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THE THEORY OF THERMAL CONVECTION IN POLAR ICE 
SHEETS 

By T.]. HUGHES* 

(National Center for Atmospheric Research, t Boulder, Colorado 80303, U.S.A.) 

ABSTRACT. Applica tion of thermal convection theory to pola r ice sh ee ts (Hughes, '970, '97' , ' 972[a] , [c] ) 
is reviewed a nd expanded . If it occurs, therma l convection is mainly concentra ted near the bed of the ice 
sheet ; resulting in acti ve a nd p assive convecti ve flow, respecti vely below a nd above the ice d ensity inversion . 
Convec tion begins as tra nsient creep when a stress-independent c ritical R ayleigh number is exceeded , a nd 
stabilizes as steady-sta te creep when a stress-dep endent cri tical R a yleigh number is exceed ed. Transient­
creep convection begins as unsta ble ripples in isotherms near the b ed , with some ripples b ecoming upward 
bulges o f b asal ice which rapidly shrink la ter a lly and grow vertically to become ascending dikes of re­
crys ta llized basal ice during s tead y-sta te creep . Sills of basal ice a re inj ected horizonta lly between wea kly 
coupled layers in the stra ta of cold ice slowly sinking en masse b etween dikes. Convection begins under 
domes of thick ice towa rd the ice-sheet center and a stable polygona l a rray of dikes may form if fri ctiona l 
heat crea tes hot ice a t the bed as rapidly as con vec tion flow redistributes hot basal ice in dikes and sills. 
Advective flow transpor ts th e convec ting ice towa rd the margin of the ice sheet where dikes converge a t the 
heads of ice streams. Dike- sill convection then b ecomes ice-stream con vection in which the entire ice stream 
behaves like a dike, uncoupling from the bed , a nd rising ell masse. This would help explain why ice stream s 
flow a t surge velocities . 

R EsuME. L a tl,,!orie de la convection thermique dans les calottes polaires g laciaires . On revoit e t on etend I'a ppli­
ca tion d e la theorie de la convection thermique a ux ca lottes glaciaires pola ires (Hugh es, '970, ' 97' , ' 9 72 
[a] , [c] ) . L orsqu'ell e se produi t, la convection thermique est surtout concentree pres du li t de la calotte; il 
en resul te un ecoulement convectif actif et passif, resp ec ti vement a u-dessous et au-dessus du niveau d ' inversion 
de la d ensite de la glace . La convection commence comme un glissem en t transitoire lorsqu'un nombre d e 
Rayleigh critique, indep enda nt d es contra imes, est a ttein t et il se sta bilise dans un glissement perma nent 
en equilibre lorsqu'un nombre d e R ay leigh critique, dependant d es contra intes, est a tte int. La convec tion 
par g lissem ent transitoire commence par des ondul a tions imtables d ans les isoth ermes a p roximite du lit, avec 
quelques ondula tions deven a nt d es bulles ascenda n tes de glace d e fond qui se resserent rapidement la tera le­
ment e t c roissent verticalem ent p our devenir d es filons ascenda nts d e glace de fond recrista llisee au cours du 
gIissement en equilibre. D es fil ons-couches de glace de fond sont inj ectes horizonta lem ent entre des niveaux 
ma l soudes da ns les stra tes d e glace froide qui s'enfoncent lentem en t "en masse" entre les filons. La convec­
tion commence sous les dom es d e glace epaisse en direction du centre d e la ca lotte glac ia ire et un sys tem e 
polygona l sta ble de fil ons p eut se former si la chakur de frottement c ree d e la cha leur a u fond aussi rapide­
ment que l' ecoulement convectif redistribue la glace chaude du fond d ans les fil ons e t les fil ons-couch es. 
L 'ecou mem ent advectif tra n sp orte la glace d e convection vers les bOl·d s de la ca lolte ou les fil ons convergent 
vers les points de depa rt d es glaciers emissa ires . L a convection par filon et injec tion d evient alors une con­
vection p a r glaciers emissaires d ans laquelle la tota lite du glacie r emissaire se comporte corn me un filon , 
detach e du lit, et avan ~an t "en m asse". Ceci pourra it expliquer p ourquoi des glaciers peuvent s'ecouler a d es 
vitesses d e crues rapides . 

ZUSAMMENFASSUNG. Die Theorie der thermischen KOllvektion in polarm Eisschilden. Die Anwendung der 
thermisch en Konvektionstheorie auf pola re Eisschilde (Hughes, 1970, 1971 , '972[a ] , Cc] ) wird uberpriift 
und erweite rt. Thermisch e K onvektion ist, wenn sie eintritt, vor all em auf die Nachba rschaft des Eisschild­
untergrundes konzentri ert ; sie fuhrt zu aktivem und passivem konvektivem Fliessen , j eweils unter bzw. 
uber d e r Inversion der E isdichte. Konvektion b eginn! als mom e nta n es Kriechen, wcnn eine spannungs­
unabhangige kritische R a yle igh-Zahl uberschritten wird ; sie stabilisie rt sich zu stationarem Kriechen, wenn 
eine sp a nnungsabhiingige kritisch e Rayleigh-Zahl uberschritten wird . Kon vektives M omentan-Kriech e n 
aussert sieh zuerst in insta bilen Krauselungen d ef I sothermenflach en na h e a m Untergrund, von denen einige 
zu Aufwolbungen des Grundeises werden ; diese sehrumpfen seitlich schnell ein , aber w achsen vertika l, urn 
zu aufste igenden Damm en rekrista llisierten Grundeises wahrend d es sta tionaren Kriech ens zu werden . 
Schwellen von Grundeis w erden horizonta l zwisch en schwa ch verbundene Schichten d es ka lten Eises, das 
massiert zwischen den D a mmen absinkt, e ingepress t. Konvektion beginnt unter Aufwolbungen di cken 
Eises gegen das Zentrum d es Eisschildes hin ; eine stabile, polygona le Anordnung von D a mmen kann sich 
bilden, wenn die R eibungswa rme warmes Eis a m Untergrund so schnell nachliefer t, wie d er Konvektions­
fluss dieses warme Eis in D a mme und Schwellen a bfuhr!. Advektives Fliessen verfrachte t das konvektive 
Eis gegen d en Rand des Eisschildes, wo die D am me gegen die Stimen von Eisstromen hin konvergieren . 
Die K onvektion in Da mmen und Schwellen wird d a nn zur Eiss tromko nvektion, in d el' d e l' gesamte Eiss trom 
sich wie ein D amm verha lt, d e I' si ch vom Untergrund loslost und blocka r tig aufsteigt. Dies kann zu eine r 
Erkla rung d afur dienen, dass Eiss trome mit Ausbruchgeschwindigkeiten fli essen. 

* Present a ddress: Department of Geological Sciences and Institute fo r Quaterna ry Studies , U niversity of 
Maine, Orono, M aine 04473, U.S.A. 
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INTRODUCTION 

Advection is a horizontal movement of mass that causes changes in temperature or other 
physical properties. It therefore describes the dominant type of flow in polar ice sheets. 
Advective flow is primarily determined by the longitudinal shear stress O"xz down a column 
in the ice sheet. To a first approximation: 

z 

O"xz = f pgB dz ( I) 

o 

where p is the mean ice d ensity, g is the acceleration of gravity, Z is depth down the ice column, 
and B is the surface slope of the ice sheet at the top of the column in the longitudinal flow 
direction x . 

Convection is a circulatory motion of mass having a non-uniform temperature owing to 
the variation of density and the action of gravity. It might be an important type of flow in 
polar ice sheets. Convective flow is primarily determined by the vertical buoyancy stress 
C1z down a column in the ice sheet. To a first approximation: 

z 

O"z = f D.pg dz 

o 

where /).p is the decrease of density with d epth Z down the ice column. 
It can readily be shown that C1xz ~ C1z n ear the domes of polar ice sheets wh ere ice is thick 

and the surface slope is small. Advective flow clearly occurs in these regions, so why not 
convective flow if their respective stresses are comparable? That is the question to be addressed 
in this paper. 

THEORY 

Convection as a creep phenomenon 

Figure I shows the idealized creep b ehavior of ice d educed from con stant stress and 
constant strain-rate creep tests for polycrystalline and single-crystal ice sp ecimens (Griggs 
and Coles, 1954 ; Glen, 1955; Higashi and others, 1964, 1965, 1968 ; Tabor and Walker, 
1970; Hawkes and MelIor, 1972 ; Ramseier, unpublished) . Elastic d eformation occurs 
during Stage I , decelerating creep deformation occurs during Stage 11, constant creep 
deformation controlled by h ard glide occurs during Stage Ill , accelerating creep deformation 
occurs during Stage IV, and constant creep d eformation controlled by easy glide occurs during 
Stage V. Hard glide is slip on non-basal crystallographic planes (probably prismatic planes, 
which are parallel to the open axis of an ice crystal). Easy glide is slip on basal crystallo­
graphic planes (basal planes are normal to the optic axis of an ice crystal). Decelerating, 
constant, and accelerating creep are sometimes called primary (transient), secondary (steady­
state), and tertiary creep. D ecelerating creep (Mott, 1953) and constant creep (Weertman, 
1973) can be explained by dislocation climb theories. Accelerating creep is related to re­
crystallization in polycrystalline ice, during which hard glide resulting from a randomly 
oriented crystal fabric is replaced by easy glide resulting from a crystal fabric with a strong 
preferred orientation. Accelerating creep in ice single crystals is related to the upper yield 
stress phenomenon (Weertman, 1973) . 

The classical empirical expression of the creep curve considers total strain € to be the 
sum of an elastic strain € e and a visco-plastic strain € y: 

€ = €e+ €y = €e+(Ett )m+ Est (3) 
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FIg. T. Idealized creep curves in ice. Shown are the effects of increasing temperature T, time t, strain E, strain rate . , and stress a, 
for (a) creep in polycrystalline ice under a constant stress, (b ) creep in polycrystalline ice under a constant strain-rate, (c) creep 
in single-crystal ice under a constant stress, and (d ) creep in single-crystal ice under a constant strain-rate. Stage I is elastic 
deformation . Stage 11 is transient creep deformation . Stage III is steady-state creep deformation controlled by hard glide. 
Stage IV is creep deformatian during recrystallization and during transition from hard glide to easy glide. Stage V is steady­
state creep deformation controlled by easy glide. Solid lines are creep curves. Dotted lines separate creep stages. 

where Et is a temporary strain-rate, ES is a steady-state strain-rate, t is time, and m is a constant 
determined by the relative contributions of easy glide and hard glide to creep. In this paper, 
temporary creep means time-dependent creep rates and steady-state creep means time­
independent creep rates. The terms "primary", "secondary", and "tertiary" creep are 
avoided because they imply a time sequence of creep that is only observed in polycrystalline 
ice having an initially random fabric. Polycrystalline ice having an initial single-maximum 
fabric or single-crystal ice both might begin with "tertiary" creep which becomes " secondary" 
creep, and "primary" creep never occurs during the creep experiment (see Fig. IC). 

The total strain-rate given by Equation (3 ) is 

E = mtm- 'Etm + Es + mtmEtm- l€t + t€s 
= mtm- IEtm + Es 

where E = aE/ at and i = aZE/atZ = 0 because Et and Es are constants . If inertial effects are 
important (which they might be in ice falls, calving ice, or surges) then perhaps the total 
differential form of Equation (4) is necessary. Such effects will be ignored in this paper. 

Assume that thermally activated power-law dislocation mechanisms control both tem­
porary and steady-state creep in ice. In this case 

E = ET (cr/ cro) n = Eo exp (- Q/RT)(cr/cro)n (5) 
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where ET is a thermally activated strain-rate, ao is a visco-plastic stress, and n is a visco­
plastic parameter, all of which are constant at a given stress and temperature provided that 
recrystallization does not occur. Q is the activation energy of creep, T is absolute temperature 
R is the ideal gas constant, and Eo is the creep rate appropriate to ice having a given fabric, 
texture, and purity. Substituting Equation (5) into Equation (4) gives: 

E = mtm- 1(Eo' exp (- Q' /RT) (a/ao')lI]m+ Eo" exp (- Q"/RT)(a/ao")lI (6) 

where single prime terms refer to time-dependent creep and double prime terms refer to 
time-independent creep. 

For decelerating creep rates, 0 < m < I and for accelerating creep rates I < m < co, 
where decelerating creep rates are observed in Stage 11 creep for polycrystalline ice having a 
random fabric and single-crystal ice oriented for hard glide, and accelerating creep rates are 
observed in Stage IV creep for polycrystalline ice during recrystallization to an oriented 
fabric and single-crystal ice oriented for easy glide. For perfectly viscous flow n = I and for 
perfectly plastic flow n = co, where Tf = a o/ ET is the fluid viscosity and E = ao/Ee is the 
elastic modulus. Any creep curve can be represented by Equation (6) provided that appro­
priate values of ao', ao", Eo', Eo", Q', Q", m, and n are chosen. 

Thermal convection in polar ice sheets involves the creep of polycrystalline ice. Con­
vection flow driven by the buoyancy stress probably initiates as plumes rising vertically from 
the base of the ice sheet, where either a random crystal fabric will prevail owing to continuous 
recrystallization or an oriented fabric will prevail owing to basal shear. In either case, con­
vection flow normal to the bed will initially be controlled by hard glide (except along the 
sides of ice streams where shear should generate an ice fabri c favoring easy glide normal to the 
bed). Glen (1955) was the first to make a comprehensive study of creep in polycrystalline ice 
having a random fabric . His results and subsequent work, as reviewed by Budd (1969), 
Weertman (1973), and Glen (in press), show that m = t, n = 3, and Q' = 3Q" are appro­
priate for the creep rates common to glacial flow. Using these values and the results of 
Rigsby (1958), Equation (6) reduces to: 

E = (Bta+ Bsa3 ) exp (- KT M/ T ) 

where T M is the melting temperature at hydrostatic pressure P, 

B t = Eo' !J3t!ao', 

and K is a constant given by the expression (Weertman, 1970, 1973) 

(8a) 

(8b) 

(8c) 

Stage 11 strain is viscous because the transient creep term B t dominates when t ~ 0, and 
Stage III strain is visco-plastic because the steady-state term Bs dominates when t ~ o. 

Equations (6) and (7) follow from Equation (3), which predicts a steady-state contribu­
tion to creep at all strains, as illustrated in Figure 2 for polycrystalline ice with m = t and 
n = 3. Dislocation theory predicts the Et oc aJtI transient creep relationship (l\4ott, 1953) 
and the Es oc a3 steady-state creep relationship (Weertman, 1973), but at present there is no 
theory which predicts a steady-state creep component at all strains. According to present 
theories of steady-state creep, such behavior would require a nearly instantaneous generation 
of dislocations when the stress is applied (W eertman, 1973) . Experimentally, Figure I shows 
that steady-state creep begins sooner as stress and temperature increase, and that stress 
relaxation occurs sooner in easy glide orientations than in hard glide orientations. If stress is 
applied to polycrystalline ice having a random fabric, therefore, crystals oriented for easy 
glide will deform readily and soon reach steady-state creep. Crystals oriented for hard glide 

https://doi.org/10.3189/S0022143000031427 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000031427


CONVECTION I N POLAR I CE S HE ETS 45 

may never reach stead y-state creep under glacial shear stresses. H ence, steady-state creep 
appears first in the crystal best oriented for easy glide and last in the crystal best oriented for 
hard glide, with a whole spectrum in between. The net effect in randomly oriented po ly­
crystalline ice is a steady-state creep component at all strains. 

160 

t"=t"e + t"t + t" , 
140 t"e= <To/E =20 

120 
t"t = (it t)m =3 t l / 3 
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Fig. 2 . Components DJ creep in randomly oriellted /Jolycrystalline ice. Shown using all arbitrary scale are the elastic strain €c, 

transient straill ft, and steady-state strain fs components slllnmed to give the total straill f at a given time t prior to recrystaLLi­
zatioll. 

Equations (6) and (7) are not the only expressions capable of representing the creep 
curves in Figure 1. W eertman (1973) suggests alternative equations which do not require a 
steady-state creep component at small strains. However, a sign ificant fraction of ice crystals 
near the bed of a polar ice sheet will have high dislocation densities due to advection strain, 
so that a steady-state component ""ill exist in these grains when convection strain begins. 
Therefore, Equations (6) and (7) should satisfactorily represent all strains related to con ­
vection in polar ice sheets. Figure 2 is drawn using m = t and n = 3 in Equation (3), where 
Et = 2 .7Es is arbitrarily taken, and shows the expected creep behavior of thermal c.onvection 
flow in polar ice sheets for polycrystalline ice having a random fabric. Figure 2 can be 
represented by Equation (7). 

Transient creep and the initiation of convection flo w 

Thermal convection in polar ice sheets should begin as linear viscous flow, according to 
Equation (7). H ence, the classical theory for the initiation of thermal convection in a hori­
zontal fluid layer heated from below can be applied (Strutt, 19 16). This theory assumes that 
heat transfer via conduction dominates so that convective h eat transfer can be treated as a 
small perturbation of conduction heat transfer. While adequate for transient creep during the 
initiation of convection, this assumption breaks down when convective flow stabilizes because 
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heat transport via convection dominates and because non-linear visco-plastic flow probably 
dominates during steady-state creep. Weertman (1967) overcame these difficulties by 
developing a block model for thermal convection in a crystalline solid heated from below. 
He developed his model specifically for the Earth's mantle but it can be applied to polar ice 
sheets with relatively minor alterations, as shown in Figure 3. 

(a) 

(b) 

(c) 

_---'----'-__ u 

I 
/ 

Fig. 3. A block model of convection in a crystalline solid. Shown are the variation of horizontal velocity u in the vertical direction 
z (lift ) and convection flow lines (right )for a convecting layer having a semi-rigid upper boundary and a rigid lower boundary 
(toP ), a semi-free upper boundary and a free lower boundary (middle ), and the block model approximating semi-free upper 
and lower boundaries (bottom). The distance of the density inversion (dashed line ) below the upper surface determines the 
extent to which the density inversion is a free surface. The degree of uncoupling between the lower surface and its bed deter­
mines the extent to which this interface is afree surface. Convection flow creates regions where tension, compression, and shear 
dominate. These regions are designated by letters, T, C, and S, respectively, and blocks I through 6 identify the regions. 
Active convection flow occurs below the density inversion (sinusoidal variation of u with z ), and passive convection flow occurs 
above the density inversion (exponential variation of u with z) . This figure is modifiedfrom Weertman (I967, figs I, 2 

and 3 ). 

Active thermal convective flow in polar ice sheets occurs below the density inversion since 
the buoyancy stress exists only in this region. Passive thermal convection flow occurs above the 
density inversion in polar ice sheets since this region is carried by active convective flow 
below the density inversion. Hence, Figure 3 shows a sinusoidal variation of the horizontal 
component u of convection velocity with vertical distance z through the ice sheet below the 
density inversion and an exponential decrease of u above the density inversion. The sinu­
soidal variation is weighted in favor of the increasing buoyancy stress and temperature toward 
the bed of the ice sheet, where u is zero at a frozen ice- rock interface and u is maximized at a 
thick ice-water interface. These extremes and their influence on the pattern of convection 
flow are illustrated in Figure 3a and b, respectively. Cellular convection generates com­
pression at the base of ascending flow and the top of descending flow, tension at the top of 
ascending flow and the bottom of descending flow, and shear between ascending and descend­
ing flow. These regions are denoted by the letters C, T, and S. respectively, in Figure 3. 
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Note tha t these stresses do n ot distort the convecting layer in Figure 3a where the base of the 
ice sheet is a rigid boundary, but do distort the convecting layer in Figure 3b where the base 
of the ice sheet is a free boundary. Figure 3c shows conditions when the ice- rock interface is 
partly uncoupled by an intervening water layer, and is therefore intermediate between 
Figure 3a and b. In this case, basal sliding makes longitudinal advective flow important near 
the bed and shear advective flow important further up (Llibou try, 1966). Longitudinal flow 
and shear fl ow develop multiple-maximum and single-maximum ice fabri cs, respectively. 
H ence, u is con trolled by the warmer tempera ture toward th e b ed and by the preferred fabric 
toward the density inversion . Figure 3c shows these effects on u as balanced for simplicity. 
Figure 3c also approximates the smoothly distorted convection layer of Figure 3b with a series 
of blocks displaced with respect to each o ther. 

Let T j be the temperature at the density inversion and Ti + t!. T be the temperature at the 
bed. If p is the mean density of the convection layer, p- t:::..p is the density of blocks I and 2 

where wa rm ascending flow dominates, p+ t!.p is the density of blocks 3 and 4 where cold 
descending flow dominates, and p is the density of blocks 5 and 6 where horizontal shear flow 
domina tes . This density difference is caused by a mean tempera ture differen ce 8T between 
ascending and descending flow, so tha t: 

2t!.p = (p+ t!.p ) -(p- t.p ) = rx v p8T (9) 

where rx v is the volume coefficient of thermal expansion. Equation (9) follows from the 
definition of rx v : 

I d V I d (M jp) I dp 
rx v = VdT= (M jp) dT = - p dT 

I d(D ) 3 dL 
= D d T = I d T = 3CX

L 
( 10) 

where ]\1 is mass, V is unit volume, L is unit length, and rxL is the linear coeffici ent of thermal 
expansion. 

Figure 4 shows the stresses acting on blocks I through 6. These are the tensile, com­
pressive, a nd shear deviator stresses aT, a c, and as, respectively; and the hydrostatic pressure 
P. Under equilibrium conditions, the size and shape of a ll blocks are constant with time . 
This requirement means that the forces exerted across sections y' -y' and y" - y" above the 
line z = 0 are equal and opposite. The thermal stress caused by the density inversion can be 
estimated by considering the horizontal forces acting on blocks I , 4, and 5. As shown in 
Figure 4, 

where 

PI = pg(h- d)+ H p - t!.p )g(l d), 

P4 = pg(h- d)+ H p+ t!.p )g(!d), 

Pz = pg (h- d)+Hp - t!.p )gd+ H p- t:::..p )g (t t.d), 

P6 = pg(h- d)+ t pgd+ t pg(l t.d), 

Ps' = pg (h- d- (t t!.d)) + pg(t t.d ), 

P/ = pg(h-d- (t t!.d ))+ pg(l t.d). 

(In) 

(I2b) 

( I2C) 

(I2d) 

( I2e) 

(I2f ) 

H ere h is the total ice thickness, d is the ice thickness below the density inver sion, and t!.d is 
the displacement of blocks I a nd 2 above blocks 3 and 4 due to thermal buoyancy, where 

t!.d = d(t.p jp). 
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Fig. 4. H orizontaL stress variations in the verticaL directionJor the bLock model oJ convectioll ill Figure 3. D eviator components 
are the tensiLe stress UT, the comp ressire stress ac, and the shear stress as. Spherical components are the hydrostatic pressures 
P, through P 6, including P ,' alld P s' . Other symbols defined are ill the tex t. 

Several simplifying assum p tions are need ed to extract the thermal buoyancy stress from 
Equation ( I I ) . Of course uT and uc are equal, and they must approximately equal uS since 
these deviator stresses are smoothly varying functions of p osition. However , if ice above the 
density inversion is passively transported by active convective flow below the d ensity inversion, 
the stress us' should be small and will be n eglected. This approximation is best when the 
density inversion is closest to the surface, because the firn- air interface is a free boundary. 
The ratio Aid, where A is the distance between centers of a scending (or descending) flow in a 
horizontal fluid layer heated from below, d epends on whether convective circulation is in the 
form of polygonal platform cells or elongated rolls, and on whether the top and bottom 
surfaces are free or rigid (Knopoff, 1964) . In Figure 3c the density inversion and basal 
interfaces are intermediate between free and rigid, where 2 < Aid < 2 y 2 is the range over 
these extrem es. T he approximate treatment given here will assume that 

uT = uC ~ us, 

as' ~ 0, 
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Using Equations (9), (13), and (14), the thermal buoyancy stress from Equation (11 ) is 

aT = i 6.pgd = -flrpgdcxVoT (IS) 

where terms involving (6.p )2, (6.p6.d), and (l1d)2 are ignored. 
Equation ( IS) is identical to the equation Weertman (1967) derived for his four-block 

convection model which had free top and bottom surfaces with no overlying layer of passive 
convection flow. This encourages an application of the Weertman block convection model 
to polar ice sheets partly uncoupled from bedrock by a basal water layer. 

Continuing with the Weertman block-convection model, thermal convection begins 
when the thermal buoyancy stress aT overcomes the visco-plastic resistance of the ice sheet. 
Equation ( IS) shows tha t aT varies with the mean temperature difference 8 T between 
ascending and descending convection currents. The equation of heat flow must be solved 
to obtain 0 T. This equation is: 

K (d2 Tjd z2 )-w (dT/dz)-(dT/dt) = 0 

where K is the thermal diffusivity, w is the vertical velocity of convection flow, z is vertical 
distance measured from the base of the ice sheet, and ( 0 T /ot) = 0 for steady-state convection 
flow. Under these conditions 

where W" W 2 , W 3, w4, w s, and W 6 are vertical velocities in blocks I through 6, respectively, 
and €z is the vertical strain-rate, w hich is always positive in Equations (17). 

Setting T = Ti + 6. T at Z = 0 and T = Ti at z = d as boundary conditions and using 
Equations (17) to specify the variation of w, steady-state solutions of Equation (16) for blocks 
I and 2 are: 

~ z J exp (€zZ2 /2K ) d z- exp (€zd2/4K ) J exp [- €Z(d - Z)2/2K] dz 

T i + I1T _ 6.To d/. 
d/. d/. J exp (€z Z2 /2K) dz + f exp [Ez (d2- Z2)/2 K] dz 

o 0 

and 
z J exp (€zZ2 /2K) dz 

T2 = T i + I1T - I1T d/. 0 d/. 

f exp (EzZ2 /2K) d z + f exp [Ez (d2- Z2 )/2K] dz 
o 0 

where replacing €z with - EZ gives T4 from Equation ( ISa) and T3 from Equation ( ISb) 
Most heat is transported via conduction when €z -+ 0 at the onse t of convection . For 

vertical heat transport main ly via conduction from the bed at Z = 0 to the thermal density 
inversion at Z = d: 

T= T i + 6.T(I - Z/d)+ T* 

where T* is a temperature perturbation caused by the onset of convection. Letting €z -+ 0 

in Equations ( IS) gives the temperature perturbations in blocks I through 4 at the onset of 
convection: 
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T* = I1T - - --[
Ez (d-Z)][d2 (d- Z)2] 

I Kd 8 6 

and 

T* = I1T[EZZ][d
2
_ Z2 ] = -T * 

2 Kd 8 6 3 • 

The mean temperature difference between ascending and descending currents is 

8T= HTl*+ Tz*)-H T3*+ T4*) = Tl*-T3* = Ezd2t.T/17·5K 

(20a) 

(20b) 

where Z = i d for Tl* using Equation (20a) and Z = i d for T 3* using Equation (20b), 
since these are average block temperatures. Combining Equations (15) and (21 ) gives the 
thermal buoyancy stress aT* at the onset of convection: 

aT* = pgd3EzrxVl1 T1280K. (22 ) 

Convection flow ET = EZ is resisted by ao in Equation (5), so that 

Equations (7) and (8) indicate that ao -+ ao' when a or 1 are small, ao -+ Go" when a or 1 are 
large, a = aT, ao' ~ 1)ET, ao" ~ EEe, and 1)0 is the effective viscosity defined as follows : 

da exp (KTM IT ) 
1)0 = dE = B t + 3BsG2 (24) 

Letting a = aT, convection begins when aT* = ao. Therefore the ratio 

GT* (Ra) pgd3rx V t. T 
~ = (Ra)* = 280K1)0 

pgd3rx V t. T (B t + 3BsGT2) 
280K exp (KT MIT) 

is unity at the onset of convection . H ere the dimensionless Rayleigh number is 

(Ra) = pgd3rx vI1 T IK1) 0 (26) 

and the critical Rayleigh number for the onset of convection is 

(Ra)* = 280. 

According to classical convection theory, 657 ~ (Ra)* ~ I 708 for convection in a 
horizontal fluid layer heated from below, where the lower value is for free boundary condi­
tions and the higher value is for rigid boundary conditions (Knopoff, 1964). The value of 
(Ra)* in Equation (27) is a direct consequence of taking a free boundary AId ratio in Equation 
(14c). Even so, the square-wave solution from the Weertman (1967) block model gives 
(Ra)* values about half those given by the sinusoidal wave solution from the Rayleigh classical 
model (Strutt, 1916). Higher (Ra)* values are expected if convection flow is not p ermitted 
to deform free boundaries, and this was a restriction imposed on the sinusoidal wave model 
shown in Figure 4a which was removed for the square-wave model shown in Figure 4b and 
c. Hence, Equation (27) probably underestimates (Ra)* but not as much as might be ex­
pected (Weertman, 1967). 

Thermal convection is possible when (Ra) ~ (Ra)*, and comparing Equations (7) and 
(8) with Equations (25) through (27) shows that (Ra) oc 1- 2/ 3 for 1 ~ 0 and (Ra) oc G Z for 
t ~ o. This illustrates an important distinction between convection in crystalline solids and 
convection in fluids. The viscous flow creep component in crystalline solids is time dependent, 
whereas viscous flow in fluids is time independent. Furthermore, the time d ep endence is 
such that when convection begins at t = 0, the strain-rate EZ of vertical flow decreases from the 
infinite strain-rate of elastic deformation in Stage I strain, whereas strain-rate is always 
constant and finite for viscous fluids. In short, convection in crystalline solids begins as 
transient creep and convection in viscous fluids begins as steady-state creep. 
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Steady-state creep and stable convection flow 

Thermal convection in polar ice sheets IS Important only if thermal conduction alone 
cannot satisfy the equation of heat flow, as expressed by Equation ( 16). In the absence of 
convection, w = 0 and Equation ( 16) becomes 

k d Tldt 
K = - = 

pep dZT/d z z 

where k is the thermal conductivity, cp is the specific heat capacity at constant pressure, and 
setting w = 0 neglects accumulation and ablation of ice. In the absen ce of conduction, 
K = 0 and Equation ( 16) becomes : 

iz~Z d Tldt 
W= -- = ---

2 dT/d z 

where IV is the mean vertical velocity in incremental distance ~z . H ence, K is obtained from 
the ratio of the temporal variation of temperature to the gradient of the spatial variation of 
temperature across distance ~z when conduction overwhelms convection, and Ez is obtained 
from the ratio of the temporal and spatial variations of temperature across distance ~z when 
convection overwhelms conduction. In polar ice sheets, the former would characterize Stage 
II creep during the initiation of transient convective flow and the latter would characterize 
Stage IV creep during the transition from Stage III to Stage V steady-state convective flow. 
During steady-state convective flow aT /a t = 0 so that Equation (16) becom es: 

2K dT/dz 
-;; = dZT /dzZ ~Z. (2gb) 

Steady-state convective flow can therefore be discussed in terms of a characteristic distance 
z* , where 

(30 ) 

When convection overwhelms conduction, z* is the thickness of the thermal boundary layer 
of sharp temperature gradients which develops at the top of blocks I and 5, at the bottom of 
blocks 3 and 6, and between blocks 4 and 5, blocks 5 and 6, and blocks 6 and 2 , as shown in 
Figure 5. H eat transport across this boundary layer is via conduction because Ez normal to 
these interfaces is either nil or non-existent. Convection overwhelms conduction in regions 
between the thermal boundary layer, where Ez is large in blocks I through 4 and Ez :::::: ixz in 
blocks 5 and 6. 

H eat transport via convection dominates heat transport via conduction above a critical 
creep rate i c, which exists when z* :::::: d, so that from Equation (30) 

i c :::::: 2K/d z. 

Solutions of Equa tions ( 18) in terms of i c and at large i are 

T, :::::: T z :::::: Ti+ ~T 

in the range 0 ~ Z ~ d-z*, 

in the range d- z* ~ z ~ d, 

(3 1 ) 
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Fig. 5. Thermal regimes predicted by the block model of convection . Shown are the regime during Stage III steady-state strain 
(top), Stage V steady-state strain (bottom), and the zone of sharp temperature gradients (diagonal hatching ). H ere, Tj and 
Tj + !J. T are ice temperatures at the density inversion and at the bed, respectively, before cOllvection began. 

in the range z* ~ Z ~ d, and 

(~)(~)l 1 -i(~r(~) +~ Or(~rJ 
T3 ;::; Ti + llT - llT y 2 Y7T (~)l+':'(EC) _':'(~)2 

2 E 2 E 4 E 

in the range 0 ~ Z ~ z*. The average temperature difference between ascending and 
descending currents is now 

8T = HT1+ T z)-H T3 + T4 ) ~ llY. (33) 
Comparing Equations (21) and (33) shows that 8Tvaries with EZ when conduction dominates 
and is independent of Ez when convection dominates. 

Convection in a polar ice sheet underlain by a substantial basal water layer occurs at a 
rate which keeps II T nearly constant below the density inversion because T = T M at the 
bed and T = Ti at the density inversion, where Ti is close to ambient m ean annual air 
temperature. Therefore the position of the density inversion is such that heat supplied at the 
bed equals heat transported across d. The minimum amount of heat supplied from the bed 
is the geothermal heat flux H G, and the maximum value of d is the total ice thickness h (dis­
regarding the firn layer). Consequently the thickness of the actively convecting layer is 
controlled by heat transport across this layer. 
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In Stage III steady-state strain, EZ < EC so heat tra nspor t via conduction dominates . 
Therefore, the heat H generated per unit horizontal distan ce (in the two-dimensional case 
illustrated in Figure 3) per unit time near the base of the ice sheet is given by the conduction 
equation 

H = (k/d)t.T. 

In Stage V steady-state strain, EZ > EC so heat transport via convection dominates . Con­
vective h ea t transported upward is the product of the temperature differen ce t. T across d, 
the average vertical velocity (Ezd) of ascending flow, the h eat capacity (pep), and the leng th 
(i\/8) a t the base of block 2 in Figure 5: 

However , EZ = 0 across the interfaces between blocks 5 and 6, where block 5 is warmer than 
block 6 when EZ > EC. H ence, heat wi ll be transported d ownward via conduction across 
this interface at a rate controlled by the tempera ture gradient t:.. T across the thermal boundary 
layer z* shown in Figure 5. This hea t flux should equal the h eat supplied at the basal thermal 
boundary layer and lost at the density inversion thermal boundary layer. These layers have 
length of 3 i\/B in Figure 5. Therefore conductive heat transp orted downward is 

H cond = (k/ z*) t. T = H (3 i\/B). (36 ) 

Heat transported upward by convection and downward by conduction must equal the total 
heat generated at the bed . This heat is H ( i\/2) in Figure 5, where i\ /2 is the total length of the 
bed under blocks 2 , 3, and 6. Therefore, the heat balance equation is 

H(i\ /2) = H colly- H colld. (37) 

Substituting from Equations (35) and (36 ) gives the heat transport when EZ > EC. This is 
approximately 

When EZ < EC, heat transport via conduction dominates and the thermal buoyancy 
stress driving convection is obtained by combining Equatio ns (15), (21 ), and (27) : 

()T = pgd3EzrL v t.TjK(Ra)*. (39) 

For constant heat transport, t. T is obtained from Equation (34) and Equation (39) becom es 

()H = pgd4EzrLvH/Kk(Ra)*. (40) 

When EZ > EC, heat transpor t via convection domina tes a nd the thermal buoyancy stress 
driving convection is obtained by combining Equations ( 15) a nd (33) : 

()T = pgdrL v t.T/ I6. (41 ) 

For constant heat transport, t. T is obtained from Equation (38) and Equation (41 ) becom es 

Note that both ()T and ()H are proportional to EZ when Ez < EC, but tha t ()T is independent of 
EZ and aI/ is inversely proportional to Ez w hen Ez > EC. 

Figure 6 is a plot of stress versus strain-ra te comparing E q uations (39) through (42) with 
Equation (7), including both transien t a nd steady-state creep components. Transient creep 
is controlled by a viscous fl ow stress (),, : 

a~ = (Ez/Bt ) exp (KTM/T) 
= 3()o'ti(EZ/ EO' S) exp (KTM/ T). (43) 

Steady-state creep is controlled by a visco-plastic flow stress an : 

an = Wz /Bs) exp (KTM/T)P 
= a o" (Ez/Eo")! exp (KT M/ 3 T ). 
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Fig. 6. Heat and mass transport characteristics predicted by applying the visco-plastic flow law of ice to the block model of 
convection. Shown are stress a and strain rate i variations with temperature T that relate viscous creep (a7) curve ) and visco­
plastic creep (a. curve ) to a constant temperature difference (aT curves ) and a constant heat tranpsort rate (au curve) through 
the convecting layer. Details are discussed in the text, where a = a. and i = i.. This figure is modified from Weertman 
(1967, fig· 5 )· 

Stage I strain IS Instantaneous elastic deformation (t = 0, EZ ~ 0, and Ez = (0). Stage II 
strain dominates the range 0 < €z < (Eshn and is transient creep deformation . Stage III 
strain dominates the range (Eshn ~ Ez < EC and is steady-state creep before r ecrystallization, 
Stage IV strain dominates the region Ez ~ EC and occurs during recrystallization. Stage V 
strain dominates the range EC < €z ~ (ES) v and is steady-state creep after recrystallization. 

Stage II strain is marginally stable wh en Ez ~ (EHhr because the O',, + O'n curve is nearly 
tangential to the O'T curve. Here creep is a viscous-flow phenomenon because if EZ decreases, 
the O'H curve remains above the 0'" curve but falls below the O'n curve. Hence the thermal 
stress needed to maintain constant H is high enough to p ermit viscous flow but not visco­
plastic flow. Stage III strain increasingly replaces Stage II strain when Ez > (EH)n. H ere, 
creep becomes increasingly visco-plastic, and Ez increases because the O'H curve increasingly 
rises above both the 0'" and O'n curves. Stage III steady-state strain is actually a transition 
zone where transient creep is modified by recrystallization, during which easy glide pro­
gressively replaces hard glide as the rate-controlling process of convective flow. The rapid 
increase of Ez during recrystallization accelerates heat transport so that 6. T is reduced across 
the layer of active convection flow. Hence O'H levels off and then decreases. R ecrystallization 
results in Stage IV strain, which occurs in the region where Ez ~ €c. Stage V strain progres­
sively replaces Stage IV strain over the range €c < €z ~ (Esh. The creep rate remains 
constant when €z = (€s)v b ecause the O'T, O'H, and cr,, + crn curves coincide. An increase in 
€z could not be maintained by either O'T or O'H because both these curves would then fall 
below the O',, + O'n curve. On the other hand, a decrease in €z would be prevented because both 
the O'T and O'H curves would then lie above the 0'" + O'n curve. Whatever oriented crystal fabri c 
exists at (€sh is therefore the stable convection ice fabric. 
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Equation (3S) was derived on the assumption that blocks I through 6 in Figure 3 were 
comparable in size and shape. This is true when Ez ~ EC. However, when EZ -+ (Es)v, 
constant heat transport requires constant mass transport and this is possible only if the width 
of vertical convection currents decreases as Ez increases. H ence, blocks I through 4 narrow 
while blocks 5 and 6 widen. N arrowing decreases the efficiency of vertical heat transport via 
vertical mass transport. In Stage V steady-state strain, conductive heat transport across z* 
equals convective heat transport across (d-z*). Conductive heat transport across z* is 
obtained from Equation (30): 

H = (klz*)!::J.T = k!::J.T(EzI2K) t . (45 ) 

Convective h eat transport across (d-z*) ~ d is obtained from Equation (3S) modified by 
changing widths LI and Ls, respectively, of blocks I and 5: 

H = (LI ILs ) Ezdpcp !::J. T18. (46) 

Equations (45) and (46) can be combined to show how the ratio (LI ILs) varies with EZ: 

(LI /Ls) = Sk /pdcp(2KEz)i. (47) 

The thermal buoyancy stress at Ez = (Es)v is obtained by comparing the balance of forces on 
blocks 1,4, and 5 in Figure 4 with the balance of forces on block 5 (Weertman, 1967) : 

GT = (LI /Ls )pgdrx v !::J. Tj r6 (48) 

which is Equation (15) multiplied by the ratio (L dLs ). Eliminating (LI /Ls) and !::J. T from 
Equation (4S) by substituting from Equation (46) and Equation (45), respectively, gives 
Eq uation (42 ). 

T emporary creep and turbulent convection flow 

It is interesting that the relationship H oc ( !::J.T )4/3 observed in turbulent fluid convection 
can be obtained by combining Equations (46) a nd (48) to elimina te (LdLs), combining the 
resulting equation with Equations (43) and (44) by setting GT = G1J + Gn, and combining this 
resulting equ ation with Equations (8) and (45) to relate H with !::J. T via Ez: 

grxvk4(!::J.T)4 ~ [ exp (KTM/ T) ] + [ exp (KTM/T) ] !. 
8C p K2H3 B t B

S
Ez2 (49) 

As shown by Equations (8) , the terms Bt and B s contain the visco-plastic yield stress Go. 

Constant strain-rate creep tests produce flow curves in which Go varies with E according to 
the relationship (Weertman, 1973) : 

Go = CE1/ C exp (Q /cRT) = CE '/c exp (KT M/CT) (50) 

where C and c are constants. For randomly oriented polycrystalline ice, Go = Go' and c = 3. 
For ice single crystals oriented for easy glide, G o = Go" and c = 1.5 . H ence, 1·5 <; c <; 3 
is the range of polycrystalline ice with fabrics ranging from single-maximum a ligned for 
easy glide to random. When the term having Bs in Equation (49) is disregarded , then Bt is 
obtained from Equation (Sa) , where E = Ez, G o = Go', and c = 3 in Equation (50), so tha t 
H = Ht depends on t and EZ. When the term having Bt in Equation (49) is disregarded, 
then Bs is obtained from Equation (8b), where E = Ez, Go = Go", and c = 1.5 in Equation 
(50), so that H = Hs is independent of t and Ez. The equations resulting from these two 
extremes are: 
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Note that Het:. (!l T )4/3 in both cases. However, since fluids and randomly oriented poly­
crystalline ice are both isotropic, a comparison of turbulent convection in fluids and polar 
ice sheets is better for Equation (5 I) because Equation (52) applies to stage V steady-state 
strain after recrystaliization. 

The time dependence of Equation (51 ) is a unique feature of turbulent convection in 
polar ice sheets. Its significance may lie in the fact that creep in ice is initially not purely 
viscous, as in fluids , but is temporarily viscous according to Equations (7) and (8). Turbulent 
convection in polar ice sheets can be expected if the buoyancy stresses caused by the density 
inversion are insufficient to overcome the visco-plastic resistance of the ice even though 
thermal conduction cannot transport enough heat upward to eliminate the superadiabatic 
temperature gradient that develops when (Ra) > (Ra) *. H ence, as (Ra) for the ice sheet 
increases above the (Ra) * values appropriate for convection in fluids , crT builds until it IS 

relieved catastrophically at time 

after (Ra) = (Ra) * for fluid convection. Equation (53) is obtained by setting Btcr = B scr 3 

and cr = crT in Equation (7) and solving for t using Equations (8). It r epresents the time 
since the superadiabatic temperature gradient developed at t = 0 until the time when 
convection begins a s catastrophic recrystallization during stage IV strain. H ence, turbulent 
convection in polar ice sheets is expected where (Ra) for the ice sheet greatly exceeds (Ra) * 
for fluids. This condition exists wherever ice is over 4 km thick in the Antarctic ice sheet. 

Turbulent convection via catastrophic recrystallization in a polar ice sheet is a temporary 
event b ecause the thermal buoyancy stress is suddenly relieved. The turbulent convection 
episod e may consist of a local collapse of the relatively rigid cold ice cei ling above the r ela­
tively soft hot ice basement, causing a downward flood of cold heavy ice which pushes the hot 
light ice aside. Or, p erhaps more likely, the turbulent convection episode may consist of a 
local up thrusting of the relatively soft hot ice basement, caused by a uniform slow en masse 
sinking of the relatively rigid cold ice ceiling. The first process would create a local down­
warping of the cold ice strata, and the second process might inject hot ice sills into the cold ice 
strata. I ce has a high Prandtl number (Pr ) = 711 pK, and turbulent convection in fluids having 
high Prandtl numbers consists of unstable convection cells which constantly change in size 
and shape while appearing and di sappearing (Somerscales and Dropkin, 1966 ; Somerscales 
and Gazda, 1969) . By analogy, turbulent convection in polar ice sheets should be a temporary 
creep phenomenon. 

DISCUSSION 

Dike-sill convection near the centers of polar ice sheets 

The turbulent solid-state convection regime of Stage V steady-state creep suggested by 
Equation (52) consists of narrow zones of hot rising ice and cold sinking ice separated by wide 
zones of stagnant ice, as described by Schubert and others (1969) for fluids with a strongly 
temperature-dependent Newtonian viscosity. The narrow sinking zone may not exist in a 
convecting polar ice sheet, however, owing to the anisotropic effective viscosity of ice. In this 
case~Equation (47) becomes : 

where !l'\ replaces Lt and ,\ = 2\.Lt+ L 4 + Ls) ~ 2Ls in Figure 5. This is dike- sill convection 
of the type commonly observed when magma intrudes horizontal beds of sedimentary rocks 
in the Earth's crust. By analogy, the strata of cold ice sinks en masse into the hot temperate 
ice layer at the bed, forcing the basal ice upward as dikes which inject sills between the most 
weakly coupled layers of the slowly sinking cold strata. In order to conserve mass flux , the 
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ratio of dike width to distance between dikes is inversely proportional to the ratio of ice 
velocities rising in dikes and sinking between dikes. 

Figure 7 illustrates the possible development of dike- sill convection according to plasticity 
theory, for which n = 00 in Equation (5). The main difference for ice, which is visco-plastic 
so that n < 00, would be a rounding of sharp corners and a widening of the shear zones 
bordering dikes and sills In Figure 7. One practical consequence of this is to reduce the 

I I I :; ~ I j I I I j j I 1 I· + ~ I I I 
I \ I \ , ' , , ' , 

) \ ) , , , 

" \ " 
- ( , 

\ 
;, ,: .. ......... .... . ..... ... ... . 

-~ ~ ~ ~ ~ ~ ~ ~ ~ ~-
...-----=-,.....--f, A - A ' "\----~----, 

--.. / \\ .....-- \\~ 

Fig. 7. The initiation lInd growth oJ dike- sill convectioll in a polar ice sheet according to plasticity theory. Arrows show ice 
flow directions and orthogonal cycloid segments show the ice slip-line field in dikes and sills. In the top view, the slip-line 
jield is shown Jor a basal temperate ice layer having an effective viscosity an order oJ magnitude lower than the overlying cold 
ice (see Fig . 9) so that the cold ice and the bed (shaded zone ) behave as rigid plates compressing the tem/)erate ice (Hill, 
1950, jig. 64). The compressive pressure is relieved where irregularities in basal conditions allow doming of the basal 
temperate ice layer so that basal ice flows toward these domes, generating the slip-line field shown. In the middle view, lateral 
spreading oJ the cold ice overlying the domes causes the domes to contract laterally and eX/land vertically into the cold ice, 
becoming ascending dikes oJ recrystallized ice in the process. The slip-line field in the dikes is that Jor a plastic material 
injected betweell rigid parallel plates and Jorcing them apart. III the bottom view, ascerzding dikes have ilvected sills between 
weakly coupled layers (dashed horiz ontal lines ) in the strata oJ slowly sinking cold ice between dikes , andJrictional heat 
in the basal ice Jeeding the dikes has created a basal wa ter layer (black horizontal band ) which has uncoupled the ice sheet 
Jrom the bed. Consequently, sills have the slip-line Jield oJ plastic material Jorced between rigid parallel plates and the basal 
temperate ice layer has the same sliP line field liS when one oJ the plates (the water layer ) is aJrictionless surJace. 
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possibility that convection dikes could be d etected by radio-echo sounding, since the junctions 
between dikes and sills would be less able to behave like corner reflectors for radar waves 
(personal communication from S. Evans in 1974) ' In Figure 7, convection begins as an up­
warp of the boundary b etween temperate basal ice and cold overlying ice (a n upward bulge 
of the T M isotherm). The initial up-warps could be nucleated where variations exist in the 
basal temperature gradient, the strength of ice-rock coupling at the bed , and the stress regime 
around bedrock topography, all of which are interrelated and can locally decrease the 
effective viscosity of cold ice. These up-warps collapse laterally and are thrust upward during 
the five stages of strain to become dikes which inject sills into the sinking strata of cold ice. 
Convection dikes are unstable and form randomly during Stage III steady-state strain but may 
become stable to form an orderly array if Stage V steady-state strain is attained . The stable 
array is active only so long as the basal temperate ice layer exists. The array stagnates if 
convection flow redistributes the temperate basal ice in dikes and sills faster than it is formed 
by geothermal and frictional heat generated at the bed. Convective flow stops when an array 
stagnates, so advective flow will recrysta llize the vertical easy glide ice fabric developed in 
dikes but will preserve the horizontal easy glide ice fabric developed in sills. 

Advective flow is a general feature that is characteristic of the entire ice sheet, whereas 
convective flow would be a local feature confined to narrow dikes and sills in the lower part 
of the ice sheet. In gen eral , therefore, the convective flow regime should conform to the 
advective flow regime rather than vice versa. Figure 8 shows the slip-line field which plasticity 
theory predicts for advective flow from a central ice dome. Ice flow lines can be drawn as 
lines radiating from the ice dome and therefore are 45° diagonals to the slip-line field. In 
the absence of advection, the most efficient convection occurs when convection dikes intersect 
at 120° angles to form a hexagonal array, since this minimizes the length of dikes penetrating 
cold sinking ice. In Stage V convection, therefore, hexagonal prisms of cold ice A in diameter 
and separated by dikes of width !lA should sink slowly into a temperate basal ice layer under 
the domes of polar ice sheets where advection is small. However, advective flow increases 
with increasing distance from the domes, and the dike array must intersect at 90° angles if it 
is to enclose prisms of cold sinking ice which correspond to the slip-line field of orthogonal 
logarithmic spirals for advective flow radiating from the dome, as shown in F igure 8. Further­
more, as distance from the dome increases, the prism diameter paralleling advective flow 
increases with respect to the prism diameter normal to advective flow. Consequently, hexa­
gonal convection "cells" under the dome where advection is least are transformed into elon­
gated convection " rolls" aligned with advective flow toward the margin of the ice sheet. 
This transformation has been observed and studied in detail for convection- advection inter­
a ctions in fluid flow (Low, 1925; Jeffreys, 1928; Deardorff, 1965; Gallagher and Mercer, 
1965; Davies-Jones, 1971 ). However, the dike-sill nature ofcrystaUine convection proposed 
for ice sheets does not exist in fluid convection. 

The vertical ice velocity entering dikes can be estimated from the tensor form of the flow 
law of ice (Nye, 1957) : 

(55) 

where i and j are orthogonal coordinates, Ut and Uj are velocity components in respective 
directions Xt and Xj, Etj are components of the strain-rate tensor, crtl are components of the 
deviator stress tensor, T is the effective stress, and, using the notation of Equation (5) , 

(56) 

Since a convection dike is aligned in the direction x of advective flow, set i = y,j = Z, Xt = y, 
and Xj = Z so that the effective stress 

T = (tcrt/crtl)! = (crx'2+O'y'2 + crz'2 + 2crXy'2 +2crYZ'2+ 2crzx'2) 1!V2 (57) 
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since crij crj/. Advection is nil under central ice domes of polar ice sheets so the only 
deviator stress components used in Equation (57) are crz' = cry' ~ O'y/, where cry' = crT = crc 
and cryZ' = crs in Equation ( I4a) and Figure 4. For Stage V steady-state strain, n = 3 and 
A - n = Bt exp ( -KTMIT ) = 1.42 X IQ- s/barn s in the temperate ice layer at the base 
of the dike. In the dike itself, the effects of developing an easy-glide fabric tend to offset the 
effects of decreasing temperature so that A - n should not change greatly for ice moving 
up the dike. Solving Equation (55) for i = j = z and using Equation (57) to evaluate T gives 

€z = ,hA- ncrz'3 = ,\,hA- n (tpgdcxV 15 T)3 (58) 
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Fig. 8. An idealization oj the interaction between convective flow and advective flow in a polar ice sheet drained by ice streams and 

jringed by ice shelves. This figure assumes that convection dikes jorm a stable polygonal array that becomes elongated in the 
direction oj advective flow and converges on ice streams so that the entire ice stream behaves like a single dike (alternatively, 
the convection dikes may jorm randomly, be transient, and be largely independent oj advective flow ). Convection begins under 
domes (D ) and saddles (S ) along the ice divide where the ice sheet is thickest and advection is minimal so that dikes (thick 
lines ) can jorm a hexagonal array. As ice spreads jrom the domes, interaction with the plastic slip-line field oj radially 
spreading advective flow (dotted orthogonallogarithmic spirals ) causes the six-sided convection polygons to become five -sided, 
thell jour-sided, and finally elongated rolls with dikes paralleling advection flow lines (thin broken lines). These flow lines 
converge to jorm ice streams, jor which the plastic slip-line field is typical oj extrusion flow (Hill, [950, fig. 44) at the 
upper end where flow lines converge on the ice stream, compressive flow (Hill , [950, fig. 64) in the middle where flow lines 
are parallel in the ice stream, and indenting flow (Hill, [950 , fig. 70 ) at the lower end where flow lines diverge onto the ice 
shelf. Indenting flow (cross-section A ) also characterizes ice-stream convection before ice thinning enables the shear zones 
alongside ice streams to penetrate the surface (cross-section B ). 
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where az' is obtained from Equations (2) and (g). Snow accumulation and ice advection are 
generally least under central ice domes of polar ice sheets. Hence, the density inversion 
should occur not far below the firn layer so d -r h is a reasonable approximation . Setting 
p = 0.g2 Mg/m 3, g = g.8 m /s2, d = 3 km, <xv = 1.53 X ro- 4/deg, and oT = 50 deg in 
Equation (58) gives az' = 1.0 bar and Ez = 2.2 X 1O- 8/S. Setting EZ = 2.2 X IO- 8/S, 

k = 7.0 X ro l2 erg/cm a deg = 9.3 X 107 W/m deg, cp = 1.9 X 107 erg/g deg = 7.95 X 107 kJ / 
kg deg, and K = 10- 2 cm2/s = 10- 6 m 2 /s in Equation (54) gives I1A / A = 0.032. Hence, 
I1A = 0.2 km for A ~ 2d = 6 km in Equation (14C) . 

If dike-sill convection in the Earth's mantle controls sea-floor spreading and continental 
drift, as has been suggested (Hughes, I973[a] , Cd] ) , then A ~ 2d = 6000 km for mantle­
wide convection. Setting t.A/ A = 0 .032 predicts that t.A = 200 km is the dike width in the 
mantle. These values of A and I1A are the same order as the average distance between mid­
ocean ridges and the average ridge width. Hence, the spacing and width of dikes predicted 
for polar ice sheets are in approximately the same ratio as those observed for crusta I features 
that might result from convection dikes in the Earth's mantle. This is encouraging, because 
the Earth's mantle is the only other part of our planet where convection in crystalEw: solids 
is postulated . 

Vertical convection velocity Wc is a maximum at the base of a dike and decreases in steps 
to zero at the top of the dike, with one step for each sill intersected and fed by the dike. 
Solving Equation (58) for the above values of A- n, p, g, d, <xv, and 0 T gives Wc = Ezd = 2. I 
km/a. This compares with surge velocities, as might be expected if dike-sill convection in 
crystalline solids is analogous to turbulent convection in fluids. The sinking velocity of cold 
ice between dikes is (t. AJA )Wc = 67 m /a at the top of the basal temperate ice layer. H ence, 
this is the annual layer of ice which must be heated to the pressure m elting point if dike- sill 
convection is to remain in a stable, steady-state condition near the bed . Otherwise, the basal 
temperate ice layer will thin to zero thickness and dike- sill convection will stop. The tem­
perature gradient above the basal temperate ice layer is therefore important. 

Ice-stream convection near the margins of polar ice sheets 

Ice streams form near the margins of polar ice sheets when advective flow concentrates in 
channels of the subglacial topography. The increased shear deformation in these regions of 
concentrated flow generates fri ctional h eat which melts the basal ice, p ermitting basal sliding, 
which erodes the channels and thereby further increases the ice discharged through them. 
Once formed , therefore, ice streams are sel f-perpetuating. Shear zones border the sides of ice 
streams, and create characteristic c revasse patterns when ice-sheet thinning near the margin is 
sufficient to allow the shear zones to p enetrate to the surface. The ice fabri c generated in the 
shear zones favors vertical easy glide, and if shear deformation at the base and along the sides 
of the ice stream generates sufficient frictional heat to make ice streams warmer than ice be­
tween ice streams, a buoyancy force arises which may lift the ice stream slab en masse from its 
bed. This would be ice-stream convection. 

Figure 8 illustrates the possible d evelopment of ice-stream convection before and after 
the flanking ice-stream shear zones p en etrate the surface of the ice sheet, according to plasticity 
theory. Before penetration, the warm ice stream presses against the cold overlying ice as if 
it were a rigid prism indenting a plastic plate. If d and A are the respective heights and widths 
of the ice stream, where d < h and the ice stream temperature is uniformly 0 T hotter than the 
surrounding ice, the buoyancy force it experiences arises from a thermal stress aT = pgdaVo T. 
Applying the Orowan (1965) analysis to ice streams, resisting this force are the plastic pro­
perties of the surrounding cold er ice. This includes a uniaxial stress az = (I + 7T/2) ao exerted 
on the overlying cold ice and shear stresses azy = a o/2 exerted on the flanking cold ice, 
where aD is the uniaxial yield stress of the cold ice and azy acts on six vertical surfaces: the 
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two sides of the ice stream, the two sides of flanking ice, and the sides of the two adjacent ice 
streams. Summing vertical forces : 

L Fz = 0 = AaT-Aaz - 6dazy 
= pgdArxvoT - (I+ t 1T )Aao-3dao· (59) 

Solving for 0 T: 

(60) 

When the ice stream penetrates the surface of the ice sheet, az vanishes, d = h and Equation 
(60) becomes 

Note that 0 T is independent of d in this case. 
Antarctic ice streams are generally visible as heavily crevassed slabs on the ice sheet 

surface when h :00::;; I km , and they are typically A ~ 25 km in width. The plastic yield stress 
of ice is commonly taken as ao = I bar. Using these values and the values of p, g, and rxv 
previously cited gives 8T = 178 deg in Equation (60) and oT = 8.7 deg in Equation (61 ) . 
Hcnce ice-stream convection is unlikely when d < h, but may occur when d = h provided 
that ice streams average several degrees warmer than surrounding ice. However, since 
ao ~ I bar for visco-plastic flow, ice-stream convection is still possible when d < Iz if A ~ d. 
Major ice streams often form by the confluence of smaller ice streams for which A ~ d, 
and small ice streams may originate from converging convection dikes. The displacement of a 
convecting ice stream from the bed is 

iJ.d = drxvoT. 

For d = I km , rxv = 1.53 X [Q- 4/deg, and 8T = 8.7 deg, Equation (62) gives iJ.d = 1.3 m. 
This displacem ent would substantially uncouple the ice stream from the bed and radio-echo 
sounding has r evealed subglacial bodi es of water at least this thick under Antarctic ice 
streams, leading Robin and others (1970) to call such ice streams " pseudo ice shelves". 
Basal uncoupling of this order should cause an ice stream to surge, and since ice streams drain 
ninety per cent of the West Antarctic ice sheet, surges via ice-stream convection should result 
in disintegration of the ice sheet (Hughes, 1970, I972[b], 1973 [b] , [c]) . 

Figure 8 shows the slip-line field and the resulting flo w lines which plasticity theory 
predicts for an ice stream draining an ice sheet onto an ice shelf. In ice-stream convection , 
the ice stream is buoyed up en masse as a hot slab as shown in Figure 8. This slab acts like a 
rigid prism which plastically indents the ovedying cold ice before the ice stream breaks 
through the surface of the ice sh eet. 

Ray leigh numbers for initiating convection 

Convection begins under the central domes of polar ice sheets where ice thickness and the 
temperature difference between surface and bed are greatest and where snow accumulation 
and ice advection are least, since (Ra) oc d3 11 T in Equation (26) and d ~ Iz under these 
conditions. The temperature profile under polar ice domes is given by the equation (Robin, 
1955) : 

where z is m easured from the base, (iJ. T/ iJ. z)b is the basal temperature gradient, and Wa is 
the ice accumulation- ablation rate. For a frozen bed and no advection, (iJ. T / l1 z) b = HG = 
40 cal/cm2 a = 53 mW/m2. For the temperature range of polar ice sheets K = [1. 15 X 10- 2 

cm2/s][I -(8.34 X [Q-3/deg)0] ~ [Q- 2cm2/s wi ll be used where 0 is the Celsius temperature 
(Pounder, 1965) . In the lower part of a polar ice sheet, where convection would be most 
active, Equation (63) is adequately approximated by the expression (Hughes, I972[c] ) : 

z /h ~ N ( T b - T )/ T (64) 
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where Tb is the basal ice temperature. The effective viscosity of ice "10 in Equation (26) is 
obtained from Equation (55) and can be written in terms of the basal effective viscosity of 
ice TJb using z/h and N in Equation (64) as follows (Hughes, 1972[c] ) : 

7Jo = 2 OrIi/ /O Eii = 2A,I,T I - n 

= 2 exp (K ) exp [ (K/N)zlh] IBTn- I 

= 7Jb exp [ (K /N)z/h] 

where K = 25.3 in Equation (7) and Figure 9, and (K IN) is a viscous scale height. 

(65) 

Schubert and others (1969) show how the viscous critical Rayleigh number (Ra)"1* 
varies with the ratio (K IN) for both rigid and free boundary conditions in fluid convection. 
For polar ice sheets, rigid boundaries exist when d ~ h and the bed is frozen whereas free 
boundaries are approximated when d ~ h and the b ed is thawed, with basal boundary 
conditions being more important than surface boundary conditions (Hughes, 1972[c] ). 
Figure IQ shows the variation of (Ra),,* with (KIN) for both frozen and thawed beds. Figure 
10 can be applied to the initiation of ice-sheet convection since it begins as viscous flow 
according to Equation (7) and Figure 9 . 

10-13~~~~~~~~ __ ~~~~~~uu 
10- 3 10- 2 10- 1 10° 101 

T (ba r s) 

Fig. 9. A polynomial-exponential flow law fitted to creep data for polycrystalline ice in which hard glide dominates. Plotted is 
the variation of octahedral shear stress T with octahedral shear strain-rates y at various temperatures 0 . A best-fit of the 
flow law at various homologous temperatures T / TM (thin lines) is given to creep data from laboratory experiments and 
glacier studies (dashed lines ). Note that y oc T when T < 0.5 bars, y oc T J when T > 5.0 bars, and y increases tenfold 
as T / TM -> 1. Thisfigure is modifiedfrom Blldd (1969, fig · 2.2) . 
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Fig. I o. The variation of the critical Rayleigh nl/mber for initiating convection w ith the viscous scale height in the convecting layer. 
Ray leigh Ill/mbers (Ra ) (1/0) can be calculatedfor the e.ffective viscosity 1/0 averaged through a convecting layer of thickness d, or 
Ray leigh Ilumbers (Ra)(1/b) call be calculated for the effective viscosity 1/b at the base of the convecting layer of thickness 
d (NI K ). Solid lines are fo r a coupled bed and dashed lines are for an ullcoupled bed. This figure illustrates the Sclwbert 
and others ( 1969) treatment modifiedfor polllr ice sheets (Hughes 1972 [c] ) . 

The minimum ice thickness needed to initiate convection is obtained by solving Equation 
(26) for h after setting d = (N/ K)h, TJ o = TJb , (Ra) = (Ra),,*, and using Figure 10 to relate 
(KjN) and (Ra),,*. This gives 

h - . _ [KTJb (Ra )'1*(K/N )3] i 
pgrxvl:::. T 

(66) 

Equation (66) will be applied to the region of the Wi lkes Land ice dome in East Antarctica, 
where Th ::::; 220 K, Tb ::::; TM ;:::! 270 K , w" ~ 7 cm/a, and radio-echo sounding suggests 
regions having both frozen and thawed beds. The thawed beds are sometim es above sub­
glacial la kes deep enough to substantially uncouple the ice sh eet from the bed (Oswald and 
Robin , 1973). Equation (63 ) can be applied to this region by setting Tb = TM to obtain 
( I:::. Tj l:::. zh [or a thawed bed and setting (6.T/ l:::. zh = HG to obtain Tb for a frozen bed. 
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The resulting temperature profiles are compatible with N = 3 in Equation (64) for the lower 
portion of the ice sheet where convection would be active. Taking K = 25 .3 from Figure 9 
gives (N jK ) = 8.4, for which (Ra),/ = 25 for a thawed bed and (Ra)"I* = 32 for a frozen 
bed according to the curves showing (Ra) as a function of 'Y}b in Figure 10. From Equation 
(65) : 

2 exp (K ) 
T/b = BTn - 1 

2 exp (K ) 
Bt 

where T = y2crz' from Equation (57) for crz' = cry' ;:::! ayz' and crx' = aXY' = azx' ;:::! 0, with 
az' = aT being given by Equation (15). However, n = I for convection initiated as transient 
creep so that T n- I = I and B = Bt . For a temperate ice layer (Lliboutry, 1966) above a 
subglacial lake Bt = 1 420jbar s and 'Y}b = 1.5 X 10 14 P = 1.5 X IQI 5 N s jm2 but [or a frozen 
bed B t = 142/bar sand 'Y}b = 1.5 X IQIS P = 1.5 X 10 16 N s/m2 using the B t values in Figure 
g. Solving Equation (66) gives h = I km for the thawed bed and h = 3 km for the frozen 
bed . Since 4 km ,,;;; h ~ 3 km near the Wilkes Land ice dome, convection can theoretically 
begin anywhere. 

Rayleigh numbers for maintaining convection 

Convection begins as transient creep which creates a broad upward bulge in the T M 

isotherm at the top of the temperate ice layer covering a thawed bed or in the Tb isotherm 
at the bottom of the cold ice layer covering a frozen bed. This is accompanied by a downward 
bulge of isotherms in the flanking ice, and the net result is a tiny fraction of one convection 
overturn so that the convective perturbation of conductive heat flow takes place, as shown 
in Figure 6 for Ez ~ EC. In dike-sill convection, however, the broad, low, upward bulge 
rapidly transforms into a narrow, high, up-thrusting dike. During this transforma tion, Stage II 
transient strain also transforms to Stage V steady-state strain. As shown in Figure 6, con­
vection transports heat faster than conduction during State V strain and the question arises: 
can convection be maintained at these higher convection velocities? It can if the dike narrows 
with increasing convection velocity in the dike such that heat is not transported upward 
from the bed fas ter than it is provided at the bed by shear deformation and the geothermal 
flux . Equation (54) expresses this requirement in quantitative terms. 

The Rayleigh number for maintaining dike- sill convection is obtained from a considera­
tion of Stage V steady-state strain. Let (Ra),/ be the viscous critical Rayleigh number which 
must be exceeded to initiate convection as Stage II transient strain, and (Ra) n * be the visco­
plastic critical Rayleigh number which must be exceeded to maintain convection as Stage V 
steady-state strain. The thermal buoyancy stress driving convection can be expressed in 
terms of (Ra) "1* and (Ra)n* by setting Ra* = (Ra),/ in Equation (27), setting (Ra) = (Ra)n* 
in Equation (26), and substituting these equations into Equation (22) : 

crT* = [(Ra) n*/(Ra) "I*hoEz. (68) 

Substituting for 'Y}o, using Equation (24) and substituting for Ez using Equation (7), where 
cr = aT*, gives: 

(69) 

Note that (Ra)n* -+ (Ra)/ when aT* is small and (Ra)n* -+ 3(Ra)",* w hen crT* is large. 
As seen in Figure 6, a small aT* is sufficient to initiate convection as Stage II transient strain 
when (Ra)* = (Ra)",*, but a larger aT* is required to maintain convection as Stage V steady­
state strain when (Ra) * = (Ra) n *. Equation (6g) is plotted in Figure I I for the values of 
Bt and B s in Figure 9. Note that (Ra )"I* = 3(Ra)"I for aT* ~ cro, where ao = 1 bar is taken 
as the yield stress for ice when using plasticity theory. 
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The minimum ice thickness for maintaining convection is obtained by solving Equation 
(66) when 7Jb is given by : 

2 exp (K ) 4 exp (K ) 
7Jb = BTn- 1 9B scrz2 

H ere T = (3h12) crz from Equation (56), assuming all cri/ components are important and 
approximately equal to each other at the heads of ice streams where dike- sill convection 
becom es ice-stream convection. These are regions n ear the ice-sheet margin where advecting 
flow will transport dike- sill convecting systems initiated under central ice domes and where 
dike- sill convection must therefore terminate. Since dike- sill convection is in Stage V steady­
state strain , n = 3 and B = B s", wh ere Bs = B s' = 142 /barn s for Stage III stead y-state 
strain controlled by hard glide and Bs = Bs" ~ 1 ooo/barn s for Stage V steady-state strain 
controlled by easy glide (Fig. 9 and unpublished data by M . . akagawa and T. ] . Hughes, 
1971 ) . Setting crT* = crz' = cro = 1 bar, so that (Ra),,* = 3(Ra),,* = 840 from Equation 
(27), gives (K/N ) = 1.4 for a thawed bed in Figure 10. The bed is undoubtedly thawed at 

3 

Ra*n 2 

Ra*T") 

10-1 10° 

(TT (BARS) 
Fig. 1 I . The variation of the ratio oJ the filial critical Rayleigh number to the initial olle with the thermal buoyancy stress drivillg 

conuectioll. Note that (R a ),,* ..... (Ra )7/* when UT < 5 X 1 0 - 2 bar and that (Ra )n* ..... 3 (Ra),/* when UT > 5 bars. 
Compare with Figure 9. 

the head of an ice stream, so that N = 18 for K = 25. 3 in Figure 9 . Equation (64) then 
predicts that Th = [N /(N + I )] Tb = 0.95Tb, in the shear zones flanking the ice stream , 
where Tb = T M . This is what happens if the shear zones behave like dikes in dike- sill 
convection. However, if the entire ice stream is buoyed up by crT then the flanking shear zones 
d o not behave like dikes and ice-stream convection replaces dike- sill convection. Setting 
~ T = 25 deg as a value appropriate for the heads of ice streams, Equation (66) predicts that 
dike- sill convection p ersists until d = 685 m, where d replaces h because d ~ h is invalid 
near ice-sheet margins. Since ice-stream convection is expected when ice streams are observ­
able on the surface at h ~ I 000 m , dike- sill convection " rolls" can m erge at the heads of ice 
streams and be transformed into ice-stream convection " slabs" (see Fig. 8) . 

CONCLUSIONS 

Thermal convection in polar ice sheets is predicted. Possible convecting regions in the 
Antarctic ice sheet are shown in Figure 12 . Convection will be active below the d ensity 
inversion and passive above it. Dike- sill convection predominates under the central ice 
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domes and ice-stream convection predominates a long margins which terminate as ice shelves. 
If dike-sill convection stabilizes, a polygonal network of dikes may form under ice domes and 
advective flow wi ll transport this network to the heads of ice streams where dike-sill con­
vection transforms to ice-stream convection. Separate Rayleigh criteria are n ecessary to 
specify conditions which initiate convection and conditions which maintain convection, and 
these criteria determine whether dike-sill convection consists of unstable random events or 
forms a stable polygonal network. 

Dike- sill convection results if the cold ice ceiling slowly sinks en masse into the hot ice 
basement, forcing narrow dikes of basement ice to rise. Sills of basement ice are then injected 
laterally into the cold ice strata from the rising dikes. Alternatively the cold ice ceiling might 
collapse into the hot ice basement , pushing aside the hot ice underneath . This would cause a 
local down-warping of the cold ice strata, whereas dike- sill convection allows the cold ice to 
remain relatively undeformed by concentrating d eformation in the hot ice. Since hot ice 
deforms more easi ly than cold ice, upward dike- si ll convec tion is more probable than down­
ward convection via local down-warping of cold ice. 

Thermal convection in polar ice sheets provides n ew interpretations of several glaciological 
observations. For example, convection sills would create the horizontal "shear bands" which 
intersect the " ByI'd" station core hole in Antarctica (Gow, ' 970), and the "cold spikes" in the 
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Fig. I 2. Thermal convecting regions predicted Jor the Antarctic ice sheet. Shown are the continental-shelf margin (outer dashed 
line), ice-shelf margins (hatched lines), the ice-sheet margin (solid lines ), ice-sheet 500 m elevation contollr intervals 
(inner dashed lines), major ice domes (lettered D ), major bedrock outcrops (black patches ), and possible convecting regions 
(dotted areas ). Dike-sill convection OCCllrs in the interior and ice-stream convection occurs along the margin. Due toJrictional 
heat generated in the hot basal ice squeezed up dikes by cold sinking ice, the convecting regions are also regions oJ probable 
basal melting and partial uncoupling between the ice sheet and the bed. Hence, glacial instabiliry is possible where these 
regions pmetrate to the coast as convecting ice streams. This occursJrequmtly in West Antarctica, which may be disintegrat­
ing as a result (Hughes, 1973[dJ ). 
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oxygen isotope profile down the Camp Century core hole in Greenland (Dansgaard and others, 
(972) . The details of these explanations will be published elsewhere (Hughes, in press) . 
Perhaps the most dl"amatic effect predicted by thermal convection in polar ice sheets is glacial 
instability leading to ice-stream surges and catastrophic ice-sheet disintegration . Dike- sill 
convection provides a means for generating considerable basal melt water under the interior 
of an ice sheet from the frictional heat of shear deformation in basal ice moving toward dikes. 
This permits the lower part of the ice sheet to be much softer and less coupled to the bed than 
was previously believed possible. The basal melt water generated by dike- sill convection will 
flow down the pressure gradient toward the ice-sheet margin where it converges at the heads 
of ice streams. I ce-stream convection buoys up ice streams, thereby uncoupling them from 
the bed and allowing them to surge. If the force of the surge is sufficiently strong, the ice 
stream can punch through the ice shelves which typically fringe polar ice sheets and discharge 
directly into the sea. When this happens, longitudinal flow transforms from compressive to 
extensive and the dominant crevasse pattern transforms from a predominantly longitudinal 
a lignment to a predominantly transverse alignment (N ye, (952 ) . Transverse crevasses favor 
iceberg formation , and a calving bay develops at the ice stream terminus which migrates up 
the ice streams and guts out the h eart of the ice shee t just as the ice stream in Hudson Strait 
gutted out the heart of the Laurentide ice sheet centered over Hudson Bay in less than 3 00 

years (Hughes, 1974, (975) ' A calving bay may be forming in the Amundson Sea where 
Pine Island Glacier and Thwaites Glacier have punched through the ice-shelf fringe around 
wes t Antarcti ca. Thermal convection should have uncoupled this part of the ice shee t from 
the bed, as shown in Figure 12 . It can be assumed that the Hollock- K enyon Plateau ice 
drainage basin , which feeds these ice streams, will be the next sector of the west Antarctic 
ice sheet to disintegrate. If so, thermal convection may have played a major rol e. 
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DIS CUS SIO N 

J. F. NYE : The slip-line field you showed describes how the ice thickens and therefore rises 
at a low place, and thins and therefore fall s at a high place. This happens with uniform 
density and so is an effect quite independent of convection, which depends on buoyancy 
forces arising from density variations. But after showing this slip-line field you seem to say 
that it exhibits convection. Could you clarify this point ? 

T. J. HUGHES: My purpose in showing the slip-line field for p erfectly plastic flow was to call 
attention to the slip lines which are normal to the bed at the bed. Principal shear stresses 
causing plastic yielding along these slip lines are equal in magnitude to those causing plastic 
yielding along slip lines parallel to the bed at the bed. You h ave related aspects of the slip­
line field beginning parallel to the bed with various aspects of spreading glacial flow (longi­
tudinal tension, longitudinal compression, basal erosion, surface faulting and slumping, etc.). 
I wanted to relate aspects of the slip-line field beginning normal to the bed with various aspects 
of convection glacial flow. One aspect is ice converging toward an ice stream from flanking 
ice domes. Another aspect is ice moving along ice divides from domes to saddles. Another 
aspect is ice moving across depressions or lakes at the bed. All of these aspects involve longi­
tudinal compression or vertical shear, both of which favour vertical ice transport if a buoyancy 
force exists . Convection dikes result from vertical ice transport at the bed, and therefore may 
begin at sites where surface and basal conditions favour preferential shear in a small sector of 
the slip-line field which is norma l to the bed at the bed. If so, convection dikes may nucleate 
at such sites . Of course, any particular slip-line field van ishes as soon as convection begins. 
But it exists (for perfect plasticity) right up to that moment, because the assumption of con­
stant density is adequate until convection begins. I am interested in any condition which 
favours the initiation of convection, and the pre-convection slip-line field is u seful in this 
respect. 

L. LLIBOUTRY: Calculations on convection consider an infinity of cells side by side. I suppose 
that two single cells cannot work in a steady way, owing to the strong resistance of the motion­
less ice around. In other words, I can imagine diapirs of warm ice, but not a continuous 
overturn. Do you think it could exist ? 

H UG HES: I expec t that if continuous overturn exists, a complete cycle is unlikely during the 
lifetime of a convection episod e because the cold ice sinking between dikes is very slow in 
absolute velocities and with respect to velocities of ice in dikes. I imagine that the velocity of 
ice in sills decreases to zero with distance from the dike, and horizontal ice velocities in sills are 
therefore intermediate compared with vertical ice velocities in and between dikes. Continuous 
overturn is most likely in ice entering the lateral shear zones a longside ice streams from ice 
ridges between ice streams. But ice-stream thinning halts convection long before a convection 
circuit is complete. The pa rticle path of an ice crystal transported by dike- sill convection 
and ice-stream flow would resemble a portion (much less than one circuit) of a rectangular 
spiral aligned with the ice stream. On the oth er hand, dike- sill convection under central ice 
divides would not be continuous unless a continuous polygonal network of dikes existed . 
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Even in this case, dike- sill convection at the margins of the network should be discontinuous. 
Certainly, single isolated dike- sill convection systems would be discontinuous for the reason 
you stated. 

G. DE Q. ROBIN: Dr Hughes will be welcome to study our collection of radio-echo records 
from the 1974- 75 season which are much better for studies oflayering than earlier seasons due 
to use of a differentiated output on the r eceiver. If, as you suggest, there is an appearance of 
stronger horizontal layering above sub-ice lakes, these may not be due to presence of sills, but 
merely because the internal layering is flatter, and h ence the refl ection closer to specular, 
than over areas of rougher bedrock. 

H UGHES : This would be unfortunate because I had hoped that radal' sounding, which is so 
promising in furth ering our understanding of ice-sheet dynamics, might also be sensitive to 
dike- sill convection. However, if internal reflection horizons exist between mechanically 
weak layers in the glacial strata, the horizons are potential sills and may be actual sills if 
dike- sill convection does occur. In this regard ice moving over subglacial lakes will develop 
vertical shear zones along the sides of the lake. If convection dikes exist in these shear zones, 
the r esulting sills will extend over both the ice- lake and the ice- rock interfaces. Intensified 
internal radar refl ections above the ice- rock interface alongside subglacial lakes could not be 
explained by the specular reflection you mention because this interface is not smooth. So 
that is what I would be looking for in radar reflection horizons associated with subglaciallakes. 

J. W. GLEN: I wonder if the Rayleigh number for fluids is the correct one to use here. First 
you use the lowest (bottom) viscosity although presumably higher up the viscosity is higher 
though in a fluid convection this fluid is also taking part in the circulation. Surely some sort 
of average viscosity should be used . However, you now refer to the dike- sill type of convection 
and in this the bottom material has most of the rapid flow so perhaps its viscosity is the most 
important. However, in this case the critical Rayleigh criterion is that the tempera ture dif­
ference can be maintained despite thermal conductivity in the time required by the viscosity 
for the circulation to take place. That is why these quantities enter into the dimension less 
Rayleigh number. With a very narrow dike the thermal conductivity is favoured (tempera­
ture gradient) as compared with the viscous forces, and surely the Rayleigh criterion for 
instability will be harder to satisfy. Has anyone studied critical Rayleigh number in the dike­
sill case? Might experiments on convection cells in liquid crystals be of use ? They are 
another case where anisotropy favouring flow is generated by the flow itself. 

H UGHES: You have just stated the reason why two Rayleigh numbers are needed for con­
vection in anisotropic, visco-plastic materials; one to initiate convection and one to maintain 
convection. I attempted to deal with this problem by defining a time-dependent, stress­
independent Rayleigh number for transient creep when convection begins ; and a time­
independent, stress-dependent Rayleigh number for steady-state creep when convection 
stabilizes. The latter number is about triple the former number, partly for the reason you 
suggest. The problem of the effective viscosity can be handled in either of two ways. On the 
one hand, an average ice viscosity can be used for the entire region of active convection below 
the density inversion. On the other hand, a basal ice viscosity can be used for the portion of 
the active convection region having the greatest vertical temperature gradient. This requires 
applying the basal ice viscosity to the ice thickness below the density inversion reduced by the 
"viscous scale height" as discussed in the text. I am not aware of other attempts to defin e a 
Rayleigh criterion for dike- sill convection, but it should be an interesting exercise. I also like 
your suggestion about studying convection in liquid crystals. 

M. M . MILLER: As you have been discussing the consequences of englacial convection on the 
stability of the Antarctic ice sheet, may one assume that you are referring to the dominance of 
the convection process in the marginal zone- hence in lower elevation and presumably 
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warmer ice? Also your discussion refers onl y to thermal surges. But in the marginal zones of 
large polar ice sheets, in some sectors at least, load stresses may dominate. How do you square 
this aspect with your strictly thermal explanation ? In other words does this not place your 
concept in a rather more speculative framework than is dictated by the p ossible realiti es of the 
fi eld situation ? 

H UG HES: Of the two types of non-homogeneous glacial flow, dike- sill convection would be 
d ominant in the thick-ice interiors of p olar ice sheets and ice-stream flow would be d ominant 
at the thin-ice margins. However, the two need not b e unrelated a nd I envision a smooth 
transition between them. You are correct to conclude that I relate dike- sill convection only 
to thermal surges. And I agree that other surge mechanisms are possible. Certainly dike- sill 
convection has nothing to do with surging mountain glaciers. This surge mechanism might 
well involve load stresses, as you suggest, and there is no reason to think that such a mechanism 
couldn ' t apply to polar ice sheet margins. In response to your final question, speculation is 
my stock in trade. In d efense of my concept, I can o nl y return your question. Who is to say 
what is reality at the base of a polar ice sheet? 

W. F. BUDD : In your formula for the Rayleigh number, the numbers you substituted for h 
was high and for YJ low. What do you r egard as appropriate values for these parameters in a 
situation where you think the Rayleigh number may be sufficient for convection ? 

H UGHES: The ice viscosities and thicknesses I used in the blackboard example were chosen 
to calculate the most generous possible Rayleigh number as a quick way to learn whether 
thermal convection in ice sheets was worth more detailed consideration . I concluded that it 
was when the calculated Rayleigh number was two or three orders of magnitude greater than 
the critical Rayleigh number of fluid convection. With that encouragem ent, I proceed ed to 
take a much more critical look at how to calculate both the Rayleigh number and it critical 
value for ice sheet convection . My procedure is detailed in the paper. But to answer your 
question, I found that the critical Rayleigh number [o r an anisotropic visco-plastic poly­
crystalline polar ice sheet would be attained near the center of the ice sheet when the effective 
viscosity of basal ice was in the IQIS P ( 10 16 N s/m 2) range, and when the ice thickness be low 
the density inversion was not less than 3 km, assuming a viscous scale height of 8+ Hence, 
10 15 P and 3 km /8.4 = 360 m are substituted for ice viscosity and thickness, respectively, in 
the eq uation for the Rayleigh number for initiating convection. Once begun , a preferred 
ice fabri c can reduce the effective viscosity to the [0 14 P range, and a separate Rayleigh 
criterion for maintaining convection might remain satisfied for ice d epths below the density 
inversion as low as 1.5 km. This suggests that ice sh eet spreading may transport dike- sill 
convecting systems which remain active until the ice sh eet thins to about 2 km in thi ckness, or 
perhaps a bit less. 
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