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THE THEORY OF THERMAL CONVECTION IN POLAR ICE
SHEETS

By T. J. HugHEs*
(National Center for Atmospheric Research, Boulder, Colorado 80303, U.S.A.)

AmstracT. Application of thermal convection theory to polar ice sheets (Hughes, 1970, 1971, 1972[a], [c])
is reviewed and expanded. If it occurs, thermal convection is mainly concentrated near the bed of the ice
sheet; resulting in active and passive convective flow, respectively below and above the ice density inversion.
Convection begins as transient creep when a stress-independent critical Rayleigh number is exceeded, and
stabilizes as steady-state creep when a stress-dependent critical Rayleigh number is exceeded. Transient-
creep convection begins as unstable ripples in isotherms near the bed, with some ripples becoming upward
bulges of basal ice which rapidly shrink laterally and grow vertically to become ascending dikes of re-
crystallized basal ice during steady-state creep. Sills of basal ice are injected horizontally between weakly
coupled layers in the strata of cold ice slowly sinking en masse between dikes. Convection begins under
domes of thick ice toward the ice-sheet center and a stable polygonal array of dikes may form if frictional
heat creates hot ice at the bed as rapidly as convection flow redistributes hot basal ice in dikes and sills.
Advective flow transports the convecting ice toward the margin of the ice sheet where dikes converge at the
heads of ice streams. Dike—sill convection then becomes ice-stream convection in which the entire ice stream
behaves like a dike, uncoupling from the bed, and rising en masse. This would help explain why ice streams
flow at surge velocities.

Resume. La théerie de la convection thermique dans les calottes polaires glaciaires. On revoit et on étend 'appli-
cation de la théorie de la convection thermique aux calottes glaciaires polaires (Hughes, 1970, 1971, 1972
[a], [c]). Lorsqu'elle se produit, la convection thermique est surtout concentrée pres du lit de la calotte; il
en résulte un écoulement convectif actif et passif, respectivement au-dessous et au-dessus du niveau d'inversion
de la densité de la glace. La convection commence comme un glissement transitoire lorsqu'un nombre de
Rayleigh critique, indépendant des contraintes. est atteint et il se stabilise dans un glissement permanent
en équilibre lorsqu'un nombre de Rayleigh critique, dépendant des contraintes, est atteint, La conveetion
par glissement transitoire commence par des ondulations instables dans les isothermes a proximité du lit, avec
quelques ondulations devenant des bulles ascendantes de glace de fond qui se ressérent rapidement latérale-
ment et croissent verticalement pour devenir des filons ascendants de glace de fond recristallisée au cours du
glissement en équilibre. Des filons-couches de glace de fond sont injectés horizontalement entre des niveaux
mal soudés dans les strates de glace froide qui s’enfoncent lentement “‘en masse’ entre les filons. La convec-
tion commence sous les domes de glace épaisse en direction du centre de la calotte glaciaire et un systéme
polygonal stable de filons peut se former si la chaleur de frottement crée de la chaleur au fond aussi rapide-
ment que 1’écoulement convectif redistribue la glace chaude du fond dans les filons et les filons-couches.
L’écoumement advectif transporte la glace de convection vers les bords de la calotte ot les filons convergent
vers les points de départ des glaciers émissaires. La convection par filon et injection devient alors une con-
vection par glaciers émissaires dans laquelle la totalité du glacier émissaire se comporte comme un filon,
détaché du lit, et avangant “‘en masse”. Ceci pourrait expliquer pourquoi des glaciers peuvent s’écouler a des
vitesses de crues rapides.

ZUsAMMENFASSUNG. Die Theorte der thermischen Konvektion in polaren Eisschilden. Die Anwendung der
thermischen Konvektionstheorie auf polare Eisschilde (Hughes, 1970, 1971, 1972[a], [c]) wird iiberprift
und erweitert. Thermische Konvektion ist, wenn sie eintritt, vor allem auf die Nachbarschaft des Eisschild-
untergrundes konzentriert; sie fithrt zu aktivem und passivem konvektivem Fliessen, jeweils unter bzw.
iiber der Inversion der Eisdichte. Konvektion beginnt als momentanes Kriechen, wenn eine spannungs-
unabhiingige kritische Rayleigh-Zahl iiberschritten wird; sie stabilisiert sich zu stationdrem Kriechen, wenn
eine spannungsabhiingige kritische Rayleigh-Zahl iiberschritten wird. Konvektives Momentan-Kriechen
aiissert sich zuerst in instabilen Kriuselungen der Isothermenflichen nahe am Untergrund, von denen einige
zu Aufwélbungen des Grundeises werden; diese schrumpfen seitlich schnell ein, aber wachsen vertikal, um
zu aufsteigenden Dammen rekristallisierten Grundeises wihrend des stationiren Kriechens zu werden.
Schwellen von Grundeis werden horizontal zwischen schwach verbundene Schichten des kalten Eises, das
massiert zwischen den Dimmen absinkt, eingepresst. Konvektion beginnt unter Aufwélbungen dicken
Eises gegen das Zentrum des Eisschildes hin; eine stabile, polygonale Anordnung von Dimmen kann sich
bilden, wenn die Reibungswiirme warmes Eis am Untergrund so schnell nachliefert, wie der Konvektions-
fluss dieses warme Eis in Didmme und Schwellen abfithrt. Advektives Fliessen verfrachtet das konvektive
Eis gegen den Rand des Eisschildes, wo die Ddmme gegen die Stirnen von Eisstromen hin konvergieren.
Die Konvektion in Dimmen und Schwellen wird dann zur Eisstromkonvektion, in der der gesamte Eisstrom
sich wie ein Damm verhilt, der sich vom Untergrund loslést und blockartig aufsteigt. Dies kann zu einer
Erklirung dafiir dienen, dass Eisstrome mit Ausbruchgeschwindigkeiten fliessen.

* Present address: Department of Geological Sciences and Institute for Quaternary Studies, University of
Maine, Orono, Maine 04473, U.S.A.
1 NCAR is sponsored by the National Science Foundation.
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INTRODUCTION

Advection is a horizontal movement of mass that causes changes in temperature or other
physical properties. It therefore describes the dominant type of flow in polar ice sheets.
Advective flow is primarily determined by the longitudinal shear stress oz, down a column
in the ice sheet. To a first approximation:

cxz:f,ﬁgﬂdz, (1)

where § is the mean ice density, g is the acceleration of gravity, z is depth down the ice column,
and 6 is the surface slope of the ice sheet at the top of the column in the longitudinal flow
direction x.

Convection is a circulatory motion of mass having a non-uniform temperature owing to
the variation of density and the action of gravity. It might be an important type of flow in
polar ice sheets. Convective flow is primarily determined by the vertical buoyancy stress
oz down a column in the ice sheet. To a first approximation:

Oy = J Apgdz (2)

where Ap is the decrease of density with depth z down the ice column.

It can readily be shown that 6z, & 6; near the domes of polar ice sheets where ice is thick
and the surface slope is small. Advective flow clearly occurs in these regions, so why not
convective flow if their respective stresses are comparable? That is the question to be addressed
in this paper.

TuEORY
Convection as a creep phenomenon

Figure 1 shows the idealized creep behavior of ice deduced from constant stress and
constant strain-rate creep tests for polycrystalline and single-crystal ice specimens (Griggs
and Coles, 1954; Glen, 1955; Higashi and others, 1964, 1965, 1968; Tabor and Walker,
1970; Hawkes and Mellor, 1972; Ramseier, unpublished). Elastic deformation occurs
during Stage 1, decelerating creep deformation occurs during Stage II, constant creep
deformation controlled by hard glide occurs during Stage 111, accelerating creep deformation
occurs during Stage I'V, and constant creep deformation controlled by easy glide occurs during
Stage V. Hard glide is slip on non-basal crystallographic planes (probably prismatic planes,
which are parallel to the open axis of an ice crystal). Easy glide is slip on basal crystallo-
graphic planes (basal planes are normal to the optic axis of an ice crystal). Decelerating,
constant, and accelerating creep are sometimes called primary (transient), secondary (steady-
state), and tertiary creep. Decelerating creep (Mott, 1953) and constant creep (Weertman,
1973) can be explained by dislocation climb theories. Accelerating creep is related to re-
crystallization in polycrystalline ice, during which hard glide resulting from a randomly
oriented crystal fabric is replaced by easy glide resulting from a crystal fabric with a strong
preferred orientation. Accelerating creep in ice single crystals is related to the upper yield
stress phenomenon (Weertman, 1973).

The classical empirical expression of the creep curve considers total strain ¢ to be the
sum of an elastic strain e, and a visco-plastic strain ey:

€ = eetey = ot (&)™ &t (3)
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(c)

(b) (d)

Fig. 1. Idealized creep curves in ice. Shown are the effects of increasing temperature T, time t, strain €, strain rate é, and stress o,
JSor (a) creep in polycrystalline ice under a constant stress, (b) creep in polycrystalline ice under a constant strain-rate, (c) creep
in single-crystal ice under a constant stress, and (d) creep in single-crystal ice under a constant strain-rate. Stage I is elastic
deformation. Stage I is transient creep deformation. Stage Il is steady-state creep deformation controlled by hard glide.
Stage IV is creep deformation during recrystallization and during transition from hard glide to easy glide. Stage V is steady-
state creep deformation controlled by easy glide. Solid lines are creep curves. Dotted lines separate creep stages.

where é¢; is a temporary strain-rate, ég is a steady-state strain-rate, { is time, and m is a constant
determined by the relative contributions of easy glide and hard glide to creep. In this paper,
temporary creep means time-dependent creep rates and steady-state creep means time-
independent creep rates. The terms “‘primary”, “secondary”, and *‘tertiary” creep are
avoided because they imply a time sequence of creep that is only observed in polycrystalline
ice having an initially random fabric. Polycrystalline ice having an initial single-maximum
fabric or single-crystal ice both might begin with “tertiary” creep which becomes “secondary”’
creep, and “primary’ creep never occurs during the creep experiment (see Fig. 1c).
The total strain-rate given by Equation () is
é = mIM—1émMm | ¢t miMmém—1¢, 1 té,
= mimlém & (4)

where é == 0¢/0f and € = 02[0t? = o0 because & and é; are constants. If inertial effects are
important (which they might be in ice falls, calving ice, or surges) then perhaps the total
differential form of Equation (4) is necessary. Such effects will be ignored in this paper.

Assume that thermally activated power-law dislocation mechanisms control both tem-
porary and steady-state creep in ice. In this case

¢ = én(0[a,)" = & exp (—Q/RT)(a/a,)" (5)
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where ér is a thermally activated strain-rate, g, is a visco-plastic stress, and 7 is a visco-
plastic parameter, all of which are constant at a given stress and temperature provided that
recrystallization does not occur. @ is the activation energy of creep, T is absolute temperature
R is the ideal gas constant, and ¢, is the creep rate appropriate to ice having a given fabric,
texture, and purity, Substituting Equation (5) into Equation (4) gives:
¢ = min~i[&" exp (—Q'/RT)(a/ay)"]™+&" exp (—Q"[RT)(o[a,")" (6)

where single prime terms refer to time-dependent creep and double prime terms refer to
time-independent creep.

For decelerating creep rates, o << m < 1 and for accelerating creep rates 1 << m < o0,
where decelerating creep rates are observed in Stage IT creep for polycrystalline ice having a
random fabric and single-crystal ice oriented for hard glide, and accelerating creep rates are
observed in Stage IV creep for polycrystalline ice during recrystallization to an oriented
fabric and single-crystal ice oriented for easy glide. For perfectly viscous flow n = 1 and for
perfectly plastic flow n = o0, where n = g,/ér is the fluid viscosity and E = a,/ee is the
elastic modulus. Any creep curve can be represented by Equation (6) provided that appro-
priate values of ', 5,", &', &, @', @", m, and n are chosen.

Thermal convection in polar ice sheets involves the creep of polycrystalline ice. Con-
vection flow driven by the buoyancy stress probably initiates as plumes rising vertically from
the base of the ice sheet, where cither a random crystal fabric will prevail owing to continuous
recrystallization or an oriented fabric will prevail owing to basal shear. In either case, con-
vection flow normal to the bed will initially be controlled by hard glide (except along the
sides of ice streams where shear should generate an ice fabric favoring easy glide normal to the
bed). Glen (1955) was the first to make a comprehensive study of creep in polycrystalline ice
having a random fabric. His results and subsequent work, as reviewed by Budd (196g),
Weertman (1973), and Glen (in press), show that m = }, n = 3, and @' = 3Q" are appro-
priate for the creep rates common to glacial flow. Using these values and the results of

Rigsby (1958), Equation (6) reduces to:

é = (Bio+Bso?) exp (—KTw/T) (7)
where Ty is the melting temperature at hydrostatic pressure P,
By = &/4/3t%a,, (8a)
By = &"[0,", (8b)
and A is a constant given by the expression (Weertman, 1970, 1973)
o
K_RQTM[. %‘;ﬂ. (8¢)

Stage II strain is viscous because the transient creep term By dominates when ¢ ~ o, and
Stage III strain is visco-plastic because the steady-state term Bs dominates when ¢ 3 o.
Equations (6) and (7) follow from Equation (3), which predicts a steady-state contribu-
tion to creep at all strains, as illustrated in Figure 2 for polycrystalline ice with m = } and
n = 3. Dislocation theory predicts the ¢ oc oft! transient creep relationship (Mott, 1953)
and the és oc o? steady-state creep relationship (Weertman, 1973), but at present there is no
theory which predicts a steady-state creep component at all strains. According to present
theories of steady-state creep, such behavior would require a nearly instantaneous generation
of dislocations when the stress is applied (Weertman, 1973). Experimentally, Figure 1 shows
that steady-state creep begins sooner as stress and temperature increase, and that stress
relaxation occurs sooner in easy glide orientations than in hard glide orientations. If stress is
applied to polycrystalline ice having a random fabric, therefore, crystals oriented for easy
glide will deform readily and soon reach steady-state creep. Crystals oriented for hard glide
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may never reach steady-state creep under glacial shear stresses. Hence, steady-state creep
appears first in the crystal best oriented for easy glide and last in the crystal best oriented for
hard glide, with a whole spectrum in between. The net effect in randomly oriented poly-
crystalline ice is a steady-state creep component at all strains.
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Fig. 2. Components of creep in randomly oriented polycrystalline ice. Shown using an arbitrary scale are the elastic strain e,
transient strain €y, and steady-state strain e components summed to give the total strain e at a given time t prior to recrystalli-
zation.

Equations (6) and (7) are not the only expressions capable of representing the creep
curves in Figure 1. Weertman (1973) suggests alternative equations which do not require a
steady-state creep component at small strains. However, a significant fraction of ice crystals
near the bed of a polar ice sheet will have high dislocation densities due to advection strain,
so that a steady-state component will exist in these grains when convection strain begins.
Therefore, Equations (6) and (7) should satisfactorily represent all strains related to con-
vection in polar ice sheets. Figure 2 is drawn using m = } and n = 3 in Equation (3), where
€ = 2.7¢€g is arbitrarily taken, and shows the expected creep behavior of thermal convection
flow in polar ice sheets for polycrystalline ice having a random fabric. Figure 2 can be
represented by Equation (7).

Transient creep and the initiation of convection flow

Thermal convection in polar ice sheets should begin as linear viscous flow, according to
Equation (7). Hence, the classical theory for the initiation of thermal convection in a hori-
zontal fluid layer heated from below can be applied (Strutt, 1916). This theory assumes that
heat transfer via conduction dominates so that convective heat transfer can be treated as a
small perturbation of conduction heat transfer. While adequate for transient creep during the
Initiation of convection, this assumption breaks down when convective flow stabilizes because

https://doi.org/10.3189/50022143000031427 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000031427

46 JOURNAL OF GLACIOLOGY

heat transport via convection dominates and because non-linear visco-plastic flow probably
dominates during steady-state creep. Weertman (1967) overcame these difficulties by
developing a block model for thermal convection in a crystalline solid heated from below.
He developed his model specifically for the Earth’s mantle but it can be applied to polar ice
sheets with relatively minor alterations, as shown in Figure 3.

(a)
u u
z
(b)
u u
z ey s
/ - Pl T L
(¢) A 19l @ i
S S N Yo a2

Fig. 3. A block model of convection in a erystalline solid. Shown are the variation of horizontal velocity u in the vertical direction
z (left) and convection flow lines (right) for a convecting layer having a semi-rigid upper boundary and a rigid lower boundary
(tap), a semi-free upper boundary and a free lower boundary (middle), and the block model approximating semi-free upper
and lower boundaries (bottom). The distance of the density inversion (dashed line) below the upper surface determines the
extent to which the density inversion is a free surface. The degree of uncoupling between the lower surface and its bed deter-
mines the extent to which this inlerface is a free surface. Convection flow creates regions where tension, compression, and shear
dominate. These regions are designated by letters, T, C, and S, respectively, and blocks 1 through 6 identify the regions.
Active convection flow occurs below the density inversion (sinusoidal variation of u with z), and passive convection flow occurs
above the density inversion (exponential variation of u with z). This figure is modified from Weertman (1967, figs 1, 2
and 3).

Active thermal convective flow in polar ice sheets occurs below the density inversion since
the buoyancy stress exists only in this region. Passive thermal convection flow occurs above the
density inversion in polar ice sheets since this region is carried by active convective flow
below the density inversion. Hence, Figure g shows a sinusoidal variation of the horizontal
component # of convection velocity with vertical distance z through the ice sheet below the
density inversion and an exponential decrease of # above the density inversion. The sinu-
soidal variation is weighted in favor of the increasing buoyancy stress and temperature toward
the bed of the ice sheet, where u is zero at a frozen ice-rock interface and u is maximized at a
thick ice—water interface. These extremes and their influence on the pattern of convection
flow are illustrated in Figure 3a and b, respectively. Cellular convection generates com-
pression at the base of ascending flow and the top of descending flow, tension at the top of
ascending flow and the bottom of descending flow, and shear between ascending and descend-
ing flow. These regions are denoted by the letters C, T, and S. respectively, in Figure 3.
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Note that these stresses do not distort the convecting layer in Figure 3a where the base of the
ice sheet is a rigid boundary, but do distort the convecting layer in Figure gb where the base
of the ice sheet is a free boundary. Figure gc shows conditions when the ice—rock interface is
partly uncoupled by an intervening water layer, and is therefore intermediate between
Figure ga and b. In this case, basal sliding makes longitudinal advective flow important near
the bed and shear advective flow important further up (Lliboutry, 1966). Longitudinal flow
and shear flow develop multiple-maximum and single-maximum ice fabrics, respectively.
Hence, u is controlled by the warmer temperature toward the bed and by the preferred fabric
toward the density inversion. Figure gc shows these effects on « as balanced for simplicity.
Figure 3c also approximates the smoothly distorted convection layer of Figure gb with a series
of blocks displaced with respect to each other.

Let T be the temperature at the density inversion and 73+ AT be the temperature at the
bed. If p is the mean density of the convection layer, p— Ap is the density of blocks 1 and 2
where warm ascending flow dominates, p+ Ap is the density of blocks 3 and 4 where cold
descending flow dominates, and p is the density of blocks 5 and 6 where horizontal shear flow
dominates. This density difference is caused by a mean temperature difference 87 between
ascending and descending flow, so that:

28p = (p+Ap) —(p—Ap) = aypdT (9)
where «p is the volume coefficient of thermal expansion. Equation (g9) follows from the
definition of ay:

1 dV_ 1 dM[p)  1dp
T VdT T (Mlp) dT pdT
1 d(L3 dL
:-—.u — §-—= 3“[; (IO)

L3 dT LidT

where M is mass, ¥ is unit volume, L is unit length, and ey, is the linear coefficient of thermal
expansion.

Figure 4 shows the stresses acting on blocks 1 through 6. These are the tensile, com-
pressive, and shear deviator stresses or, o, and as, respectively; and the hydrostatic pressure
P. Under equilibrium conditions, the size and shape of all blocks are constant with time.
This requirement means that the forces exerted across sections y'—y’ and y”—y" above the
line z = o are equal and opposite. The thermal stress caused by the density inversion can be
estimated by considering the horizontal forces acting on blocks 1, 4, and 5. As shown in

Figure 4,
YE =9
= (3d)or+ (3d)oc+ (3A) s+ (}A)os’
= —(§d)P,—(}Ad)P,— (}Ad)Pe+(3d) P+ (3Ad) P+ (3AD) P, (11)
where
P, = pg(h—d)+3(p—Ap)e(3d), (r2a)
P, = pg(h—d)+1(p+Ap)g(id), (12b)
P, = pglh—d)+4(p—Ap)gd+1(p— Ap)g(3Ad), (r2c)
Py = pg(h—d)+ipgd+4ipg($Ad), (12d)
Py = Pg(fl—d—(%ﬂd))+pg(%ﬂd), (12€)
Py = pg(h—d—(3Ad)) +pg($Ad). (12f)

Here 4 is the total ice thickness, d is the ice thickness below the density inversion, and Ad is
the displacement of blocks 1 and 2 above blocks 3 and 4 due to thermal buoyancy, where

Ad = d(Aplp). (13)
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Fig. 4. Horizontal stress variations in the vertical direction for the block model of convection in Figure 3. Deviator components
are the tensile stress ar, the compressive stress ac, and the shear stress os. Spherical components are the hydrostatic pressures
P, through Pe, including P, and P;'. Other symbols defined are in the text.

Several simplifying assumptions are needed to extract the thermal buoyancy stress from
Equation (11). Of course o1 and o¢ are equal, and they must approximately equal gg since
these deviator stresses are smoothly varying functions of position. However, if ice above the
density inversion is passively transported by active convective flow below the density inversion,
the stress oy’ should be small and will be neglected. This approximation is best when the
density inversion is closest to the surface, because the firn—air interface is a free boundary.
The ratio A/d, where A is the distance between centers of ascending (or descending) flow in a
horizontal fluid layer heated from below, depends on whether convective circulation is in the
form of polygonal platform cells or elongated rolls, and on whether the top and bottom
surfaces are free or rigid (Knopoff, 1964). In Figure gc the density inversion and basal
interfaces are intermediate between free and rigid, where 2 < A/d < 24/2 is the range over
these extremes. The approximate treatment given here will assume that

or = G¢ X 0%, (14a)
os’ & o, (14b)
A = 2d (14¢€)
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Using Equations (9), (13), and (14), the thermal buoyancy stress from Equation (11) is

or = §Apgd = f5pgdavdT (15)
where terms involving (Ap)?, (ApAd), and (Ad)? are ignored.

Equation (15) is identical to the equation Weertman (1967) derived for his four-block
convection model which had free top and bottom surfaces with no overlying layer of passive
convection flow. This encourages an application of the Weertman block convection model
to polar ice sheets partly uncoupled from bedrock by a basal water layer.

Continuing with the Weertman block-convection model, thermal convection begins
when the thermal buoyancy stress o overcomes the visco-plastic resistance of the ice sheet.
Equation (15) shows that op varies with the mean temperature difference 87 between
ascending and descending convection currents. The equation of heat flow must be solved
to obtain 87. This equation is:

e (d2T)dz2) —w (dT]dz)—(dT/dt) = o (16)

where « is the thermal diffusivity, w is the vertical velocity of convection flow, z is vertical
distance measured from the base of the ice sheet, and (27/8t) = o for steady-state convection
flow. Under these conditions

w, = &(d—z) = —uw,, (17a)
w, = € = —W;, (17b)
wy = ws = 0, (17¢)

where w,, w,, w,, w,, ws, and w, are vertical velocities in blocks 1 through 6, respectively,
and ¢, is the vertical strain-rate, which is always positive in Equations (17).

Setting T = Ti+AT at z = 0 and T = T; at z = d as boundary conditions and using
Equations (17) to specify the variation of u, steady-state solutions of Equation (16) for blocks
1 and 2 are:

dj2 2

fexp (€z22[2k) dz—exp (€:d?[4x) jcxp [—éx(d—2)?/2x] dz
T, = TilAT—AT® i (18a)

df2 df2

J exp (ézz%[2x) dz+ f exp [é;(d?—z?) [2x] dz

o]

and
<
f exp (é:22[2x) dz
T, = Ti+AT-AT —; - 7 (18b)
f exp (é:2%[2x) dz-| J exp [&(d?—z?) [2x] dz
o o
where replacing ¢, with —¢; gives 7, from Equation (18a) and T, from Equation (18b)
Most heat is transported via conduction when é; —> 0 at the onset of convection. For

vertical heat transport mainly via conduction from the bed at z = o to the thermal density
inversion at z = d:

T = Ti+AT(1—z/d)+T* (19)

where T* is a temperature perturbation caused by the onset of convection. Letting é; — o0
in Equations (18) gives the temperature perturbations in blocks 1 through 4 at the onset of
convection:
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% A | BEE | &_Eg¥] | oy
Ty _AT[ — g 6 = —1T, (20a)
and
x_ar| | Z_2] - s
T, —AT[“‘J[S E | et (20b)
The mean temperature difference between ascending and descending currents is
8T = T+ T,*)—HT ¥+ T*) = T,*—T,* = &d?AT/17.5¢ (21)

where ; = d for T;* using Equation (20a) and z = }d for 7,* using Equation (20b),
since these are average block temperatures. Combining Equations (15) and (21) gives the
thermal buoyancy stress op* at the onset of convection:

or* = pgdiéay AT[280k. (22)
Convection flow ér = ¢; is resisted by g, in Equation (5), so that
Go = 7oéz- (23)

Equations (7) and (8) indicate that o, — ,” when ¢ or { are small, 5, — 5,” when o or t are
large, ¢ = o1, 6,/ & 7ér, 0," & Eee, and 7, is the effective viscosity defined as follows:

g exp (KTwu/T)
M=%~ BitaB (24)
Letting 6 = o, convection begins when ap* = g,. Therefore the ratio
i" _ (Ra) _ pgdiayAT _ pgdiayAT(By+3Bsor?)

6, (Ra)*  28okn, 28okexp (KTwm/T) (25)
is unity at the onset of convection. Here the dimensionless Rayleigh number is
(Ra) = pgdiay AT [ky, (26)
and the critical Rayleigh number for the onset of convection is
(Ra)* = 28o0. (27)

According to classical convection theory, 657 < (Ra)* << 1 708 for convection in a
horizontal fluid layer heated from below, where the lower value is for free boundary condi-
tions and the higher value is for rigid boundary conditions (Knopoff, 1964). The value of
(Ra)* in Equation (27) is a direct consequence of taking a free boundary A/d ratio in Equation
(14¢). Even so, the square-wave solution from the Weertman (1967) block model gives
(Ra)* values about half those given by the sinusoidal wave solution from the Rayleigh classical
model (Strutt, 1916). Higher (Ra)* values are expected if convection flow is not permitted
to deform free boundaries, and this was a restriction imposed on the sinusoidal wave model
shown in Figure 4a which was removed for the square-wave model shown in Figure 4b and
c. Hence, Equation (27) probably underestimates (Ra)* but not as much as might be ex-
pected (Weertman, 1967).

Thermal convection is possible when (Ra) = (Ra)*, and comparing Equations (%) and
(8) with Equations (25) through (27) shows that (Ra) oc t-2/3 for t & 0 and (Ra) o o2 for
t » o. This illustrates an important distinction between convection in crystalline solids and
convection in fluids. The viscous flow creep component in crystalline solids is time dependent,
whereas viscous flow in fluids is time independent. Furthermore, the time dependence is
such that when convection begins at ¢ = o, the strain-rate ¢, of vertical flow decreases from the
infinite strain-rate of elastic deformation in Stage I strain, whereas strain-rate is always
constant and finite for viscous fluids. In short, convection in crystalline solids begins as
transient creep and convection in viscous fluids begins as steady-state creep.
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Steady-state creep and stable convection flow

Thermal convection in polar ice sheets is important only if thermal conduction alone
cannot satisfy the equation of heat flow, as expressed by Equation (16). In the absence of
convection, w = o and Equation (16) becomes

k dT/dt
 pep  d2T[dz?
where £ is the thermal conductivity, ¢, is the specific heat capacity at constant pressure, and

setting w = o neglects accumulation and ablation of ice. In the absence of conduction,
x = 0 and Equation (16) becomes:

(28)

2 d7Tjdz (aga)

where @ is the mean vertical velocity in incremental distance Az, Hence, « is obtained from
the ratio of the temporal variation of temperature to the gradient of the spatial variation of
temperature across distance Az when conduction overwhelms convection, and ¢, is obtained
from the ratio of the temporal and spatial variations of temperature across distance Az when
convection overwhelms conduction. In polar ice sheets, the former would characterize Stage
IT creep during the initiation of transient convective flow and the latter would characterize
Stage IV creep during the transition from Stage 111 to Stage V steady-state convective flow.
During steady-state convective flow 27/2¢ = o so that Equation (16) becomes:

2k d7/dz

Zz- = m; Az. (291))
Steady-state convective flow can therefore be discussed in terms of a characteristic distance
z*, where

2K == (QK,’éz)é— (30)
When convection overwhelms conduction, z* is the thickness of the thermal boundary layer
of sharp temperature gradients which develops at the top of blocks 1 and 5, at the bottom of
blocks 3 and 6, and between blocks 4 and 5, blocks 5 and 6, and blocks 6 and 2, as shown in
Figure 5. Heat transport across this boundary layer is via conduction because ¢, normal to
these interfaces is either nil or non-existent. Convection overwhelms conduction in regions
between the thermal boundary layer, where ¢; is large in blocks 1 through 4 and ¢, & ¢;; in
blocks 5 and 6.
Heat transport via convection dominates heat transport via conduction above a critical
creep rate éc, which exists when z* & d, so that from Equation (30)
ée & 2k/d, (31)
Solutions of Equations (18) in terms of é. and at large ¢ are
T = T, 8 Ti+AT (32a)

DGO G) @]
HOEOEC]

Ty By I (32¢)

in the range 0 < 7z < d—2z2*,

T, ~ Ti-l—AT\/z(

(32b)

in the range d—z* < z < d,
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Fig. 5. Thermal regimes predicted by the block model of convection. Shown are the regime during Stage 111 steady-state strain
(top), Stage V steady-stale strain (bottom), and the zone of sharp temperature gradients (diagonal hatching). Here, T; and
Ti + AT are ice temperatures at the density inversion and at the bed, respectively, before convection began.
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in the range o < 7 < z*. The average temperature difference between ascending and
descending currents is now

8T = {(T,+T1,)—¥(T,+7T,) =~ AT. (33)
Comparing Equations (21) and (33) shows that 8T varies with é; when conduction dominates
and is independent of é¢; when convection dominates.

Convection in a polar ice sheet underlain by a substantial basal water layer occurs at a
rate which keeps AT nearly constant below the density inversion because T = Ty at the
bed and T = T; at the density inversion, where T is close to ambient mean annual air
temperature. Therefore the position of the density inversion is such that heat supplied at the
bed equals heat transported across . The minimum amount of heat supplied from the bed
is the geothermal heat flux Hg, and the maximum value of d is the total ice thickness & (dis-
regarding the firn layer). Consequently the thickness of the actively convecting layer is
controlled by heat transport across this layer.

in the range z* < z < d, and

T; ® Ti+AT—AT 4/2

(32d)
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In Stage III steady-state strain, é; << é¢ so heat transport via conduction dominates.
Therefore, the heat H generated per unit horizontal distance (in the two-dimensional case
illustrated in Figure §) per unit time near the base of the ice sheet is given by the conduction
equation

H = (kjd)AT. (34)

In Stage V steady-state strain, é; > éc so heat transport via convection dominates. Con-
vective heat transported upward is the product of the temperature difference AT across d,
the average vertical velocity (é.d) of ascending flow, the heat capacity (pcp), and the length
(A/8) at the base of block 2 in Iigure 5:

Heony = ATéudpeyA[8. (35)

However, ¢; = 0 across the interfaces between blocks 5 and 6, where block 5 is warmer than
block 6 when ¢; > é.. Hence, heat will be transported downward via conduction across
this interface at a rate controlled by the temperature gradient AT across the thermal boundary
layer z* shown in Figure 5. This heat flux should equal the heat supplied at the basal thermal
boundary layer and lost at the density inversion thermal boundary layer. These layers have
length of 3A/8 in Figure 5. Therefore conductive heat transported downward is

Heona = (k/2*)AT = H(3A/8). (36)

Heat transported upward by convection and downward by conduction must equal the total
heat generated at the bed. This heat is H(A/2) in Figure 5, where A/2 is the total length of the
bed under blocks 2, 3, and 6. Therefore, the heat balance equation is

H(A[2) = Heony—Hecona- (37)
Substituting from Equations (35) and (36) gives the heat transport when é, > ¢é.. This is
approximately
H = (éadpey[)AT. (38)

When ¢; < &, heat transport via conduction dominates and the thermal buoyancy
stress driving convection is obtained by combining Equations (15), (21), and (27):

op = pgdiéoay AT [k(Ra)*. (39)
For constant heat transport, AT is obtained from Equation (34) and Equation (39) becomes
o = pgdtéayH|rk(Ra)*. (40)

When ¢; > é;, heat transport via convection dominates and the thermal buoyancy stress
driving convection is obtained by combining Equations (15) and (33):

or = pgdayAT/[16. (41)
For constant heat transport, AT is obtained from Equation (38) and Equation (41) becomes
o = gayH[2cpé,. (42)
Note that both oy and 6 are proportional to é; when ¢, << é, but that op is independent of
é; and og is inversely proportional to é; when ¢, > é&.
Figure 6 is a plot of stress versus strain-rate comparing Equations (39) through (42) with

Equation (7), including both transient and steady-state creep components. Transient creep

is controlled by a viscous flow stress o,

o, = (&/By) exp (KTw/T)
= 30, t4(&/&") exp (KTwm/T). (43)
Steady-state creep is controlled by a visco-plastic flow stress oy, :
on = [(é:/Bs) exp (KTw/T)]}
= 6,"(&/é")} exp (KTu/3T). (44)
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Fig. 6. Heat and mass transport characteristics predicted by applying the visco-plastic flow law of ice to the block model of
convection. Shown are stress o and strain rate € variations with temperature T that relate viscous creep (o curve) and visco-
plastic creep (a, curve) to a constant temperature difference (o curves) and a constant heat tranpsort rate (oy curve) through
the convecting layer. Details are discussed in the text, where o = o, and é — éz. This figure is modified from Weertman

(1967, fig- 5)-

Stage I strain is instantaneous elastic deformation (t = 0, €; & 0, and é; = o0). Stage II
strain dominates the range o < ¢ < (&)1 and is transient creep deformation. Stage ITI
strain dominates the range (é5)r < é; <C éc and is steady-state creep before recrystallization,
Stage IV strain dominates the region é; & é. and occurs during recrystallization. Stage V
strain dominates the range é; << ¢; < (es)v and is steady-state creep after recrystallization.

Stage II strain is marginally stable when é; < (éy)u because the ¢,4-g, curve is nearly
tangential to the op curve. Here creep is a viscous-flow phenomenon because if ¢, decreases,
the oy curve remains above the g, curve but falls below the &, curve. Hence the thermal
stress needed to maintain constant H is high enough to permit viscous flow but not visco-
plastic flow. Stage III strain increasingly replaces Stage II strain when ¢; > (ég)m. Here,
creep becomes increasingly visco-plastic, and ¢, increases because the ¢y curve increasingly
rises above both the o, and 6, curves. Stage III steady-state strain is actually a transition
zone where transient creep is modified by recrystallization, during which easy glide pro-
gressively replaces hard glide as the rate-controlling process of convective flow. The rapid
increase of ¢, during recrystallization accelerates heat transport so that AT is reduced across
the layer of active convection flow. Hence oy levels off and then decreases. Recrystallization
results in Stage IV strain, which occurs in the region where é, & é.. Stage V strain progres-
sively replaces Stage IV strain over the range é. < é; < (&)v. The creep rate remains
constant when ¢é; = (é)v because the o1, oy, and a,+an curves coincide. An increase in
é; could not be maintained by either op or oy because both these curves would then fall
below the 6,465 curve. On the other hand, a decrease in ¢; would be prevented because both
the o1 and o curves would then lie above the 6,40, curve. Whatever oriented crystal fabric
exists at (ég)v is therefore the stable convection ice fabric.

https://doi.org/10.3189/50022143000031427 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000031427

CONVECTION IN POLAR ICE SHEETS e

Equation (38) was derived on the assumption that blocks 1 through 6 in Figure 3 were
comparable in size and shape. This is true when ¢ ~ &. However, when ¢, — (&)v,
constant heat transport requires constant mass transport and this is possible only if the width
of vertical convection currents decreases as ¢, increases. Hence, blocks 1 through 4 narrow
while blocks 5 and 6 widen. Narrowing decreases the efliciency of vertical heat transport via
vertical mass transport. In Stage V steady-state strain, conductive heat transport across z¥
equals convective heat transport across (d—z*). Conductive heat transport across z* is
obtained from Equation (30):

H = (k|]z*)AT = kAT(¢/ax)t. (45)

Convective heat transport across (d—z*) & d is obtained from Equation (38) modified by
changing widths L, and L, respectively, of blocks 1 and 5:

H = (L;/L;)é,dpcy AT]8. (46)
Equations (45) and (46) can be combined to show how the ratio (L,/L;) varies with é,:
(Li[Ls) = 8k|pdey(2xé). (47)

The thermal buoyancy stress at ¢; = (&) is obtained by comparing the balance of forces on
blocks 1, 4, and 5 in Figure 4 with the balance of forces on block 5 (Weertman, 1967):

op = (L,/Lg) pgday AT/16 (48)

which is Equation (15) multiplied by the ratio (L,/L,). Eliminating (L;/L,) and AT from
Equation (48) by substituting from Equation (46) and Equation (45), respectively, gives
Equation (42).

Temporary creep and turbulent convection flow

It is interesting that the relationship H oc (A7)4/ observed in turbulent fluid convection
can be obtained by combining Equations (46) and (48) to eliminate (L41/Ls), combining the
resulting equation with Equations (43) and (44) by setting op — a,-+6n, and combining this
resulting equation with Equations (8) and (45) to relate H with AT via &

gk (AT)s l:cxp (K'TM/T)]+[exp (J{‘TMfT)]é

Bep2H: 7 B Bgé,? (49)

As shown by Equations (8), the terms B; and B contain the visco-plastic yield stress o,.
Constant strain-rate creep tests produce flow curves in which o, varies with ¢ according to
the relationship (Weertman, 1973):

oo = Cét/e exp (Q[cRT) = Celc exp (KTm/eT) (50)

where € and ¢ are constants. For randomly oriented polycrystalline ice, o, = 6," and ¢ = 3,
For ice single crystals oriented for easy glide, o, — a," and ¢ = 1.5. Hence, 1.5 <¢ < 3
is the range of polycrystalline ice with fabrics ranging from single-maximum aligned for
easy glide to random. When the term having By in Equation (49) is disregarded, then By is
obtained from Equation (8a), where ¢ = ¢, 6, = o, and ¢ — 3 in Equation (50), so that
H = H; depends on ¢ and ¢;. When the term having B; in Equation (49) is disregarded,
then By is obtained from Equation (8b), where ¢ = ¢,, 6, — 5,", and ¢ — 1.5 in Equation
(50), so that H = Hj is independent of ¢ and ¢,. The equations resulting from these two
extremes are:
B, 5 gopkBy(AT)s T} gayke,/ )b (AT)4s
v l:&:pxz exp (KTM/T)] o [246,,:&6‘] 12%,11% exp (4K Tu/9T)’ (51)

. o goyk*Bgle i (A s goaykie, "t ]} (AT)4s
® 7 | 8eprtexp (K Tw/37) 8epi*C | exp (KTw/3T) " (52)
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Note that H oc (AT)4/3 in both cases. However, since fluids and randomly oriented poly-
crystalline ice are both isotropic, a comparison of turbulent convection in fluids and polar
ice sheets is better for Equation (51) because Equation (52) applies to stage V steady-state
strain after recrystallization.

The time dependence of Equation (51) is a unique feature of turbulent convection in
polar ice sheets. Its significance may lie in the fact that creep in ice is initially not purely
viscous, as in fluids, but is temporarily viscous according to Equations (7) and (8). Turbulent
convection in polar ice sheets can be expected if the buoyancy stresses caused by the density
inversion are insufficient to overcome the visco-plastic resistance of the ice even though
thermal conduction cannot transport enough heat upward to eliminate the superadiabatic
temperature gradient that develops when (Ra) > (Ra)*. Hence, as (Ra) for the ice sheet
increases above the (Ra)* values appropriate for convection in fluids, o7 builds until it is
relieved catastrophically at time

t = (&"40,"3[3¢ 0, o)} (53)
after (Ra) = (Ra)* for fluid convection. Equation (53) Is obtained by setting Bis = Bsa?
and o = oy in Equation (7) and solving for ¢ using Equations (8). It represents the time
since the superadiabatic temperature gradient developed at ¢ = o0 until the time when
convection begins as catastrophic recrystallization during stage IV strain. Hence, turbulent
convection in polar ice sheets is expected where (Ra) for the ice sheet greatly exceeds (Ra)*
for fluids. This condition exists wherever ice is over 4 km thick in the Antarctic ice sheet.

Turbulent convection via catastrophic recrystallization in a polar ice sheet is a temporary
event because the thermal buoyancy stress is suddenly relieved. The turbulent convection
episode may consist of a local collapse of the relatively rigid cold ice ceiling above the rela-
tively soft hot ice basement, causing a downward flood of cold heavy ice which pushes the hot
light ice aside. Or, perhaps more likely, the turbulent convection episode may consist of a
local upthrusting of the relatively soft hot ice basement, caused by a uniform slow en masse
sinking of the relatively rigid cold ice ceiling. The first process would create a local down-
warping of the cold ice strata, and the second process might inject hot ice sills into the cold ice
strata. Ice has a high Prandtl number (Pr) = n/px, and turbulent convection in fluids having
high Prandtl numbers consists of unstable convection cells which constantly change in size
and shape while appearing and disappearing (Somerscales and Dropkin, 1966; Somerscales
and Gazda, 1969). By analogy, turbulent convection in polar ice sheets should be a temporary
creep phenomenon.

Discussion
Dike—sill convection near the centers of polar ice sheets

The turbulent solid-state convection regime of Stage V steady-state creep suggested by
Equation (52) consists of narrow zones of hot rising ice and cold sinking ice separated by wide
zones of stagnant ice, as described by Schubert and others (1969) for fluids with a strongly
temperature-dependent Newtonian viscosity. The narrow sinking zone may not exist in a
convecting polar ice sheet, however, owing to the anisotropic effective viscosity of ice. In this
case Equation (47) becomes:

(ANN) = 16kfpdep(2né)} (54)

where A replaces L, and A = 2(4,+L,+L;) & 2L; in Figure 5. This is dike-sill convection
of the type commonly observed when magma intrudes horizontal beds of sedimentary rocks
in the Earth’s crust. By analogy, the strata of cold ice sinks en masse into the hot temperate
ice layer at the bed, forcing the basal ice upward as dikes which inject sills between the most
weakly coupled layers of the slowly sinking cold strata. In order to conserve mass flux, the
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ratio of dike width to distance hetween dikes is inversely proportional to the ratio of ice

velocities rising in dikes and sinking between dikes.

Figure 7 illustrates the possible development of dike-sill convection according to plasticity
theory, for which n = o0 in Equation (5). The main difference for ice, which is visco-plastic
so that n < o0, would be a rounding of sharp corners and a widening of the shear zones
bordering dikes and sills in Figure 7. One practical consequence of this is to reduce the

1SRRI RARRY

Fig. 7. The initiation and growth of dike—sill convection in a polar ice sheet according to plasticity theory. Arrows show ice
flow directions and orthogonal cyeloid segments show the ice slip-line field in dikes and sills. In the top view, the slip-line
Jield is shown for a basal temperate ice layer having an effective viscosity an order of magnitude lower than the overlying cold
ice (see Fig. g) so that the cold ice and the bed (shaded zone) behave as rigid plates compressing the temperate ice (Hll,
1950, fig. 64). The compressive pressure is relieved where irregularities in basal conditions allow doming of the basal
temperate ice layer so that basal ice flows toward these domes, generating the slip-line field shown. In the middle view, lateral
spreading of the cold ice overlying the domes causes the domes to contract laterally and expand vertically into the cold ice,
becoming ascending dikes of recrystallized ice in the process. The slip-line field in the dikes is that Jor a plastic material
injected between rigid parallel plates and forcing them apart. In the bottom view, ascending dikes have injected sills between
weakly coupled layers (dashed horizontal lines) in the strata of slowly sinking cold ice between dikes, and Jrictional heat
in the basal ice feeding the dikes has created a basal water layer (black horizontal band) which has uncoupled the ice sheet
Jrom the bed. Consequently, sills have the slip-line field of plastic material Joreed between rigid parallel plates and the basal

temperate ice layer has the same slip line field as when one of the plates (the water layer) is a frictionless surface.
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possibility that convection dikes could be detected by radio-echo sounding, since the junctions
between dikes and sills would be less able to behave like corner reflectors for radar waves
(personal communication from S. Evans in 1974). In Figure 7, convection begins as an up-
warp of the boundary between temperate basal ice and cold overlying ice (an upward bulge
of the Ty isotherm). The initial up-warps could be nucleated where variations exist in the
basal temperature gradient, the strength of ice-rock coupling at the bed, and the stress regime
around bedrock topography, all of which are interrelated and can locally decrease the
effective viscosity of cold ice. These up-warps collapse laterally and are thrust upward during
the five stages of strain to become dikes which inject sills into the sinking strata of cold ice.
Convection dikes are unstable and form randomly during Stage I1I steady-state strain but may
become stable to form an orderly array if Stage V steady-state strain is attained. The stable
array is active only so long as the basal temperate ice layer exists. The array stagnates if
convection flow redistributes the temperate basal ice in dikes and sills faster than it is formed
by geothermal and frictional heat generated at the bed. Convective flow stops when an array
stagnates, so advective flow will recrystallize the vertical easy glide ice fabric developed in
dikes but will preserve the horizontal ecasy glide ice fabric developed in sills.

Advective flow is a general feature that is characteristic of the entire ice sheet, whereas
convective flow would be a local feature confined to narrow dikes and sills in the lower part
of the ice sheet. In general, therefore, the convective flow regime should conform to the
advective flow regime rather than vice versa. Figure 8 shows the slip-line field which plasticity
theory predicts for advective flow from a central ice dome. Ice flow lines can be drawn as
lines radiating from the ice dome and therefore are 45° diagonals to the slip-line field. In
the absence of advection, the most efficient convection occurs when convection dikes intersect
at 120° angles to form a hexagonal array, since this minimizes the length of dikes penetrating
cold sinking ice. In Stage V convection, therefore, hexagonal prisms of cold ice A in diameter
and separated by dikes of width AX should sink slowly into a temperate basal ice layer under
the domes of polar ice sheets where advection is small. However, advective flow increases
with increasing distance from the domes, and the dike array must intersect at go° angles if it
is to enclose prisms of cold sinking ice which correspond to the slip-line field of orthogonal
logarithmic spirals for advective flow radiating from the dome, as shown in Figure 8. Further-
more, as distance from the dome increases, the prism diameter paralleling advective flow
increases with respect to the prism diameter normal to advective flow. Consequently, hexa-
gonal convection ‘“cells” under the dome where advection is least are transformed into elon-
gated convection “rolls” aligned with advective flow toward the margin of the ice sheet.
This transformation has been observed and studied in detail for convection—advection inter-
actions in fluid flow (Low, 1925; Jeffreys, 1928; Deardorff, 1965; Gallagher and Mercer,
1965 ; Davies-Jones, 1971). However, the dike-sill nature of crystalline convection proposed
for ice sheets does not exist in fluid convection.

The vertical ice velocity entering dikes can be estimated from the tensor form of the flow

law of ice (Nye, 1957):
&y = H[(0us[0x5) + (Puy/0xi)] = (7"~ AM)ayy (55)

where 7 and j are orthogonal coordinates, #; and u; are velocity components in respective
directions x; and xj, é;; are components of the strain-rate tensor, oy are components of the
deviator stress tensor, = is the effective stress, and, using the notation of Equation (5),

A = (ooléx'/™) = (oo/&"/") exp (@/nRT). (56)

Since a convection dike is aligned in the direction x of advective flow, set i = y,j = z, xi =,
and x; = z so that the effective stress

r = (3015’01 )} = (6224 0y 2022+ 200y 2 +20y. 2 +2025'2) /2 (57)
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since 6y' = o5’. Advection is nil under central ice domes of polar ice sheets so the only
deviator stress components used in Equation (57) are ¢;' = o)/ =~ ay;/, where 6" = o1 = o¢
and oy;' = os in Equation (14a) and Figure 4. For Stage V steady-state strain, n = g and
A" = Byexp (—RTw/T) = 1.42 X 1078/bar®s in the temperate ice layer at the base
of the dike. In the dike itself, the effects of developing an easy-glide fabric tend to offset the
effects of decreasing temperature so that A-* should not change greatly for ice moving
up the dike. Solving Equation (55) for i =j = z and using Equation (57) to evaluate T gives

& = y/247710,5 = \/24 M (}pgdayST)3 (58)

plastic slip-line field
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Fig. 8. Anidealization of the interaction between convective flow and advective flow in a polar ice sheet drained by ice streams and
JSringed by ice shelves. This figure assumes that convection dikes form a stable polygonal array that becomes elongated in the
direction of advective flow and converges on ice streams so that the entire ice stream behaves like a single dike (alternatively,
the convection dikes may form randomly, be transient, and be largely independent of advective flow). Convection begins under
domes (D) and saddles (S) along the ice divide where the ice sheet is thickest and advection is minimal so that dikes (thick
lines) can form a hexagonal array. As ice spreads from the domes, interaction with the plastic slip-line field of radially
spreading advective flow (dotted orthogonal logarithmic spirals) causes the six-sided convection polygons to become five-sided,
then four-sided, and finally elongated rolls with dikes paralleling advection flow lines (thin broken lines). These flow lines
converge to _form ice streams, for which the plastic slip-line field is typical of extrusion flow (Hill, 1950, fig. 44) at the
upper end where flow lines converge on the ice stream, compressive flow (Hill, 1950, fig. 64) in the middle where flow lines
are parallel in the ice stream, and indenting flow (Hill, 1950, fig. 70) at the lower end where flow lines diverge onto the ice
shelf. Indenting flow (cross-section A) also characterizes ice-stream convection before ice thinning enables the shear zones
alongside ice streams to penelrate the surface (cross-section B).
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where g’ is obtained from Equations (2) and (9). Snow accumulation and ice advection are
generally least under central ice domes of polar ice sheets. Hence, the density inversion
should occur not far below the firn layer so d — & is a reasonable approximation. Setting
p = 0.92 Mg/m3, g=098mfs?, d =gkm, ay = 1.53x107%/deg, and 87 = 50deg in
Equation (58) gives ¢’ = r.obar and ¢ = 2.2x107%s. Setting ¢ = 2.2 X 10785,
k = 7.0x 102 erg/cm a deg = 9.3 < 107 W/m deg, ¢p = 1.9 107 erg/g deg = 7.95 X 107 kJ/
kg deg, and « = 1072 cm?/s = 10~® m?[s in Equation (54) gives AA/A = 0.032. Hence,
AX = 0.2 km for A =~ 2d = 6 ki in Equation (14c).

If dike-sill convection in the Earth’s mantle controls sea-floor spreading and continental
drift, as has been suggested (Hughes, 1973[a], [d]), then A ~ 2d = 6 ooo km for mantle-
wide convection. Setting AA X — 0.032 predicts that AX = 200 km is the dike width in the
mantle. These values of A and AX are the same order as the average distance between mid-
occan ridges and the average ridge width. Hence, the spacing and width of dikes predicted
for polar ice sheets are in approximately the same ratio as those observed for crustal features
that might result from convection dikes in the Earth’s mantle. This is encouraging, because
the Earth’s mantle is the only other part of our planet where convection in crystalline solids
is postulated.

Vertical convection velocity w, is 2 maximum at the base of a dike and decreases in steps
to zero at the top of the dike, with one step for each sill intersected and fed by the dike.
Solving Equation (58) for the above values of A=%, p, g, d, ay, and 87 gives we = é;d = 2.1
km/a. This compares with surge velocities, as might be expected if dike-sill convection in
crystalline solids is analogous to turbulent convection in fluids. The sinking velocity of cold
ice between dikes is (AAA)we = 67 m/a at the top of the basal temperate ice layer. Hence,
this is the annual layer of ice which must be heated to the pressure melting point if dike-sill
convection is to remain in a stable, steady-state condition near the bed. Otherwise, the basal
temperate ice layer will thin to zero thickness and dike-sill convection will stop. The tem-
perature gradient above the basal temperate ice layer is therefore important.

Ice-stream convection near the margins of polar ice sheels

Ice streams form near the margins of polar ice sheets when advective flow concentrates in
channels of the subglacial topography. The increased shear deformation in these regions of
concentrated flow generates frictional heat which melts the basal ice, permitting basal sliding,
which erodes the channels and thereby further increases the ice discharged through them.
Once formed, therefore, ice streams are self-perpetuating. Shear zones border the sides of ice
streams, and create characteristic crevasse patterns when ice-sheet thinning near the margin is
sufficient to allow the shear zones to penetrate to the surface. The ice fabric generated in the
shear zones favors vertical easy glide, and if shear deformation at the base and along the sides
of the ice stream generates sufficient frictional heat to make ice streams warmer than ice be-
tween ice streams, a buoyancy force arises which may lift the ice stream slab en masse from its
bed. This would be ice-stream convection,

Figure 8 illustrates the possible development of ice-stream convection before and after
the flanking ice-stream shear zones penetrate the surface of the ice sheet, according to plasticity
theory. Before penetration, the warm ice stream presses against the cold overlying ice as if
it were a rigid prism indenting a plastic plate. Ifd and A are the respective heights and widths
of the ice stream, where d < h and the ice stream temperature is uniformly 87 hotter than the
surrounding ice, the buoyancy force it experiences arises from a thermal stress o7 = pgday8T.
Applying the Orowan (1965) analysis to ice streams, resisting this force are the plastic pro-
perties of the surrounding colder ice. This includes a uniaxial stress o; = (1+4-7/2)0, exerted
on the overlying cold ice and shear stresses o,y = o,/2 exerted on the flanking cold ice,
where q, is the uniaxial yield stress of the cold ice and o,y acts on six vertical surfaces: the
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two sides of the ice stream, the two sides of flanking ice, and the sides of the two adjacent ice
strcams. Summing vertical forces:

EFz = 0 = Aor— Ac,—bdoyy
= pgdAaydT—(1+}m) Ao, —3da,. (59)
Solving for §7:
8T = [(1+41im) Aoy —3da,)]/pgdAay. (60)

When the ice stream penetrates the surface of the ice sheet, o, vanishes, d = k and Equation
(60) becomes

8T = 36,/pgAay. (61)
Note that 87 is independent of 4 in this case.

Antarctic ice streams are generally visible as heavily crevassed slabs on the ice sheet
surface when /& < 1 km, and they are typically A & 25km in width. The plastic yield stress
of ice is commonly taken as o, = 1 bar. Using these values and the values of ps & and ay
previously cited gives 87 = 178 deg in Equation (60) and 87 = 8.7 deg in Equation (61).
Hence ice-stream convection is unlikely when d << k, but may occur when d — & provided
that ice streams average several degrees warmer than surrounding ice. However, since
5, € I bar for visco-plastic flow, ice-stream convection is still possible when d < k if A —d.
Major ice streams often form by the confluence of smaller ice streams for which A —> d,
and small ice streams may originate from converging convection dikes. The displacement of a
convecting ice stream from the bed is

Ad = day3T. (62)

For d = 1 km, ay = 1.53 X 107#/deg, and 8T — 8.7 deg, Equation (62) gives Ad = 1.3 m.
This displacement would substantially uncouple the ice stream from the bed and radio-echo
sounding has revealed subglacial bodies of water at least this thick under Antarctic ice
streams, leading Robin and others (1970) to call such ice streams “pseudo ice shelves”.
Basal uncoupling of this order should cause an ice stream to surge, and since ice streams drain
ninety per cent of the West Antarctic ice sheet, surges via ice-stream convection should result
in disintegration of the ice sheet (Hughes, 1970, 1972[b], 1973[b], [c]).

Figure 8 shows the slip-line field and the resulting flow lines which plasticity theory
predicts for an ice stream draining an ice sheet onto an ice shelf. In ice-stream convection,
the ice stream is buoyed up en masse as a hot slab as shown in Figure 8. This slab acts like a
rigid prism which plastically indents the overlying cold ice before the ice stream breaks
through the surface of the ice sheet.

Rayleigh numbers for initiating convection

Convection begins under the central domes of polar ice sheets where ice thickness and the
temperature difference between surface and bed are greatest and where snow accumulation
and ice advection are least, since (Ra) oc AT in Equation (26) and d — A under these
conditions. The temperaturce profile under polar ice domes is given by the equation (Robin,
1955) :

Th—T, = (AT|Az) p(2hic/wa)t [erf (wyz2[2hi)b] (63)
where z is measured from the base, (AT/Az)yp is the basal temperature gradient, and w, is
the ice accumulation-ablation rate. For a frozen bed and no advection, (AT{Az)y = Hg =
40 cal/em? a = 53 mW/m?. For the temperature range of polar ice sheets x = [1.15% 102
cm?[s|[1—(8.34 x 10 3/deg)®] & 102 ecm?/s will be used where @ is the Celsius temperature
(Pounder, 1965). In the lower part of a polar ice sheet, where convection would be most
active, Equation (63) is adequately approximated by the expression (Hughes, 1972[c]):

zlh = N(Twv—T)|T (64)

https://doi.org/10.3189/50022143000031427 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000031427

62 JOURNAL OF GLACIOLOGY

where Ty is the basal ice temperature. The effective viscosity of ice 7, in Equation (26) is
obtained from Equation (55) and can be written in terms of the basal effective viscosity of
ice np using z/h and N in Equation (64) as follows (Hughes, 1972[c]):

7o = 2 0oy’ [0y = 24R711

= 2 exp (K) exp [(K|N)z/k][BrmT

= v exp [(K]N)z/h] (65)
where K = 25.4 in Equation (7) and Figure g, and (K//N) is a viscous scale height.

Schubert and others (1969) show how the viscous critical Rayleigh number (Ra),*

varies with the ratio (K/N) for both rigid and free boundary conditions in fluid convection.
For polar ice sheets, rigid boundaries exist when d < k and the bed is frozen whereas free
boundaries are approximated when d —h and the bed is thawed, with basal boundary
conditions being more important than surface boundary conditions (Hughes, 1g972[c]).
Figure 10 shows the variation of (Ra),* with (K|N) for both frozen and thawed beds. Figure
10 can be applied to the initiation of ice-sheet convection since it begins as viscous flow
according to Equation (7) and Figure g.
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Fig. 9. A polynomial-exponential flow law fitted to creep data for polycrystalline ice in which hard glide dominates. Plotted is
the variation of octahedral shear stress T with octahedral shear strain-rates y at various temperatures . A best-fit of the
flow law at various homologous temperatures T| Ty (thin lines) is given to creep data from laboratory experiments and
glacier studies (dashed lines). Note that ¢ oc 7 when v < 0.5 bars, y o¢ 7 when 7 > 5.0 bars, and y increases tenfold
as T|Twu — 1. This figure is modified from Budd (196y, fig. 2.2).
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GRS EEN]

K/N

Fig. 10, The variation of the critical Rayleigh number for initiating convection with the viscous scale height in the convecting layer.
Rayleigh numbers (Ra) (o) can be caleulated for the effective viscosity n, averaged through a convecting layer of thickness d, or
Rayleigh numbers (Ra) () can be calculated for the effective viscosity gy at the base of the convecting layer of thickness
d(N|K). Solid lines are for a coupled bed and dashed lines are for an uncoupled bed. This figure illustrales the Schubert
and others (1969) treatment modified for polar ice sheets (Hughes 1972(¢]).

The minimum ice thickness needed to initiate convection is obtained by solving Equation
(26) for h after setting d = (N/K)h, 5, = np, (Ra) = (Ra),*, and using Figure 10 to relate
(K/X) and (Ra),*. This gives

ey (Ra) ﬂ*(ﬁ"f-z\’)“]é, (66)

- [ pgav AT
Equation (66) will be applied to the region of the Wilkes Land ice dome in East Antarctica,
where Ty, =~ 220K, Ty, @ Tm =~ 270K, wy, ~ 7cm/a, and radio-echo sounding suggests
regions having both frozen and thawed beds. The thawed beds are sometimes above sub-
glacial lakes deep enough to substantially uncouple the ice sheet from the bed (Oswald and
Robin, 1973). Equation (63) can be applied to this region by setting Ty = Ty to obtain
(AT/Az)y for a thawed bed and setting (A7 /Az)y = Hg to obtain Ty for a frozen bed.

3
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The resulting temperature profiles are compatible with ' = g in Equation (64) for the lower
portion of the ice sheet where convection would be active. Taking K = 25.3 from Figure g
gives (N/K) = 8.4, for which (Ra),* = 25 for a thawed bed and (Ra),* = 32 for a frozen
bed according to the curves showing (Ra) as a function of 5y in Figure 10. From Equation
(65): .
2exp (R) 2ex
=1 ren () (67

where 7 = 4/26;’ from Equation (57) for 6, = 6,/ & 6y’ and ;' = 64/ = 02 & 0, with
o; = ot being given by Equation (15). However, n = 1 for convection initiated as transient
creep so that 72~! = 1 and B = B;. For a temperate ice layer (Lliboutry, 1966) above a
subglacial lake By = 1 g420/bars and np = 1.5 10 P = 1.5 X 105 N s/m? but for a frozen
bed By = 142/bars and 7y = 1.5 X 10"5 P = 1.5 x10'% N s/m? using the By values in Figure
9. Solving Equation (66) gives # = 1 km for the thawed bed and & = 3 km for the frozen
bed. Since 4 km < & < g km near the Wilkes Land ice dome, convection can theoretically
begin anywhere.

Rayleigh numbers for maintaining convection

Convection begins as transient creep which creates a broad upward bulge in the Ty
isotherm at the top of the temperate ice layer covering a thawed bed or in the Ty isotherm
at the bottom of the cold ice layer covering a frozen bed. This is accompanied by a downward
bulge of isotherms in the flanking ice, and the net result is a tiny fraction of one convection
overturn so that the convective perturbation of conductive heat flow takes place, as shown
in Figure 6 for ¢ <€ ¢é.. In dike-sill convection, however, the broad, low, upward bulge
rapidly transforms into a narrow, high, up-thrusting dike. During this transformation, Stage IT
transient strain also transforms to Stage V steady-state strain. As shown in Figure 6, con-
vection transports heat faster than conduction during State V strain and the question arises:
can convection be maintained at these higher convection velocities? It can if the dike narrows
with increasing convection velocity in the dike such that heat is not transported upward
from the bed faster than it is provided at the bed by shear deformation and the geothermal
flux. Equation (54) expresses this requirement in quantitative terms.

The Rayleigh number for maintaining dike-sill convection is obtained from a considera-
tion of Stage V steady-state strain. Let (Ra),* be the viscous critical Rayleigh number which
must be exceeded to initiate convection as Stage II transient strain, and (Ra),* be the visco-
plastic critical Rayleigh number which must be exceeded to maintain convection as Stage V
steady-state strain. The thermal buoyancy stress driving convection can be expressed in
terms of (Ra),* and (Ra)n* by setting Ra* = (Ra),* in Equation (27), setting (Ra) = (Ra)n*
in Equation (26), and substituting these equations into Equation (22):

or* = [(Ra)n*/(Ra),*Inoéz. (68)

Substituting for 7,, using Equation (24) and substituting for ¢; using Equation (7), where
¢ = or*, gives:

Bi+-3Bsor*?
¥ o [EEToeen *
(Ra)n ]:Bl‘{'BaUT*z (Rd),’ & (69)
Note that (Ra)y* — (Ra),* when or* is small and (Ra),* ~> 3(Ra),* when or* is large.
As seen in Figure 6, a small ap* is sufficient to initiate convection as Stage IT transient strain
when (Ra)* = (Ra),*, but a larger oq* is required to maintain convection as Stage V steady-
state strain when (Ra)* = (Ra),*. Equation (69) is plotted in Figure 11 for the values of

Bt and By in Figure 9. Note that (Ra),* = 3(Ra), for ox* = o,, where 6, = 1 bar is taken
as the yield stress for ice when using plasticity theory.
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The minimum ice thickness for maintaining convection is obtained by solving Equation

(66) when 7y, is given by:
2 exp (K exp (K
=2 _4SPiT) (70)
T QDG

Here 7 = (3/4/2)o; from Equation (56), assuming all s;;" components are important and
approximately equal to each other at the heads of ice streams where dike-sill convection
becomes ice-stream convection. These are regions near the ice-sheet margin where advecting
flow will transport dike—sill convecting systems initiated under central ice domes and where
dike-sill convection must therefore terminate. Since dike—sill convection is in Stage V steady-
state strain, n = g and B = By", where Bs = By’ = 142/bar*s for Stage IIl steady-state
strain controlled by hard glide and By = By" & 1 coo/bar® s for Stage V steady-state strain
controlled by easy glide (Fig. g and unpublished data by M. Nakagawa and T. J. Hughes,
1971). Setting sp* = 6;' = 6, = 1 bar, so that (Ra),* = 3(Ra),* = 840 from Equation
(27), gives (K/N) = 1.4 for a thawed bed in Figure 10. The bed is undoubtedly thawed at

4 — T T T B e B o i T P R
S el
Ra*, !
3
Ran
1+ A
O 1 I e Lo L | 1 e o 8 A | L I [
1072 107 10° 10"
7, (BARS)

Fig. r1. The variation of the ratio of the final critical Rayleigh number to the initial one with the thermal buoyancy stress driving
convection. Note that (Ra)n* — (Ra)y* when oy < 5% 1072 bar and that (Ra)n* — 3(Ra)y* when o > 5 bars.
Compare with Figure g.

the head of an ice stream, so that N = 18 for K = 25.3 in Figure 9. Equation (64) then
predicts that T3 = [N/(N+1)]Tn = 0.95Tp, in the shear zones flanking the ice stream,
where Ty, = Ty. This is what happens if the shear zones behave like dikes in dike-sill
convection. However, if the entire ice stream is buoyed up by oy then the flanking shear zones
do not behave like dikes and ice-stream convection replaces dike—sill convection. Setting
AT = 25 deg as a value appropriate for the heads of ice streams, Equation (66) predicts that
dike-sill convection persists until d = 685 m, where d replaces & because d — £ is invalid
near ice-sheet margins. Since ice-stream convection is expected when ice streams are observ-
able on the surface at # & 1 000 m, dike-sill convection “rolls” can merge at the heads of ice
streams and be transformed into ice-stream convection “slabs” (see I'ig. 8).

(C/ONGLUSIONS

Thermal convection in polar ice sheets is predicted. Possible convecting regions in the
Antarctic ice sheet are shown in Figure 12. Convection will be active below the density
inversion and passive above it. Dike-sill convection predominates under the central ice
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domes and ice-stream convection predominates along margins which terminate as ice shelves.
If dike-sill convection stabilizes, a polygonal network of dikes may form under ice domes and
advective flow will transport this network to the heads of ice streams where dike—sill con-
vection transforms to ice-stream convection. Separate Rayleigh criteria are necessary to
specify conditions which initiate convection and conditions which maintain convection, and
these criteria determine whether dike-sill convection consists of unstable random events or
forms a stable polygonal network.

Dike-sill convection results if the cold ice ceiling slowly sinks en masse into the hot ice
basement, forcing narrow dikes of basement ice to rise. Sills of basement ice are then injected
laterally into the cold ice strata from the rising dikes. Alternatively the cold ice ceiling might
collapse into the hot ice basement, pushing aside the hot ice underneath. This would cause a
local down-warping of the cold ice strata, whereas dike-sill convection allows the cold ice to
remain relatively undeformed by concentrating deformation in the hot ice. Since hot ice
deforms more easily than cold ice, upward dike-sill convection is more probable than down-
ward convection via local down-warping of cold ice.

Thermal convection in polar ice sheets provides new interpretations of several glaciological
observations. For example, convection sills would create the horizontal “shear bands’® which
intersect the “Byrd” station core hole in Antarctica (Gow, 1970), and the “cold spikes” in the

Fig. 12. Thermal convecting regions predicted for the Antaretic ice sheet. Shown are the continental-shelf margin (outer dashed
line), ice-shelf margins (hatched lines), the ice-sheet margin (solid lines), ice-sheet 500 m elevation contour intervals
(inner dashed lines), major ice domes (lettered D), major bedrock outcrops (black palches), and possible convecting regions
(dotted areas). Dike—sill convection occurs in the interior and ice-stream convection occurs along the margin. Due to frictional
heat generated in the hot basal ice squeezed up dikes by cold sinking ice, the convecting regions are also regions of probable
basal melting and partial uncoupling between the ice sheet and the bed. Hence, glacial instability is possible where these
regions penetrate to the coast as convecling ice streams. This occurs frequently in West Antarctica, which may be disintegrat-
ing as a result (Hughes, 1973(d]).
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oxygen isotope profile down the Camp Century core hole in Greenland (Dansgaard and others,
1972). The details of these explanations will be published elsewhere (Hughes, in press).
Perhaps the most dramatic effect predicted by thermal convection in polar ice sheets is glacial
instability leading to ice-stream surges and catastrophic ice-sheet disintegration. Dike-sill
convection provides a means for generating considerable basal melt water under the interior
of an ice sheet from the frictional heat of shear deformation in basal ice moving toward dikes.
This permits the lower part of the ice sheet to be much softer and less coupled to the bed than
was previously believed possible. The basal melt water generated by dike—sill convection will
flow down the pressure gradient toward the ice-sheet margin where it converges at the heads
of ice streams. Ice-stream convection buoys up ice streams, thereby uncoupling them from
the bed and allowing them to surge. If the force of the surge is sufficiently strong, the ice
stream can punch through the ice shelves which typically fringe polar ice sheets and discharge
directly into the sca. When this happens, longitudinal flow transforms from compressive to
extensive and the dominant crevasse pattern transforms from a predominantly longitudinal
alignment to a predominantly transverse alignment (Nye, 1952). Transverse crevasses favor
iceberg formation, and a calving bay develops at the ice stream terminus which migrates up
the ice streams and guts out the heart of the ice sheet just as the ice stream in Hudson Strait
gutted out the heart of the Laurentide ice sheet centered over Hudson Bay in less than 300
years (Hughes, 1974, 1975). A calving bay may be forming in the Amundson Sea where
Pine Island Glacier and Thwaites Glacier have punched through the ice-shelf fringe around
west Antarctica. Thermal convection should have uncoupled this part of the ice sheet from
the bed, as shown in Figure 12. It can be assumed that the Hollock-Kenyon Plateau ice
drainage basin, which feeds these ice streams, will be the next sector of the west Antarctic
ice sheet to disintegrate. If so, thermal convection may have played a major role.
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DISCUSSION

J. F. NyE: The slip-line field you showed describes how the ice thickens and therefore rises
at a low place, and thins and therefore falls at a high place. This happens with uniform
density and so is an effect quite independent of convection, which depends on buoyancy
forces arising from density variations. But after showing this slip-line field you seem to say
that it exhibits convection. Could you clarify this point?

T. J. Hunes: My purpose in showing the slip-line field for perfectly plastic flow was to call
attention to the slip lines which are normal to the bed at the bed. Principal shear stresses
causing plastic yielding along these slip lines are equal in magnitude to those causing plastic
yielding along slip lines parallel to the bed at the bed. You have related aspects of the slip-
line field beginning parallel to the bed with various aspects of spreading glacial flow (longi-
tudinal tension, longitudinal compression, basal erosion, surface faulting and slumping, etc.).
I wanted to relate aspects of the slip-line field beginning normal to the bed with various aspects
of convection glacial flow. One aspect is ice converging toward an ice stream from flanking
ice domes. Another aspect is ice moving along ice divides from domes to saddles. Another
aspect is ice moving across depressions or lakes at the bed. All of these aspects involve longi-
tudinal compression or vertical shear, both of which favour vertical ice transport if a buoyancy
force exists. Convection dikes result from vertical ice transport at the bed, and therefore may
begin at sites where surface and basal conditions favour preferential shear in a small sector of
the slip-line field which is normal to the bed at the bed. If so, convection dikes may nucleate
at such sites. Of course, any particular slip-line field vanishes as soon as convection begins.
But it exists (for perfect plasticity) right up to that moment, because the assumption of con-
stant density is adequate until convection begins. I am interested in any condition which
favours the initiation of convection, and the pre-convection slip-line ficld is useful in this
respect.

L. Lusourtry: Calculations on convection consider an infinity of cells side by side. I suppose
that two single cells cannot work in a steady way, owing to the strong resistance of the motion-
less ice around. In other words, I can imagine diapirs of warm ice, but not a continuous
overturn. Do you think it could exist?

Huches: 1 expect that if continuous overturn exists, a complete cycle is unlikely during the
lifetime of a convection episode because the cold ice sinking between dikes is very slow in
absolute velocitics and with respect to velocities of ice in dikes. I imagine that the velocity of
ice in sills decreases to zero with distance from the dike, and horizontal ice velocities in sills are
therefore intermediate compared with vertical ice velocities in and between dikes. Continuous
overturn is most likely in ice entering the lateral shear zones alongside ice streams from ice
ridges between ice streams. But ice-stream thinning halts convection long before a convection
circuit is complete, The particle path of an ice crystal transported by dike-sill convection
and ice-stream flow would resemble a portion (much less than one circuit) of a rectangular
spiral aligned with the ice stream. On the other hand, dike-sill convection under central ice
divides would not be continuous unless a continuous polygonal network of dikes existed.
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Even in this case, dike-sill convection at the margins of the network should be discontinuous.
Certainly, single isolated dike-sill convection systems would be discontinuous for the reason
you stated.

G. pE Q. Roein: Dr Hughes will be welcome to study our collection of radio-echo records
from the 1974-75 season which are much better for studies of layering than carlier seasons due
to use of a differentiated output on the receiver. If, as you suggest, there is an appearance of
stronger horizontal layering above sub-ice lakes, these may not be due to presence of sills, but
merely because the internal layering is flatter, and hence the reflection closer to specular,
than over areas of rougher bedrock.

HugnEs: This would be unfortunate because I had hoped that radar sounding, which is so
promising in furthering our understanding of ice-sheet dynamics, might also be sensitive to
dike-sill convection. However, if internal reflection horizons exist between mechanically
weak layers in the glacial strata, the horizons are potential sills and may be actual sills if
dike-sill convection does occur. In this regard ice moving over subglacial lakes will develop
vertical shear zones along the sides of the lake. If convection dikes exist in these shear zones,
the resulting sills will extend over both the ice-lake and the ice-rock interfaces. Intensified
internal radar reflections above the ice-rock interface alongside subglacial lakes could not be
explained by the specular reflection you mention because this interface is not smooth. So
that is what I would be looking for in radar reflection horizons associated with subglacial lakes.

J. W. Gren: I wonder if the Rayleigh number for fluids is the correct one to use here. First
you use the lowest (bottom) viscosity although presumably higher up the viscosity is higher
though in a fluid convection this fluid is also taking part in the circulation. Surely some sort
of average viscosity should be used. However, you now refer to the dike-sill type of convection
and in this the bottom material has most of the rapid flow so perhaps its viscosity is the most
important. However, in this case the critical Rayleigh criterion is that the temperature dif-
ference can be maintained despite thermal conductivity in the time required by the viscosity
for the circulation to take place. That is why these quantities enter into the dimensionless
Rayleigh number. With a very narrow dike the thermal conductivity is favoured (tempera-
ture gradient) as compared with the viscous forces, and surely the Rayleigh criterion for
instability will be harder to satisfy. Has anyone studied critical Rayleigh number in the dike-
sill case? Might experiments on convection cells in liquid crystals be of use? They are
another case where anisotropy favouring flow is generated by the flow itself,

HucnEs: You have just stated the reason why two Rayleigh numbers are needed for con-
vection in anisotropic, visco-plastic materials; one to initiate convection and one to maintain
convection. I attempted to deal with this problem by defining a time-dependent, stress-
independent Rayleigh number for transient creep when convection begins; and a time-
independent, stress-dependent Rayleigh number for steady-state creep when convection
stabilizes. The latter number is about triple the former number, partly for the reason you
suggest. The problem of the effective viscosity can be handled in cither of two ways. On the
one hand, an average ice viscosity can be used for the entire region of active convection below
the density inversion. On the other hand, a basal ice viscosity can be used for the portion of
the active convection region having the greatest vertical temperature gradient. This requires
applying the basal ice viscosity to the ice thickness below the density inversion reduced by the
“viscous scale height”” as discussed in the text. I am not aware of other attempts to define a
Rayleigh criterion for dike-sill convection, but it should be an interesting exercise. I also like
your suggestion about studying convection in liquid crystals.

M. M. MirLer: As you have been discussing the consequences of englacial convection on the
stability of the Antarctic ice sheet, may one assume that you are referring to the dominance of
the convection process in the marginal zone—hence in lower elevation and presumably
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warmer ice? Also your discussion refers only to thermal surges. But in the marginal zones of
large polar ice sheets, in some sectors at least, load stresses may dominate. How do you square
this aspect with your strictly thermal explanation? In other words does this not place your
concept in a rather more speculative framework than is dictated by the possible realities of the
field situation?

HucHgs: Of the two types of non-homogeneous glacial flow, dikesill convection would be
dominant in the thick-ice interiors of polar ice sheets and ice-stream flow would be dominant
at the thin-ice margins. However, the two need not be unrelated and I envision a smooth
transition between them. You are correct to conclude that I relate dike—sill convection only
to thermal surges. And I agree that other surge mechanisms are possible. Certainly dike—sill
convection has nothing to do with surging mountain glaciers. This surge mechanism might
well involve load stresses, as you suggest, and there is no reason to think that such a mechanism
couldn’t apply to polar ice sheet margins. In response to your final question, speculation is
my stock in trade. In defense of my concept, I can only return your question. Who is to say
what is reality at the base of a polar ice sheet?

W. F. Bupp: In your formula for the Rayleigh number, the numbers you substituted for A
was high and for 5 low. What do you regard as appropriate values for these parameters in a
situation where you think the Rayleigh number may be sufficient for convection?

HugHEes: The ice viscosities and thicknesses I used in the blackboard example were chosen
to calculate the most generous possible Rayleigh number as a quick way to learn whether
thermal convection in ice sheets was worth more detailed consideration. 1 concluded that it
was when the calculated Rayleigh number was two or three orders of magnitude greater than
the critical Rayleigh number of fluid convection. With that encouragement, I proceeded to
take a much more critical look at how to calculate both the Rayleigh number and its critical
value for ice sheet convection. My procedure is detailed in the paper. But to answer your
question, I found that the critical Rayleigh number for an anisotropic visco-plastic poly-
crystalline polar ice sheet would be attained near the center of the ice sheet when the effective
viscosity of basal ice was in the 10’5 P (10" N s/m?) range, and when the ice thickness below
the density inversion was not less than 3 km, assuming a viscous scale height of 8.4. Hence,
105 P and g km/8.4 = 360 m are substituted for ice viscosity and thickness, respectively, in
the equation for the Rayleigh number for initiating convection. Once hegun, a preferred
ice fabric can reduce the effective viscosity to the 10' P range, and a separate Rayleigh
criterion for maintaining convection might remain satisfied for ice depths below the density
inversion as low as 1.5 km. This suggests that ice sheet spreading may transport dike-sill
convecting systems which remain active until the ice sheet thins to about 2 km in thickness, or
perhaps a bit less.
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