regular.

Conversely, if *c* is regular in *R*, then [*c*] is a unit in S/J. If $cr \in N \subseteq J$, then $r \in J \cap R = N$. Thus $c \in \mathscr{C}(N)$. Therefore, all regular elements are in $\mathscr{C}(N)$.

3. Artinian localization. Given a semiprime ideal N of the right Noetherian ring R, we shall investigate when the ring R_N of right quotients at N is right Artinian. As a corollary, we will obtain Small's theorem when R is a right order in a right Artinian ring.

First, we require a well-known lemma.

LEMMA 3.1. Let R be a right Noetherian ring, A a two-sided ideal of R, and $c \in \mathcal{C}(0)$ a right regular element of R. Then cA is essential in A.

Proof. Otherwise A contains cA + B, where $cA \cap B = 0$ and $B \neq 0$. But cA is isomorphic to A and contains $c^2A + cB$, where $c^2A \cap cB = 0$ and $cB \neq 0$. We continue in this manner and obtain an "infinite" direct sum $B + cB + c^2B + \ldots$, which would violate the maximal condition.

PROPOSITION 3.2. Let R be a right Noetherian ring, N a semiprime ideal, and assume that there exists an ideal $K \subseteq N$ such that $\mathscr{C}(N) \subseteq \mathscr{C}(K)$ and a natural number m such that $N^m \subseteq K$. Then R satisfies the right Ore condition with respect to $\mathscr{C}(N)$ if and only if K/cK is N-torsion for each $c \in \mathscr{C}(N)$.

Proof. Let us write

 $N_k = \{n \in N | nN^{m-k} \subseteq K\}$

for $k = 1, \ldots, m$. Then clearly $N_1 = N$ and $N_m = K$.

Take any $c \in \mathscr{C}(N)$ and suppose $cr \in N_k$. Then $cr \in N$ (hence $r \in N$) and $cr \in N^{m-k} \subseteq K$, so that $rN^{m-k} \subseteq K$, that is, $r \in N_k$. Thus $\mathscr{C}(N) \subseteq \mathscr{C}(N_k)$.

Now let us look at condition (4) of Theorem 2.7. N/cN is N-torsion if and only if each of $N/(N_2 + cN)$ and $(N_2 + cN)/cN \cong N_2/(cN \cap N_2) = N_2/cN_2$ are N-torsion.

Similarly, N_2/cN_2 is N-torsion if and only if each of $N_2/(N_3 + cN_2)$ and N_3/cN_3 are N-torsion. Iterating this argument, we reduce the problem to showing that all $N_k/(N_{k+1} + cN_k)$ and $N_m/cN_m = K/cK$ are N-torsion.

Let $D_k = N_{k+1} + cN_k$. We claim that N_k/D_k is N-torsion for each k = 1, ..., m - 1. Take any $n \in N_k$, we wish to show that $n^{-1}D_k$ meets $\mathscr{C}(N)$. In view of Lemma 2.1, it suffices to show that $n^{-1}D_k/N$ is essential in R/N. Note that

$$nN \subseteq N_k N \subseteq N_{k+1} \subseteq D_k \subseteq N_k \subseteq N \subseteq n^{-1}D_k \subseteq R.$$

Given $r \notin N$, we seek $s \in R$ such that $rs \notin N$ and $nrs \in D_k$.

Since c is a right regular element modulo N_{k+1} , Lemma 3.1 tells us that cN_k/N_{k+1} is essential in N_k/N_{k+1} . Hence D_k/N_{k+1} is essential in N_k/N_{k+1} . Thus, if $nr \notin N_{k+1}$, we can find $s \in R$ such that $nrs \notin N_{k+1}$, hence $rs \notin N$ and $nrs \in D_k$. If however $nr \in N_{k+1}$, we just take s = 1.

The proof is now complete.

THEOREM 3.3. Let R be right Noetherian, N a semiprime ideal of R. Then R_N is a right Artinian classical ring of right fractions of R with respect to $\mathcal{C}(N)$, if and only if

- (a) some power of N is N-torsion, and
- (b) $\mathscr{C}(N)$ satisfies
- $(**) \quad \forall_{r \in \mathbb{R}} (\exists_{c \in \mathscr{C}(N)} cr = 0 \Longrightarrow \exists_{c' \in \mathscr{C}(N)} rc' = 0).$

Proof. First, we show the sufficiency of the conditions. Suppose $c \in \mathscr{C}(N)$, $r \in R$, and $cr \in T_N(R)$. Then, for each $s \in R$, there exists $c' \in \mathscr{C}(N)$ such that crsc' = 0. By (**), there exists $c'' \in \mathscr{C}(N)$ such that rsc'c'' = 0, hence $r \in T_N(R)$. Thus $\mathscr{C}(N) \subseteq \mathscr{C}(T_N(R))$.

Take $K = T_N(R)$. Then $N^m \subseteq K$ for some natural number *m*. Moreover, K is *N*-torsion. Therefore, *R* satisfies the right Ore condition with respect to $\mathscr{C}(N)$, by Proposition 3.2. Thus $R \to R_N$ is a classical ring of right fractions with respect to $\mathscr{C}(N)$, in view of Remark 2.6.

Furthermore, Theorem 2.7 asserts that \tilde{N} is the Jacobson radical of R_N and R_N/\tilde{N} is semisimple Artinian. Since Q_N is right exact, R_N is right Noetherian and $\tilde{N} = NR_N$. Thus \tilde{N} is nilpotent, and so R_N is right Artinian, by Hopkins' Theorem.

Conversely, assume that $h: R \to R_N$ is a classical ring of right fractions with respect to $\mathscr{C}(N)$ and that R_N is right Artinian.

Then R satisfies Gabriel's condition (**) as in § 2. Furthermore, $h(N) = h(R) \cap \tilde{N}$ is nilpotent. Thus $N^m \subseteq T_N(R)$ for some natural number m.

Theorem 3.3 contains the crux of Small's Theorem [17; 18] and could have been proved with the help of the latter, which may be stated as follows:

COROLLARY 3.4. Let R be a right Noetherian ring with prime radical N. Then R is a right order in a right Artinian ring if and only if every element of $\mathscr{C}(N)$ is regular in R.

Proof. The necessity of the condition is an immediate consequence of Corollary 2.8. Conversely, suppose every element of $\mathscr{C}(N)$ is regular in R. Then clearly R is N-torsionfree. By Levitski's Theorem, $N^k = 0$ for some positive integer k. Therefore, Theorem 3.3 applies, $h : R \to R_N$ is a classical ring of right fractions of R with respect to $\mathscr{C}(N)$, h is injective and R_N is right Artinian. It will follow that $R_N = Q_{cl}(R)$ if we show that all regular elements of R are in $\mathscr{C}(N)$.

Suppose c is a regular element of R. Then c is right regular in R_N . As R_N is right Artinian, c is a right unit in R_N , that is, cq = 1 for some $q \in R_N$. Since c is right regular in R_N , also qc = 1. Suppose $cr \in N$, then $r = qcr \in R_N N \subseteq \tilde{N}$, hence $r \in \tilde{N} \cap R = N$. Thus $c \in \mathcal{C}(N)$.

An immediate consequence of Corollary 3.4 is the following:

COROLLARY 3.5. Let R be a right Noetherian ring with prime radical N. Suppose R is N-torsionfree and satisfies the right Ore condition with respect to $\mathscr{C}(N)$. Then R satisfies the right Ore condition with respect to the set of all regular elements of R.

COROLLARY 3.6. Let N be a semiprime ideal of the right Noetherian ring R and suppose that some power of N is N-torsion. If Q_N is exact then R_N is right Artinian.

Proof. We may assume that R is N-torsionfree. Let σ_N denote N-closure in R_N , then

$$R_N \supseteq \sigma_N(N) = \tilde{N} \supseteq \sigma_N(N^2) \supseteq \ldots \supseteq \sigma_N(N^m) = \sigma_N(0) = 0$$

for some natural number m. Consider

$$A_{k} = (N^{k} + \sigma_{N}(N^{k+1}))/\sigma_{N}(N^{k+1})$$
$$\cong N^{k}/(N^{k} \cap \sigma_{N}(N^{k+1})).$$

This is a finitely generated R/N-module, it is N-torsionfree, and its N-closure is

$$Q_N(A_k) = \sigma_N(A_k) = \sigma_N(N^k) / \sigma_N(N^{k+1}).$$

By Proposition 2.5, this is a direct sum of simple R_N -modules, hence we obtain a composition series for R_N .

4. Classical semilocal rings. If N is an ideal of R and I = E(R/N), we shall be comparing two topologies on an R-module G:

(a) the *N*-adic topology, which has a fundamental system of open neighborhoods of zero consisting of submodules of the form GN^n , *n* any natural number,

(b) the *I*-adic topology, which has a fundamental system of open neighborhoods of zero consisting of kernels of homomorphisms $f: G \to I^n$, *n* finite.

Before stating the main result of this section, we require two lemmas:

LEMMA 4.1. Let R be a right Noetherian ring, N an ideal such that R/N is semisimple Artinian, and I = E(R/N). Then, on any finitely generated Rmodule G, the N-adic topology is contained in the I-adic topology.

Proof. We claim that $GN^n \in \mathscr{F}$, the class of all *R*-modules isomorphic to submodules of finite powers of *I*. Since \mathscr{F} is closed under module extensions, it suffices to show that $GN^k/GN^{k+1} \in \mathscr{F}$, for $k = 0, \ldots, n - 1$. Put $H = GN^k$; then H/HN is an R/N-module, hence a finite direct sum of minimal right ideals of R/N. Since $R/N \subseteq I$, $H/HN \subseteq I^n$.

The following is the same as [12, Lemma 4], but we give the proof for completeness.

LEMMA 4.2. Suppose N is an ideal of R and every finitely generated right ideal of R is closed in the N-adic topology. Then N is small.

Proof. Suppose *E* is any right ideal of *R* such that N + E = R. Without loss in generality, we may take *E* to be finitely generated. Now $N = RN = N^2 + EN$, hence $N^2 + E = N^2 + EN + E = N + E = R$. Similarly $N^3 + E = R$, and so on. Hence the *N*-adic closure $\bigcap_{n=1}^{\infty} (E + N^n)$ of *E* is also *R*. Since *E* is closed, E = R.

PROPOSITION 4.3. Let R be right Noetherian, N an ideal of R such that R/N is semisimple Artinian, I = E(R/N). Then the following statements are equivalent:

(a) For any right ideal E of R there exists a natural number n such that $E \cap N^n \subseteq EN$.

(b) For every element $i \in I$ there exists a natural number n such that $iN^n = 0$.

(c) On every finitely generated right R-module the N-adic and I-adic topologies coincide.

Moreover, these equivalent conditions together with the assertion that N is the Jacobson radical of R are equivalent to the following:

(d) Every right ideal of R is closed in the N-adic topology.

Definition. A semilocal ring R with Jacobson radical N satisfying the equivalent conditions (a) to (d) above will be called a *classical right semilocal ring*.

Proof. Assume (a). Let $i \in I$, put $E = \{r \in R | irN = 0\}$, and pick n such that $E \cap N^n \subseteq EN$. Suppose $iN^n \neq 0$, then iN^n meets R/N, hence there exists $r \in N^n$ such that $0 \neq ir \in R/N$. But then irN = 0, hence $r \in E \cap N^n \subseteq EN$, and so ir = 0, a contradiction. Thus (a) \Rightarrow (b).

Assume (b). Let G be a finitely generated right R-module, $f: G \to I^n$ any R-homomorphism, $p_k: I^n \to I$ the canonical projections for $k = 1, \ldots, n$.

Then $p_k f(G)N^{m(k)} = 0$ for some m(k). Let $m = \max \{m(1), \ldots, m(n)\}$; then $f(G)N^m = 0$, hence Ker f contains GN^m . Therefore the *I*-adic topology on G is contained in the *N*-adic one. The converse is true by Lemma 4.1. Thus (b) \Rightarrow (c).

Assume (c). Let *E* be any right ideal of *R*. Since *R* is right Noetherian, *E* is finitely generated. Now *EN* is an open subset of *E* in the *N*-adic topology, hence in the *I*-adic topology. Now the *I*-adic topology of any submodule of *R* is induced by that of *R*, hence $EN = E \cap V$, where *V* is an open subset of *R* in the *I*-adic topology, hence in the *N*-adic topology. Therefore $N^n \subseteq V$ for some *n*, and so $E \cap N^n \subseteq E \cap V \subseteq EN$. Thus (c) \Rightarrow (a).

Assume (d). Since R/N is right Artinian, the finitely generated R/N-module E/EN is also Artinian. Pick *n* such that

$$((E \cap N^n) + EN)/EN = (E \cap (N^n + EN))/EN$$

is minimal. Now EN is closed, hence

$$EN = \bigcap_{k=1}^{\infty} (N^k + EN).$$

Therefore

$$((E \cap N^n) + EN)/EN = (E \cap EN)/EN = 0,$$

hence

$$E \cap N^n \subseteq E \cap (N^n + EN) \subseteq EN.$$

Thus $(d) \Rightarrow (a)$.

Clearly, N contains the Jacobson radical of R. Therefore, by Lemma 4.2, it is the Jacobson radical, when (d) holds.

Assume (a) and suppose that N is the Jacobson radical. Then (d) follows as in [12, Theorem (5), $(*) \Rightarrow (**)$]. Indeed, let F be any right ideal and E its N-adic closure. Pick n as in (a); then

$$E \subseteq (F + N^n) \cap E = F + (N^n \cap E) \subseteq F + EN,$$

hence $E/F \subseteq (E/F)N$, and so E = F, by Nakayama's Lemma.

Note that all the assumptions of Proposition 4.3 are used only in the implication (b) \Rightarrow (c). (c) \Rightarrow (d) depends only on *R* being right Noetherian, (d) \Rightarrow (a) also on *R*/*N* being right Artinian, and (a) \Rightarrow (b) holds without any assumptions whatsoever.

5. Semiprime ideals with the Artin-Rees property. Before turning to the main theme of this section, we shall establish the following:

LEMMA 5.1. Let R be a right Noetherian ring, N a semiprime ideal such that R satisfies the right Ore condition with respect to $\mathcal{C}(N)$. Then, for each natural number k, $\tilde{N}^{k}/h(N^{k})$ is N-torsion.

Proof. For k = 1 this follows from the definition of \tilde{N} . Assume the result for k; we shall prove it for k + 1. Given any element $q \in \tilde{N}^{k+1}$, we seek an element $c \in \mathscr{C}(N)$ such that $qc \in h(N^{k+1})$. Without loss in generality, we may consider $q = q_1q_2$, where $q_1 \in \tilde{N}^k$ and $q_2 \in \tilde{N}$. (For \mathscr{D}_N is closed under finite intersections.) By inductional assumption, $q_1c_1 \in h(N^k)$. Also $q_2c_2 = h(n)$, $n \in N$. By the right Ore condition, we can find $c' \in \mathscr{C}(N)$ and $n' \in R$ such that $c_1n' = nc' \in N$, hence also $n' \in N$. Therefore

$$qc_2c' = q_1nc' = q_1c_1n' \in h(N^k)N = h(N^{k+1}).$$

Given a semiprime ideal N in the right Noetherian ring R, we define a closure operation ρ_N on right ideals and a closure operation λ_N on left ideals.

For any right ideal E, $\rho_N E/E = T_N(R/E)$. In other words, $\rho_N E = \{r \in R | r^{-1}E \in \mathcal{D}_N\}$.

For any left ideal F, $\lambda_N F$ is the smallest left ideal F' containing F such that

$$\mathscr{C}(N) \subseteq \mathscr{C}(F') = \{ c \in R | \forall_{r \in R} cr \in F' \Rightarrow r \in F' \}.$$

LEMMA 5.2. Let R be right Noetherian, N a semiprime ideal, and A any ideal of R. Then $\rho_N A$ and $\lambda_N A$ are ideals, and $\lambda_N \rho_N \lambda_N A = \rho_N \lambda_N A$. If N has the right Ore property, then $\rho_N \lambda_N A = \rho_N A$.

Proof. (1) Suppose $r \in \rho_N A$, $s \in R$. Then there exists $D \in \mathscr{D}_N$ such that $rD \subseteq A$, hence $srD \subseteq A$, hence $sr \in \rho_N A$.

(2) Let $B = \{r \in R | rR \subseteq \lambda_N A\}$, then B is an ideal and $A \subseteq B \subseteq \lambda_N A$. We will show that $\mathscr{C}(N) \subseteq \mathscr{C}(B)$. Indeed, suppose $c \in \mathscr{C}(N)$, $r \in R$, and $cr \in B$. Then $crR \subseteq \lambda_N A$, hence $rR \subseteq \lambda_N A$, hence $r \in B$. Thus $\lambda_N A = B$.

(3) We will show that $\mathscr{C}(N) \subseteq \mathscr{C}(\rho_N \lambda_N A)$. Suppose $c \in \mathscr{C}(N)$, $r \in R$, $cr \in \rho_N \lambda_N A$. Then, for all $s \in R$, there exists $c' \in \mathscr{C}(N)$ such that $crsc' \in \lambda_N A$, hence $rsc' \in \lambda_N A$, hence $r \in \rho_N \lambda_N A$. Therefore $c \in \mathscr{C}(\rho_N \lambda_N A)$.

(4) Now assume the right Ore condition for $\mathscr{C}(N)$. We will first show that $\mathscr{C}(N) \subseteq \mathscr{C}(\rho_N A)$.

For this argument we may as well assume that $A = \rho_N A$. Suppose $c \in \mathscr{C}(N)$, $r \in R$, and $cr \in A$. Pick a natural number n such that $c^{-n}A = \{r \in R | c^n r \in A\}$ is maximal. By the Ore condition, there exists $c' \in \mathscr{C}(N)$ and $r' \in R$ such that $c^n r' = rc'$, hence $c^{n+1}r' = crc' \in A$. But $c^{-(n+1)}A = c^{-n}A$, hence $c^n r' \in A$, that is, $rc' \in A$. Thus $r \in \rho_N A$.

Now it follows that $\lambda_N \rho_N A = \rho_N A$. Therefore $\lambda_N A \subseteq \rho_N A$, hence $\rho_N \lambda_N A \subseteq \rho_N A$, and our proof is complete.

Part (4) of the above proof is essentially the same as that of the implication $(*) \Rightarrow (**)$ in Remark 2.6.

THEOREM 5.3. Let R be a right Noetherian ring, N a semiprime ideal, I = E(R/N). Then the following statements are equivalent:

(1) For each right ideal E of R there exists a natural number n such that $E \cap \lambda_N N^n \subseteq \rho_N(EN)$.

(2) For each element $i \in I$ there exists a natural number n such that $i\lambda_N N^n = 0$.

(3) \tilde{N} is an ideal of R_N and (R_N, \tilde{N}) is a classical right semilocal ring.

Moreover these conditions imply that R satisfies the right Ore condition with respect to $\mathscr{C}(N)$.

One might put condition (1) into words by saying that N has the right symbolic Artin-Rees property.

Proof. Assume (1). Let V be an essential submodule of I for which VN = 0, and let $E = i^{-1}V = \{r \in R | ir \in V\}$. Pick n such that $E \cap \lambda_N N^n \subseteq \rho_N(EN)$. Suppose $i\lambda_N N^n \neq 0$; then $i\lambda_N N^n \cap V \neq 0$. Thus there exists $r \in \lambda_N N^n$ such that $0 \neq ir \in V$, hence $r \in \lambda_N N^n \cap E \subseteq \rho_N(EN)$. Therefore there exists a right ideal D such that R/D is N-torsion and $rD \subseteq EN$, hence irD = 0, and so ir = 0, a contradiction. Thus $(1) \Rightarrow (2)$.

Assume (2). We shall prove first of all that N has the right Ore property. Take any $c \in \mathscr{C}(N)$; we wish to show that R/cR is torsion. Suppose icR = 0, we will show that iR = 0. We know that $i(cR + \lambda_N N^n) = 0$, so it suffices to show that $cR + \lambda_N N^n \in \mathscr{D}_N$.

Consider the ring $R/\lambda_N N^n$. Clearly N is nilpotent modulo $\lambda_N N^n$. Moreover, all elements of $\mathscr{C}(N)$ are right regular modulo $\lambda_N N^n$, that is, all elements of $\mathscr{C}(N/\lambda_N N^n)$ are right regular. By Corollary 3.4 (Small's Theorem), $N/\lambda_N N^n$ has the right Ore property. Take any $r \in R$; then there exist $c' \in \mathscr{C}(N)$ and $r' \in R$ such that $cr' - rc' \in \lambda_N N^n$. Therefore $r^{-1}(cR + \lambda_N N^n)$ meets $\mathscr{C}(N)$, as was to be shown.

Thus N has the right Ore property. By Theorem 2.7, \tilde{N} is the Jacobson radical and R_N/\tilde{N} is semisimple Artinian. Also R_N is right Noetherian. It remains to verify one of the equivalent conditions of Proposition 4.3 for (R_N, \tilde{N}) . We shall verify condition (b).

Let I' be the injective hull of R_N/\tilde{N} as an R_N -module. It is an essential extension of R_N/\tilde{N} also as an R-module, hence $I' \subseteq I = E(R/N)$. Take any $i \in I'$; then by (2) there exists a natural number n such that $i\lambda_N N^n = 0$. A fortiori, $iN^n = 0$. But, by Lemma 5.1, $\tilde{N}^n/h(N^n)$ is N-torsion, hence $i\tilde{N}^n = 0$. Thus (2) \Rightarrow (3).

Assume (3). Then \tilde{N} is the Jacobson radical of R_N , by Proposition 4.3, and R satisfies the right Ore condition with respect to $\mathscr{C}(N)$, by Theorem 2.7.

Let *E* be any right ideal of *R*. By Lemma 1.3, $\tilde{E} = ER_N$, $\tilde{N} = NR_N$, $\tilde{EN} = ENR_N$. By (3), there exists *n* such that

 $\tilde{E} \cap \tilde{N}^n \subseteq \tilde{E}\tilde{N} = ER_N NR_N = \widetilde{EN}.$

For the moment, let σ_N denote "N-closure in R_N ", that is, for any right ideal A of R_N , $\sigma_N A/A = T_N(R_N/A)$. Then clearly

$$\sigma_N(A \cap B) = \sigma_N A \cap \sigma_N B, h^{-1} \sigma_N A = \rho_N h^{-1} A, \tilde{E} = \sigma_N h E.$$

Thus we have

$$\widetilde{E} \cap \sigma_N \widetilde{N}^n \subseteq \sigma_N (\widetilde{E} \cap \widetilde{N}^n) \subseteq \sigma_N \widetilde{EN} = \widetilde{EN}.$$

Apply h^{-1} to this and note that

 $E \subseteq \rho_N E = \rho_N h^{-1} \tilde{E} = h^{-1} \sigma_N \tilde{E} = h^{-1} \tilde{E}$

and, by Lemma 5.2, that

$$\lambda_N N^n \subseteq
ho_N \lambda_N N^n =
ho_N N^n \subseteq
ho_N h^{-1} \widetilde{N}^n = h^{-1} \sigma_N \widetilde{N}^n,$$

hence

$$E \cap \lambda_N N^n \subseteq h^{-1}(E\tilde{N}) = h^{-1}\sigma_N(E\tilde{N}) = \rho_N h^{-1}(E\tilde{N}) = \rho(EN).$$

Thus $(3) \Rightarrow (1)$.

Remark 5.4. Condition (3) of Theorem 5.3 can be relaxed as follows:

(3') \tilde{N} is an ideal, R_N/\tilde{N} is semisimple Artinian and, for every finitely generated right ideal E of R_N , there exists a natural number n such that $E \cap \tilde{N}^n \subseteq E\tilde{N}$.

This is almost the same as (3), except that we do not assert that R_N is right Noetherian, and that \tilde{N} is the Jacobson radical of R_N . We shall deduce from (3') that R satisfies the right Ore condition with respect to $\mathscr{C}(N)$.

Put $N_k = h^{-1}(\tilde{N}^k)$. We claim that N/N_k has the right Ore property in R/N_k . This follows from 3.4, since N/N_k is clearly nilpotent (because $N^k \subseteq N_k$) and semiprime, and since $\mathscr{C}(N/N_k) \subseteq \mathscr{C}(0)$, as we shall now show.

Suppose $[c] \in \mathscr{C}(N/N_k)$, then one easily calculates that $c \in \mathscr{C}(N)$. We prove by induction on k that $R_N c + \tilde{N}^k = R_N$. This is so for k = 1, since $R_N/\tilde{N} = Q_{cl}(R/N)$, by Proposition 2.3. Assume the result for k; then

$$R_N = R_N c + \tilde{N}^k = R_N c + \tilde{N}^k (R_N c + \tilde{N}) = R_N c + \tilde{N}^{k+1}$$

Now suppose $r \in R$ and [c][r] = 0, that is $cr \in N_k$, then $h(r) \in R_N cr + \tilde{N}^k \subseteq \tilde{N}^k$, hence $r \in N_k$, and so [r] = 0. Thus $[c] \in \mathscr{C}(0)$, as claimed.

We shall now establish the right Ore condition for $\mathscr{C}(N)$ in R. Let $r \in R$, $c \in \mathscr{C}(N)$. By the above, for each natural number k, there exist $r_k \in R$, $c_k \in \mathscr{C}(N)$ such that $rc_k - cr_k = u_k \in N_k$. Let F be the right ideal of R generated by the u_k . Since R is right Noetherian, there exists a natural number m such that

$$F = u_1 R + \ldots + u_m R.$$

By (3'), there exists a natural number n such that

$$FR_n \cap \tilde{N}^n \subseteq F\tilde{N}.$$

Now $h(u_n) \in FR_N \cap \tilde{N}^n$, hence

$$h(u_n) = \sum_{k=1}^m u_k q_k$$

where $q_k \in \tilde{N}$. Pick $d \in \mathscr{C}(N)$ such that all $q_k d \in \tilde{N} \cap h(R) = h(N)$, say $q_k d = h(n_k), n_k \in N$.

Now, following an idea of Goldie's, put

$$c' = c_n d - \sum_{k=1}^m c_k n_k, \quad r' = r_n d - \sum_{k=1}^m r_k n_k.$$

Then h(cr' - rc') = 0, hence there exists $d' \in \mathscr{C}(N)$ such that (cr' - rc')d' =0, that is, c(r'd') = r(c'd'), and our proof is complete.

References

- 1. C. Faith, Orders in semilocal rings, Bull. Amer. Math. Soc. 77 (1971), 960-962.
- 2. P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448.
- 3. A. W. Goldie, Semiprime rings with maximum condition, Proc. London Math. Soc. 10 (1960), 201-220.
- 4. —— Localization in non-commutative rings, J. Algebra 5 (1967), 89-105.
 5. —— The structure of Noetherian rings, Springer Verlag, Lecture Notes in Mathematics 246 (1972), 214-321.
- 6. O. Goldman, Rings and modules of quotients, J. Algebra 13 (1969), 10-47.
- 7. A. G. Heinicke, On the ring of quotients at a prime ideal of a right Noetherian ring, Can. I. Math. 24 (1972), 703-712.
- 8. J. Lambek, Lectures on rings and modules (Waltham, Toronto, London, 1966).
- 9. Torsion theories, additive semantics and rings of quotients, Springer Verlag, Lecture Notes in Mathematics 177 (Berlin, Heidelberg, New York, 1971).
- 10. --— Bicommutators of nice injectives, J. Algebra 21 (1972), 60-73.
- 11. J. Lambek and G. Michler, The torsion theory at a prime ideal of a right Noetherian ring, J. Algebra 25 (1973), 364-389.
- 12. -- Completions and classical localizations of right Noetherian rings, Pacific J. Math. 48 (1973), 133-140.
- 13. L. Lesieur and R. Croisot, Extension au cas non-commutatif d'un théorème de Krull et d'un lemme d'Artin-Rees, J. Reine Angew. Math. 204 (1960,) 216-220.
- 14. E. Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511-528.
- 15. --- Some properties of Noetherian domains of Dimension 1, Can. J. Math. 13 (1967), 569 - 586.
- 16. G. Michler, Right symbolic powers and classical localization in right Noetherian rings, Math. Z. 127 (1972), 57-69.
- 17. L. Small, Orders in Artinian rings, J. Algebra 4 (1966), 13-41.
- 18. ——— Orders in Artinian rings, II, J. Algebra 9 (1968), 266-273.
- 19. The embedding problem for Noetherian rings, Bull. Amer. Math. Soc. 75 (1969), 147 - 148.
- 20. C. L. Walker and E. Walker, Quotient categories and rings of quotients, Rocky Mountain J. Math. 2 (1972), 513-555.

McGill University, Montreal, Quebec; Justus Liebig Universität, Giessen, Germany