ISOPHOTOMETRY OF COMET TAGO-SATO-KOSAKA

C. K. Kumar and Rita J. Southall

ABSTRACT

Narrow-band filler photographs of comet TSK were taken in the light of C_2 , CN and C_3 by Rahe McCracken and Donn, have been analysed in terms of Haser's model of the coma. The isophotes obtained from these photographs were corrected for sky background. The isophotes were circularly symmetric. Radial intensity profiles were obtained along the sunward, antisun and the two perpendicular directions. In each case, these profiles were the same within the experimental errors in intensity ($\pm 5\%$).

Theoretical curves based on Haser's model were computed for different combinations of the parameters β_0 and β_1 where $1/\beta_0$ is the scale length for the decay of the unobserved parent molecule and $1/\beta_1$ the corresponding quantity for the observed daughter molecule. A comparison of the theoretical and observed intensity profiles, yielded our best estimates for β_0 and β_1 for the different molecules. These are listed in Table 1. In some cases, we were able to obtain lower limits only to the ratio β_0/β_1 because the isophotes do not go out far enough, a limitation caused by the sky background. It is to be noted that the same values of the parameters were obtained from observations on different dates indicating no unusual activity in the comet in the intervening period. We believe ours is the first result ever obtained for C_3 .

In Table 2, we summarize all the results for C₂ and CN in different comets. It appears that the scale lengths differ between comets, a result which cannot be attributed to different helio-centric distances alone.

Table 1
C₂ and CN Scale Lengths - Comet TSK

Observation Date UT	Molecule Wavelength Å	β ₀ X 10 ⁵ KM ⁻¹	βο/βι		cale Length in of 10 ⁴ KM (Daughter)
2/11.99	CN-3884	56.	2.5-4.	1.67-2.	4.175-8.
2/13.026	CN-3884	56,	2.5-4.	1.67-2.	4.175-8.
2/14.026	CN-3884	56.	2.5-4.	1.67-2.	4.175-8.
2/12.003	C ₂ -5172	4.0.	46.	2.5.	1015.
2/12.015	C ₂ -5172	4.0.	46.	2.5.	1015.
2/13.013	C ₂ -5172	4.0.	46.	2.5.	1015.
2/14.018	C2 -5172	4.0.	46.	2.5.	1015.
2/12.026	C ₂ -4738	4.0.	46.	2.5.	1015.
2/12.047	C ₃ -4063	1213.	2.	7683	1.54-1.67

Table 2 Comparison of CN and C_2 Scale Lengths

Reference	Molecule Wavelength Å	Comet Helio- centric Distance A.U.	Observation Date UT	Scale Length in Units of 10 ⁴ KM Parent Daughter	
				1/β _ο	1/β1
This Analysis	CN-3884	TSK (1.239- 1.275)	2/11.99- 2/14.026 1970	1.67-2	4.175-8
Borra & Wehlau (1973)	CN-3878	TSK (1.095)	2/4.0 1970	2.5	20.0
Delsemme & Moreau (1973)	CN	Bennett (1.0)	3/30- 5/7 1970	5.01	14.1
This Analysis	C ₂ -5172 -4738	TSK (1.239 1.275)	2/12.033- 2/14.018 1970	2.5	10-15
Delsemme & Moreau (1973)	C ₂	Bennett (1.0)	3/30- 5/7 1970	2.0	6.31
Dewey & Miller (1966)	C ₂ -5165	Seki (.935)	11/11.4 1961	4.57	8.32
O'Dell & Osterbrock (1962)	C ₂ -4737	Seki (.922, .935)	11/10.4 & 11/11.4 1961	1.42	8.51
Dewey & Miller (1966)	C ₂	1955e* 1955g* 1959k**		1.167	9.33

^{*}Observations by Schmidt and van Woerden (1957)

^{**}Observations by Miller (1961)