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The Vibrations of a Particle about a Position of
Equilibrium—Part IV.

The Convergence of the Trigonometric Series of Dynamics.

By Dr BKVAN B. BAKER.

(Read 10th November 1922. Received 27th August 1928.)

1. It has been shown in the previous three parts of this work,
that the whole question of the convergence of the series solution,
for the particular dynamical system under consideration, has
turned upon the cubic equation

4<xV-(4a.5 + «2)x2+(a.2 + 2 « ^ ) x - / = 0 (1)

Before proceeding to generalize the results it will be shown how
this cubic equation may be dei ived in a slightly different fashion.

The two integrals of the differential equations of motion of the
system were *

Mi + *•*!% + a-9i?2* cos (2^!-j38)=A (2)

and ql + '2qi = c (3)

In accordance with the preceding work, we put

»!=1, 2a, - « 2 = s, .-. s2 = 2 -s, A = l -g, c = l, giving

y, + (2 - «)y2 + <x9l?2i cos (2p1-pt) = l-g (4)

?i + 2 f t = l (5)

The elimination of qt between equations (4) and (5) gives

«• (1 - 2^2) q.J cos (2p, -pz) =,Sq\-g;

or, squaring and reducing,

4a.2 cos2 (2Pl - f t ) ?2
3 - {4a.2 cos2(2P] - ft) +*'} ,,«

i-g*=0 (6)

* Part I., § 2, p. 36, eqns. 5 and 6.
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Writing a! = a. cos (2p1 - p2), this becomes

4c'V-(4<x'2 + s2)?2
s + (<x'2 + 2 s 0 ) 9 2 - ^ = O (7)

This equation is seen to be identical with the cubic (1) except that
in (7) we have a! in place of a.,

For any particular value of (2^ - p2) the roots of equation (6)
or (7) represent the three possible values of q, corresponding to
this value of (2pt -p2)- The roots of the cubic equation (1) there
fore represent the three possible values of q% corresponding to
values of p1 and p% for which cos (2p, - ps) = + 1.

It is further apparent that if the roots of the cubic (1) can be
expressed in any particular form, then the roots of the cubic (7)
can be obtained from the previous-expressions by replacing a. by a'.
Thus if the roots of (1) can be expressed in series of positive

powers of —, then the roots of (7) can be expressed in series of

o.'
positive powers of — .

Now a! = <x cos (2p1 - p2) and we have inferred that when qs can

be expressed in a series of positive powers of — , p, and p, can be

expressed in a similar form; thus cos (2p1 - p2) can be expressed in

a series of positive powers of —, so that a series of positive powers
8

of — is equivalent to a series of positive powers of — .
S 8

We have, therefore, obtained another proof of the theorem
already proved in Part II., that the value of qt can be expressed in

(X.

the form of a series of positive powers of — so long as the roots of

the cubic (1) are expressible in series of positive powers of

—; the terms of the series for q3 will contain factors which are
8

trigonometric functions depending on the time.
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2. It has been shown by Whittaker * that for any dynamical
system in which the motion is of a type not far removed from a
steady motion or an equilibrium-configuration, the equations of
motion may be expressed in a general form applicable to all such
cases. It has also been shown that the same general form may be
applied to motion which is not of this character and in particular to
motion such as that of the planets round the sun, or the moon round
the earth. +

This general form may be stated as follows :—

The equations of motion are in the Hamiltonian form

dt~dpr' dt dqr'
{ 1 ' - - . «)

where

.+n»pn\ ...(8)

and the coefficients a are functions of q1, q2, ..., qn only; moreover
the periodic part of H is small compared with the non-periodic part
°o,o, ...o> a term which has for argument (thp1 + nip2+ ... + «„/>„)
has i t s coefficient an - , . . , „ , a t leas t of o rde r

* { I «i I + K I + • • • + I " - 1 }

in the small quantities qlt q2, ... qn; and the expansion of a0,o,... o
begins with the term (s, q1 + s2 qt + ... + »„ qn).

Whittaker has also shown how these equations may be inte-
grated, the coordinates pr and qr being expressed in the form of
trigonometric series; the method consists in the repeated applica-
tion of contact transformations, thereby removing periodic terms
from H and ultimately reducing the problem to the equilibrium
problem; it is essentially the method employed in Part I. of
this work.

* Proe. Land. Math Soc., 34 (1902), p. 206; or "Analytical Dynamics,"
§§ 182-186.

t See Delauney, TMorie dt la Lune, and Tisserand, Annalesde VObs. dt
Paris, Mimoiru, 18 (1885).

https://doi.org/10.1017/S0013091500077932 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500077932


144

In order to integrate the system we must be able to find i
independent particular integrals, expressing relations between the
q's and the p's. One of these particular integrals will be thf
integral of energy

H = constant (9)

Let us suppose that the remaining (ra-1) integrals are such
that each of them involves some of the q's, i.e. that they are not
merely relations between the p's alone, and further let us assume
that the p's only occur in the arguments of trigonometric functions.
These conditions will be satisfied in general in practical problems.

We may then use these (n - 1) equations to express all the q's
in terms of one of them, say qu and certain trigonometric functions
of the p's. When we substitute these values for the ^'s in the
integral of energy (9), we shall obtain an equation in qv involving
also certain trigonometric functions of the p's. This equation may
then be rationalised so that it becomes an equation involving
positive integral powers of q,, and trigonometric functions of the
p's; let it be

= 0, (10)

where F is a polynomial in g,, whose coefficients may involve
trigonometric functions of the p's. The degree of F will be at
least that of the greatest of the expressions

H K l + | « . | +•••+ | « . | }

arising from the expression for H (eqn. 9). For any particular
values of the p's the roots of equation (10) will give the corre-
sponding values of ^.

If it is possible to find such values of the p's that all the
trigonometric functions in equation (10) have their maximum
values (these being supposed finite), we shall get an equation
corresponding to the cubic equation (1) of the particular case
previously considered. Equation (10) corresponds precisely to the
generalized form (7) of the cubic.

Now if the roots of equation (10) can be expressed in power
series in any particular form, for any particular initial conditions,
then the coordinate qY can, for the same initial conditions, be
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expressed as a power series of the same form, whose terms will
have coefficients involving trigonometric functions depending on
the time.

Conversely, if a solution for ql is known, consisting of a power
series whose terms have coefficients involving trigonometric
functions depending on the time, and if it is desired to ascertain
for what initial conditions this trigonometric series is convergent,
it is sufficient to ascertain for what initial conditions the roots of
equation (10) may be expressed as series of the same form for all
possible values of the p's; the p's occur in the series for the roots of
equation (10) in the arguments of certain trigonometric functions.

This provides a method of testing the convergence of the
trigonometric series which express the solution of the general
problem of dynamics, and may be used, as in Fart I I of this work,
to determine the range of initial conditions for which these
trigonometric series are convergent.

From the discussion given in Part III . it seems legitimate to
infer that the divergence of the series solution in the general case
does not necessarily imply any discontinuity in the dynamical
system, but may denote merely the failure of the series solution to
represent the coordinates of the system throughout the whole
range of initial conditions for which a real solution exists.
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