COMPOSITIO MATHEMATICA

Explicit birational geometry of 3 -folds and 4 -folds of general type, III

Jungkai A. Chen and Meng Chen

Compositio Math. 151 (2015), 1041-1082.

doi:10.1112/S0010437X14007817

Explicit birational geometry of 3-folds and 4-folds of general type, III

Jungkai A. Chen and Meng Chen

Abstract

Nonsingular projective 3 -folds V of general type can be naturally classified into 18 families according to the pluricanonical section index $\delta(V):=\min \left\{m \mid P_{m} \geqslant 2\right\}$ since $1 \leqslant \delta(V) \leqslant 18$ due to our previous series (I, II). Based on our further classification to 3 -folds with $\delta(V) \geqslant 13$ and an intensive geometrical investigation to those with $\delta(V) \leqslant 12$, we prove that $\operatorname{Vol}(V) \geqslant \frac{1}{1680}$ and that the pluricanonical map Φ_{m} is birational for all $m \geqslant 61$, which greatly improves known results. An optimal birationality of Φ_{m} for the case $\delta(V)=2$ is obtained. As an effective application, we study projective 4 -folds of general type with $p_{g} \geqslant 2$ in the last section.

1. Introduction

One of the fundamental aspects of birational geometry is to understand the behavior of the natural pluricanonical map Φ_{m} of any variety for any $m \in \mathbb{Z}_{>0}$. The induced fibrations possibly reduce the studies to lower-dimensional situations. Varieties of general type, which are those with birational pluricanonical maps Φ_{m} for sufficiently large m, are therefore considered as the basic building blocks of varieties.

For varieties of general type, a key problem is to find an effective integer $m>0$ so that Φ_{m} is birational. The remarkable theorem of Hacon and McKernan [HM06], Takayama [Tak06], and Tsuji [Tsu06] says that there is a constant $c(n)$ so that Φ_{m} is birational for all n-dimensional varieties of general type and for all $m \geqslant c(n)$. However, these constants are explicitly known only when $n \leqslant 3$.

In fact, the problem is almost equivalent to finding a practical lower bound of the canonical volume which computes the rate of growth of plurigenera, or equivalent to find m_{0} such that plurigenus $P_{m_{0}}$ is sufficiently large. One may also refer to the nice survey article by Hacon and McKernan [HM10] for various boundedness results in birational geometry.

The motivation of this series is to study birational geometry of 3-folds and higher-dimensional varieties of general type. The main purpose is to investigate the following open problem.

Open problem 1.1. Find optimal constants $v_{3} \in \mathbb{Q}_{>0}$ and $b_{3} \in \mathbb{Z}_{>0}$ so that, for all nonsingular projective 3 -folds V of general type:
(i) $\operatorname{Vol}(V) \geqslant v_{3}$; and
(ii) Φ_{m} is birational for all $m \geqslant b_{3}$.

[^0]
J. A. Chen and M. Chen

Recall that we have proved the following theorem.
Theorem 1.2 [CC10b, Theorems 1.1, 1.2]. Let V be a nonsingular projective 3 -fold of general type. Then:
(1) $\operatorname{Vol}(V) \geqslant \frac{1}{2660}$;
(2) there exists a positive integer $m_{0}(V) \leqslant 18$ so that $P_{m_{0}} \geqslant 2$;
(3) the pluricanonical map Φ_{m} is birational onto its image for all $m \geqslant 73$.

For more results on explicit birational geometry of 3 -folds of general type, one may refer to our previous papers [CC10a, CC10b].

In order to formulate our main statements of this article, we need to recall some general results and introduce some definition. Given a projective variety V of general type, there exists a minimal model X birational to V (cf. [BCHM10]). Thanks to the Riemann-Roch formula and vanishing theorem, $\operatorname{Vol}(V)=K_{X}^{\operatorname{dim} X}$. Note that in dimension three or higher, a minimal model may have singularities. Hence, $K_{X}^{\operatorname{dim} X}$ is just a positive rational number.

A minimal model has at worst terminal singularities. In dimension three, terminal singularities were classified by Mori. A three-dimensional terminal singularity is one of the following: a terminal quotient singularity of type $(1 / r)(1,-1, b)$ for some b relatively prime to r which we usually denote it as (b, r) for short, an isolated cDV point, a quotient of an isolated cDV point. It is well known to experts that a three-dimensional terminal point can be deformed into a collection of terminal quotient singularities, which is called basket of singularities. An important feature of three-dimensional birational geometry is the singular Riemann-Roch formula due to Reid [Rei87]:

$$
\chi\left(X, m K_{X}\right)=\frac{m(m-1)(2 m-1) K_{X}^{3}}{12}+(1-2 m) \chi\left(X, \mathcal{O}_{X}\right)+l_{m},
$$

where l_{m} denotes the contribution of singularities which can be computed by baskets. It follows that all plurigenera and hence canonical volume of a minimal 3 -fold X are completely determined by $P_{2}(X), \chi\left(X, \mathcal{O}_{X}\right)$ and baskets of singularities B_{X}, of which we called such a triple the weighted basket of X. For the basic properties of weighted baskets, one may refer to [CC10a, §3]. Since our problems are birational in nature, the studies of nonsingular threefold V is equivalent to the studies of its minimal model X. In particular, we may and do consider the weighted basket of V as the weighted basket of its minimal model $X .^{1}$

Next, we would like to define the pluricanonical section index (or, in short, the ps-index)

$$
\delta(V):=\min \left\{m \mid m \in \mathbb{Z}_{>0}, P_{m}(V) \geqslant 2\right\},
$$

which is clearly a birational invariant. By Theorem 1.2 , we have $\delta(V) \leqslant 18$ for any 3 -fold V of general type. Note that 3 -folds V with $\delta(V)=1$ (i.e. $p_{g}(V) \geqslant 2$) have been studied intensively in [Che03, Che07] where optimal results are realized. Threefolds of general type with $\delta(V) \geqslant 2$ are far from being clear. Sometimes we use the symbol $\delta(X)$ directly since X is birationally equivalent to V.

Example 1.3. The 'worst' known minimal 3 -fold is the weighted hyper-surface $X:=X_{46} \subset$ $\mathbb{P}(4,5,6,7,23)$ (cf. [Ian00]) which has the invariants: $\delta(X)=10$ and $\operatorname{Vol}(X)=K_{X}^{3}=\frac{1}{420}$. Also Φ_{26} is not birational.

[^1]
Explicit birational geometry of 3-folds and 4-Folds

In this paper, we mainly investigate projective 3 -folds of general type with $\delta(V) \geqslant 2$. Our main results are as follows.

Theorem 1.4 (Theorem 5.1). Let V be a nonsingular projective 3-fold of general type with $\delta(V) \geqslant 13$. Then its weighted basket $\mathbb{B}=\left\{B_{V}, P_{2}(V), \chi\left(\mathcal{O}_{V}\right)\right\}$ belongs to one of the types in Tables F0, F1 and F2 in Appendix A and the following is true:
(1) $\delta(V)=18$ if and only if $\mathbb{B}(V)=\left\{B_{2 a}, 0,2\right\}$;
(2) $\delta(V) \neq 16,17$;
(3) $\delta(V)=15$ if and only if $\mathbb{B}(V)$ belongs to one of the types in Table F1;
(4) $\delta(V)=14$ if and only if $\mathbb{B}(V)$ belongs to one of the types in Table F2;
(5) $\delta(V)=13$ if and only if $\mathbb{B}(V)=\left\{B_{41}, 0,2\right\}$;
where $B_{2 a}$ and B_{41} can be found in Table F0.
Some other results for 3 -folds with large $\delta(V)$ are given in $\S 4$. For example, one has the following corollary.
Corollary 1.5 (Corollary 4.8). Let V be a nonsingular projective 3 -fold of general type with $\operatorname{Vol}(V)<\frac{1}{336}$. Then $\delta(V) \geqslant 8$.

We also prove the following result.
Theorem 1.6. Let V be a nonsingular projective 3 -fold of general type. Then:
(1) Φ_{m} is birational for all $m \geqslant 61$;
(2) $\operatorname{Vol}(V) \geqslant \frac{1}{1680}$; furthermore, $\operatorname{Vol}(V)=\frac{1}{1680}$ if and only if $\mathbb{B}(V)=\left\{B_{7 a}, 0,2\right\}$ or $\left\{B_{36 a}, 0,2\right\}$, where $B_{7 a}$ and $B_{36 a}$ can be found in Table F2.
A direct by-product of our method is the following.
Corollary 1.7. Let V be a nonsingular projective 3 -fold of general type with $p_{g}(V)=1$. Then:
(1) $\operatorname{Vol}(V) \geqslant \frac{1}{75}$;
(2) Φ_{m} is birational for all $m \geqslant 18$.

In the second part of this paper we prove some optimal results on 3-folds with $\delta(V)=2$.
Theorem 1.8. Let V be a nonsingular projective 3-fold of general type with $\delta(V) \leqslant 2$. Then:
(1) Φ_{m} is birational for all $m \geqslant 11$;
(2) if Φ_{10} is not birational, then $0 \leqslant \chi\left(\mathcal{O}_{V}\right) \leqslant 3$ and $\left|2 K_{V}\right|$ is composed of a rational pencil of $(1,2)$ surfaces; furthermore, $\#\{\mathbb{B}(V)\}<+\infty$ and the initial basket B^{0} of B_{V} belongs to one of the types in Tables II1, II2 and II3 in Appendix A.
The following examples show that our results in Theorem 1.8 are optimal.
Example 1.9 (Iano-Fletcher [Ian00, pp. 151-153]). (1) General weighted complete intersections $X_{22} \subset \mathbb{P}(1,2,3,4,11)$ and $X_{6,18} \subset \mathbb{P}(2,2,3,3,4,9)$ both have ps-index $\delta=2$. Since both X_{22} and $X_{6,18}$ have non-birational 10-canonical map, Theorem 1.8(1) is optimal.
(2) The 3 -fold X_{22} corresponds to No. 1 in Table II1 with $\chi=0$ and $X_{6,18}$ belongs to No. 11 (with $t=1$) in Table II1.

Remark 1.10. Theorem 1.8 is parallel to the main results in [Che03]. We have similar statements to Theorem 1.8 for 3 -folds with $\delta(V) \geqslant 3$. We omit them since we are not sure whether they are optimal or not.

J. A. Chen and M. Chen

In the last part we study projective 4 -folds. The main result is the following theorem.

Theorem 1.11 (Theorem 8.2). Let V be a nonsingular projective 4-fold of general type. Then:
(i) when $p_{g}(V) \geqslant 2, \Phi_{\left|m K_{V}\right|}$ is birational for all $m \geqslant 35$;
(ii) when $p_{g}(V) \geqslant 19, \Phi_{\left|m K_{V}\right|}$ is birational for all $m \geqslant 18$.

This paper is organized as follows. In § 2, we start with general setting on rational maps on varieties of general type and review some known useful inequalities. Then we list several basic lemmas on 3 -folds. In §3, we improve our technique used in [CC10b] to bound K_{X}^{3} from below. Applying our basket analysis developed in [CC10a], we obtain an effective function $v(x)$ in $\S 4$ so that $K_{X}^{3} \geqslant v(\delta(X))$ for any given minimal 3 -fold X. Section 5 is devoted to compiling the clean list for $\mathbb{B}(X)$ with $\delta(X) \geqslant 13$. Then, in $\S 6$, we are able to study the birationality of Φ_{m}. Section 7 is dedicated to classifying 3 -folds with $\delta=2$. Finally, we study nonsingular projective 4 -folds of general type with $p_{g} \geqslant 2$ in $\S 8$. All subsidiary tables are presented in Appendix A.

Throughout we work over any algebraically closed field k of characteristic 0 . We are in favor of the following symbols:

- ' \sim ' denotes linear equivalence or \mathbb{Q}-linear equivalence;
- ' \equiv ' denotes numerical equivalence;
- ' $|A| \preceq|B|$ ' means that $|B| \supseteq|A|+$ fixed effective divisors.

2. Preliminaries

We begin with the general setting on rational maps defined by some sub-linear system of the pluricanonical system $|m K|$ on varieties of general type. Let V be any nonsingular projective variety of general type with dimension $n \geqslant 3$. According to the Minimal Model Program, V has a minimal model (see, for example, [KMM87, KM98, BCHM10, Siu08]). From the point of view of birational geometry, we may always consider the rational map on minimal varieties of general type. A minimal model X is a normal projective variety with a nef canonical divisor K_{X} and with \mathbb{Q}-factorial terminal singularities.

2.1 The rational map Φ_{Λ} for $\Lambda \subset\left|m_{0} K\right|$

Let X be a minimal projective variety of general type on which $P_{m_{0}}(X) \geqslant 2$ for a positive integer m_{0}. Let $\Lambda \subset\left|m_{0} K_{X}\right|$ be a positive dimensional linear system. Fix an effective Weil divisor $K_{m_{0}} \sim m_{0} K_{X}$ on X. Take successive blow-ups $\pi: X^{\prime} \rightarrow X$ along nonsingular centers, such that the following conditions are satisfied:
(i) X^{\prime} is smooth;
(ii) the moving part of $\pi^{*}(\Lambda)$ is base point free and so that $g:=\Phi_{\Lambda} \circ \pi$ is a non-constant morphism;
(iii) $\pi^{*}\left(K_{m_{0}}\right) \cup\{\pi$ - exceptional divisors $\}$ has simple normal crossing supports.

Sometimes we will take further blow-ups so that π satisfies some more conditions, which will be specified explicitly.

Explicit birational geometry of 3-FOLDS and 4-FOLDS

We have a morphism $g: X^{\prime} \longrightarrow \overline{\Phi_{\Lambda}(X)} \subseteq \mathbb{P}^{N}$. Let $X^{\prime} \xrightarrow{f} \Gamma \xrightarrow{s} \overline{\Phi_{\Lambda}(X)}$ be the Stein factorization of g. We have the following commutative diagram.

We may write $m_{0} K_{X^{\prime}}=\mathbb{Q} \pi^{*}\left(m_{0} K_{X}\right)+E_{\pi, m_{0}}$ where $E_{\pi, m_{0}}$ is an effective π-exceptional \mathbb{Q}-divisor. Denote by $M_{m_{0}}$ (respectively M_{Λ}) the movable part of $\left|m_{0} K_{X^{\prime}}\right|$ (respectively $\pi^{*} \Lambda$). Set $d_{m_{0}}:=\operatorname{dim} \Phi_{m_{0}}(X)$ (respectively $d_{\Lambda}:=\operatorname{dim} \Gamma$). The Bertini theorem implies that the general member of the moving part M_{Λ} of $\pi^{*}(\Lambda)$ is irreducible whenever $d_{\Lambda} \geqslant 2$ and, otherwise, $M_{\Lambda} \equiv$ $a_{\Lambda} F$, where $a_{\Lambda}:=\operatorname{deg} f_{*} \mathcal{O}_{X^{\prime}}\left(M_{\Lambda}\right)$ and F is a general fiber of f. We set

$$
\theta_{\Lambda}:= \begin{cases}1 & \text { if } d_{\Lambda} \geqslant 2 \\ a_{\Lambda} & \text { if } d_{\Lambda}=1\end{cases}
$$

Recall our definition in [CC10b, Definition 2.4], the generic irreducible element Σ of $\pi^{*}(\Lambda)$ is defined as follows:

$$
\Sigma_{\Lambda}:= \begin{cases}\text { the general member of the moving part of } \pi^{*}(\Lambda) & \text { if } d_{\Lambda} \geqslant 2 \\ F & \text { if } d_{\Lambda}=1\end{cases}
$$

By the above setting, we always have

$$
m_{0} \pi^{*}\left(K_{X}\right) \sim_{\mathbb{Q}} \theta_{\Lambda} \Sigma_{\Lambda}+E_{\Lambda}^{\prime}
$$

for some effective \mathbb{Q}-divisor E_{Λ}^{\prime} on X^{\prime}.
Convention. Whenever we are working on the complete linear system $\left|m_{0} K_{X}\right|$, we will use parallel notation such as $d_{m_{0}}, \theta_{m_{0}}, \ldots$ (or even just d, θ, \ldots, for simplicity).

We discuss the special case with $d_{\Lambda}=1$. Clearly the general fiber F is nonsingular projective of dimension $\operatorname{dim}(X)-1$. Replace X^{\prime} by its birational model, we may assume that there is a birational contraction morphism $\sigma: F \longrightarrow F_{0}$ onto a minimal model F_{0}. We have the following 'canonical restriction inequality'.
Lemma 2.1. Keep the above settings. Suppose that $d_{\Lambda}=1$. The following holds:
(i) if $b:=g(\Gamma)>0$, then $\left.\pi^{*}\left(K_{X}\right)\right|_{F} \sim \sigma^{*}\left(K_{F_{0}}\right)$;
(ii) if $b=0$, then

$$
\left.\pi^{*}\left(K_{X}\right)\right|_{F} \geqslant \frac{\theta_{\Lambda}}{m_{0}+\theta_{\Lambda}} \sigma^{*}\left(K_{F_{0}}\right) .
$$

Proof. Statement (i) follows from Chen [Che10, Lemma 2.5].
Assume $\Gamma \cong \mathbb{P}^{1}$. Choose a sufficiently large and divisible integer m so that both $\left|m \pi^{*}\left(K_{X}\right)\right|$ and $\left|m K_{F_{0}}\right|$ are base point free. By Kawamata's extension theorem [Kaw99, Theorem A], we have the surjective map

$$
H^{0}\left(X^{\prime}, m \theta_{\Lambda}\left(K_{X^{\prime}}+F\right)\right) \longrightarrow H^{0}\left(F, m \theta_{\Lambda} K_{F}\right)
$$

Since $\left|m\left(\theta_{\Lambda}+m_{0}\right) K_{X^{\prime}}\right| \succeq\left|m \theta_{\Lambda}\left(K_{X^{\prime}}+F\right)\right|, \operatorname{Mov}\left|m \theta_{\Lambda} K_{F}\right|=\left|m \theta_{\Lambda} \sigma^{*}\left(K_{F_{0}}\right)\right|$ and $\mid m\left(\theta_{\Lambda}+m_{0}\right)$ $\pi^{*}\left(K_{X}\right)\left|=\left|M_{m\left(\theta_{\Lambda}+m_{0}\right)}\right|\right.$, we obtain the following inequality:

$$
\left.m\left(\theta_{\Lambda}+m_{0}\right) \pi^{*}\left(K_{X}\right)\right|_{F}=\left.M_{m\left(\theta_{\Lambda}+m_{0}\right)}\right|_{F} \geqslant m \theta_{\Lambda} \sigma^{*}\left(K_{F_{0}}\right),
$$

which implies statement (ii).

J. A. Chen and M. Chen

2.2 Key inequalities on $\mathbf{3}$-folds

Let X be minimal 3-fold of general type. Assume that $\Lambda \subset\left|m_{0} K_{X}\right|$ is a linear system of positive dimension. As in $\S 2.1$, we obtain an induced fibration $f: X^{\prime} \longrightarrow \Gamma$. Pick a generic irreducible element S of $\left|m_{0} K_{X^{\prime}}\right|$. Let $|G|$ be a given base point free linear system on S. Pick a generic irreducible element C of $|G|$. Since $\left.\pi^{*}\left(K_{X}\right)\right|_{S}$ is nef and big, Kodaira's lemma implies that $\left.\pi^{*}\left(K_{X}\right)\right|_{S} \geqslant \beta C$ for some rational number $\beta>0$. Then, by [CC10b, (2.1)], one has

$$
\begin{equation*}
K_{X}^{3} \geqslant \frac{\theta \beta}{m_{0}} \xi \tag{1}
\end{equation*}
$$

where $\xi:=\left(\pi^{*}\left(K_{X}\right) \cdot C\right)_{X^{\prime}}$. In addition, by [CC10b, Remark 2.12], one has

$$
\begin{equation*}
\xi \geqslant \frac{\operatorname{deg}\left(K_{C}\right)}{1+m_{0} / \theta+1 / \beta} . \tag{2}
\end{equation*}
$$

For any positive integer m so that $\alpha_{m}:=\left(m-1-m_{0} / \theta-1 / \beta\right) \xi>1$, by Chen and Zuo [CZ08, Theorem 3.1], one has

$$
\begin{equation*}
\xi \geqslant \frac{\operatorname{deg}\left(K_{C}\right)+\left\lceil\alpha_{m}\right\rceil}{m} \tag{3}
\end{equation*}
$$

We have the following stronger form of inequality (3) when C is 'even'.
Lemma 2.2. Under the above situation, if C is an even divisor on S (i.e. $\frac{1}{2} C \in \operatorname{Pic}(S)$), then, for any $m>0$ so that $\alpha_{m}>0$, one has

$$
\begin{equation*}
\xi \geqslant \frac{\operatorname{deg}\left(K_{C}\right)+2\left\lceil\frac{1}{2} \alpha_{m}\right\rceil}{m} \tag{4}
\end{equation*}
$$

Proof. We refer to the proof for Chen and Zuo [CZ08, Theorem 3.1]. The key point is to estimate $\operatorname{deg}(D)$ where $D=\left.\lceil Q\rceil\right|_{C}$ and Q is a \mathbb{Q}-divisor on S with $(Q \cdot C)=\alpha_{m}$. Since $\operatorname{deg}(D) \geqslant \alpha_{m}>0$ and $\operatorname{deg}(D)$ is even, we naturally have

$$
\operatorname{deg}(D)=2\left(\lceil Q\rceil \cdot \frac{1}{2} C\right) \geqslant 2\left\lceil\frac{1}{2} \alpha_{m}\right\rceil
$$

where we note that $\left(\lceil Q\rceil \cdot \frac{1}{2} C\right)$ is a positive integer. Clearly the rest of the proof of Chen and Zuo [CZ08, Theorem 3.1] implies inequality (4).

When $d_{\Lambda}=1$, Lemma 2.1(ii) implies the following:

$$
\begin{equation*}
\xi=\left(\pi^{*}\left(K_{X}\right) \cdot C\right)_{X^{\prime}} \geqslant \frac{\theta}{m_{0}+\theta}\left(\sigma^{*}\left(K_{F_{0}}\right) \cdot C\right)_{F} \tag{5}
\end{equation*}
$$

2.3 Other useful Lemmas

Lemma 2.3 (See [Maş99, Proposition 4] or [Che14, Lemma 2.6]). Let S be a nonsingular projective surface. Let L be a nef and big \mathbb{Q}-divisor on S satisfying the following conditions:
(1) $L^{2}>8$;
(2) $\left(L \cdot C_{x}\right) \geqslant 4$ for all irreducible curves C_{x} passing through any very general point $x \in S$.

Then the linear system $\left|K_{S}+\lceil L\rceil\right|$ separates two distinct points in very general positions. Consequently, $\left|K_{S}+\lceil L\rceil\right|$ gives a birational map.
Lemma 2.4. Let $\sigma: S \longrightarrow S_{0}$ be a birational contraction from a nonsingular projective surface S of general type onto the minimal model S_{0}. Assume that $\left(K_{S_{0}}^{2}, p_{g}\left(S_{0}\right)\right) \neq(1,2)$ and that C is a moving curve on S. Then $\left(\sigma^{*}\left(K_{S_{0}}\right) \cdot C\right) \geqslant 2$.

Explicit birational geometry of 3-folds and 4-Folds

Proof. When $K_{S_{0}}^{2} \geqslant 2$, this is due to Hodge index theorem. When $\left(K_{S_{0}}^{2}, p_{g}\left(S_{0}\right)\right)=(1,0)$, this is due to Miyaoka [Miy76, Lemma 5]. When $\left(K_{S_{0}}^{2}, p_{g}\left(S_{0}\right)\right)=(1,1),\left(\sigma^{*}\left(K_{S_{0}}\right) \cdot C\right)=1$ implies $K_{S_{0}} \equiv \sigma_{*} C$ by the Hodge index theorem. According to Bombieri [Bom73], we know that S_{0} is simply connected. Thus, $K_{S_{0}} \sim \sigma_{*} C$, which is impossible since $\left|K_{S_{0}}\right|$ is not movable.

Lemma 2.5. Let $\sigma: S \longrightarrow S_{0}$ be the birational contraction onto the minimal model S_{0} from a nonsingular projective surface S of general type. Assume that $\left(K_{S_{0}}^{2}, p_{g}\left(S_{0}\right)\right) \neq(1,2)$ and that \tilde{C} is a curve on S passing through very general points. Then $\left(\sigma^{*}\left(K_{S_{0}}\right) \cdot \tilde{C}\right) \geqslant 2$.

Proof. In fact, by the projection formula, this is equivalent to see $\left(K_{S_{0}} \cdot C_{0}\right) \geqslant 2$ for any curve $C_{0} \subset S_{0}$ passing through very general points of S_{0}.

In contrast, let us assume $\left(K_{S_{0}} \cdot C_{0}\right) \leqslant 1$. Then $g\left(C_{0}\right) \geqslant 2$ implies $C_{0}^{2} \geqslant 1$. The Hodge index theorem says $K_{S_{0}}^{2}=1$ and $K_{S_{0}} \equiv C_{0}$. Recall that S_{0} is not a (1,2) surface. So S_{0} must be either a $(1,0)$ surface or a $(1,1)$ surface.

If $\left(K_{S_{0}}^{2}, p_{g}\left(S_{0}\right)\right)=(1,0)$, then $q\left(S_{0}\right)=0$ and the torsion element $\theta:=K_{S_{0}}-C_{0}$ is of order at most five (see Reid [Rei78]) and $h^{0}\left(S_{0}, C_{0}\right)=1$. Thus, there are at most a finite number of such curves on S_{0} since \# $\operatorname{Tor}\left(S_{0}\right) \leqslant 5$, which is absurd by the choice of C_{0}.

If $\left(K_{S_{0}}^{2}, p_{g}\left(S_{0}\right)\right)=(1,1)$, then $q\left(S_{0}\right)=0$ and $K_{S_{0}} \sim C_{0}$ since $\operatorname{Tor}\left(S_{0}\right)=0$ by Bombieri [Bom73, Theorem 15] and thus C_{0} is the unique canonical curve of S_{0}, which is absurd as well.

2.4 The birationality principle

Definition 2.6. Pick two different generic irreducible elements $S^{\prime}, S^{\prime \prime}$ (respectively $C^{\prime}, C^{\prime \prime}$) in $\left|M_{m_{0}}\right|$ (respectively in $\left.|G|\right)$.
(i) We say that $\left|m K_{X^{\prime}}\right|$ distinguishes S^{\prime} and $S^{\prime \prime}$ if $\Phi_{\left|m K_{X^{\prime}}\right|}\left(S^{\prime}\right) \neq \Phi_{\left|m K_{X^{\prime}}\right|}\left(S^{\prime \prime}\right)$.
(ii) We say that $\left|m K_{X^{\prime}}\right|$ distinguishes C^{\prime} and $C^{\prime \prime}$ if $\Phi_{\left|m K_{X^{\prime}}\right|}\left(C^{\prime}\right) \neq \Phi_{\left|m K_{X^{\prime}}\right|}\left(C^{\prime \prime}\right)$.

We will apply the useful, but technical theorem of Chen and Zuo [CZ08] for the birationality of Φ_{m}.

Theorem 2.7 (See Chen and Zuo [CZ08, Theorem 3.1] or [CC10b, Theorem 2.11, Part 2]). Keep the same notation as above. Assume that, for some $m>0,\left|m K_{X^{\prime}}\right|$ distinguishes S^{\prime} and $S^{\prime \prime}, C^{\prime}$ and $C^{\prime \prime}$ for generic $S^{\prime} \neq S^{\prime \prime}, C^{\prime} \neq C^{\prime \prime}$. Then Φ_{m} is birational under one of the following conditions:
(i) $\alpha_{m}>2$;
(ii) $\alpha_{m}>1$ and C is not hyper-elliptic.

3. The lower bound of K^{3} in terms of m_{0}

In the study of three-dimensional explicit birational geometry, a challenging problem is to determine whether a given weighted basket \mathbb{B} is geometric, i.e. equal to \mathbb{B}_{X} for some 3 -fold X or not. By exploiting geometric properties, one might be able to have a better estimation of the lower bound of K_{X}^{3}, and hence exclude some non-geometric formal baskets. In fact, in [CC10b, (2.19)-(2.31)], we already proved some effective inequalities for K_{X}^{3}. We shall go further along this direction in this section.

Let X be a minimal 3 -fold of general type. Assume $P_{m_{0}}(X) \geqslant 2$. Mostly we will take $\Lambda=$ $\left|m_{0} K_{X}\right|$. Keep the settings in $\S \S 2.1$ and 2.2.

J. A. Chen and M. Chen

Table A1. Volumes in the case $d_{m_{0}}=3$.

$m_{0}=$	2	3	4	5	6	7	8
$\xi \geqslant$	$4 / 3$	1	$3 / 4$	$5 / 8$	$1 / 2$	$6 / 13$	$2 / 5$
$K^{3} \geqslant$	$1 / 3$	$1 / 9$	$3 / 64$	$1 / 40$	$1 / 72$	$6 / 637$	$1 / 160$
$m_{0}=$	9	10	11	12	13	14	15
$\xi \geqslant$	$4 / 11$	$1 / 3$	$3 / 10$	$5 / 18$	$1 / 4$	$6 / 25$	$2 / 9$
$K^{3} \geqslant$	$4 / 891$	$1 / 300$	$3 / 1210$	$5 / 2592$	$1 / 696$	$3 / 2450$	$2 / 2025$

Table A2. Volumes in the case $d_{m_{0}}=2$.

$m_{0}=$	2	3	4	5	6	7	8
$\xi \geqslant$	$1 / 2$	$2 / 5$	$1 / 3$	$1 / 4$	$2 / 9$	$1 / 5$	$1 / 6$
$K^{3} \geqslant$	$1 / 8$	$2 / 45$	$1 / 48$	$1 / 100$	$1 / 162$	$1 / 245$	$1 / 384$
$m_{0}=$	9	10	11	12	13	14	15
$\xi \geqslant$	$2 / 13$	$1 / 7$	$1 / 8$	$2 / 17$	$1 / 9$	$1 / 10$	$2 / 21$
$K^{3} \geqslant$	$2 / 1053$	$1 / 700$	$1 / 968$	$1 / 1224$	$1 / 1521$	$1 / 1960$	$2 / 4725$

3.1 The case $d_{m_{0}}=3$

If we take $|G|$ to be $|S|_{S} \mid$, then $\beta=1 / m_{0}$. It is known, from [CC10b, (2.19)], that $\operatorname{deg}\left(K_{C}\right) \geqslant 6, \xi \geqslant$ $10 /\left(3 m_{0}+2\right)$ and $K_{X}^{3} \geqslant \xi / m_{0}^{2}$. Take $m=5 m_{0}+4, \ldots,(2 t+1) m_{0}+2 t$, successively. Then, by (3), one has $\xi \geqslant 17 /\left(5 m_{0}+4\right), 24 /\left(7 m_{0}+6\right), \ldots,(7 t+3) /\left((2 t+1) m_{0}+2 t\right)$, respectively. Taking the limit, we obtain $\xi \geqslant 7 /\left(2 m_{0}+2\right)$. Therefore

$$
\begin{equation*}
K_{X}^{3} \geqslant \frac{7}{2 m_{0}^{2}\left(m_{0}+1\right)} . \tag{6}
\end{equation*}
$$

In fact, for each small m_{0}, the explicit lower bound of K^{3} can be slightly improved by the same trick and the results are given in Table A1.

3.2 The case $d_{m_{0}}=2$

If we take $|G|=|S|_{S} \mid$, then $\beta \geqslant\left(P_{m_{0}}-2\right) / m_{0}$. By inequality (3), one has $\xi \geqslant 2 /\left(2 m_{0}+1\right)$.
Take $m=3 m_{0}+2,5 m_{0}+4, \ldots,(2 t+1) m_{0}+2 t$ successively. One gets from inequality (3) that $\xi \geqslant 4 /\left(3 m_{0}+2\right), 7 /\left(5 m_{0}+4\right), \ldots,(3 t+1) /\left((2 t+1) m_{0}+2 t\right)$. Taking the limit, we have $\xi \geqslant 3 /\left(2 m_{0}+2\right)$. By inequality (1), we have

$$
\begin{equation*}
K_{X}^{3} \geqslant \frac{3\left(P_{m_{0}}-2\right)}{2 m_{0}^{2}\left(m_{0}+1\right)} \geqslant \frac{3}{2 m_{0}^{2}\left(m_{0}+1\right)} . \tag{7}
\end{equation*}
$$

In fact, we have the estimation in Table A2 for each small m_{0}, which slightly improves [CC10b, Table A].

Under the same situation, if there exists a number $m_{1}>0$ such that $d_{m_{1}}=3$, then, since $\left(\left.m_{1} \pi^{*}\left(K_{X}\right)\right|_{F} \cdot C\right) \geqslant 2$, we have $\xi \geqslant 2 / m_{1}$. Thus, inequality (1) reads

$$
\begin{equation*}
K_{X}^{3} \geqslant \frac{2\left(P_{m_{0}}-2\right)}{m_{0}^{2} m_{1}} \geqslant \frac{2}{m_{0}^{2} m_{1}} \tag{8}
\end{equation*}
$$

Explicit birational geometry of 3-Folds and 4-Folds

Table A3. Volumes for the (1, 2)-fibration case.

$m_{0}=$	2	3	4	5	6	7	8
$\xi \geqslant$	$1 / 2$	$1 / 3$	$2 / 7$	$1 / 4$	$1 / 5$	$2 / 11$	$1 / 6$
$K^{3} \geqslant$	$1 / 12$	$1 / 36$	$1 / 70$	$1 / 120$	$1 / 210$	$1 / 308$	$1 / 432$
$m_{0}=$	9	10	11	12	13	14	15
$\xi \geqslant$	$1 / 7$	$2 / 15$	$1 / 8$	$1 / 9$	$2 / 19$	$1 / 10$	$1 / 11$
$K^{3} \geqslant$	$1 / 630$	$1 / 825$	$1 / 1056$	$1 / 1404$	$1 / 1729$	$1 / 2100$	$1 / 2640$

3.3 The case $d_{m_{0}}=1, b=g(\Gamma)>0$

We have $S=F$ by definition. Pick a very large number $l>0$. Take $|G|:=\left|l \sigma^{*}\left(K_{F_{0}}\right)\right|$ which is base point free by the surface theory. By definition, we have $\theta \geqslant P_{m_{0}} \geqslant 2$. Since $\left.\pi^{*}\left(K_{X}\right)\right|_{F} \sim \sigma^{*}\left(K_{F_{0}}\right)$ by Lemma 2.1(i), we see $\beta=1 / l$ and thus inequality (1) implies

$$
\begin{equation*}
K_{X}^{3} \geqslant \frac{P_{m_{0}}}{m_{0}} \cdot \frac{1}{l} \cdot l K_{F_{0}}^{2} \geqslant \frac{P_{m_{0}}}{m_{0}} . \tag{9}
\end{equation*}
$$

3.4 The case $d_{m_{0}}=1, b=0$

By Lemma 2.1(ii), we have

$$
\begin{equation*}
K_{X}^{3} \geqslant\left.\frac{\theta}{m_{0}} \pi^{*}\left(K_{X}\right)\right|_{F} ^{2} \geqslant \frac{\theta^{3}}{m_{0}\left(m_{0}+\theta\right)^{2}} \cdot K_{F_{0}}^{2} \tag{10}
\end{equation*}
$$

We will choose suitable linear system $|G|$ on F depending on the numerical type of F. From the surface theory, we know that either $K_{F_{0}}^{2} \geqslant 2$ or $\left(K_{F_{0}}^{2}, p_{g}(F)\right)=(1,2),(1,1),(1,0)$.
Subcase 3.4.1. $K_{F_{0}}^{2} \geqslant 2$.
Inequality (10) implies

$$
\begin{equation*}
K_{X}^{3} \geqslant \frac{2 \theta^{3}}{m_{0}\left(m_{0}+\theta\right)^{2}} \tag{11}
\end{equation*}
$$

Subcase 3.4.2. $\left(K_{F_{0}}^{2}, p_{g}\left(F_{0}\right)\right)=(1,2)$.
Take $|G|:=\operatorname{Mov}\left|K_{F}\right|$. Then C, as a generic irreducible element of $|G|$, is a smooth curve of genus 2 (see [BPV84]). By Lemma 2.1(ii), we have $\beta=\theta /\left(m_{0}+\theta\right) \geqslant 1 /\left(m_{0}+1\right)$.

Inequality (2) implies $\xi \geqslant \theta /\left(m_{0}+\theta\right)$. Take $m=\left\lfloor\left(3 m_{0}+3 \theta\right) / \theta\right\rfloor+1>\left(3 m_{0}+3 \theta\right) / \theta$. Then, since $\alpha_{m} \geqslant\left(m-1-m_{0} / \theta-1 / \beta\right) \xi>1$, inequality (3) gives $\xi \geqslant 4 /\left(\left\lfloor\left(3 m_{0}+3 \theta\right) / \theta\right\rfloor+1\right) \geqslant$ $4 \theta /\left(3 m_{0}+4 \theta\right)$. Inductively, take $m=\left\lfloor\left(\left(1+\frac{2}{3}\left(4^{t}-1\right)\right) m_{0}+3 \cdot 4^{t-1} \theta\right) / 4^{t-1} \theta\right\rfloor+1$, one gets $\xi \geqslant$ $4^{t} \theta /\left(\left(1+\frac{2}{3}\left(4^{t}-1\right)\right) m_{0}+4^{t} \theta\right)$ and hence $\xi \geqslant 3 \theta /\left(2 m_{0}+3 \theta\right)$ by taking the limit. Thus we have

$$
\begin{equation*}
K_{X}^{3} \geqslant \frac{3 \theta^{3}}{m_{0}\left(m_{0}+\theta\right)\left(2 m_{0}+3 \theta\right)} \geqslant \frac{3}{m_{0}\left(m_{0}+1\right)\left(2 m_{0}+3\right)} \tag{12}
\end{equation*}
$$

A similar calculation leads to better estimation given in Table A3 for smaller m_{0}.
Subcase 3.4.3. $\left(K_{F_{0}}^{2}, p_{g}\left(F_{0}\right)\right)=(1,1)$.
Since $\left|\sigma^{*}\left(K_{F_{0}}\right)\right|$ is not moving, we have to take $|G|:=\left|2 \sigma^{*}\left(K_{F_{0}}\right)\right|$ which is base point free by the surface theory. Naturally the generic irreducible element C of $|G|$ is even and $\operatorname{deg}\left(K_{C}\right)=6$.

J. A. Chen and M. Chen

Table A4. Volumes for the (1, 1)-fibration case.

$m_{0}=$	2	3	4	5	6	7	8
$\xi \geqslant$	$6 / 7$	$2 / 3$	$1 / 2$	$4 / 9$	$3 / 8$	$1 / 3$	$2 / 7$
$K^{3} \geqslant$	$1 / 14$	$1 / 36$	$1 / 80$	$1 / 135$	$1 / 224$	$1 / 336$	$1 / 504$
$m_{0}=$	9	10	11	12	13	14	15
$\xi \geqslant$	$4 / 15$	$6 / 25$	$2 / 9$	$1 / 5$	$4 / 21$	$14 / 79$	$1 / 6$
$K^{3} \geqslant$	$1 / 675$	$3 / 2750$	$1 / 1188$	$1 / 1560$	$1 / 1911$	$1 / 2370$	$1 / 2880$

By Lemma 2.1(ii), we have $\beta=\theta /\left(2 m_{0}+2 \theta\right)$. Take $m=\left\lfloor\left(3 m_{0}+3 \theta\right) / \theta\right\rfloor+1$. Since $\xi>0$, we have $\alpha_{m}>0$. Thus, Lemma 2.2 implies $\xi \geqslant 8 \theta /\left(3 m_{0}+4 \theta\right)$. Thus, inequality (1) reads

$$
\begin{equation*}
K_{X}^{3} \geqslant \frac{4 \theta^{3}}{m_{0}\left(m_{0}+\theta\right)\left(3 m_{0}+4 \theta\right)} \tag{13}
\end{equation*}
$$

For each small m_{0}, we have the better estimation given in Table A4.
Subcase 3.4.4. $\left(K_{F_{0}}^{2}, p_{g}\left(F_{0}\right)\right)=(1,0)$.
Modulo further birational modification, we may assume that $\operatorname{Mov}\left|2 K_{F}\right|$ is base point free. Take $|G|=\operatorname{Mov}\left|2 K_{F}\right|$. By Catanese and Pignatelli [CP06], the generic irreducible element C of $|G|$ is a smooth curve of genus at least three. By Lemma 2.1(ii), we have $\beta=\theta /\left(2 m_{0}+2 \theta\right) \geqslant$ $1 /\left(2 m_{0}+2\right)$. Lemma 2.4 implies $\xi \geqslant \theta /\left(m_{0}+\theta\right) \cdot\left(\sigma^{*}\left(K_{F_{0}}\right) \cdot C\right) \geqslant 2 \theta /\left(m_{0}+\theta\right)$. Thus, we have

$$
\begin{equation*}
K_{X}^{3} \geqslant \frac{\theta^{3}}{m_{0}\left(m_{0}+\theta\right)^{2}} \tag{14}
\end{equation*}
$$

Of course, for each small m_{0}, one might obtain a slightly better estimation for ξ and K_{X}^{3}.
Variant 3.4.5. If there exists a positive integer m_{1} such that $P_{m_{1}} \geqslant 2$ and that $\left|m_{0} K_{X^{\prime}}\right|$ and $\left|m_{1} K_{X^{\prime}}\right|$ are not composed with the same pencil. We may take $|G|=\left|M_{m_{1}}\right| F \mid$ and then we have $\beta=1 / m_{1}$. Thus, inequality (1) and Lemma 2.4 imply

$$
\begin{equation*}
K_{X}^{3} \geqslant \frac{2 \theta_{m_{0}}^{2}}{m_{0} m_{1}\left(m_{0}+\theta_{m_{0}}\right)} \tag{15}
\end{equation*}
$$

provided that $\left(K_{F_{0}}^{2}, p_{g}\left(F_{0}\right)\right) \neq(1,2)$.

3.5 Some other inequalities

Corollary 3.1. Let X be a minimal 3 -fold of general type. Assume $P_{m_{0}}=2$. Keep the same notation as above. Suppose that the general fiber F of the induced fibration from $\Phi_{m_{0}}$ is not a $(1,2)$ surface, and that $P_{m_{1}} \geqslant 2$ for some integer $m_{1}>0$. Then

$$
K_{X}^{3} \geqslant \min \left\{\frac{\left(P_{m_{1}}-1\right)^{3}}{m_{1}\left(m_{1}+P_{m_{1}}-1\right)^{2}}, \frac{2}{m_{0} m_{1}\left(m_{0}+1\right)}\right\} .
$$

Proof. If $\left|m_{0} K_{X^{\prime}}\right|,\left|m_{1} K_{X^{\prime}}\right|$ are composed with the same pencil, then both $\left|m_{0} K_{X^{\prime}}\right|$ and $\left|m_{1} K_{X^{\prime}}\right|$ induce the same fibration $f: X^{\prime} \longrightarrow \Gamma$. Consider $\tilde{\Lambda}=\left|m_{1} K_{X^{\prime}}\right|$. Then, $\theta_{m_{1}} \geqslant P_{m_{1}}-1$. Since F is not a (1,2) surface and by comparing inequalities (9), (11), (13) and (14), we have

$$
K_{X}^{3} \geqslant \frac{\left(P_{m_{1}}-1\right)^{3}}{m_{1}\left(m_{1}+P_{m_{1}}-1\right)^{2}}
$$

Explicit birational geometry of 3-folds and 4-Folds

Suppose that $\left|m_{0} K_{X^{\prime}}\right|,\left|m_{1} K_{X^{\prime}}\right|$ are not composed with the same pencil. We have $\beta=1 / m_{1}$. Then we have inequality (15) as in Variant 3.4.5.

Now we are able to study the more restricted case.
Proposition 3.2. Let X be a minimal 3 -fold of general type. Assume that $P_{m_{0}}(X) \geqslant 4$ and $d_{m_{0}}=2$, then

$$
K_{X}^{3} \geqslant \min \left\{\frac{8}{m_{0}\left(m_{0}+2\right)^{2}}, \frac{6}{m_{0}^{2}\left(m_{0}+2\right)}\right\}
$$

Proof. We need to study the image surface W^{\prime} of X^{\prime} through the morphism $\Phi_{\left|m_{0} K_{X^{\prime}}\right|}$. In fact, we have the Stein factorization

$$
\Phi_{m_{0}}:=\Phi_{\left|m_{0} K_{X^{\prime}}\right|}: X^{\prime} \xrightarrow{f} \Gamma \xrightarrow{s} W^{\prime} \subset \mathbb{P}^{P_{m_{0}}-1} .
$$

Denote by H^{\prime} a very ample divisor on W^{\prime} such that $M_{m_{0}} \sim \Phi_{m_{0}}^{*}\left(H^{\prime}\right)$. Furthermore, one has $M_{m_{0}} \mid S \equiv \tilde{a}_{m_{0}} C$ for a general member $S \in\left|M_{m_{0}}\right|$ and the integer $\tilde{a}_{m_{0}} \geqslant \operatorname{deg}(s) \operatorname{deg}\left(W^{\prime}\right) \geqslant$ $\operatorname{deg}\left(W^{\prime}\right) \geqslant P_{m_{0}}-2$, where C is a general fiber of f. Set $|G|:=\left|M_{m_{0}}\right| S \mid$.
Case 1: $\tilde{a}_{m_{0}} \geqslant 3$.
We have $\beta \geqslant 3 / m_{0}$. Inequality (2) implies $\xi \geqslant 6 /\left(4 m_{0}+3\right)$. Take $m=2 m_{0}+2$. Then inequality (3) gives $\xi \geqslant 2 /\left(m_{0}+1\right)$. Take $m=\left\lfloor\left(11 m_{0}+9\right) / 6\right\rfloor+1$. Since $\alpha_{m}>\left(\left(11 m_{0}+9\right) / 6-1-m_{0}-1 / \beta\right)$ $\xi \geqslant 1$, inequality (3) implies $\xi \geqslant 24 /\left(11 m_{0}+15\right)$. Thus, we have

$$
\begin{equation*}
K_{X}^{3} \geqslant \frac{72}{m_{0}^{2}\left(11 m_{0}+15\right)} \tag{16}
\end{equation*}
$$

Case 2: $\tilde{a}_{m_{0}}=2$.
Automatically we have $P_{m_{0}}=4$, which also implies that $\operatorname{deg}\left(W^{\prime}\right)=2$ and $\operatorname{deg}(s)=1$. Recall that an irreducible surface (in \mathbb{P}^{3}) of degree 2 is one of the following surfaces (see, for instance, Reid [Rei97, p. 30, Example 19]):
(a) W^{\prime} is the cone $\overline{\mathbb{F}}_{2}$ obtained by blowing down the unique section with the self-intersection (-2) on the Hirzebruch ruled surface \mathbb{F}_{2};
(b) $W^{\prime} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$.

Case 2(a): $W^{\prime}=\overline{\mathbb{F}}_{2}$.
Replacing by its birational model, we may assume that $\Phi_{m_{0}}$ factors through the minimal resolution \mathbb{F}_{2} of W^{\prime}. So we have the factorization of $\Phi_{m_{0}}: X^{\prime} \xrightarrow{h} \mathbb{F}_{2} \xrightarrow{\nu} W^{\prime}$ where h is a fibration and ν is the minimal resolution of W^{\prime}. Set $\hat{H}=\nu^{*}\left(H^{\prime}\right)$. We know that $H^{\prime 2}=2$ and hence $\hat{H}^{2}=2$. Noting that \hat{H} is nef and big on \mathbb{F}_{2}, we can write

$$
\hat{H} \sim \mu G_{0}+n T,
$$

where μ and n are integers, G_{0} denotes the unique section with $G_{0}^{2}=-2$, and T is the general fiber of the ruling on \mathbb{F}_{2}. The property of \hat{H} being nef and big implies that $\mu>0$ and $n \geqslant 2 \mu \geqslant 2$. Now let $p r: \mathbb{F}_{2} \longrightarrow \mathbb{P}^{1}$ be the ruling. Set $\tilde{f}:=p r \circ h: X^{\prime} \longrightarrow \mathbb{P}^{1}$, which is a fibration with connected fibers. Denote by F a general fiber of \tilde{f}. We have

$$
M_{m_{0}} \sim \Phi_{m_{0}}^{*}\left(H^{\prime}\right)=h^{*}(\hat{H}) \geqslant 2 F
$$

J. A. Chen and M. Chen

Let $\Lambda=|2 F| \preceq\left|m_{0} K_{X^{\prime}}\right|$. Clearly we have $\theta_{\Lambda}=2, d_{\Lambda}=1$ and $b=0$. By inequalities (11)-(14), we have

$$
\begin{equation*}
K_{X}^{3} \geqslant \frac{8}{m_{0}\left(m_{0}+2\right)^{2}} . \tag{17}
\end{equation*}
$$

Case 2(b): $W^{\prime}=\mathbb{P}^{1} \times \mathbb{P}^{1}$.
We have an induced fibration $f: X^{\prime} \longrightarrow W^{\prime}=\mathbb{P}^{1} \times \mathbb{P}^{1}$. Since a very ample divisor H^{\prime} on W^{\prime} with $H^{\prime 2}=2$ is linearly equivalent to $L_{1}+L_{2}=q_{1}^{*}$ (point) $+q_{2}^{*}$ (point) where q_{1}, q_{2} are projections from $\mathbb{P}^{1} \times \mathbb{P}^{1}$ to \mathbb{P}^{1} respectively. Set $\tilde{f}_{i}:=q_{i} \circ f: X^{\prime} \longrightarrow \mathbb{P}^{1}, i=1,2$. Then \tilde{f}_{1} and \tilde{f}_{2} are two fibrations onto \mathbb{P}^{1}. Let F_{1} and F_{2} be general fibers of \tilde{f}_{1} and \tilde{f}_{2}, respectively. Then $F_{1} \cap F_{2}$ is simply a general fiber C of f. We will estimate ξ in an alternative way. In fact, the following argument is similar to the proof of [CZ08, Theorem 3.1].

Since $\tilde{a}_{m_{0}}=2$, we have $\left.S\right|_{S} \sim 2 C$. On the other hand, we have $S \geqslant F_{1}+F_{2}$. Modulo further birational modifications, we may write $m_{0} \pi^{*}\left(K_{X}\right) \equiv F_{1}+F_{2}+H_{m_{0}}^{\prime}$ where $H_{m_{0}}^{\prime}$ is an effective \mathbb{Q}-divisor with simple normal crossing supports. For any integer $m>m_{0}+1$, we consider the linear system

$$
\left|K_{X^{\prime}}+\left\lceil\left(m-m_{0}-1\right) \pi^{*}\left(K_{X}\right)\right\rceil+F_{1}+F_{2}\right| \preceq\left|m K_{X^{\prime}}\right| .
$$

Since $\left(m-m_{0}-1\right) \pi^{*}\left(K_{X}\right)+F_{2}$ is nef and big, Kawamata and Viehweg vanishing [Kaw82, Vie82] gives the surjective map

$$
\begin{aligned}
& H^{0}\left(K_{X^{\prime}}+\left\lceil\left(m-m_{0}-1\right) \pi^{*}\left(K_{X}\right)\right\rceil+F_{2}+F_{1}\right) \\
& \quad \longrightarrow H^{0}\left(F_{1}, K_{F_{1}}+\left.\left\lceil\left(m-m_{0}-1\right) \pi^{*}\left(K_{X}\right)\right\rceil\right|_{F_{1}}+C\right) .
\end{aligned}
$$

Using the vanishing theorem again, one obtains the surjective map

$$
H^{0}\left(F_{1}, K_{F_{1}}+\left\lceil\left.\left(m-m_{0}-1\right) \pi^{*}\left(K_{X}\right)\right|_{F_{1}}\right\rceil+C\right) \longrightarrow H^{0}\left(C, K_{C}+\hat{D}_{m}\right)
$$

where $\hat{D}_{m}:=\left.\left\lceil\left.\left(m-m_{0}-1\right) \pi^{*}\left(K_{X}\right)\right|_{F_{1}}\right\rceil\right|_{C}$ with

$$
\operatorname{deg}\left(\hat{D}_{m}\right) \geqslant\left(m-m_{0}-1\right) \xi
$$

When m is large enough so that $\operatorname{deg}\left(\hat{D}_{m}\right) \geqslant 2$, the above two surjective maps directly implies

$$
\begin{equation*}
m \xi \geqslant \operatorname{deg}\left(K_{C}\right)+\operatorname{deg}\left(\hat{D}_{m}\right) \geqslant 2+\left\lceil\left(m-m_{0}-1\right) \xi\right\rceil . \tag{18}
\end{equation*}
$$

In particular, we have $\xi \geqslant 2 /\left(m_{0}+1\right)$.
Take $m=2 m_{0}+3$. Then $\left(m-m_{0}-1\right) \xi>2$ and inequality (18) gives $\xi \geqslant 5 /\left(2 m_{0}+3\right)$.
Assume $m_{0}>1$ and take $m=2 m_{0}+2$. One gets $\xi \geqslant 5 /\left(2 m_{0}+2\right)$. Take $m=$ $\left\lfloor\left(7 m_{0}+12\right) / 5\right\rfloor=\left\lfloor\left(7 m_{0}+7\right) / 5\right\rfloor+1>\left(7 m_{0}+7\right) / 5$, one has $\xi \geqslant 4 / m \geqslant 20 /\left(7 m_{0}+12\right)$. Inductively, take $m=\left\lfloor\left(\left(2+\frac{5}{3}\left(4^{t}-1\right)\right) m_{0}+2+\frac{10}{3}\left(4^{t}-1\right)\right) /\left(5 \cdot 4^{t-1}\right)\right\rfloor$ for $t \geqslant 1$, one has $\xi \geqslant$ $\left(5 \cdot 4^{t}\right) /\left(\left(2+\frac{5}{3}\left(4^{t}-1\right)\right) m_{0}+2+\frac{10}{3}\left(4^{t}-1\right)\right)$. We have $\xi \geqslant 3 /\left(m_{0}+2\right)$ by taking the limit and, hence,

$$
\begin{equation*}
K_{X}^{3} \geqslant \frac{1}{m_{0}} \cdot\left(\pi^{*}\left(K_{X}\right) \mid S\right)^{2} \geqslant \frac{2}{m_{0}^{2}} \cdot \xi \geqslant \frac{6}{m_{0}^{2}\left(m_{0}+2\right)} . \tag{19}
\end{equation*}
$$

We conclude the statement by comparing (16), (17) and (19).
Corollary 3.3. Let X be a minimal 3 -fold of general type. The following holds:

$$
K_{X}^{3} \geqslant \begin{cases}\min \left\{\frac{8}{m_{0}\left(m_{0}+2\right)^{2}}, \frac{7}{2 m_{0}^{2}\left(m_{0}+1\right)}\right\} & \text { when } P_{m_{0}} \geqslant 4, \\ \frac{3}{2 m_{0}^{2}\left(m_{0}+1\right)} & \text { when } P_{m_{0}}=3 .\end{cases}
$$

Explicit birational geometry of 3-folds and 4-Folds

Proof. When $P_{m_{0}} \geqslant 4, d_{m_{0}}=3,2,1$ and the inequality follows from comparing inequality (6), Proposition 3.2, inequalities (9) and (11)-(14) (with $\theta_{m_{0}}=3$), respectively.

When $P_{m_{0}}=3, d_{m_{0}}=2,1$ and the inequality follows immediately by comparing inequality (7) with inequalities (9) and (11)-(14) (with $\left.\theta_{m_{0}}=2\right)$.

4. Threefolds with $\delta(V) \leqslant 12$

The purpose of this section is to prove the following sharper bounds.
Theorem 4.1. Let X be a minimal projective 3 -fold of general type with $2 \leqslant \delta(X) \leqslant 12$. Then $K_{X}^{3} \geqslant v(\delta(X))$, where the function $v(x)$ is defined as follows:

x	2	3	4	5	6	7
$v(x)$	$1 / 14$	$1 / 36$	$1 / 90$	$1 / 135$	$1 / 224$	$1 / 336$
x	8	9	10	11	12	-
$v(x)$	$1 / 504$	$1 / 675$	$3 / 2750$	$1 / 1188$	$1 / 1560$	-

We are going to estimate the lower bound of the volume, case by case, for a given δ. The discussion here relies on those formulae in [CC10a, (3.6)-(3.12)].
Proposition 4.2. If $P_{2}(X) \geqslant 2$, then $K_{X}^{3} \geqslant \frac{1}{14}$.
Proof. Set $m_{0}=2$. By Tables A1 and A2, inequalities (9) and (11), Tables A3 and A4 and Corollary 3.3, we have $K_{X}^{3} \geqslant \frac{1}{14}$ unless $P_{2}=2, d_{2}=1, b=0$ and F is of type (1,0).

In the remaining case, we have that $\chi\left(\mathcal{O}_{X}\right)=1$ by [CC10b, Lemma 2.32]. By [CC10b, Lemma 3.2], one has $P_{4} \geqslant 2 P_{2} \geqslant 4$. If $d_{4} \geqslant 2$, then $K_{X}^{3} \geqslant \frac{1}{12}$ by inequality (15) (with $m_{0}=2, m_{1}=4$, $\theta_{2}=1$). If $d_{4}=1$, then $\left|2 K_{X^{\prime}}\right|$ and $\left|4 K_{X^{\prime}}\right|$ are composed with the same pencil. Thus, we have $K_{X}^{3} \geqslant \frac{27}{196}>\frac{1}{8}$ by inequality (14) (with $m_{0}=4, \theta_{4}=3$).

Proposition 4.3. If $P_{3}(X) \geqslant 2$, then $K_{X}^{3} \geqslant \frac{1}{36}$.
Proof. Take $m_{0}=3$ and $\Lambda=\left|3 K_{X^{\prime}}\right|$. One has $K_{X}^{3} \geqslant \frac{1}{36}$ by Tables A1 and A2, inequalities (9), (11), Tables A3 and A4 and Corollary $3.3\left(m_{0}=3\right)$ unless we are in Subcase 3.4.4 with $P_{3}=2$. That is, $P_{3}=2, d_{3}=1, b=0$ and F is of type (1,0). Again, $\chi\left(\mathcal{O}_{X}\right)=1$. Thus, for any $m \geqslant 2$, [CC10b, Lemma 3.2] implies $P_{m+2} \geqslant P_{m}+P_{2}$.

By Corollary 3.1, if $P_{4} \geqslant 3$ (respectively $P_{5} \geqslant 3$), then $K_{X}^{3} \geqslant \frac{1}{24}$ (respectively $\frac{1}{30}$). Suppose that both $P_{4} \leqslant 2$ and $P_{5} \leqslant 2$, then $P_{5}=2$ and $P_{2}=0$. By [CC10a, (3.6)], $n_{1,2}^{0}=5-8+P_{4}<0$, which is a contradiction. Hence, either P_{4} or $P_{5} \geqslant 3$ in this case and we are done.

Proposition 4.4. If $P_{4}(X) \geqslant 2$, then $K_{X}^{3} \geqslant \frac{1}{90}$.
Proof. Similarly, we have $K_{X}^{3} \geqslant \frac{1}{80}$ unless $P_{4}=2, b=0$ and F is of $(1,0)$ type. In fact, in this situation, we have at least $K_{X}^{3} \geqslant \frac{1}{100}$ by inequality (14). We will go a little bit further to investigate this situation.
(0) We may and do assume that $P_{2} \leqslant 1$ and $P_{3} \leqslant 1$.
(1) If $P_{7} \geqslant 3$ (respectively $P_{6} \geqslant 3, P_{5} \geqslant 3$), then $K^{3} \geqslant \frac{8}{567}>\frac{1}{80}$ (respectively $\frac{1}{60}, \frac{1}{50}$) by Corollary 3.1 (with $m_{0}=4$, and $m_{1}=7,6,5$ respectively). So we may assume $P_{5}, P_{6}, P_{7} \leqslant 2$. Since $P_{6} \geqslant P_{4}+P_{2}$, we see that $P_{2}=0$ and $P_{6}=P_{4}=2$.

J. A. Chen and M. Chen

(2) If $P_{3}=0$, then $n_{1,3}^{0}=P_{5}-2 \geqslant 0$ implies $P_{5}=2$. Now $n_{1,4}^{5}=3-\sigma_{5} \geqslant 0$ gives $\sigma_{5} \leqslant 3$. However, $n_{1,3}^{5} \geqslant 0$ implies $\sigma_{5} \geqslant 4$, a contradiction. We thus assume that $P_{3}=1$ from now on.
(3) We thus can make the following complete table for $B^{(5)}$ depending on P_{5}, σ_{5}.

No.	P_{5}	σ_{5}	$B^{(5)}$	K^{3}	$\epsilon+P_{7}$
1	1	0	$\{2 \times(1,2),(2,5), 5 \times(1,4)\}$	$1 / 20$	4
2	1	1	$\{3 \times(1,2),(1,3), 4 \times(1,4),(1, r)\}$	$1 / r-1 / 6$	4
3	2	1	$\{(1,2), 2 \times(2,5), 3 \times(1,4),(1, r)\}$	$1 / r-3 / 20$	5
4	2	2	$\left\{2 \times(1,2),(2,5),(1,3), 2 \times(1,4),\left(1, r_{1}\right),\left(1, r_{2}\right)\right\}$	$1 / r_{1}+1 / r_{2}-11 / 30$	5
5	2	3	$\left\{3 \times(1,2), 2 \times(1,3),(1,4),\left(1, r_{1}\right),\left(1, r_{2}\right),\left(1, r_{3}\right)\right\}$	$1 / r_{1}+r_{2}+r_{3}-7 / 12$	5

(4) By definition, one has $\sigma_{5} \leqslant \epsilon \leqslant 2 \sigma_{5}$. Note that No. 1 is impossible because $\epsilon=0$ but $P_{7} \leqslant 2$ implies that $\epsilon \geqslant 2$, a contradiction. In No. 3, $P_{5}=2$ implies $P_{7}=2$ and hence $\epsilon=3>2 \sigma_{5}$, a contradiction.

In No. 2, one must have $P_{7}=2$ and $\epsilon=2=2 \sigma_{5}$. Hence, $r \geqslant 6$. Then it follows that $K^{3} \leqslant K^{3}\left(B^{(5)}\right) \leqslant 0$, a contradiction. Similarly, in No. $4, K^{3}\left(B^{(5)}\right)>0$ only when $r_{1}=r_{2}=5$. But then $\epsilon=2$, a contradiction.
(5) It remains to consider No. 5. Note that $K^{3}\left(B^{(5)}\right)>0$ only when $r_{1}=r_{2}=r_{3}=5$ and $K^{3}\left(B^{(5)}\right)=\frac{1}{60}$. There are only finitely many possible packings. Among them, we search for baskets with $K^{3} \geqslant \frac{1}{100}$. It turns out there is only one new baskets

$$
B_{90}=\{3 \times(1,2), 2 \times(1,3),(2,9), 2 \times(1,5)\}
$$

with $K^{3}\left(B_{90}\right)=\frac{1}{90}$.
Proposition 4.5. If $P_{5} \geqslant 2$, then $K_{X}^{3} \geqslant \frac{1}{135}$.
Proof. Similarly, we have $K_{X}^{3} \geqslant \frac{1}{135}$ unless $P_{5}=2, b=0$ and F a $(1,0)$ surface, for which we have $K_{X}^{3} \geqslant \frac{1}{180}$. Furthermore, we may assume that $P_{m} \leqslant 2$ for $m=6,7,8$ by Corollary 3.1. It suffices to consider: $\chi\left(\mathcal{O}_{X}\right)=1, P_{2}=0, P_{3}=0,1, P_{4}=0,1, P_{5}=P_{7}=2$ and $P_{4} \leqslant P_{6} \leqslant P_{8} \leqslant 2$.

We look at $B^{(5)}$ with $K^{3}>0$ according to $\left(P_{3}, P_{4}, P_{6}\right)$ and σ_{5}. It turns out that there is only one,

$$
B^{(5)}=\{2 \times(2,5), 3 \times(1,3),(1,4),(1,6)\}
$$

with $K^{3}\left(B^{(5)}\right)=\frac{1}{60}$, given by $\left(P_{3}, P_{4}, P_{6}\right)=(1,1,2)$ and $\sigma_{5}=2$. Now $P_{8}=2$ and, hence,

$$
B^{(7)}=\{2 \times(2,5), 2 \times(1,3),(2,7),(1,6)\} .
$$

However, $K^{3}\left(B^{(7)}\right)=\frac{1}{210}<\frac{1}{180}$, which is impossible.
Proposition 4.6. If $P_{6} \geqslant 2$, then $K_{X}^{3} \geqslant \frac{1}{224}$.
Proof. Similarly, we have $K_{X}^{3} \geqslant \frac{1}{224}$ unless $P_{6}=2, b=0$ and F a $(1,0)$ surface, for which we have $K_{X}^{3} \geqslant \frac{1}{294}$. Again, we may assume that $P_{m} \leqslant 2$ for $m=7,8,9,10$. Therefore, it remains to consider such a situation that $\chi\left(\mathcal{O}_{X}\right)=1, P_{2}=0, P_{4} \leqslant 1, P_{3} \leqslant P_{5} \leqslant 1, P_{7} \leqslant P_{9} \leqslant 2$ and $P_{8}=P_{10}=2$. According to the value of $\left(P_{3}, P_{4}, P_{5}\right)$ and σ_{5}, we have the following table.

Explicit birational geometry of 3-FOLDS AND 4-FOLDS

No.	$\left(P_{3}, P_{4}, P_{5}\right)$	σ_{5}	$B^{(5)}$	K^{3}	$\epsilon+P_{7}$
1	$(0,0,0)$	0	$\{5 \times(1,2), 4 \times(1,3),(1,4)\}$	$1 / 12$	2
2	$(0,0,1)$	0	$\{3 \times(1,2), 2 *(2,5), 3 *(1,3)\}$	$1 / 10$	3
3	$(0,1,0)$	0	$\{6 *(1,2),(1,3), 3 *(1,4)\}$	$1 / 12$	3
4	$(0,1,1)$	0	$\{4 *(1,2), 2 *(2,5), 2 *(1,4)\}$	$1 / 10$	4
5	$(0,1,1)$	1	$\{5 *(1,2), 1 *(2,5),(1,3),(1,4),(1, r)\}$	$1 / r-7 / 60$	4
6	$(0,1,1)$	2	$\left\{6 *(1,2), 2 *(1,3),\left(1, r_{1}\right),\left(1, r_{2}\right)\right\}$	$1 / r_{1}+1 / r_{2}-1 / 3$	4
7	$(1,0,1)$	0	$\{(2,5), 6 *(1,3),(1,4)\}$	$1 / 20$	2
8	$(1,0,1)$	1	$\{(1,2), 7 *(1,3),(1, r)\}$	$1 / r-1 / 6$	2
9	$(1,1,1)$	0	$\{(1,2),(2,5), 3 *(1,3), 3 *(1,4)\}$	$1 / 20$	3
10	$(1,1,1)$	1	$\{2 *(1,2), 4 *(1,3), 2 *(1,4),(1, r)\}$	$1 / r-1 / 6$	3

(1) It is clear that No. 2, 3, 4 and 9 are not allowed for $\epsilon=0$ and, hence, $P_{7} \geqslant 3$.
(2) In No. 1 and 7 , the baskets allow at most one packing at level 7 , i.e. $\epsilon_{7} \leqslant 1$. However, $P_{7}=2$ and $P_{8}=2$ yield $\epsilon_{7} \geqslant 2$, a contradiction.
(3) Consider No. 10. Since $K^{3}=1 / r-\frac{1}{6}>0$, it follows that $r=5$. So $\epsilon=1$ and $P_{7}=2$. Then $\epsilon_{7}=2$ and

$$
B^{(7)}=\{2 \times(1,2), 2 \times(1,3), 2 \times(2,7),(1,5)\}
$$

This already implies $\epsilon_{8}=0$ and so we get $P_{9}=3$, a contradiction.
(4) Consider No. 8. Since $K^{3}>0$, thus we get

$$
B^{(5)}=\{(1,2), 7 \times(1,3),(1,5)\}
$$

Since $B^{(5)}$ allows no further packing, hence $K_{X}^{3}=\frac{1}{30}$ in this case.
(5) Consider No. 5. Since $K^{3}>0, r=6,7,8$. It is easy to see that the basket with the smallest volume and dominated by $B^{(5)}$ is

$$
B_{210}=\{(7,15),(2,7),(1,6)\}
$$

with $K^{3}=\frac{1}{210}$. Thus, $K_{X}^{3} \geqslant \frac{1}{210}$.
(6) Finally Consider No. 6. Since $K^{3}>0,\left(r_{1}, r_{2}\right)=(5,5),(5,6),(5,7)$. It is easy to see that the basket with the smallest volume and dominated by $B^{(5)}$ is

$$
B_{105}=\{6 \times(1,2), 2 \times(1,3),(1,5),(1,7)\}
$$

with $K^{3}=\frac{1}{105}$. Thus, $K_{X}^{3} \geqslant \frac{1}{105}$.

Note that, when $\delta(X) \geqslant 7$, we can utilize our explicit classification in [CC10b, $\S 3]$. We shall omit some details to avoid unnecessary redundancy.
Proposition 4.7. If $P_{7} \geqslant 2$, then $K_{X}^{3} \geqslant \frac{1}{336}$.
Proof. Similarly, we have $K_{X}^{3} \geqslant \frac{1}{336}$ unless $P_{7}=2, b=0, F$ a $(1,0)$ surface and $\chi\left(\mathcal{O}_{X}\right)=1$. Again, we may assume that $P_{m} \leqslant 2$ for $m=8,9$. Hence, $P_{9}=2$ and $P_{2}=0$.

By $\epsilon_{6}=0$, we have $P_{4}+P_{5}+P_{6}=P_{3}+2+\epsilon$. Hence $\left(P_{3}, P_{4}, P_{5}, P_{6}\right)=(0,0,1,1),(0,1,0,1)$, $(0,1,1,1)$ or $(1,1,1,1)$ which corresponds to cases IV, V, VI and VIII in [CC10b, $\S 3]$, respectively. The classification implies that, if $K_{X}^{3}<\frac{1}{336}$, then $B_{X} \succeq B_{\min }$, where $B_{\min }$ is a minimal positive basket and belongs to one of the following:

J. A. Chen and M. Chen

(b1) $B_{6,4}=\{(1,2),(6,13),(1,3), 2 \times(1,5)\}$ with $K^{3}\left(B_{6,4}\right)=\frac{1}{390}$ and $P_{9}\left(B_{6,4}\right)=3$;
(b2) $B_{6,6}=\{3 \times(1,2),(3,7),(2,5),(1,4),(1,6)\}$ with $K^{3}\left(B_{6,6}\right)=\frac{1}{420}$ and $P_{9}\left(B_{6,4}\right)=3$;
(b3) $B_{8,3}=\{2 \times(2,5),(1,3),(3,11),(1,4)\}$ with $K^{3}\left(B_{8,3}\right)=\frac{1}{660}$.
Clearly, case (b1) cannot happen because $P_{9}\left(B_{X}\right) \geqslant P_{9}\left(B_{\text {min }}\right)=3$.
In case (b2), for a similar reason, $B_{X} \neq B_{6,6}$. Thus, $B_{X} \succeq B_{60}:=\{4 \times(1,2), 2 \times(2,5)$, $(1,4),(1,6)\}$ and so $K_{X}^{3} \geqslant K^{3}\left(B_{60}\right)=\frac{1}{60}$.

Finally, in case (b3), the proof of [CC10b, Theorem 3.11] implies that $B_{X} \neq B_{8,3}$ and $B_{X} \succeq$ $B_{210}=\{2 \times(2,5),(1,3),(2,7), 2 \times(1,4)\}$ with $K_{X}^{3} \geqslant K^{3}\left(B_{210}\right)=\frac{1}{210}$. We have proved the statement.

It is now immediate to see the following consequences.
Corollary 4.8 (Corollary 1.5). Let X be a minimal projective 3 -fold of general type with $K_{X}^{3}<\frac{1}{336}$. Then $\delta(X) \geqslant 8$.

Proposition 4.9. Let X be a minimal projective 3 -fold of general type.
(1) If $P_{8} \geqslant 2$, then $K_{X}^{3} \geqslant \frac{1}{504}$.
(2) If $P_{9} \geqslant 2$, then $K_{X}^{3} \geqslant \frac{1}{675}$.
(3) If $P_{10} \geqslant 2$, then $K_{X}^{3} \geqslant \frac{3}{2750}$.
(4) If $P_{11} \geqslant 2$, then $K_{X}^{3} \geqslant \frac{1}{1188}$.
(5) If $P_{12} \geqslant 2$, then $K_{X}^{3} \geqslant \frac{1}{1560}$

Proof. We only prove statement (1). Other statements can be proved similarly.
When $P_{8} \geqslant 2$, Tables A1 and A2, inequalities (9) and (11), Tables A3 and A4 imply $K_{X}^{3} \geqslant \frac{1}{504}$ unless we are in Subcase 3.4.4, for which one has $K_{X}^{3} \geqslant \frac{1}{420}$ by [CC10b, Theorem 1.2(2)] since $\chi\left(\mathcal{O}_{X}\right)=1$.

Propositions 4.2-4.7 and 4.9 imply Theorem 4.1.
An interesting by-product is the following corollary.
Corollary 4.10 (Corollary 1.7(1)). Let X be a minimal projective 3 -fold of general type with $p_{g}(X)=1$. Then $K_{X}^{3} \geqslant \frac{1}{75}$.

Proof. We distinguish the following cases.
Case 1: $P_{4} \geqslant 3$.
By Corollary 3.3, $K_{X}^{3} \geqslant \frac{3}{160}$.
Case 2: $P_{4}=2$.
We have $K_{X}^{3} \geqslant \frac{1}{70}$ by inequalities (9), (11) and Table A3 unless $b=0$ and F is either a $(1,1)$ or a $(1,0)$ surface, for which we necessarily have $h^{2}\left(\mathcal{O}_{X}\right)=0$ and thus $\chi\left(\mathcal{O}_{X}\right)=0$. Reid's Riemann-Roch formula implies $P_{5}>P_{4}=2$. Now Corollary 3.1 (with $m_{0}=4, m_{1}=5$) yields $K_{X}^{3} \geqslant \frac{1}{50}$.

Explicit birational geometry of 3-FOLDS and 4-FOLDS

Case 3: $P_{4}=1$.
Since $p_{g}(X)=1$, one has $P_{m}>0$ for all $m>1$. By [CC10a, (3.10)], we have

$$
P_{4}+P_{5}+P_{6}=3 P_{2}+P_{3}+P_{7}+\epsilon \geqslant 3 P_{2}+P_{3}+P_{7} .
$$

If $P_{4}=1$ (which implies $P_{3}=P_{2}=1$), then we have

$$
P_{5} \geqslant\left(P_{7}-P_{6}\right)+3 \geqslant 3 .
$$

Then, from [CC10a, (3.6)], $n_{1,4}^{0} \geqslant 0$ implies $\chi\left(\mathcal{O}_{X}\right) \geqslant 3$. Owing to our previous result [CC08, Corollary 1.2] for irregular 3-folds, we may assume $q(X)=0$. Thus, we have $h^{2}\left(\mathcal{O}_{X}\right)=\chi\left(\mathcal{O}_{X}\right) \geqslant 3$. Take a sub-pencil Λ of $\left|5 K_{X}\right|$. Then Λ induces a fibration $f: X^{\prime} \longrightarrow \Gamma$ after Stein factorization. Let F be the general fiber and F_{0} be the minimal model of F.
Claim. $K_{F_{0}}^{2} \geqslant 2$.
Proof. Clearly we may write

$$
f_{*} \omega_{X^{\prime}}=\mathcal{O}_{\Gamma} \oplus \mathcal{O}_{\Gamma}\left(e_{2}\right) \oplus \cdots \oplus \mathcal{O}_{\Gamma}\left(e_{p_{g}(F)-1}\right)
$$

with $-2 \leqslant e_{j} \leqslant-1$ for all j, since $p_{g}\left(X^{\prime}\right)=1$. Note that we have

$$
\begin{aligned}
h^{2}\left(\mathcal{O}_{X}\right) & =h^{1}\left(f_{*} \omega_{X^{\prime}}\right)+h^{0}\left(R^{1} f_{*} \omega_{X^{\prime}}\right) \\
& \leqslant\left(p_{g}(F)-1\right)+h^{0}\left(R^{1} f_{*} \omega_{X^{\prime}}\right) .
\end{aligned}
$$

If $q(F)>0$, we have $K_{F_{0}}^{2} \geqslant 2$ by the surface theory. If $q(F)=0$, we have $R^{1} f_{*} \omega_{X^{\prime}}=0$ and thus $p_{g}(F) \geqslant h^{2}\left(\mathcal{O}_{X}\right)+1 \geqslant 4$. Hence, we have $K_{F_{0}}^{2} \geqslant 4$ by the Noether inequality.

If $d_{5} \geqslant 2$, then we may set $m_{1}=5$ and apply inequality (15), which gives $K_{X}^{3} \geqslant \frac{1}{75}$.
If $d_{5}=1$, then $\left|5 K_{X^{\prime}}\right|$ and Λ are composed with the same pencil. Thus, we have $\theta_{5} \geqslant 2$ and inequality (11) gives $K_{X}^{3} \geqslant \frac{16}{245}$.

5. Threefolds with $\delta(V) \geqslant 13$

Let X be a minimal projective 3 -fold of general type with $\delta(X) \geqslant 13$. Now we are in the natural position to classify baskets $\mathbb{B}(X)$ with $\delta(X) \geqslant 13$. In fact, we have $\mathbb{B}^{12} \succeq \mathbb{B}(X) \succeq \mathbb{B}_{\text {min }}$ for certain minimal positive basket $\mathbb{B}_{\min }$ listed in [CC10b, Table C], where \mathbb{B}^{12} is also listed there. However, as pointed out in [CC10b, Proposition 4.5], our earlier classification in [CC10b, Table C] is not clean since some minimal baskets in Table C are actually known to be 'non-geometric'.

Recall that, by definition, a geometric weighted basket is a basket of a projective threefold of general type. Hence, the following properties hold:
(A) $P_{m} P_{n} \leqslant P_{m+n}$ if $P_{m}=1$ and $n>0$;
(B) $P_{m} \geqslant 0$ for all $m>0$;
(C) $K^{3} \geqslant f\left(m_{0}\right)$ for some explicit function $f(x)$ given in $\S \S 3$ and 4 provided that $P_{m_{0}} \geqslant 2$.

Indeed, if \mathbb{B}^{12} violates one of A, B, C, then so does $\mathbb{B}(X)$. Therefore $\mathbb{B}(X)$ is non-geometric. If $\mathbb{B}_{\min }$ is non-geometric (e.g. cases No. 3a, $5 \mathrm{~b}, 10 \mathrm{a}, \ldots$, etc.), then we need to check all baskets between \mathbb{B}^{12} and $\mathbb{B}_{\text {min }}$. The following Table H consists of non-geometric baskets with $\delta \geqslant 13$. We keep the same notation as in Table C.

J. A. Chen and M. Chen

Table H.

No.	$\left(P_{12}, \ldots, P_{24}\right)$	$\left(n_{1,2}, n_{4,9}, \ldots, n_{1,5}\right) \quad$ or $B_{\text {min }}$	K^{3}	Offending
3a	(1, 0, 0, 1, 0, 0, 2, 0, 3, 1, 1, 1, 3)	$\{(2,5),(3,8), *\} \succ\{(5,13), *\}$	$\frac{17}{30030}$	$P_{8} P_{8}>P_{16}$
5b	(1, $0,1,2,0,0,3,0,2,1,2,2,3)$	$\{(5,13),(4,15), *\}$	$\frac{1}{1170}$	$P_{8} P_{8}>P_{16}$
8	(1,0,2, 1, 0, 1, 3, 1, 4, 3, 2, 2, 5)	(7, 1, 0, 1, 0, 2, 0, 0, 6, 0, 2, 0, 0, 0, 1)	$\frac{1}{770}$	$P_{6} P_{10}>P_{16}$
9	$(1,0,2,-1,1,0,2,0,1,2,1,0,2)$	$(9,0,0,2,0,0,1,1,4,0,1,0,0,1,0)$	$\frac{1}{5544}$	$P_{15}=-1$
10a	(1,0,2, 1, 2, -1, 2, 0, 2, 2, 1, 2, 4)	$\{(4,9),(3,7), *\} \succ\{(7,16), *\}$	$\frac{1}{1680}$	$P_{17}=-1$
11a	(1,0,2,0,2, 0, 2, 2, 2, 1, 1, 1, 3)	$\{(3,8),(4,11), *\} \succ\{(7,19), *\}$	$\frac{1}{2660}$	$P_{8} P_{14}>P_{22}$
13	$(1,0,3,-1,1,1,3,1,3,3,3,1,4)$	$(12,0,0,2,0,2,0,2,4,0,2,0,0,1,0)$	$\frac{4}{3465}$	$P_{15}=-1$
15a	$(1,0,3,0,1,0,2,0,3,1,1,1,4)$	$\{(4,11),(1,3), *\} \succ\{(5,14), *\}$	$\frac{1}{2520}$	$P_{8} P_{14}>P_{22}$
15b	(1,0,2, 0, 1, 0, 3, 0, 3, 2, 1, 1, 4)	$\{(2,5),(3,8), *\} \succ\{(5,13), *\}$	$\frac{23}{36036}$	$P_{8} P_{14}>P_{22}$
15c	$(1,0,3,1,2,0,3,1,3,2,2,2,5)$	$\{(7,16),(7,19), *\}$	$\frac{31}{31920}$	$P_{8} P_{14}>P_{22}$
16c	(1,0,2,1,1,-1,3,-1, 2, 2, 1, 1, 3)	$\{\{(5,13),(7,16) *\}$	$\frac{3}{16016}$	$P_{17}=-1$
18a	(1, $, 3,3,0,1,0,2,1,2,2,2,1,3)$	$\{(4,11),(1,3), *\} \succ\{(5,14), *\}$	$\frac{1}{3080}$	$P_{6} P_{11}>P_{17}$
19	(1,0,2, 0, 1, 1, 3, 0, 2, 2, 2, 1, 3)	$(8,0,1,1,0,1,0,1,5,0,1,0,0,1,0)$	$\frac{2}{3465}$	$P_{9} P_{14}>P_{23}$
20a	$(1,0,1,1,1,0,3,-1,2,1,0,1,3)$	$\{(2,5),(3,8), *\} \succ\{(5,13), *\}$	$\frac{1}{16380}$	$P_{19}=-1$
21a	(1, 1, 1, 1, 2, 0, 2, 1, 2, 1, 2, 2, 3)	$\{(1,3),(3,10), *\} \succ\{(4,13), *\}$	$\frac{1}{4680}$	$P_{8} P_{9}>P_{17}$
22	(1,0,1, 1, 1, 0, 2, 1, 3, 1, 1, 1, 3)	$(7,1,0,1,0,1,1,0,5,1,0,0,1,0,1)$	$\frac{1}{9240}$	$P_{8} P_{9}>P_{17}$
23a	(1,0,2, 1,2, 0, 2, 1, 3, 1, 2, 2, 3)	$\{(4,9),(3,7), *\} \succ\{(7,16), *\}$	$\frac{1}{2640}$	$P_{8} P_{9}>P_{17}$
24	(1, 0, 2, 0, 0, 1, 3, 0, 3, 2, 2, 0, 3)	($10,1,0,1,0,3,0,1,6,0,2,0,0,1,0)$	$\frac{1}{3465}$	$P_{8} P_{8}>P_{16}$
26a	(1,0,3, 1, 1, 1, 3, 0, 4, 1, 2, 2, 5)	$\{(4,11),(1,3), *\} \succ\{(5,14), *\}$	$\frac{1}{1260}$	$P_{9} P_{10}>P_{19}$
27.1	(1,0,2, 2, 1, 1, 5, 0, 4, 3, 3, 3, 6)	$\{(2,5),(3,8), *\} \succ\{(5,13), *\}$	$\frac{71}{45045}$	$P_{9} P_{10}>P_{19}$
27.2	$(1,0,2,2,1,1,5,-1,3,2,2,2,4)$	$\{(2,5),(5,13), *\} \succ\{(7,18), *\}$	$\frac{1}{1386}$	$P_{19}=-1$
27a	$(1,0,2,2,1,1,5,-1,3,2,2,2,3)$	$\{(2,5),(7,18), *\} \succ\{(9,23), *\}$	$\frac{1}{1386}$	$P_{19}=-1$
27 b	$(1,0,2,2,1,1,5,-1,3,2,2,2,5)$	$\{(5,13),(5,18), *\}$	$\frac{1}{1170}$	$P_{19}=-1$
29a	(1, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3)	$\{(5,14),(1,3), *\} \succ\{(6,17), *\}$	$\frac{1}{5335}$	$P_{9} P_{14}>P_{23}$
32b	(1,0,3, 1, 1, 1, 3, 1, 3, 2, 3, 2, 4)	$\{(4,11),(1,3), *\} \succ\{(5,14), *\}$	$\frac{1}{1386}$	$P_{9} P_{14}>P_{23}$
33a	(1, 1, 2, 0, 2, 1, 1, 1, 2, 2, 1, 2, 3)	$\{(3,10),(2,7), *\} \succ\{(5,17), *\}$	$\frac{1}{2856}$	$P_{6} P_{16}>P_{22}$
34 b	(1, 1, 2, 0, 1, 1, 3, 0, 3, 3, 1, 2, 4)	$\{(2,5),(3,8), *\} \succ\{(5,13), *\}$	$\frac{1}{1170}$	$P_{6} P_{13}>P_{19}$
39a	(1, 1, 2, 1, 3, 0, 2, 1, 3, 2, 2, 3, 4)	$\{(4,9),(3,7), *\} \succ\{(7,16), *\}$	$\frac{1}{1680}$	$P_{6} P_{16}>P_{22}$
39b	(1, 1, 2, 1, 3, 1, 2, 1, 3, 2, 2, 3, 5)	$\{(3,10),(2,7), *\} \succ\{(5,17), *\}$	$\frac{4}{5355}$	$P_{6} P_{16}>P_{22}$
40.1	(1, 1, 2, 1, 2, 1, 4, 0, 4, 3, 2, 3, 6)	$\{(2,5),(3,8), *\} \succ\{(5,13), *\}$	$\frac{41}{32760}$	$P_{6} P_{13}>P_{19}$
40a	(1, 1, 2, 1, 2, 1, 4, -1, 3, 2, 1,2,4)	$\{(4,10),(3,8), *\} \succ\{(7,18), *\}$	$\frac{1}{2520}$	$P_{6} P_{13}>P_{19}$
40b	(1, 1, 2, 1, 2, 1, 4, 0, 4, 3, 1, 2, 5)	$\{(2,5),(6,16), *\} \succ\{(8,21), *\}$	$\frac{1}{1260}$	$P_{6} P_{13}>P_{19}$
43a	(1, 1, 3, 0, 2, 1, 2, 1, 3, 2, 2, 2, 4)	$\{(4,11),(1,3), *\} \succ\{(5,14), *\}$	$\frac{1}{2520}$	$P_{7} P_{8}>P_{15}$
43b	(1, 1, 2, 0, 2, 1, 3, 1, 3, 3, 2, 2, 4)	$\{(2,5),(3,8), *\} \succ\{(5,13), *\}$	$\frac{23}{36036}$	$P_{7} P_{8}>P_{15}$

Explicit birational geometry of 3-FOLDS And 4-FOLDS

Table H. Continued.

No.	$\left(P_{12}, \ldots, P_{24}\right)$	$\left(n_{1,2}, n_{4,9}, \ldots, n_{1,5}\right)$	or $B_{\min }$	K^{3}
44a	$(1,1,2,1,2,1,4,1,3,4,2,2,4)$	$\{(2,5),(6,16), *\} \succ\{(8,21), *\}$	$\frac{1}{1886}$	$P_{7} P_{18}>P_{25}=3$
44b	$(1,1,2,1,2,0,3,0,2,3,2,2,3)$	$\{(7,16),(5,13), *\}$	$\frac{3}{16016}$	$P_{7} P_{10}>P_{17}$
46a	$(1,1,1,1,2,1,3,0,3,1,1,2,3)$	$\{(2,5),(3,8), *\} \succ\{(5,13), *\}$	$\frac{1}{16380}$	$P_{9} P_{10}>P_{19}$
50a	$(1,1,3,1,2,2,3,1,4,2,3,3,5)$	$\{(4,11),(1,3), *\} \succ\{(5,14), *\}$	$\frac{1}{1260}$	$P_{7} P_{14}>P_{21}$
51a	$(1,1,2,2,2,2,5,0,3,3,3,3,4)$	$\{(4,10),(3,8), *\} \succ\{(7,18), *\}$	$\frac{1}{1386}$	$P_{6} P_{13}>P_{19}$
51b	$(1,1,2,2,2,2,5,0,3,3,3,3,5)$	$\{(5,13),(5,18), *\}$	$\frac{1}{1170}$	$P_{6} P_{13}>P_{19}$
52a	$(1,1,2,1,1,0,2,1,2,2,1,2,3)$	$\{(2,5),(3,8), *\} \succ\{(5,13), *\}$	$\frac{1}{2184}$	$P_{5} P_{12}>P_{17}$
56a	$(1,1,2,2,1,1,2,1,3,2,2,3,3)$	$\{(4,9),(3,7), *\} \succ\{(7,16), *\}$	$\frac{1}{1680}$	$P_{5} P_{14}>P_{19}$
57	$(1,0,2,2,0,1,3,1,3,2,2,2,3)$	$(3,0,1,2,0,5,0,0,4,0,0,1,0,0,0)$	$\frac{1}{1386}$	$P_{7} P_{9}>P_{16}$
58a	$(1,1,2,2,2,0,2,1,3,2,2,3,4)$	$\{(4,9),(3,7), *\} \succ\{(7,16), *\}$	$\frac{1}{1680}$	$P_{5} P_{12}>P_{17}$
59a	$(1,1,2,1,2,1,2,3,2,2,2,2,3)$	$\{(3,8),(4,11), *\} \succ\{(7,19), *\}$	$\frac{1}{2660}$	Item C
60a	$(1,1,1,2,1,1,3,0,3,1,1,2,3)$	$\{(2,5),(3,8), *\} \succ\{(5,13), *\}$	$\frac{1}{16380}$	$P_{9} P_{10}>P_{19}$
61	$(1,1,1,2,1,1,2,2,3,2,2,2,3)$	$(0,1,0,1,0,3,1,0,2,0,0,0,1,0,0)$	$\frac{1}{9240}$	Item C
62a	$(1,1,2,2,2,1,2,2,3,2,3,3,3)$	$\{(4,9),(3,7), *\} \succ\{(7,16), *\}$	$\frac{1}{2640}$	Item C
63	$(1,1,3,1,2,1,3,2,3,3,2,2,4)$	$(5,0,1,2,0,1,1,1,3,0,1,0,0,0,1)$	$\frac{1}{5544}$	Item C

By eliminating non-geometric baskets, we obtain a shorter list of baskets, listed in Tables F0, F1 and F2 in Appendix A. We summarize some observations from the tables.

Theorem 5.1 (Theorem 1.4). Let X be a minimal projective 3 -fold of general type with the weighted basket $\mathbb{B}(X):=\left\{B_{X}, P_{2}, \chi\left(\mathcal{O}_{X}\right)\right\}$. If $\delta(X) \geqslant 13$, then $P_{2}=0$ and $\mathbb{B}(X)$ belongs to one of the types listed in Tables F0-F2 in Appendix A. Furthermore, the following hold:
(1) $\delta(X)=18$ if and only if $\mathbb{B}(X)=\left\{B_{2 a}, 0,2\right\}$ (see Table F0 for $B_{2 a}$) with $K_{X}^{3}=\frac{1}{1170}$;
(2) $\delta(X) \neq 16,17$;
(3) $\delta(X)=15$ if and only if $\mathbb{B}(X)$ is among one of the cases in Table F1; one has $K_{X}^{3} \geqslant \frac{1}{1386}$;
(4) $\delta(X)=14$ if and only if $\mathbb{B}(X)$ is among one of the cases in Table F2; one has $K_{X}^{3} \geqslant \frac{1}{1680}$;
(5) $\delta(X)=13$ if and only if $\mathbb{B}(X)=\left\{B_{41}, 0,2\right\}$ (see Table F0 for B_{41}) with $K_{X}^{3}=\frac{1}{252}$.

Theorems 4.1 and 5.1 and [Che07, Theorem 1.4] imply the following corollary.
Corollary 5.2 (Theorem 1.6(2)). Let X be a minimal projective 3 -fold of general type. Then $K_{X}^{3} \geqslant \frac{1}{1680}$, and equality holds if and only if $\chi\left(\mathcal{O}_{X}\right)=2, P_{2}=0$ and $B_{X}=B_{7 a}$ or $B_{X}=B_{36 a}$ (cf. Table F2).

Theorem 5.1, together with the explicit calculation, also implies the following result.
Corollary 5.3. Let X be a minimal projective 3-fold of general type. Then:
(1) if $\delta(X)=13, P_{m}>0$ for all $m \geqslant 10$;
(2) if $\delta(X)=14,15,18, P_{m}>0$ for all $m \geqslant 20$.

J. A. Chen and M. Chen

6. Birationality

Theorem 6.1. Let X be a minimal projective 3-fold of general type. If $\delta(X)=18$, then Φ_{m} is birational for all $m \geqslant 61$.

Proof. Set $m_{0}=18$. By Theorem 5.1, we know that $B_{X}=B_{2 a}, P_{2}=0, \chi\left(\mathcal{O}_{X}\right)=2, P_{19}=0$, $P_{24}=3$ and $K_{X}^{3}=\frac{1}{1170}$. By [CC08, Corollary 1.2], we see $q(X)=0$. Thus, $\left|18 K_{X}\right|$ induces a fibration $f: X^{\prime} \longrightarrow \Gamma \cong \mathbb{P}^{1}$. We have $h^{2}\left(\mathcal{O}_{X^{\prime}}\right)=h^{2}\left(\mathcal{O}_{X}\right)=1$. Pick a general fiber F. Since $P_{19}(X)=P_{19}\left(\mathbb{B}_{2 a}\right)=0$, we have $H^{0}\left(X^{\prime}, K_{X^{\prime}}+F\right)=0$.

Claim 6.1.1. $p_{g}(F)=1$.
Proof. Since $\chi\left(\mathcal{O}_{X^{\prime}}\right)>1$, we have $p_{g}(F)>0$ by [CC10b, Lemma 2.32]. On the other hand, we have the long exact sequence

$$
H^{0}\left(X^{\prime}, K_{X^{\prime}}+F\right) \longrightarrow H^{0}\left(F, K_{F}\right) \longrightarrow H^{1}\left(X^{\prime}, K_{X^{\prime}}\right) \longrightarrow H^{1}\left(X^{\prime}, K_{X^{\prime}}+F\right)
$$

which implies $h^{0}\left(K_{F}\right) \leqslant h^{1}\left(X^{\prime}, K_{X^{\prime}}\right)=h^{2}\left(\mathcal{O}_{X^{\prime}}\right)=1$. Thus, we get $p_{g}(F)=1$.
We have $P_{m}>0$ for all $m \geqslant 20$ by Corollary 5.3(2). Consider the linear systems

$$
\left|K_{X^{\prime}}+\left\lceil n \pi^{*}\left(K_{X}\right)\right\rceil+F\right| \preceq\left|(n+19) K_{X^{\prime}}\right| .
$$

Clearly $\left|(n+19) K_{X^{\prime}}\right|$ distinguish different general fibers F as long as $n \geqslant 19$. By Kawamata and Viehweg vanishing,

$$
\begin{aligned}
\left.\left|K_{X^{\prime}}+\left\lceil n \pi^{*}\left(K_{X}\right)\right\rceil+F\right|\right|_{F} & =\left.\left|K_{F}+\left\lceil n \pi^{*}\left(K_{X}\right)\right\rceil\right|\right|_{F} \mid \\
& \succeq\left|K_{F}+\left\lceil L_{n}\right\rceil\right|
\end{aligned}
$$

where we set $L_{n}:=\left.n \pi^{*}\left(K_{X}\right)\right|_{F}$.
CLAIM 6.1.2. $L_{n}^{2}>8$ whenever $n \geqslant 42$.
Proof. Since $p_{g}(F)=1$, we are in Subcase 3.4.1 or Subcase 3.4.3.
Let us consider Subcase 3.4.1 (i.e. $K_{F_{0}}^{2} \geqslant 2$) first. We have

$$
\left(\left.\pi^{*}\left(K_{X}\right)\right|_{F}\right)^{2} \geqslant \frac{1}{19^{2}} K_{F_{0}}^{2} \geqslant \frac{2}{19^{2}}
$$

by Lemma 2.1(ii). Thus, $L_{n}^{2}>8$ whenever $n>38$.
If $K_{F_{0}}^{2}=1$, we shall estimate L_{n}^{2} in an alternative way. Suppose that $\left|24 K_{X^{\prime}}\right|$ and $\left|18 K_{X^{\prime}}\right|$ are not composed with the same pencil. Take $|G|:=\left|M_{24}\right| F \mid$. Pick a generic irreducible element C of $|G|$. Then we have $\xi=\left(\left.\pi^{*}\left(K_{X}\right)\right|_{F} \cdot C\right) \geqslant \frac{2}{19}$ by Lemma 2.4. Thus, $\left(\left.\pi^{*}\left(K_{X}\right)\right|_{F}\right)^{2} \geqslant \frac{1}{24} \xi \geqslant \frac{1}{12 \cdot 19}$. Since $r(X)=2340$ and $r(X)\left(\left.\pi^{*}\left(K_{X}\right)\right|_{F}\right)^{2}$ is an integer, we see $\left(\left.\pi^{*}\left(K_{X}\right)\right|_{F}\right)^{2} \geqslant \frac{11}{2340}$. So we have $L_{n}^{2}>8$ whenever $n \geqslant 42$.

Assume that $\left|24 K_{X^{\prime}}\right|$ and $\left|18 K_{X^{\prime}}\right|$ are composed with the same pencil. Since $P_{24}=3$, we may set $m_{0}=24$ and $\Lambda=\left|24 K_{X^{\prime}}\right|$. We have $\theta=2$. The argument in Subcase 3.4.3 implies that

$$
\left(\left.\pi^{*}\left(K_{X}\right)\right|_{F}\right)^{2} \geqslant \frac{4 \theta^{2}}{\left(\tilde{m}_{0}+\theta\right)\left(3 m_{0}+4 \theta\right)}=\frac{1}{130} .
$$

We have $L_{n}^{2}>8$ whenever $n \geqslant 33$.

Explicit birational geometry of 3-folds and 4-Folds

For very general curves \tilde{C} on F, one has

$$
\left(L_{n} \cdot \tilde{C}\right) \geqslant \frac{n}{19}\left(\sigma^{*}\left(K_{F_{0}}\right) \cdot \tilde{C}\right) \geqslant \frac{2 n}{19}
$$

by Lemma 2.5. Therefore, $\left(L_{n} \cdot \tilde{C}\right) \geqslant 4$ for $n \geqslant 38$. Lemma 2.3 implies that $\left|K_{F}+\left\lceil L_{n}\right\rceil\right|$ gives a birational map for $n \geqslant 42$. Thus, Φ_{m} is birational for all $m \geqslant 61$.

Theorem 6.2. Let X be a minimal projective 3-fold of general type. If $\delta(X) \leqslant 15$, then Φ_{m} is birational for all $m \geqslant 56$.

Proof. Set $m_{0}=\delta(X)$. By considering a sub-pencil Λ of $\left|m_{0} K_{X}\right|$, we may always assume that we have an induced fibration $f: X^{\prime} \longrightarrow \Gamma$ onto a curve Γ. By Chen and Hacon [CH07], we may assume $q(X)=0$. Thus, $\Gamma \cong \mathbb{P}^{1}$. By [CC10b, Corollary 3.13] and [CC10b, Lemma 2.32], we know that $\delta(X) \leqslant 10$ as long as F is a $(1,0)$ surface. Therefore, it suffices to consider the following three cases:
(1) $\delta(X) \leqslant 15$ and F is a $(1,2)$ surface;
(2) $\delta(X) \leqslant 15$ and F is neither a $(1,2)$ surface nor a $(1,0)$ surface;
(3) $\delta(X) \leqslant 10$ and F is a $(1,0)$ surface.

Case 1. Without losing of generality, let us assume $\delta(X)=15$. Take $|G|$ to be the moving part of $\left|K_{F}\right|$. Then, by Table A3, we have $\xi \geqslant \frac{1}{11}$. We have $m_{0}=15$ and $\beta \mapsto \frac{1}{16}$. So $\alpha_{m}>2$ whenever $m \geqslant 55$. By Corollary $5.3,\left|m K_{X^{\prime}}\right|$ separates different general fibers F as long as $m \geqslant 35$. On the other hand, Kawamata and Viehweg vanishing and Lemma 2.1 imply the following, whenever $m \geqslant 49$:

$$
\begin{aligned}
\mid m K_{X^{\prime}} \|_{F} & \succeq \mid K_{X^{\prime}}+\left\lceil(m-16) \pi^{*}\left(K_{X}\right)\right\rceil+F \|_{F} \\
& \succeq \mid K_{F}+\left\lceil\left.(m-16) \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil \\
& \succeq\left|\left(K_{F}+\left\lceil Q_{m}\right\rceil+C\right)+C\right|
\end{aligned}
$$

where Q_{m} is a nef and big \mathbb{Q}-divisor. Thus, by [CC10b, Lemma 2.17], Φ_{m} distinguishes different generic curves C for $m \geqslant 49$. Finally Theorem 2.7 implies that Φ_{m} is birational for all $m \geqslant 55$.

Case 2. Still assume $\delta(X)=15$. Parallel to the respective argument in the proof of Theorem 6.1, one knows that $\left|m K_{X^{\prime}}\right|$ distinguishes different general fibers F for $m \geqslant 35$. By the surface theory, we see that F is either a surface with $K_{F_{0}}^{2} \geqslant 2$ or a $(1,1)$ surface. We want to study the linear system $\left|K_{F}+\left\lceil L_{n}\right\rceil\right|$. In fact, by the estimation in Subcase 3.4.1 and Table A4, we have $L_{n}^{2} \geqslant n^{2} /(32 \cdot 6)>8$ whenever $n \geqslant 40$. Similarly we have $\left(L_{n} \cdot \tilde{C}\right) \geqslant 4$ for all $n \geqslant 32$ and for all curves \tilde{C} on F passing through very general points. By Lemma 2.3, we see that $\left|K_{F}+\left\lceil L_{n}\right\rceil\right|$ gives a birational map for all $n \geqslant 40$. Similar to what discussed in the proof of Theorem 6.1, we have proved that Φ_{m} is birational for all $m \geqslant n+16 \geqslant 56$.

Case 3. When $\delta(X) \leqslant 10$, we have much better birationality result even though F is a $(1,0)$ surface. In fact, parallel argument shows that Φ_{m} is birational for all $m \geqslant 39$. The proof is more or less similar to the above proofs. We leave it as an exercise to interested readers.

Theorems 5.1, 6.1, and 6.2 imply Theorem 1.6(2).

J. A. Chen and M. Chen

7. Threefolds with $\delta(V)=2$

This section is devoted to classifying minimal projective 3 -folds of general type with $\delta(X)=2$, that is, $p_{g}(X) \leqslant 1$ and $P_{2}(X) \geqslant 2$.

Assume that $P_{2} \geqslant 2$. We first recall the following known results:
(a) if $d_{2}=3$, then Φ_{m} is birational for all $m \geqslant 7$ by [CC10b, Theorem 2.20];
(b) if $d_{2}=2, \Phi_{m}$ is birational for all $m \geqslant 10$ by [CC10b, Theorem 2.22];
(c) if $q(X)>0$, then Φ_{m} is birational for all $m \geqslant 7$ by Chen and Hacon [CH07] and for $m=6$ by Chen et al. [CCJ13].
The purpose of this section is to prove that Φ_{m} is birational for $m \geqslant 11$ and classify 3-folds such that Φ_{10} is not birational. Therefore, we may and do assume that $q(X)=0, d_{2}=1$ and $b=g(\Gamma)=0$. Let F be the general fiber of the induced fibration $f: X^{\prime} \rightarrow \mathbb{P}^{1}$ from Φ_{2}.

7.1 Birationality of Φ_{m} for $m \geqslant 11$

Lemma 7.1. The linear system $\left|m K_{X^{\prime}}\right|$ distinguishes different general fibers of f for all $m \geqslant 9$.
Proof. When $p_{g}(F)>0$, by [CC10b, Proposition 2.15(i)], one has $P_{k}>0$ for $k \geqslant 7$. Thus, for all $m \geqslant 9, m K_{X^{\prime}} \geqslant F$, hence $\left|m K_{X^{\prime}}\right|$ distinguishes different general fibers of f.

When $p_{g}(F)=0$, one has $\chi\left(\mathcal{O}_{X}\right) \leqslant 1$ (cf. [CC10b, Lemma 2.32]). By [CC10b, Lemma 3.2], one has $P_{5} \geqslant P_{2}>0$. Then clearly $P_{k}>0$ for all $k \geqslant 5$. Thus, for all $m \geqslant 7, m K_{X^{\prime}} \geqslant F$ and, hence, $\left|m K_{X^{\prime}}\right|$ distinguishes different general fibers of f.

Proposition 7.2. Assume $P_{2}(X) \geqslant 2, q(X)=0, d_{2}=1$ and F is not a $(1,2)$ surface. Then Φ_{m} is birational for all $m \geqslant 10$.

Proof. Set $L_{n}:=\left.n \pi^{*}\left(K_{X}\right)\right|_{F}$ which is a nef and big \mathbb{Q}-divisor on F. Kawamata and Viehweg vanishing gives the following surjective map:

$$
H^{0}\left(X^{\prime}, K_{X^{\prime}}+\left\lceil n \pi^{*}\left(K_{X}\right)\right\rceil+F\right) \longrightarrow H^{0}\left(F, K_{F}+\left.\left\lceil n \pi^{*}\left(K_{X}\right)\right\rceil\right|_{F}\right)
$$

Together with Lemma 7.1, it is sufficient to prove that $\left|K_{F}+\left\lceil L_{n}\right\rceil\right|$ gives a birational map for $n \geqslant 7$ because

$$
\left|(n+3) K_{X^{\prime}}\right| \succeq\left|K_{X^{\prime}}+\left\lceil n \pi^{*}\left(K_{X}\right)\right\rceil+F\right|
$$

Claim 7.2.1. If $K_{F_{0}}^{2} \geqslant 2$ or F_{0} is of type (1,0), then $\left|K_{F}+\left\lceil L_{n}\right\rceil\right|$ is birational for $n \geqslant 7$.
First of all, for any curve $\tilde{C} \subset F$ passing through very general points of F, we estimate $\left(L_{n} \cdot \tilde{C}\right)$ for $n \geqslant 7$. Clearly we have $g(\tilde{C}) \geqslant 2$. Set $m_{0}=2$ and $\Lambda=\left|2 K_{X^{\prime}}\right|$. By Lemmas 2.1 and 2.5 , we have

$$
\left(L_{n} \cdot \tilde{C}\right) \geqslant 7\left(\left.\pi^{*}\left(K_{X}\right)\right|_{F} \cdot \tilde{C}\right) \geqslant \frac{7}{3}\left(\sigma^{*}\left(K_{F_{0}}\right) \cdot \tilde{C}\right)>4
$$

If $K_{F_{0}}^{2} \geqslant 2$, then we have

$$
L_{n}^{2} \geqslant 49\left(\left.\pi^{*}\left(K_{X}\right)\right|_{F}\right)^{2} \geqslant 49\left(\frac{1}{3} \sigma^{*}\left(K_{F_{0}}\right)\right)^{2} \geqslant \frac{98}{9}>8 .
$$

If F_{0} is a $(1,0)$ surface, we have $P_{4} \geqslant 2 P_{2} \geqslant 4$ since $\chi\left(\mathcal{O}_{X}\right) \leqslant 1$. When $d_{4} \geqslant 2$, we set $m_{0}=2$, $\Lambda=\left|2 K_{X^{\prime}}\right|$ and $|G|=\left|M_{4}\right| F \mid$. Then $\beta=\frac{1}{4}, \xi \geqslant \frac{1}{3}\left(\sigma^{*}\left(K_{F_{0}}\right) \cdot C\right) \geqslant \frac{2}{3}$ and so $L_{n}^{2} \geqslant \frac{49}{6}>8$.

When $d_{4}=1$, we set $m_{0}=4$ and $\Lambda=\left|4 K_{X^{\prime}}\right|$. Clearly $\left|2 K_{X^{\prime}}\right|$ and $\left|4 K_{X^{\prime}}\right|$ induce the same fibration f. Take $|G|=\left|2 \sigma^{*}\left(K_{F_{0}}\right)\right|$. Since $\theta \geqslant 3$, we have $\beta \geqslant \frac{3}{14}$ by Lemma 2.1. Thus, $\xi \geqslant \frac{6}{7}$ and so $L_{n}^{2} \geqslant 49 \cdot \frac{3}{14} \cdot \frac{6}{7}>8$. By Lemma 2.3, the claim follows.

Explicit birational geometry of 3-folds and 4-Folds

Claim 7.2.2. If F_{0} is a $(1,1)$ surface, then $\left|K_{F}+\left\lceil L_{n}\right\rceil\right|$ is birational for $n \geqslant 7$.
Following the similar argument as above, it is easy to see that $L_{n}^{2} \geqslant \frac{64}{7}>8$ and $\left(L_{n} \cdot \tilde{C}\right) \geqslant 4$ for all $n \geqslant 8$. We consider the linear system $\left|K_{F}+\left\lceil 7 \pi^{*}\left(K_{X}\right) \mid F\right\rceil\right|$ in an alternative way. Note that $\left|2 \sigma^{*}\left(K_{F_{0}}\right)\right|$ is base point free. Pick a generic irreducible element $C \in\left|2 \sigma^{*}\left(K_{F_{0}}\right)\right|$. Since $\mathcal{O}_{\Gamma}(1) \hookrightarrow f_{*} \omega_{X^{\prime}}$, we have $f_{*} \omega_{X^{\prime} / \Gamma}^{2} \hookrightarrow f_{*} \omega_{X^{\prime}}^{10}$. The semi-positivity implies that $f_{*} \omega_{X^{\prime} / \Gamma}^{2}$ is generated by global sections, which directly implies $\left.10 K_{X^{\prime}}\right|_{F} \geqslant C$. Thus, Φ_{10} distinguishes different C. By Lemma 2.1, we have $\left.6 \pi^{*}\left(K_{X}\right)\right|_{F} \equiv C+H_{6}$ for an effective \mathbb{Q}-divisor H_{6} on F. Thus, the vanishing theorem implies

$$
\left.\left|K_{F}+\left\lceil\left. 7 \pi^{*}\left(K_{X}\right)\right|_{F}-H_{6}\right\rceil\right|\right|_{C}=\left|K_{C}+D\right|
$$

with $\operatorname{deg}(D) \geqslant 2\left(\left\lceil\left. 7 \pi^{*}\left(K_{X}\right)\right|_{F}-C-H_{6}\right\rceil \cdot \sigma^{*}\left(K_{F_{0}}\right)\right) \geqslant 2$. Since C is non-hyperelliptic, $\left|K_{C}+D\right|$ gives a birational map. Thus $\left|K_{F}+\left\lceil\left. 7 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil\right|$ is birational.

Proposition 7.3. Assume $P_{2}(X) \geqslant 2, q(X)=0, d_{2}=1$ and F a $(1,2)$ surface. Then Φ_{m} is birational for all $m \geqslant 11$.

Proof. Take $|G|$ to be the moving part of $\left|\sigma^{*}\left(K_{F_{0}}\right)\right|$. Modulo birational modifications, we may assume that $|G|$ is base point free. Pick a generic irreducible element C of $|G|$. It is also known that $g=2$.
Claim 7.3.1. The linear system $\left|m K_{X^{\prime}}\right|$ distinguishes different general members of $|G|$ for $m \geqslant 9$.
Proof. Clearly $|G|$ is composed with a rational pencil since $q(F)=0$. We shall prove $\left|m K_{X^{\prime}}\right|_{\mid F} \succeq$ $|G|$ and thus the statement follows. In fact, by Lemma 2.1, we have

$$
3 \pi^{*}\left(K_{X}\right) \equiv \sigma^{*}\left(K_{F_{0}}\right)+H_{3}
$$

for an effective \mathbb{Q}-divisor H_{3} on F. Thus, for $m \geqslant 10$,

$$
Q_{m}:=(m-3) \pi^{*}\left(K_{X}\right)_{\mid F}-2 H_{3}-\left.2 \sigma^{*}\left(K_{F_{0}}\right) \equiv(m-9) \pi^{*}\left(K_{X}\right)\right|_{F}
$$

is nef and big. It follows that $K_{F}+\left\lceil Q_{m}\right\rceil+\sigma^{*}\left(K_{F_{0}}\right)>0$ by [CC10b, Lemma 2.14]. We thus have the following:

$$
\begin{aligned}
\left|m K_{X^{\prime}}\right|_{\mid F} & \succeq\left|K_{X^{\prime}}+F+\left\lceil(m-3) \pi^{*}\left(K_{X}\right)\right\rceil\right|_{\mid F} \\
& =\left|K_{F}+\left\lceil(m-3) \pi^{*}\left(K_{X}\right)\right\rceil_{\mid F}\right| \\
& \succeq\left|K_{F}+\left\lceil(m-3) \pi^{*}\left(K_{X}\right)_{\mid F}-2 H_{3}\right\rceil\right| \\
& =\left|\left(K_{F}+\left\lceil Q_{m}\right\rceil+\sigma^{*}\left(K_{F_{0}}\right)\right)+\sigma^{*}\left(K_{F_{0}}\right)\right| \\
& \succeq\left|\sigma^{*}\left(K_{F_{0}}\right)\right| \succeq|G|
\end{aligned}
$$

where the first equality follows from the Kawamata and Viehweg vanishing [Kaw82, Vie82]. Therefore, $\left|m K_{X^{\prime}}\right|$ distinguishes general members of $|G|$ for $m \geqslant 10$. Moreover, for $m=9$,

$$
\begin{aligned}
\left|9 K_{X^{\prime}}\right|_{\mid F} & \succeq\left|5 K_{X^{\prime}}\right|_{\mid F} \succeq\left|K_{X^{\prime}}+\left\lceil 2 \pi^{*}\left(K_{X}\right)\right\rceil+F\right|_{\mid F} \\
& =\left|K_{F}+\left\lceil 2 \pi^{*}\left(K_{X}\right)\right\rceil\right|_{F}|\succeq| G \mid
\end{aligned}
$$

where the equality is again due to Kawamata and Viehweg vanishing. Hence, $\left|9 K_{X^{\prime}}\right|$ distinguishes general members of $|G|$ as well, which asserts the claim.

From Table A3, one has $\xi \geqslant \frac{1}{2}$. Take $m \geqslant 11$, then $\alpha_{m} \geqslant \frac{5}{2}>2$. This means that $\left|m K_{X^{\prime}}\right|_{\mid C}$ distinguishes points on C. Thus, by Theorem 2.7 and Claim 7.3.1, Φ_{m} is birational for all $m \geqslant 11$.

J. A. Chen and M. Chen

Now Theorem 1.8.1 follows from Propositions 7.2 and 7.3. That is, if $P_{2} \geqslant 2$, then Φ_{m} is birational for $m \geqslant 11$.

If either $\xi>\frac{1}{2}$ or $\beta>\frac{1}{3}$, then $\alpha_{10}>2$. Hence the following consequence is immediate.
Corollary 7.4. Let X be a minimal projective 3-fold of general type. Assume $P_{2}(X) \geqslant 2$, $q(X)=0, d_{2}=1$ and F_{0} a $(1,2)$ surface. If either $\xi>\frac{1}{2}$ or $\beta>\frac{1}{3}$ or $P_{2}>2$, then Φ_{10} is birational.

Propositions 7.2, 7.3 and Corollary 7.4 also imply the following result.
Corollary 7.5. Let X be a minimal projective 3 -fold of general type. Assume $P_{2} \geqslant 2$ and Φ_{10} is not birational. Then $P_{2}=2, q(X)=0$ and $\left|2 K_{X^{\prime}}\right|$ is composed with a rational pencil of $(1,2)$ surfaces.

7.2 Classification

In the rest of this section, we classify minimal 3 -folds X of general type which satisfy the following assumptions:

$$
P_{2}(X)=2 \text { and } \Phi_{10} \text { is not birational. }
$$

Note that Corollary 7.5 implies that $\left|2 K_{X}\right|$ induces a fibration $f: X^{\prime} \longrightarrow \mathbb{P}^{1}$ with the general fiber F a $(1,2)$ surface.
Lemma 7.6. If X satisfies (\sharp), then $0 \leqslant \chi\left(\mathcal{O}_{X}\right) \leqslant 3$.
Proof. Note that the general fiber F of f is a $(1,2)$ surface. Since $q(F)=0$, we have $q(X)=0$, $h^{2}\left(\mathcal{O}_{X}\right)=h^{1}\left(\mathbb{P}^{1}, f_{*} \omega_{X^{\prime}}\right)$ and $p_{g}(X)=h^{0}\left(f_{*} \omega_{X^{\prime}}\right)$. Since $P_{2}(X)=2$ implies $p_{g}(X) \leqslant 1$, we see $\chi\left(\mathcal{O}_{X}\right) \geqslant 0$. By Fujita's semi-positivity [Fuj78], we have $\chi\left(\mathcal{O}_{X}\right) \leqslant 3$.

Theorem 7.7. Let X be a minimal projective 3-fold of general type. Assume $P_{2}=2, q(X)=0$ and F a $(1,2)$ surface. Then Φ_{10} is birational under one of the following conditions:
(1) $P_{3} \geqslant 4$;
(2) $P_{4} \geqslant 6$;
(3) $P_{5} \geqslant 8$;
(4) $P_{6} \geqslant 14$.

Proof. We set $m_{0}=2$. Pick a general fiber F of $f: X^{\prime} \longrightarrow \Gamma$ and a generic irreducible element C of $|G|:=\operatorname{Mov}\left|\sigma^{*}\left(K_{F_{0}}\right)\right|$ on F. For $m_{1}=3,4,5$ and 6 , we have $P_{m_{1}} \geqslant 4$. Modulo further birational modifications to π, we may assume that the moving part $\left|M_{m_{1}}\right|$ of $\left|m_{1} K_{X^{\prime}}\right|$ is base point free. We consider the following natural maps:

$$
H^{0}\left(X^{\prime}, S_{m_{1}}\right) \xrightarrow{\mu_{m_{1}}} H^{0}\left(F,\left.S_{m_{1}}\right|_{F}\right) \xrightarrow{\nu_{m_{1}}} H^{0}\left(C,\left.S_{m_{1}}\right|_{C}\right)
$$

where $S_{m_{1}} \in\left|M_{m_{1}}\right|$ denotes the general member.
Let $\operatorname{Mov}\left|S_{m_{1}}\right| F \mid$ be the moving part of $\left|S_{m_{1}}\right| F \mid$ and let $T_{m_{1}}$ be a general element in $\operatorname{Mov}\left|S_{m_{1}}\right| F \mid$ when $h^{0}\left(F, S_{m_{1} \mid F}\right)>1$. Clearly

$$
\left(S_{m_{1}} \cdot C\right)_{X^{\prime}} \geqslant\left(T_{m_{1}} \cdot C\right)_{F} \geqslant 0 .
$$

Since F and C are general, both $\mu_{m_{1}}$ and $\nu_{m_{1}}$ are non-zero maps. In particular, $h^{0}\left(F,\left.S_{m_{1}}\right|_{F}\right)>0$ and $h^{0}\left(C,\left.S_{m_{1}}\right|_{C}\right)>0$.

Explicit birational geometry of 3-FOLDS And 4-FOLDS

Let $F_{(r)}$ be a general element in $\operatorname{Mov}\left|S_{m_{1}}-r F\right|$ if $h^{0}\left(S_{m_{1}}-r F\right) \geqslant 2$. Let $C_{(r)}$ be a general element in $\operatorname{Mov}\left|T_{m_{1}}-r C\right|$ if $h^{0}\left(T_{m_{1}}-r C\right) \geqslant 2$. Replace X^{\prime} by its birational modification, we may and do assume that $\operatorname{Mov}\left|S_{m_{1}}-r F\right|$ is free.

Clearly, for $0<r \leqslant h^{0}\left(X^{\prime}, S_{m_{1}}\right) / h^{0}\left(F, S_{m_{1} \mid F}\right)$, we have

$$
\begin{equation*}
h^{0}\left(X^{\prime}, S_{m_{1}}-r F\right) \geqslant h^{0}\left(X^{\prime}, S_{m_{1}}\right)-r \cdot h^{0}\left(F, S_{m_{1}} \mid F\right) \tag{20}
\end{equation*}
$$

Claim 7.7.1. If $\left(T_{m_{1}} \cdot C\right) \leqslant 1$, then $\left(T_{m_{1}} \cdot C\right)=0$.
Proof. In fact, if $\left|T_{m_{1}}\right| \neq \emptyset$ and $\left|T_{m_{1}}\right|$ is not composed of the same pencil as that of $|C|$, then $\Phi_{\left|T_{m_{1}}\right|}(C)$ is a curve and so $h^{0}\left(C,\left.T_{m_{1}}\right|_{C}\right) \geqslant 2$. Note that $g(C)=2$. The Riemann-Roch theorem and the Clifford theorem imply that $\left(T_{m_{1}} \cdot C\right)=\operatorname{deg}\left(\left.T_{m_{1}}\right|_{C}\right) \geqslant 2$, a contradiction. Hence, either $\left|T_{m_{1}}\right|$ is composed of the same pencil as that of $|C|$ on F or $\left|T_{m_{1}}\right|=\emptyset$. Claim 7.7.1 now follows.

Claim 7.7.2. Keep the same notation as above. Then Φ_{10} is birational under one of the following conditions:
(i) $\left(T_{m_{1}} \cdot C\right)>m_{1} / 2$;
(ii) $T_{m_{1}} \cdot C=0$ and $h^{0}\left(F, T_{m_{1}}\right)>1+m_{1} / 3$;
(iii) $T_{m_{1}} \geqslant t C$ for some rational number $t>m_{1} / 3$;
(iv) either $\left|T_{m_{1}}\right|=\emptyset$ and $P_{m_{1}}>1+m_{1} / 2$ or $\left|T_{m_{1}}\right| \neq \emptyset$ and $\left\lfloor\left(P_{m_{1}}-1\right) / h^{0}\left(F, T_{m_{1}}\right)\right\rfloor>m_{1} / 2$;
(v) $F_{(r)}\left(\right.$ respectively $\left.C_{(r)}\right)$ is algebraically equivalent to F (respectively C) and $(r+1) / m_{1}>\frac{1}{2}$ (respectively $\left.(r+1) / m_{1}>\frac{1}{3}\right)$.
Proof. If $\left(T_{m_{1}} \cdot C\right)>m_{1} / 2$, then $\xi \geqslant\left(1 / m_{1}\right)\left(S_{m_{1}} \cdot C\right) \geqslant\left(1 / m_{1}\right)\left(T_{m_{1}} \cdot C\right)>\frac{1}{2}$. Then Corollary 7.4 implies that Φ_{10} is birational, which proves condition (i).

Now we prove condition (iv). We claim that we have

$$
m_{1} \pi^{*}\left(K_{X}\right) \geqslant S_{m_{1}} \geqslant r F
$$

for an integer $r>m_{1} / 2$. In fact, when $\left|T_{m_{1}}\right|=\emptyset,\left|S_{m_{1}}\right|$ is composed of the same pencil as that of $|F|$ and we may take $r:=P_{m_{1}}-1$. When $\left|T_{m_{1}}\right| \neq \emptyset$, we may take $r=\left\lfloor\left(P_{m_{1}}-1\right) / h^{0}\left(F, T_{m_{1}}\right)\right\rfloor$ and then $S_{m_{1}} \geqslant r F$ since $\operatorname{dimim}\left(\mu_{m_{1}}\right) \leqslant h^{0}\left(F, T_{m_{1}}\right)$. Then Lemma 2.1 implies $\beta \geqslant r /\left(m_{1}+r\right)>\frac{1}{3}$. So Φ_{10} is birational by Corollary 7.4, which asserts condition (iv).

Since $\left.m_{1} \pi^{*}\left(K_{X}\right)\right|_{F} \geqslant T_{m_{1}} \geqslant t C$, we have $\beta>\frac{1}{3}$ and Φ_{10} is birational by Corollary 7.4, which proves condition (iii).

If $\left(T_{m_{1}} \cdot C\right)=0$ and $h^{0}\left(F, T_{m_{1}}\right)>1+m_{1} / 3$, then $\left|T_{m_{1}}\right|$ is composed of the same pencil as that of $|C|$ and $T_{m_{1}} \geqslant t C$ where $t \geqslant h^{0}\left(T_{m_{1}}\right)-1$. Hence, Φ_{10} is birational by condition (iii), which proves condition (ii).

Finally, if $F_{(r)}$ is algebraically equivalent to F, then $S_{m_{1}} \geqslant F_{(r)}+F \sim(r+1) F$. Hence, $\beta \geqslant(r+1) /\left(m_{1}+r+1\right)>\frac{1}{3}$. Thus, Φ_{10} is birational by Corollary 7.4. If $C_{(r)}$ is algebraically equivalent to C, then we have $\beta \geqslant(r+1) / m_{1}>\frac{1}{3}$ as well. Hence, Φ_{10} is birational, which verifies condition (v).

We return to the proof of Theorem 7.7.
Part I. $P_{3} \geqslant 4$. Set $m_{1}=3$. By Claims 7.7.2(i) and (ii) and 7.7.1, we may assume $\left(T_{3} \cdot C\right)=0$ and $h^{0}\left(F, T_{3}\right) \leqslant 2$. Also by Claim 7.7.2(iv), we may assume $\left|T_{3}\right| \neq \emptyset$ and $h^{0}\left(F, T_{3}\right)=2$.

By inequality (20), one gets $h^{0}\left(S_{3}-F\right) \geqslant 2$. Clearly we have that $S_{3} \geqslant F+F_{(1)}$ and that, by assumption, $F_{(1)}$ is nef. Since $r=1$ and $(r+1) / m_{1}=\frac{2}{3}>\frac{1}{2}$, we may assume that $F_{(1)}$ is not algebraically equivalent to F by Claim 7.7.2(v).

J. A. Chen and M. Chen

Now clearly we have $h^{0}\left(F, F_{(1)} \mid F\right) \geqslant 2$. Note that we have

$$
\left|10 K_{X^{\prime}}\right| \succeq\left|K_{X^{\prime}}+\left\lceil 6 \pi^{*}\left(K_{X}\right)\right\rceil+F_{(1)}+F\right| .
$$

Kawamata and Viehweg vanishing gives the surjective map

$$
\begin{aligned}
& H^{0}\left(X^{\prime}, K_{X^{\prime}}+\left\lceil 6 \pi^{*}\left(K_{X}\right)\right\rceil+F_{(1)}+F\right) \\
& \quad \longrightarrow H^{0}\left(F, K_{F}+\left.\left\lceil 6 \pi^{*}\left(K_{X}\right)\right\rceil\right|_{F}+\left.F_{(1)}\right|_{F}\right) .
\end{aligned}
$$

It is sufficient to verify the birationality of the rational map defined by $\left|K_{F}+\left\lceil\left. 6 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil+\Gamma_{(1)}\right|$ where $\Gamma_{(1)}$ is a generic irreducible element in $\operatorname{Mov}\left|F_{(1)}\right|_{F} \mid$.

We claim that $\left(\pi^{*}\left(K_{X}\right) \cdot \Gamma_{(1)}\right) \geqslant \frac{1}{2}$. In fact, if $\Gamma_{(1)}$ is algebraically equivalent to C, then $\left(\pi^{*}\left(K_{X}\right) \cdot \Gamma_{(1)}\right)=\xi \geqslant \frac{1}{2}$ by Table A3. On the other hand, if $\Gamma_{(1)}$ is not algebraically equivalent to C, then we should have $\left(\Gamma_{(1)} \cdot C\right) \geqslant 2$. By Lemma 2.1, $\left(\left.\pi^{*}\left(K_{X}\right)\right|_{F} \cdot \Gamma_{(1)}\right) \geqslant \frac{1}{3}\left(C \cdot \Gamma_{(1)}\right) \geqslant \frac{2}{3}$.

Clearly $\left|K_{F}+\left\lceil\left. 6 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil+\Gamma_{(1)}\right|$ distinguishes different generic $\Gamma_{(1)}$ since $K_{F}+$ $\left\lceil\left. 6 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil>0$. Now by the vanishing theorem again we have the following surjective map:

$$
H^{0}\left(F, K_{F}+\left\lceil\left. 6 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil+\Gamma_{(1)}\right) \longrightarrow H^{0}\left(\Gamma_{(1)}, K_{\Gamma_{(1)}}+D\right)
$$

where $D:=\left.\left\lceil\left. 6 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil\right|_{\Gamma_{(1)}}$ with $\operatorname{deg}(D) \geqslant 6\left(\pi^{*}\left(K_{X}\right) \cdot \Gamma_{(1)}\right)>2$. So Φ_{10} is birational by the ordinary birationality principle.

Part II. $P_{4} \geqslant 6$. We set $m_{1}=4$. By Claim 7.7.2(i) and (4), we may assume $\left(T_{4} \cdot C\right) \leqslant 2$ and $h^{0}\left(F, T_{4}\right) \geqslant 2$. Claim 7.7.1 implies either $\left(T_{4} \cdot C\right)=0$ or $\left(T_{4} \cdot C\right)=2$.
(II-1). If $h^{0}\left(F, T_{4}\right)=2$, we have $h^{0}\left(X^{\prime}, S_{4}-2 F\right) \geqslant 2$ by inequality (20). We consider $F_{(2)}$ and may assume that $F_{(2)}$ is not algebraically equivalent to F by Claim 7.7.2(v). Now $h^{0}\left(F,\left.F_{(2)}\right|_{F}\right) \geqslant 2$ and pick a generic irreducible element $\Gamma_{(2)}$ of $\operatorname{Mov}\left|F_{(2)}\right| F \mid$. By Kawamata and Viehweg vanishing, we have

$$
\begin{aligned}
\left|10 K_{X^{\prime}}\right| \|_{F} & \succeq \mid K_{X^{\prime}}+\left\lceil 5 \pi^{*}\left(K_{X}\right)\right\rceil+F_{(2)}+2 F \|_{F} \\
& =\left|K_{F}+\left\lceil 5 \pi^{*}\left(K_{X}\right)\right\rceil\right|_{F}+F_{(2)}|F| \\
& \succeq\left|K_{F}+\left\lceil\left. 5 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil+\Gamma_{(2)}\right| .
\end{aligned}
$$

When C is algebraically equivalent to $\Gamma_{(2)}$ (in particular, $C \sim \Gamma_{(2)}$ due to the fact that $q(F)=0$), since

$$
\operatorname{deg}\left(\left.5 \pi^{*}\left(K_{X}\right)\right|_{C}\right)=5 \xi \geqslant \frac{5}{2}
$$

and

$$
\left.\left|K_{F}+\left\lceil\left. 5 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil+\Gamma_{(2)}\right|\right|_{C}=\left|K_{C}+\left\lceil\left. 5 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil\right|_{C} \mid
$$

with $\operatorname{deg}\left(\left.\left\lceil\left. 5 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil\right|_{C}\right)>2$, we see that $\left.\Phi_{10}\right|_{C}$ is birational by Lemma 7.1 and Claim 7.3.1.
When C is not algebraically equivalent to $\Gamma_{(2)}$, we have $\left(\Gamma_{(2)} \cdot C\right) \geqslant 2$ and

$$
K_{F}+\left\lceil\left. 5 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil+\Gamma_{(2)} \geqslant K_{F}+\left\lceil Q_{1}+C\right\rceil+\Gamma_{(2)}
$$

for certain nef and big \mathbb{Q}-divisor Q_{1} on F by Lemma 2.1. The vanishing theorem also shows that

$$
\left|K_{F}+\left\lceil Q_{1}\right\rceil+\Gamma_{(2)}+C \|_{C}=\left|K_{C}+\left(Q_{1}+\Gamma_{(2)}\right)\right|_{C}\right|
$$

gives a birational map since $\operatorname{deg}\left(\left.\left(Q_{1}+\Gamma_{(2)}\right)\right|_{C}\right)>2$. Thus, we have shown that Φ_{10} is birational by Lemma 7.1 and Claim 7.3.1.

Explicit birational geometry of 3-folds and 4-Folds

(II-2). If $\left(T_{4} \cdot C\right)=0$ and $h^{0}\left(F, T_{4}\right) \geqslant 3, \Phi_{10}$ is birational by Claim 7.7.2(ii).
(II-3). If $\left(T_{4} \cdot C\right)=2$ and $h^{0}\left(F, T_{4}\right) \geqslant 3$, then $\left|T_{4}\right|$ is not composed of the same pencil as that of $|C|$ and $h^{0}\left(C,\left.T_{4}\right|_{C}\right) \geqslant 2$. By the Riemann-Roch and the Clifford theorem, we see $\operatorname{deg}\left(\left.T_{4}\right|_{C}\right)=h^{0}(C$, $\left.\left.T_{4}\right|_{C}\right)=2$. Thus, $\operatorname{dimim}\left(\nu_{4}\right)=2$.
(II-3-1). If $h^{0}\left(F, T_{4}\right) \geqslant 4$, we have $h^{0}\left(F, T_{4}-C\right) \geqslant 2$. Denote by $C_{(1)}$ a generic irreducible element of $\operatorname{Mov}\left|T_{4}-C\right|$. Then we have $T_{4} \geqslant C+C_{(1)}$ and we may assume that C is not algebraically equivalent to $C_{(1)}$ by Claim 7.7.2(v), which implies $\left(C_{(1)} \cdot C\right) \geqslant 2$. By the Kawamata and Viehweg vanishing and properties of the roundup operator, we have

$$
\begin{aligned}
\mid 10 K_{X^{\prime}} \|_{F} & \succeq\left|K_{X^{\prime}}+\left\lceil 3 \pi^{*}\left(K_{X}\right)\right\rceil+S_{4}+F\right|_{F} \\
& =\left|K_{F}+\left\lceil 3 \pi^{*}\left(K_{X}\right)\right\rceil\right|_{F}+\left.S_{4}\right|_{F} \mid \\
& \succeq\left|K_{F}+\left\lceil\left. 3 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil+C_{(1)}+C\right|
\end{aligned}
$$

and

$$
\left.\left|K_{F}+\left\lceil\left. 3 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil+C_{(1)}+C\right|\right|_{C}=\left|K_{C}+D\right|,
$$

where $D:=\left.\left(\left\lceil\left. 3 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil+C_{(1)}\right)\right|_{C}$ with $\operatorname{deg}(D)>\left(C_{(1)} \cdot C\right) \geqslant 2$. Thus Φ_{10} is birational by Lemma 7.1 and Claim 7.3.1.
(II-3-2). If $h^{0}\left(F, T_{4}\right)=3$, we have $h^{0}\left(S_{4}-F\right) \geqslant 3$. Again, we pick a general member $F_{(1)} \in$ $\operatorname{Mov}\left|S_{4}-F\right|$. Consider the natural map

$$
H^{0}\left(X^{\prime}, F_{(1)}\right) \xrightarrow{\mu_{4}^{\prime}} H^{0}\left(F,\left.F_{(1)}\right|_{F}\right) \subset H^{0}\left(F,\left.S_{4}\right|_{F}\right) .
$$

When $\operatorname{dim} \operatorname{im}\left(\mu_{4}^{\prime}\right)=3$, we see $\operatorname{dim} \nu_{4}\left(\operatorname{im}\left(\mu_{4}^{\prime}\right)\right)=\operatorname{dim} \nu_{4}\left(\operatorname{im}\left(\mu_{4}\right)\right)=2$; when $\operatorname{dimim}\left(\mu_{4}^{\prime}\right)=2$, we consider the situation $\operatorname{dim} \nu_{4}\left(\operatorname{im}\left(\mu_{4}^{\prime}\right)\right) \leqslant 1$ at first. In both cases, $h^{0}\left(F, F_{(1)} \mid F-C\right)>0$ and thus $F_{(1)} \mid F-C \geqslant 0$. By the vanishing theorem once more, we have

$$
\begin{aligned}
\mid 10 K_{X^{\prime}} \|_{F} & \succeq\left|K_{X^{\prime}}+\left\lceil 5 \pi^{*}\left(K_{X}\right)\right\rceil+F_{(1)}+F\right|_{F} \\
& =\left|K_{F}+\left\lceil 5 \pi^{*}\left(K_{X}\right)\right\rceil\right|_{F}+\left.F_{(1)}\right|_{F} \mid \\
& \succeq\left|K_{F}+\left\lceil\left. 5 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil+C\right| .
\end{aligned}
$$

Applying the vanishing theorem again, we see

$$
\left.\left|K_{F}+\left\lceil\left. 5 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil+C\right|\right|_{C}=\left|K_{C}+D\right|
$$

where $D:=\left.\left(\left\lceil\left. 5 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil\right)\right|_{C}$ with $\operatorname{deg}(D) \geqslant 5 \xi>2$. Thus Φ_{10} is birational by Lemma 7.1 and Claim 7.3.1.

When $\operatorname{dimim}\left(\mu_{4}^{\prime}\right)=\operatorname{dim} \nu_{4}\left(\operatorname{im}\left(\mu_{4}^{\prime}\right)\right)=2$, then $\left|F_{(1)}\right| F \mid$ is not composed with the same pencil as that of $|C|$. In particular, $\left(F_{(1)} \cdot C\right) \geqslant 2$. By Lemma 2.1, we have

$$
K_{F}+\left\lceil\left. 5 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil+\left.F_{(1)}\right|_{F} \geqslant K_{F}+\left\lceil Q_{2}+C\right\rceil+\left.F_{(1)}\right|_{F}
$$

for certain nef and big \mathbb{Q}-divisor Q_{2}. Since the vanishing theorem gives

$$
\left|K_{F}+\left\lceil Q_{2}\right\rceil+F_{(1)}\right|_{F}+C \|_{C}=\left|K_{C}+D^{\prime}\right|
$$

with $\operatorname{deg}\left(D^{\prime}\right)>\left(F_{(1)} \cdot C\right) \geqslant 2$, we see Φ_{10} is birational too by Lemma 7.1 and Claim 7.3.1.
Consider the last case $\operatorname{dimim}\left(\mu_{4}^{\prime}\right)=1$. We see that $\left|F_{(1)}\right|$ is composed of the same pencil as that of $|F|$ and $F_{(1)} \geqslant 2 F$. Thus $S_{4} \geqslant 3 F$ and, since $3 / m_{1}>\frac{1}{2}, \Phi_{10}$ is birational by Claim 7.7.2(v).

J. A. Chen and M. Chen

Part III. $P_{5} \geqslant 8$. We set $m_{1}=5$. By Claims 7.7.1 and 7.7.2(i), (ii) and (iv), we may assume $\left(T_{5} \cdot C\right)=2$ and $h^{0}\left(F, T_{5}\right) \geqslant 3$. Clearly $\left|T_{5}\right|$ is not composed of the same pencil as that of $|C|$ and so that $h^{0}\left(C,\left.T_{5}\right|_{C}\right) \geqslant 2$. By the Riemann-Roch and the Clifford theorem, we see $\operatorname{deg}\left(\left.T_{5}\right|_{C}\right)=h^{0}(C$, $\left.\left.T_{5}\right|_{C}\right)=2$. Thus, $\operatorname{dimim}\left(\nu_{5}\right)=2$.
(III-1). If $h^{0}\left(F, T_{5}\right) \geqslant 4$, we have $h^{0}\left(F, T_{5}-C\right) \geqslant 2$. Let $C_{(1)}$ be a generic irreducible element in $\operatorname{Mov}\left|T_{5}-C\right|$. Thus, we have $T_{5} \geqslant C+C_{(1)}$ and we may assume that $C_{(1)}$ is not algebraically equivalent to C by Claim 7.7.2(v). Hence, $\left(C_{(1)} \cdot C\right) \geqslant 2$. By the Kawamata and Viehweg vanishing and properties of the roundup operator, we have the following:

$$
\begin{aligned}
\mid 10 K_{X^{\prime}} \|_{F} & \left.\succeq\left|K_{X^{\prime}}+\left\lceil 2 \pi^{*}\left(K_{X}\right)\right\rceil+S_{5}+F\right|\right|_{F} \\
& =\left|K_{F}+\left\lceil 2 \pi^{*}\left(K_{X}\right)\right\rceil\right|_{F}+\left.S_{5}\right|_{F} \mid \\
& \succeq\left|K_{F}+\left\lceil\left. 2 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil+C_{(1)}+C\right|
\end{aligned}
$$

and $\left|K_{F}+\left\lceil\left. 2 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil+C_{(1)}+C \|_{C}=\left|K_{C}+D\right|\right.$, with

$$
\operatorname{deg}(D)>\left(C_{(1)} \cdot C\right) \geqslant 2
$$

Thus, Φ_{10} is birational by Lemma 7.1 and Claim 7.3.1.
(III-2). If $h^{0}\left(F, T_{5}\right)=3$, we have $h^{0}\left(S_{5}-F\right) \geqslant 5$. Let $F_{(1)} \in \operatorname{Mov}\left|S_{5}-F\right|$ be a general member. We consider the natural map

$$
H^{0}\left(X^{\prime}, F_{(1)}\right) \xrightarrow{\mu_{5}^{\prime}} H^{0}\left(F,\left.F_{(1)}\right|_{F}\right) \subset H^{0}\left(F,\left.S_{5}\right|_{F}\right) .
$$

Clearly we have $\operatorname{dimim}\left(\mu_{5}^{\prime}\right) \leqslant h^{0}\left(F, T_{5}\right)=3$.
When $\operatorname{dimim}\left(\mu_{5}^{\prime}\right)=3$, we see $\operatorname{dim} \nu_{5}\left(\operatorname{im}\left(\mu_{5}^{\prime}\right)\right)=\operatorname{dim} \nu_{5}\left(\operatorname{im}\left(\mu_{5}\right)\right)=2$. Thus, $\left|F_{(1)}\right| F \mid$ is not composed of the same pencil as that of $|C|$. Pick a generic irreducible element $\Gamma_{(1)}$ in the moving part of $\left|F_{(1)}\right| F \mid$. Then $\left(\Gamma_{(1)} \cdot C\right) \geqslant 2$. By the vanishing theorem, we have

$$
\begin{aligned}
\mid 10 K_{X^{\prime}} \|_{F} & \succeq\left|K_{X^{\prime}}+\left\lceil 4 \pi^{*}\left(K_{X}\right)\right\rceil+F_{(1)}+F\right|_{F} \\
& =\left|K_{F}+\left\lceil 4 \pi^{*}\left(K_{X}\right)\right\rceil\right|_{F}+F_{(1)}|F| \\
& \succeq\left|K_{F}+\left\lceil\left. 4 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil+\Gamma_{(1)}\right| .
\end{aligned}
$$

Applying Lemma 2.1, we have

$$
\left|K_{F}+\left\lceil\left. 4 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil+\Gamma_{(1)}\right| \succeq\left|K_{F}+\left\lceil Q_{3}+C\right\rceil+\Gamma_{(1)}\right|
$$

where Q_{3} is certain nef and big \mathbb{Q}-divisor on F. Applying the vanishing once more, we have

$$
\left|K_{F}+\left\lceil Q_{3}\right\rceil+\Gamma_{(1)}+C \|_{C}=\left|K_{C}+D\right|\right.
$$

with $\operatorname{deg}(D)>\left(\Gamma_{(1)} \cdot C\right) \geqslant 2$. Thus, Φ_{10} is birational by Lemma 7.1 and Claim 7.3.1.
When $\operatorname{dimim}\left(\mu_{5}^{\prime}\right) \leqslant 2$, we have $h^{0}\left(X^{\prime}, F_{(1)}-2 F\right) \geqslant 1$ and hence $S_{5}-3 F \geqslant 0$. Therefore, Φ_{10} is birational by Claim 7.7.2(v).

Part IV. $P_{6} \geqslant 14$. We set $m_{1}=6$. By Claims 7.7.1 and 7.7.2(i), (ii) and (iv), we may assume $2 \leqslant\left(T_{6} \cdot C\right) \leqslant 3$ and $h^{0}\left(F, T_{6}\right) \geqslant 4$. Clearly $\left|T_{6}\right|$ is not composed of the same pencil as that of $|C|$. Thus, by the Riemann-Roch theorem and the Clifford theorem, $\operatorname{dim} \operatorname{im}\left(\nu_{6}\right)=h^{0}\left(C,\left.T_{6}\right|_{C}\right)=2$.

Explicit birational geometry of 3-Folds and 4-Folds

(IV-1). If $h^{0}\left(F, T_{6}\right) \geqslant 5$, then we see $h^{0}\left(F, T_{6}-C\right) \geqslant 3$. We pick a general member $C_{(1)}$ in $\operatorname{Mov}\left|T_{6}-C\right|$. By Claim 7.7.2(v), we may assume that $\left|C_{(1)}\right|$ is not composed of the same pencil as that of $|C|$. We shall analyze the natural map $\nu_{6}^{\prime}: H^{0}\left(F, C_{(1)}\right) \mapsto H^{0}\left(C, C_{(1)} \mid C\right)$. Clearly $2 \leqslant \operatorname{dimim}\left(\nu_{6}^{\prime}\right) \leqslant h^{0}\left(C,\left.T_{6}\right|_{C}\right)=2$.

Since $C_{(1)}$ is not algebraically equivalent to C, one has $\left(C_{(1)} \cdot C\right) \geqslant 2$. By the vanishing theorem, we have

$$
\begin{aligned}
\left.\left|10 K_{X^{\prime}}\right|\right|_{F} & \succeq \mid K_{X^{\prime}}+\left\lceil\pi^{*}\left(K_{X}\right)\right\rceil+S_{6}+F \|_{F} \\
& \succeq\left|K_{F}+\left\lceil\left.\pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil+C_{(1)}+C\right|
\end{aligned}
$$

and $\left|K_{F}+\left\lceil\left.\pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil+C_{(1)}+C \|_{C}=\left|K_{C}+D\right|\right.$ with $\operatorname{deg}(D)>\left(C_{(1)} \cdot C\right)=2$. Thus, Φ_{10} is birational by Lemma 7.1 and Claim 7.3.1.
(IV-2). If $h^{0}\left(F, T_{6}\right)=4$, we have $h^{0}\left(S_{6}-F\right) \geqslant 10$. We pick a general member $F_{(1)} \in \operatorname{Mov}\left|S_{6}-F\right|$ and consider the natural map

$$
H^{0}\left(X^{\prime}, F_{(1)}\right) \xrightarrow{\mu_{6}^{\prime}} H^{0}\left(F,\left.F_{(1)}\right|_{F}\right) \subset H^{0}\left(F,\left.S_{6}\right|_{F}\right) .
$$

Clearly we have $\operatorname{dimim}\left(\mu_{6}^{\prime}\right) \leqslant h^{0}\left(F, T_{6}\right)=4$.
When $\operatorname{dimim}\left(\mu_{6}^{\prime}\right) \leqslant 3$, we have $F_{(1)}-3 F \geqslant 0$ and then $S_{6} \geqslant 4 F$. By Claim 7.7.2(v), Φ_{10} is birational.

When $\operatorname{dim} \operatorname{im}\left(\mu_{6}^{\prime}\right)=4$, we see $\operatorname{dim} \nu_{6}\left(\operatorname{im}\left(\mu_{6}^{\prime}\right)\right)=\operatorname{dim} \nu_{6}\left(\operatorname{im}\left(\mu_{6}\right)\right)=2$. Thus, $h^{0}\left(F,\left.F_{(1)}\right|_{F}-C\right)=$ 2. Furthermore $\left|F_{(1)}\right| F \mid$ is not composed of the same pencil as that of $|C|$. Noting that a divisor of degree one can not move on C, we see $\left(F_{(1)} \cdot C\right) \geqslant 2$. Denote by $\Gamma_{(1)}$ a general irreducible element of $\operatorname{Mov}\left|F_{(1)}\right|_{F}-C \mid$. Noting that $S_{6} \geqslant F_{(1)}+F$ and applying the vanishing theorem, we have

$$
\begin{aligned}
\left|10 K_{X^{\prime}}\right| & \succeq\left|K_{X^{\prime}}+\left\lceil 3 \pi^{*}\left(K_{X}\right)\right\rceil+F_{(1)}+F\right| \\
& \succeq\left|K_{F}+\left\lceil\left. 3 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil+F_{(1)}\right| F \mid .
\end{aligned}
$$

If $\Gamma_{(1)}$ is not algebraically equivalent to C, we have $\left(\Gamma_{(1)} \cdot C\right) \geqslant 2$. The vanishing theorem gives

$$
\left|K_{F}+\left\lceil\left. 3 \pi^{*}\left(K_{X}\right)\right|_{F}\right\rceil+\Gamma_{(1)}+C \|\left.\right|_{C}=\left|K_{C}+D\right|\right.
$$

with $\operatorname{deg}(D)>\left(\Gamma_{(1)} \cdot C\right) \geqslant 2$. Thus, Φ_{10} is birational by Lemma 7.1 and Claim 7.3.1. If $\Gamma_{(1)}$ is algebraically equivalent to C, we have $\left.F_{(1)}\right|_{F} \geqslant 2 C$ and write

$$
\left.F_{(1)}\right|_{F}=2 C+H_{6}
$$

where H_{6} is an effective divisor on F. Since $\left.3 \pi^{*}\left(K_{X}\right)\right|_{F}+\left.F_{(1)}\right|_{F}-C-\frac{1}{2} H_{6}$ is nef and big, the Kawamata and Viehweg vanishing theorem implies the following surjective map

$$
H^{0}\left(F, K_{F}+\left\lceil\left. 3 \pi^{*}\left(K_{X}\right)\right|_{F}+\left.F_{(1)}\right|_{F}-\frac{1}{2} H_{6}\right\rceil\right) \longrightarrow H^{0}\left(C, D^{\prime}\right)
$$

where $D^{\prime}:=\left.\left\lceil\left. 3 \pi^{*}\left(K_{X}\right)\right|_{F}+\left.F_{(1)}\right|_{F}-\frac{1}{2} H_{6}-C\right\rceil\right|_{C}$ with $\operatorname{deg}\left(D^{\prime}\right) \geqslant 3 \xi+\frac{1}{2}\left(F_{(1)} \cdot C\right)>2$. Thus, we see that Φ_{10} is birational again by Lemma 7.1 and Claim 7.3.1. So we conclude the theorem.

Corollary 7.8 (Theorem 1.8(2)). Let X be a minimal projective 3-fold of general type with $\delta(X)=2$. If Φ_{10} is not birational, then the weighted basket $\mathbb{B}(X)=\left(B_{X}, P_{2}, \chi\left(\mathcal{O}_{X}\right)\right)$ are dominated by an initial basket listed in Tables II1, II2 and II3 in Appendix A.

J. A. Chen and M. Chen

Proof. By Lemma 7.6 and Theorem 7.7 , we see $0 \leqslant \chi\left(\mathcal{O}_{X}\right) \leqslant 3, P_{2}(X)=2, P_{3}(X) \leqslant 3$, $P_{4}(X) \leqslant 5, P_{5}(X) \leqslant 7$ and $P_{6}(X) \leqslant 13$. According to [CC10a, $\left.\S 3\right]$, the total number of numerical types of $\mathbb{B}(X)$ is finite. We give a list of $\mathbb{B}^{0}(X)$ in Tables II1, II2 and II3.

8. Projective 4-folds of general type with positive geometric genus

In order to study 4 -folds of general type, we need to prove a slightly general statement on 3 -folds.
THEOREM 8.1. Let $\nu: \tilde{X} \longrightarrow X$ be a birational morphism from a nonsingular projective 3 -fold \tilde{X} of general type onto a minimal model X with $p_{g}(X)>0$. Let Q_{λ} be any \mathbb{Q}-divisor on \tilde{X} satisfying $Q_{\lambda} \equiv \lambda \nu^{*}\left(K_{X}\right)$ for some rational number $\lambda>16$. Then $\left|K_{\tilde{X}}+\left\lceil Q_{\lambda}\right\rceil\right|$ gives a birational map onto its image. In particular, Φ_{m} is birational for all $m \geqslant 18$.

Proof. From the proof of Corollary 4.10, we only need to consider the following two cases.
Case 1: $P_{4} \geqslant 2$.
Case 2: $P_{4}=1$ and $P_{5} \geqslant 3$.
Set $m_{0}=4$ (respectively 5) in case 1 (respectively case 2). Take a sub-pencil $\Lambda \subset\left|m_{0} K_{X}\right|$. We use the same setup as in $\S 2.1$. We may and do assume that π factors through ν, i.e. there is a birational morphism $\mu: X^{\prime} \longrightarrow \tilde{X}$ so that $\pi=\nu \circ \mu$ and that $\mu^{*}\left(\left\{Q_{\lambda}\right\}\right) \cup\{$ exc. divisors of $\mu\}$ has simple normal crossing supports.

Since

$$
\mu_{*} \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}+\left\lceil\mu^{*}\left(Q_{\lambda}\right)\right\rceil\right) \subseteq \mu_{*} \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}+\mu^{*}\left\lceil Q_{\lambda}\right\rceil\right) \subseteq \mathcal{O}_{\tilde{X}}\left(K_{\tilde{X}}+\left\lceil Q_{\lambda}\right\rceil\right),
$$

it is sufficient to prove the birationality of $\Phi_{\left|K_{X^{\prime}}+\left\lceil\mu^{*}\left(Q_{\lambda}\right)\right]\right|}$. We write $Q_{\lambda}^{\prime}:=\mu^{*}\left(Q_{\lambda}\right) \equiv \lambda \pi^{*}\left(K_{X}\right)$.
We have an induced fibration $f: X^{\prime} \longrightarrow \Gamma$ onto a smooth projective curve. Let F be a general fiber of f. Recall that we have $m_{0} \pi^{*}\left(K_{X}\right) \sim_{\mathbb{Q}} \theta F+E_{\Lambda}^{\prime}$ for a positive integer θ and an effective \mathbb{Q}-divisor E_{Λ}^{\prime} on X^{\prime}.

Without loss of generality, we may assume $p_{g}(X)=1$ (the case with $p_{g}(X)>1$ is much easier). Clearly one has $p_{g}(F)>0$.

CLaim 8.1.1. One has $h^{0}\left(X^{\prime}, K_{X^{\prime}}+\left\lceil Q_{\lambda}^{\prime}\right\rceil\right)>0$ for $\lambda>2 m_{0}+1$.
By Lemma 2.1,

$$
\left.\pi^{*}\left(K_{X}\right)\right|_{F} \equiv \frac{1}{m_{0}+1} \sigma^{*}\left(K_{F_{0}}\right)+H_{m_{0}}
$$

for a certain effective \mathbb{Q}-divisor $H_{m_{0}}$ on F. Since $Q_{\lambda}^{\prime}-F-(1 / \theta) E_{\Lambda}^{\prime} \equiv\left(\lambda-m_{0} / \theta\right) \pi^{*}\left(K_{X}\right)$ is nef and big, Kawamata and Viehweg vanishing implies the surjective map

$$
\begin{equation*}
H^{0}\left(X^{\prime}, K_{X^{\prime}}+\left\lceil Q_{\lambda}^{\prime}-\frac{1}{\theta} E_{\Lambda}^{\prime}\right\rceil\right) \longrightarrow H^{0}\left(F, K_{F}+\left.\left\lceil Q_{\lambda}^{\prime}-\frac{1}{\theta} E_{\Lambda}^{\prime}\right\rceil\right|_{F}\right) \tag{21}
\end{equation*}
$$

Let

$$
\begin{aligned}
Q_{\lambda, F} & :=\left.\left(Q_{\lambda}^{\prime}-\frac{1}{\theta} E_{\Lambda}^{\prime}\right)\right|_{F}-\left(m_{0}+1\right) H_{m_{0}}-\sigma^{*}\left(K_{F_{0}}\right) \\
& \left.\equiv\left(\lambda-\frac{m_{0}}{\theta}-m_{0}-1\right) \pi^{*}\left(K_{X}\right)\right|_{F}
\end{aligned}
$$

Explicit birational geometry of 3-FOLDS And 4-FOLDS

which is nef and big. Since $p_{g}(F)>0$, we have

$$
\begin{aligned}
& h^{0}\left(F, K_{F}+\left.\left\lceil Q_{\lambda}^{\prime}-\frac{1}{\theta} E_{\Lambda}^{\prime}\right\rceil\right|_{F}\right) \\
& \quad \geqslant h^{0}\left(F, K_{F}+\left\lceil\left.\left(Q_{\lambda}^{\prime}-\frac{1}{\theta} E_{\Lambda}^{\prime}\right)\right|_{F}-\left(m_{0}+1\right) H_{m_{0}}\right)\right\rceil \\
& \quad=h^{0}\left(F, K_{F}+\left\lceil Q_{\lambda, F}\right\rceil+\sigma^{*}\left(K_{F_{0}}\right)\right) \geqslant 2
\end{aligned}
$$

by [CC10b, Lemma 2.14]. This verifies the claim.
Claim 8.1.2. The linear system $\left|K_{X^{\prime}}+\left\lceil Q_{\lambda}^{\prime}\right\rceil\right|$ distinguishes different general fibers of f for any $\lambda>3 m_{0}+1$.

Proof. When $g(\Gamma)=0$, we consider $Q_{\zeta}^{\prime}:=Q_{\lambda}^{\prime}-F-(1 / \theta) E_{\Lambda}^{\prime} \equiv \zeta \pi^{*}\left(K_{X}\right)$ with $\zeta=\lambda-m_{0} / \theta$. It is clear that $K_{X^{\prime}}+\left\lceil Q_{\lambda}^{\prime}\right\rceil \geqslant\left(K_{X^{\prime}}+\left\lceil Q_{\zeta}^{\prime}\right\rceil\right)+F$ and hence $\left|K_{X^{\prime}}+\left\lceil Q_{\lambda}^{\prime}\right\rceil\right|$ distinguishes different general fibers by Claim 8.1.1 since $\zeta>2 m_{0}+1$.

When $g(\Gamma)>0$, we have $\theta \geqslant 2$. Pick two different general fibers F_{1} and F_{2} of f. The vanishing theorem gives the surjective map

$$
\begin{aligned}
& H^{0}\left(X^{\prime}, K_{X^{\prime}}+\left\lceil Q_{\lambda}^{\prime}-\frac{2}{\theta} E_{\Lambda}^{\prime}\right\rceil\right) \\
& \quad \longrightarrow \bigoplus_{i=1}^{2} H^{0}\left(F_{i},\left.\left(K_{X^{\prime}}+\left\lceil Q_{\lambda}^{\prime}-F_{1}-F_{2}-\frac{2}{\theta} E_{\Lambda}^{\prime}\right\rceil+F_{1}+F_{2}\right)\right|_{F_{i}}\right)
\end{aligned}
$$

where we note that $\left.\left(K_{X^{\prime}}+\left\lceil Q_{\lambda}^{\prime}-F_{1}-F_{2}-(2 / \theta) E_{\Lambda}^{\prime}\right\rceil\right)\right|_{F_{i}} \geqslant 0$ due to Claim 8.1.1 and the fact $\left.\left(F_{1}+F_{2}\right)\right|_{F_{i}}=0$. Hence, $\left|K_{X^{\prime}}+\left\lceil Q_{\lambda}^{\prime}\right\rceil\right|$ distinguishes F_{1} and F_{2}.

Now we discuss two cases independently.
Case 1: $P_{4} \geqslant 2$.
If F is a $(1,2)$ surface, we take $|G|:=\operatorname{Mov}\left|\sigma^{*}\left(K_{F_{0}}\right)\right|$ and a general member $C \in|G|$. By the surjection map in (21) and Claim 8.1.2, it is sufficient to study the linear system $\left|K_{F}+\left\lceil\left.\left(Q_{\lambda}^{\prime}-(1 / \theta) E_{\Lambda}^{\prime}\right)\right|_{F}\right\rceil\right|$. For any t, let

$$
L_{\lambda, t}:=\left.\left(Q_{\lambda}^{\prime}-\frac{1}{\theta} E_{\Lambda}^{\prime}\right)\right|_{F}-t \sigma^{*}\left(K_{F_{0}}\right)-\left.5 t H_{4} \equiv\left(\lambda-\frac{4}{\theta}-5 t\right) \pi^{*}\left(K_{X}\right)\right|_{F}
$$

which is nef and big as long as $\lambda-(4 / \theta)-5 t>0$. Note also that $\left.\left(Q_{\lambda}^{\prime}-(1 / \theta) E_{\Lambda}^{\prime}\right)\right|_{F} \geqslant L_{\lambda, t}+$ $t \sigma^{*}\left(K_{F_{0}}\right)$. For simplicity, $L_{\lambda, 0}$ is denoted by L_{λ}. In fact, for $\lambda>14$ and by [CC10b, Lemma 2.14], one has

$$
K_{F}+\left.\left\lceil Q_{\lambda}^{\prime}-\frac{1}{\theta} E_{\Lambda}^{\prime}\right\rceil\right|_{F} \geqslant\left(K_{F}+\left\lceil L_{\lambda, 2}\right\rceil+\sigma^{*}\left(K_{F_{0}}\right)\right)+C \geqslant C
$$

Thus, $\left|K_{F}+\left\lceil\left.\left(Q_{\lambda}^{\prime}-(1 / \theta) E_{\Lambda}^{\prime}\right)\right|_{F}\right\rceil\right|$ separates different general curves C when $\lambda>14$. Restricting to the curve C, one sees by the vanishing theorem that

$$
\left.\left.\left|K_{F}+\left\lceil\left.\left(Q_{\lambda}^{\prime}-\frac{1}{\theta} E_{\Lambda}^{\prime}\right)\right|_{F}\right\rceil\right|\right|_{C} \geqslant\left|K_{F}+\left\lceil L_{\lambda, 1}\right\rceil+C\right|_{C}=\left|K_{C}+\left\lceil L_{\lambda, 1}\right\rceil\right|_{C} \right\rvert\, .
$$

Since $\operatorname{deg}\left(\left.\left\lceil L_{\lambda, 1}\right\rceil\right|_{C}\right) \geqslant(\lambda-(4 / \theta)-5) \xi>2$ for $\xi \geqslant \frac{2}{7}$ (cf. Table A3 with $m_{0}=4$). Thus, $\Phi_{\left|K_{X^{\prime}}+\left\lceil Q_{\lambda}^{\prime}\right\rceil\right|}$ separates points on the general curve C and, hence, is birational when $\lambda>16$.

J. A. Chen and M. Chen

Assume that F is not a $(1,2)$ surface. We would like to study $\left|K_{F}+\left\lceil L_{\lambda}\right\rceil\right|$ where $L_{\lambda}:=$ $\left.\left(Q_{\lambda}^{\prime}-(1 / \theta) E_{\Lambda}^{\prime}\right)\right|_{F}$, making use of the relation (21). If $K_{F_{0}}^{2} \geqslant 2$, inequalities (9) and (11) imply

$$
L_{\lambda}^{2} \geqslant \frac{2(\lambda-4)^{2}}{25}>8
$$

whenever $\lambda>14$. If F is a $(1,1)$ surface, then we have $q(X)=g(\Gamma) \geqslant 0$ and $h^{2}\left(\mathcal{O}_{X}\right)=0$ as seen in the proof of case 2 of Corollary 4.10. Hence, we have $\chi\left(\mathcal{O}_{X}\right) \leqslant 0$ and Reid's Riemann-Roch formula gives $P_{5}>P_{4} \geqslant 2$. In particular, we have $P_{5} \geqslant 3$. We omit the discussion for the situation when $\left|5 K_{X^{\prime}}\right|$ and $\left|4 K_{X^{\prime}}\right|$ are composed with the same pencil since that is a comparatively much better case. So may assume that $\mid 5 K_{X^{\prime}} \|_{F}$ is moving on F. If we take $\left|G_{1}\right|:=\operatorname{Mov}\left|\left\lceil 5 \pi^{*}\left(K_{X}\right)\right\rceil\right|_{F} \mid$, we have $\beta_{G_{1}}=\frac{1}{5}$. Then, by Lemmas 2.1 and 2.4, we have

$$
L_{\lambda}^{2} \geqslant \frac{(\lambda-4)^{2}}{25}\left(\sigma^{*}\left(K_{F_{0}}\right) \cdot G_{1}\right) \geqslant \frac{2(\lambda-4)^{2}}{25}>8
$$

whenever $\lambda>14$. Finally, for both cases, $\left(L_{\lambda} \cdot \tilde{C}\right) \geqslant(2(\lambda-4)) / 5 \geqslant 4$ for $\lambda \geqslant 14$ and for any very general curve \tilde{C} on F. Therefore, by Lemma $2.3,\left|K_{F}+\left\lceil L_{\lambda}\right\rceil\right|$ gives a birational map when $\lambda \geqslant 14$.

Hence, when $P_{4} \geqslant 2, \Phi_{\left|K_{X^{\prime}}+\left\lceil Q_{\lambda}^{\prime}\right\rceil\right|}$ is birational for $\lambda>16$.
Case 2: $P_{4}=1$ and $P_{5} \geqslant 3$.
We set $m_{0}=5$. If $d_{5}=1$, we set $\Lambda=\left|5 K_{X}\right|$. Then we are in a much better situation than that of $P_{3}=2$ since we have $\theta \geqslant 2$ (and noting that $\theta / m_{0}=\frac{2}{5}>\frac{1}{3}$). We omit the details and leave this as an exercise to interested readers.

If $d_{5} \geqslant 2$, we take a sub-pencil $\Lambda \subset\left|5 K_{X}\right|$ and Λ induces a fibration $f: X^{\prime} \longrightarrow \Gamma$ onto a smooth complete curve Γ. As we have seen in case 3 of Corollary 4.10, the general fiber F satisfies $K_{F_{0}}^{2} \geqslant 2$. For the similar reason, we can take $m_{1}=5$ and $|G|:=\operatorname{Mov}\left|m_{1} K_{X^{\prime}}\right|_{F} \mid$. Pick a generic irreducible element C in $|G|$. Lemma 2.1 implies $\xi=\left(\pi^{*}\left(K_{X}\right) \cdot C\right) \geqslant \frac{1}{6}\left(\sigma^{*}\left(K_{F_{0}}\right) \cdot C\right) \geqslant \frac{1}{3}$. We may write $\left.5 \pi^{*}\left(K_{X}\right)\right|_{F} \equiv C+N_{5}$ for an effective \mathbb{Q}-divisor N_{5} on F. For two different generic irreducible curves C_{1} and C_{2} in $|G|$, we set

$$
L_{\lambda, 2}:=\left.\left(Q_{\lambda}^{\prime}-\frac{1}{\theta} E_{\Lambda}^{\prime}\right)\right|_{F}-C_{1}-C_{2}-2 N_{5}
$$

and

$$
L_{\lambda, 1}:=\left.\left(Q_{\lambda}^{\prime}-\frac{1}{\theta} E_{\Lambda}^{\prime}\right)\right|_{F}-C-N_{5},
$$

respectively. It is clear that they are both nef and big whenever $\lambda>15$.
Thanks to the vanishing theorem, we have the surjective map

$$
\begin{aligned}
H^{0}\left(F, K_{F}+\left\lceil L_{\lambda}-2 N_{5}\right\rceil\right) \longrightarrow & H^{0}\left(C_{1}, K_{C_{1}}+\left.\left\lceil L_{\lambda, 2}\right\rceil\right|_{C_{1}}+\left.C_{2}\right|_{C_{1}}\right) \\
& \oplus H^{0}\left(C_{2}, K_{C_{2}}+\left.\left\lceil L_{\lambda, 2}\right\rceil\right|_{C_{2}}+\left.C_{1}\right|_{C_{2}}\right)
\end{aligned}
$$

if $\lambda>15$. It is clear that

$$
H^{0}\left(C_{i}, K_{C_{i}}+\left\lceil L_{\lambda, 2}\right\rceil_{\mid C_{i}}+\left.C_{2-i}\right|_{C_{i}}\right) \neq 0
$$

since $L_{\lambda, 2}$ is nef and big. Hence, $\left|K_{F}+\left\lceil\left.\left(Q_{\lambda}^{\prime}-(1 / \theta) E_{\Lambda}^{\prime}\right)\right|_{F}-2 N_{5}\right\rceil\right|=\left|K_{F}+\left\lceil L_{\lambda}-2 N_{5}\right\rceil\right|$ separates different general curves C in $|G|$. This also implies that $\left|K_{F}+\left\lceil\left(Q_{\lambda}^{\prime}-(1 / \theta) E_{\Lambda}^{\prime}\right)\right\rceil\right|$

Explicit birational geometry of 3-folds and 4-Folds

can distinguish C_{1} and C_{2}. Now applying the vanishing theorem once more, we get the surjective map

$$
H^{0}\left(F, K_{F}+\left\lceil L_{\lambda}-N_{5}\right\rceil\right) \longrightarrow H^{0}\left(C, K_{C}+\left\lceil L_{\lambda, 1}\right\rceil_{\mid C}\right)
$$

with

$$
\operatorname{deg}\left(\left\lceil L_{\lambda, 1}\right\rceil_{\mid C}\right) \geqslant\left(\lambda-\frac{5}{\theta}-5\right) \xi>2
$$

whenever $\lambda>16$ for $\xi \geqslant \frac{1}{3}$. Thus, by Theorem 2.7, $\left|K_{X^{\prime}}+\left\lceil Q_{\lambda}^{\prime}\right\rceil\right|$ gives a birational map for $\lambda>16$. So we conclude the statement of the theorem.

Theorem 8.2 (Theorem 1.11). Let V be a nonsingular projective 4 -fold of general type. Then:
(1) when $p_{g}(V) \geqslant 2, \Phi_{m, V}$ is birational for all $m \geqslant 35$;
(2) when $p_{g}(V) \geqslant 19, \Phi_{m, V}$ is birational for all $m \geqslant 18$.

Proof. Let Z be the minimal model of V. We set $m_{0}=1, \Lambda=\left|K_{Z}\right|$ and use the setup in \S 2.1. Thus, we have an induced fibration $f: Z^{\prime} \longrightarrow \Gamma$.

First we consider the case $\operatorname{dim} \Gamma=1$. Recall that we have $M_{\Lambda} \equiv \theta F$ for a general fiber F of f, where $\theta \geqslant p_{g}(Z)-1$. It is clear that, when $m \geqslant 3,\left|m K_{Z^{\prime}}\right|$ distinguishes different general fibers of f. Pick a general fiber $F=X^{\prime}$, which is a nonsingular projective 3 -fold of general type with $p_{g}\left(X^{\prime}\right)>0$. Replace by its birational model, we may assume that there is a birational morphism $\nu: X^{\prime} \longrightarrow X$ onto a minimal model. By Lemma 2.1, we have

$$
\left.\pi^{*}\left(K_{Z}\right)\right|_{X^{\prime}} \equiv \frac{\theta}{\theta+1} \nu^{*}\left(K_{X}\right)+J_{1}
$$

for an effective \mathbb{Q}-divisor J_{1} on X^{\prime}. When m is large, since $(m-1) \pi^{*}\left(K_{Z}\right)-X^{\prime}-(1 / \theta) E_{\Lambda}^{\prime}$ is nef and big, Kawamata and Viehweg vanishing implies

$$
\begin{aligned}
& \left\lvert\, K_{Z^{\prime}}+\left\lceil(m-1) \pi^{*}\left(K_{Z}\right)-\frac{1}{\theta} E_{\Lambda}^{\prime}\right]\| \|_{X^{\prime}}\right. \\
& \quad=\left\lvert\, K_{X^{\prime}}+\left\lceil\left.(m-1) \pi^{*}\left(K_{Z}\right)-\left.\frac{1}{\theta} E_{\Lambda}^{\prime}\right|_{X^{\prime}} \right\rvert\,\right.\right. \\
& \quad \succeq\left|K_{X^{\prime}}+\left\lceil R_{m}\right\rceil\right|
\end{aligned}
$$

where $R_{m}:=\left.\left((m-1) \pi^{*}\left(K_{Z}\right)-X^{\prime}-(1 / \theta) E_{\Lambda}^{\prime}\right)\right|_{X^{\prime}}$. In fact, we have

$$
\begin{aligned}
R_{m} & \left.\equiv\left(m-1-\frac{1}{\theta}\right) \pi^{*}\left(K_{Z}\right)\right|_{X^{\prime}} \\
& \equiv\left(\frac{m \theta}{\theta+1}-1\right) \nu^{*}\left(K_{X}\right)+\left(m-1-\frac{1}{\theta}\right) J_{1}
\end{aligned}
$$

Since $m \theta /(\theta+1)-1>16$ whenever either $m \geqslant 18$ and $p_{g}(Z) \geqslant 19$ or $m \geqslant 35$ and $p_{g}(Z) \geqslant 2$, Theorem 8.1 implies that $\left|K_{X^{\prime}}+\left\lceil R_{m}-(m-1-1 / p) J_{1}\right\rceil\right|$ gives a birational map. Thus, statements of the theorem follow in this case.

Next we consider the case $\operatorname{dim} \Gamma \geqslant 2$. By definition, $\theta=1$. Clearly it is sufficient to consider $\Phi_{\left|m K_{Z^{\prime}}\right|} \mid X^{\prime}$ for a general member $X^{\prime} \in\left|M_{\Lambda}\right|$. We consider a general X^{\prime} and, similarly, we may assume that there is a birational morphism $\nu: X^{\prime} \longrightarrow X$ onto a minimal model X. Then Kawamata's extension theorem [Kaw99, Theorem A] still implies

$$
\begin{equation*}
\left.\pi^{*}\left(K_{Z}\right)\right|_{X^{\prime}} \geqslant \frac{1}{2} \nu^{*}\left(K_{X}\right) . \tag{22}
\end{equation*}
$$

J. A. Chen and M. Chen

We consider the linear system $\left|M_{\Lambda}\right| X^{\prime} \mid$, which may be assumed to be base point free modulo further birational modifications. Pick a generic irreducible element S of this linear system. We clearly have

$$
\left.\pi^{*}\left(K_{Z}\right)\right|_{X^{\prime}} \geqslant\left. M_{\Lambda}\right|_{X^{\prime}} \geqslant S
$$

Modulo \mathbb{Q}-linear equivalence, one has

$$
2 S \leqslant\left.\left(\pi^{*}\left(K_{Z}\right)+X^{\prime}\right)\right|_{X^{\prime}} \leqslant K_{X^{\prime}} .
$$

Thus, Kawamata's extension theorem gives

$$
\begin{equation*}
\left.\nu^{*}\left(K_{X}\right)\right|_{S} \geqslant \frac{2}{3} \sigma^{*}\left(K_{S_{0}}\right) \tag{23}
\end{equation*}
$$

where $\sigma: S \longrightarrow S_{0}$ is the contraction onto the minimal model S_{0} of S. Both (22) and (23) imply

$$
\left.\pi^{*}\left(K_{Z}\right)\right|_{S} \geqslant \frac{1}{3} \sigma^{*}\left(K_{S_{0}}\right) .
$$

Write $\left.\pi^{*}\left(K_{Z}\right)\right|_{X^{\prime}} \equiv S+H_{\Lambda}$ where H_{Λ} is an effective \mathbb{Q}-divisor on X^{\prime}. Since $R_{m}-S-H_{\Lambda} \equiv$ $\left.(m-3) \pi^{*}\left(K_{Z}\right)\right|_{X^{\prime}}$ is nef and big, the vanishing theorem implies

$$
\begin{aligned}
\left|K_{X^{\prime}}+\left\lceil R_{m}-H_{\Lambda}\right\rceil\right|_{\mid S} & =\left|K_{S}+\left\lceil R_{m}-S-H_{\Lambda}\right\rceil_{\mid S}\right| \\
& \succeq\left|K_{S}+\left\lceil R_{m, S}\right\rangle\right|
\end{aligned}
$$

where $R_{m, S}:=\left.\left(R_{m}-S-H_{\Lambda}\right)\right|_{S}$. Note that

$$
\begin{aligned}
R_{m, S} & \left.\equiv(m-3) \pi^{*}\left(K_{Z}\right)\right|_{S} \\
& \equiv \frac{m-3}{3} \sigma^{*}\left(K_{S_{0}}\right)+E_{m, S}
\end{aligned}
$$

where $E_{m, S}$ is an effective \mathbb{Q}-divisor on S. Now it is clear by Lemma 2.3 that $\left|K_{S}+\left\lceil R_{m, S}-E_{m, S}\right\rceil\right|$ gives a birational map whenever $m \geqslant 15$. Again Kawamata and Viehweg vanishing shows that $\left|K_{X^{\prime}}+\left\lceil R_{m}\right\rceil\right|$ distinguishes different elements S. Thus, we have shown that $\Phi_{m, Z}$ is birational for all $m \geqslant 15$ in this case. We are done.

Brown and Reid kindly informed us of the following interesting canonical 4 -folds.
Example 8.3. The general hypersurfaces $W_{36} \subset \mathbb{P}(1,1,3,5,7,18)$ and $Y_{36} \subset \mathbb{P}(1,1,4,5,6,18)$ have canonical singularities, $p_{g}=2$. It is clear that the 17 -canonical maps of these two 4 -folds are not birational.

Problem 8.4. It is a very interesting problem to find more examples of 4 -folds of general type so that Φ_{m} is not birational for large m.

Explicit birational geometry of 3-FOLDS And 4-FOLDS

Appendix A. Tables

Table F0.

Types	B_{X}	χ	K_{X}^{3}	$\delta(X)$
2 a	$\{4 \times(1,2),(4,9),(2,5),(5,13), 3 \times(1,3), 2 \times(1,4)\}$	2	$1 / 1170$	18
41	$\{5 \times(1,2),(4,9), 2 \times(3,8),(1,3), 2 \times(2,7)\}$	2	$1 / 252$	13

Table F1.

Types	B_{X}	χ	K_{X}^{3}	$\delta(X)$
2	$\{4 \times(1,2),(4,9), 2 \times(2,5),(3,8), 3 \times(1,3), 2 \times(1,4)\}$	2	$1 / 360$	15
3	$\{6 \times(1,2),(5,11), 4 \times(2,5),(3,8), 4 \times(1,3),(2,7), 2 \times(1,4)\}$	3	$23 / 9240$	15
5.1	$\{7 \times(1,2),(4,9), 3 \times(2,5),(5,13), 4 \times(1,3),(3,11),(1,4)\}$	3	$61 / 25740$	15
5.2	$\{7 \times(1,2),(4,9), 2 \times(2,5),(7,18), 4 \times(1,3),(3,11),(1,4)\}$	3	$1 / 660$	15
5.3	$\{7 \times(1,2),(4,9),(2,5),(9,23), 4 \times(1,3),(3,11),(1,4)\}$	3	$47 / 45540$	15
5 a	$\{7 \times(1,2),(4,9),(11,28), 4 \times(1,3),(3,11),(1,4)\}$	3	$1 / 1386$	15
5 b	$\{7 \times(1,2),(4,9), 3 \times(2,5),(5,13), 4 \times(1,3),(4,15)\}$	3	$1 / 1170$	15
53 a	$\{3 \times(1,2),(4,9), 2 \times(2,5),(5,13), 3 \times(1,3),(1,5)\}$	2	$1 / 1170$	15

Table F2.

Types	B_{X}	χ	K_{X}^{3}	$\delta(X)$
1	$\{5 \times(1,2),(3,7), 3 \times(2,5), 3 \times(1,3),(3,11)\}$	2	$3 / 770$	14
4	$\{7 \times(1,2),(4,9), 4 \times(2,5),(4,11), 3 \times(1,3),(2,7), 2 \times(1,4)\}$	3	$13 / 3465$	14
4.5	$\{7 \times(1,2),(4,9), 4 \times(2,5),(5,14), 2 \times(1,3),(2,7), 2 \times(1,4)\}$	3	$1 / 630$	14
5	$\{7 \times(1,2),(4,9), 4 \times(2,5),(3,8), 4 \times(1,3),(3,11),(1,4)\}$	3	$17 / 3960$	14
5.4	$\{7 \times(1,2),(4,9), 4 \times(2,5),(3,8), 4 \times(1,3),(4,15)\}$	3	$1 / 360$	14
6	$\{9 \times(1,2), 2 \times(3,7),(2,5),(4,11), 4 \times(1,3), 2 \times(2,7),(1,5)\}$	3	$1 / 462$	14
7	$\{5 \times(1,2),(4,9),(3,7), 5 \times(1,3),(2,7),(1,5)\}$	2	$1 / 630$	14
7 a	$\{5 \times(1,2),(7,16), 5 \times(1,3),(2,7),(1,5)\}$	2	$1 / 1680$	14
10	$\{8 \times(1,2),(4,9),(3,7), 2 \times(3,8), 5 \times(1,3),(2,7),(1,4),(1,5)\}$	3	$1 / 630$	14
11	$\{9 \times(1,2), 2 \times(3,7),(3,8),(4,11), 3 \times(1,3),(3,10),(1,4),(1,5)\}$	3	$3 / 3080$	14
12	$\{9 \times(1,2),(4,9),(2,5), 2 \times(3,8), 4 \times(1,3), 2 \times(2,7),(1,5)\}$	3	$1 / 252$	14
12.1	$\{9 \times(1,2),(4,9),(5,13),(3,8), 4 \times(1,3), 2 \times(2,7),(1,5)\}$	3	$67 / 32760$	14
12 a	$\{9 \times(1,2),(4,9),(8,21), 4 \times(1,3), 2 \times(2,7),(1,5)\}$	3	$1 / 630$	14
14	$\{10 \times(1,2),(3,7), 2 \times(2,5), 2 \times(3,8), 6 \times(1,3), 2 \times(2,7)$,			
	$(1,4),(1,5)\}$	4	$1 / 770$	14
15	$\{11 \times(1,2),(4,9),(3,7), 2 \times(2,5),(3,8),(4,11), 5 \times(1,3), 2 \times(2,7)$,			
	$(1,4),(1,5)\}$	4	$71 / 27720$	14

J. A. Chen and M. Chen

Table F2. Continued.

Types	B_{X}	χ	K_{X}^{3}	$\delta(X)$
15.1	$\begin{aligned} & \{11 \times(1,2),(4,9),(3,7), 2 \times(2,5),(7,19), 5 \times(1,3), 2 \times(2,7), \\ & (1,4),(1,5)\} \end{aligned}$	4	47/23940	14
15.2	$\begin{aligned} & \{11 \times(1,2),(7,16), 2 \times(2,5),(3,8),(4,11), 5 \times(1,3) \\ & 2 \times(2,7),(1,4),(1,5)\} \end{aligned}$	4	29/18480	14
16	$\begin{aligned} & \{11 \times(1,2),(4,9),(3,7), 2 \times(2,5), 2 \times(3,8), 6 \times(1,3),(2,7) \\ & (3,11),(1,5)\} \end{aligned}$	4	43/13860	14
16.1	$\begin{aligned} & \{11 \times(1,2),(4,9),(3,7),(2,5),(5,13),(3,8), 6 \times(1,3),(2,7) \\ & (3,11),(1,5)\} \end{aligned}$	4	85/72072	14
16.2	$\begin{aligned} & \{11 \times(1,2),(7,16), 2 \times(2,5), 2 \times(3,8), 6 \times(1,3),(2,7) \\ & (3,11),(1,5)\} \end{aligned}$	4	13/6160	14
16.4	$\{11 \times(1,2),(7,16), 2 \times(2,5), 2 \times(3,8), 6 \times(1,3),(5,18),(1,5)\}$	4	1/720	14
16.5	$\begin{aligned} & \{11 \times(1,2),(4,9),(3,7), 2 \times(2,5), 2 \times(3,8), 6 \times(1,3),(5,18) \\ & (1,5)\} \end{aligned}$	4	1/420	14
17	$\{9 \times(1,2), 2 \times(3,7), 2 \times(4,11), 3 \times(1,3),(2,7),(1,4),(1,5)\}$	3	3/1540	14
18	$\{9 \times(1,2), 2 \times(3,7),(3,8),(4,11), 4 \times(1,3),(3,11),(1,5)\}$	3	23/9240	14
18 b	$\{9 \times(1,2), 2 \times(3,7),(7,19), 4 \times(1,3),(3,11),(1,5)\}$	3	83/43890	14
20	$\{7 \times(1,2), 2 \times(4,9),(2,5),(3,8), 6 \times(1,3),(2,7),(1,4),(1,5)\}$	3	1/504	14
21	$\{6 \times(1,2),(4,9),(3,8), 3 \times(1,3),(3,10),(1,5)\}$	2	1/360	14
23	$\begin{aligned} & \{8 \times(1,2),(4,9),(3,7),(2,5),(4,11), 4 \times(1,3),(3,10),(1,4) \\ & (1,5)\} \end{aligned}$	3	19/13860	14
25	$\begin{aligned} & \{9 \times(1,2),(5,11),(4,9), 3 \times(2,5),(3,8), 7 \times(1,3), 2 \times(2,7) \\ & (1,4),(1,5)\} \end{aligned}$	4	47/27720	14
$25 a$	$\begin{aligned} & \{9 \times(1,2),(9,20), 3 \times(2,5),(3,8), 7 \times(1,3), 2 \times(2,7),(1,4) \\ & (1,5)\} \end{aligned}$	4	1/840	14
26	$\begin{aligned} & \{10 \times(1,2), 2 \times(4,9), 3 \times(2,5),(4,11), 6 \times(1,3), 2 \times(2,7) \\ & (1,4),(1,5)\} \end{aligned}$	4	41/13860	14
27	$\begin{aligned} & \{10 \times(1,2), 2 \times(4,9), 3 \times(2,5),(3,8), 7 \times(1,3),(2,7) \\ & (3,11),(1,5)\} \end{aligned}$	4	97/27720	14
27.3	$\{10 \times(1,2), 2 \times(4,9), 3 \times(2,5),(3,8), 7 \times(1,3),(5,18),(1,5)\}$	4	1/360	14
28	$\{5 \times(1,2),(5,11),(3,8), 4 \times(1,3),(2,7),(1,5)\}$	2	23/9240	14
29	$\{6 \times(1,2),(4,9),(4,11), 3 \times(1,3),(2,7),(1,5)\}$	2	13/3465	14
29.1	$\{6 \times(1,2),(4,9),(5,14), 2 \times(1,3),(2,7),(1,5)\}$	2	1/630	14
30	$\{7 \times(1,2),(5,11),(3,7),(2,5),(4,11), 5 \times(1,3),(2,7),(1,4),(1,5)\}$	3	1/924	14
31	$\{7 \times(1,2),(5,11),(3,7),(2,5),(3,8), 6 \times(1,3),(3,11),(1,5)\}$	3	1/616	14
32	$\{8 \times(1,2),(4,9),(3,7),(2,5),(4,11), 5 \times(1,3),(3,11),(1,5)\}$	3	2/693	14
32a	$\{8 \times(1,2),(7,16),(2,5),(4,11), 5 \times(1,3),(3,11),(1,5)\}$	3	1/528	14

Explicit birational geometry of 3-FOLDS And 4-FOLDS

Table F2. Continued.

Types	B_{X}	χ	K_{X}^{3}	$\delta(X)$
33	$5 \times(1,2), 2 \times(3,7),(3,8),(1,3),(3,10),(2,7)\}$	2	$1 / 840$	14
34	$\{7 \times(1,2),(4,9),(3,7), 2 \times(2,5),(3,8), 3 \times(1,3), 3 \times(2,7)\}$	3	$1 / 360$	14
34 a	$\{7 \times(1,2),(7,16), 2 \times(2,5),(3,8), 3 \times(1,3), 3 \times(2,7)\}$	3	$1 / 560$	14
35	$\{5 \times(1,2), 2 \times(3,7),(4,11),(1,3), 2 \times(2,7)\}$	2	$1 / 462$	14
36	$\{4 \times(1,2),(4,9),(3,7),(2,5), 2 \times(1,3),(3,10),(2,7)\}$	2	$1 / 630$	14
36 a	$\{4 \times(1,2),(7,16),(2,5), 2 \times(1,3),(3,10),(2,7)\}$	2	$1 / 1680$	14
36 b	$\{4 \times(1,2),(4,9),(3,7),(2,5), 2 \times(1,3),(5,17)\}$	2	$4 / 5355$	14
37	$6 \times(1,2), 2 \times(4,9), 3 \times(2,5), 4 \times(1,3), 3 \times(2,7)\}$	3	$1 / 315$	14
38	$\{3 \times(1,2),(5,11),(3,7),(2,5), 3 \times(1,3), 2 \times(2,7)\}$	2	$1 / 770$	14
39	$\{7 \times(1,2),(4,9),(3,7),(2,5), 2 \times(3,8), 2 \times(1,3),(3,10),(2,7),(1,4)\}$	3	$1 / 630$	14
40	$\{9 \times(1,2), 2 \times(4,9), 3 \times(2,5), 2 \times(3,8), 4 \times(1,3), 3 \times(2,7),(1,4)\}$	4	$1 / 315$	14
42	$\{6 \times(1,2),(5,11),(3,7),(2,5), 2 \times(3,8), 3 \times(1,3), 2 \times(2,7),(1,4)\}$	3	$1 / 770$	14
43	$\{7 \times(1,2),(4,9),(3,7),(2,5),(3,8),(4,11), 2 \times(1,3), 2 \times(2,7),(1,4)\}$	3	$71 / 27720$	14
43.1	$\{7 \times(1,2),(7,16),(2,5),(3,8),(4,11), 2 \times(1,3), 2 \times(2,7),(1,4)\}$	3	$29 / 18480$	14
43 c	$\{7 \times(1,2),(7,16),(2,5),(7,19), 2 \times(1,3), 2 \times(2,7),(1,4)\}$	3	$31 / 31920$	14
43.2	$\{7 \times(1,2),(4,9),(3,7),(2,5),(7,19), 2 \times(1,3), 2 \times(2,7),(1,4)\}$	3	$47 / 23940$	14
44	$\{7 \times(1,2),(4,9),(3,7),(2,5), 2 \times(3,8), 3 \times(1,3),(2,7),(3,11)\}$	3	$43 / 13860$	14
44.1	$\{7 \times(1,2),(4,9),(3,7),(5,13),(3,8), 3 \times(1,3),(2,7),(3,11)\}$	3	$85 / 72072$	14
44.2	$\{7 \times(1,2),(4,9),(3,7),(2,5), 2 \times(3,8), 3 \times(1,3),(5,18)\}$	3	$1 / 420$	14
44.3	$\{7 \times(1,2),(7,16),(2,5), 2 \times(3,8), 3 \times(1,3),(2,7),(3,11)\}$	3	$13 / 6160$	14
44 c	$\{7 \times(1,2),(7,16),(2,5), 2 \times(3,8), 3 \times(1,3),(5,18)\}$	3	$1 / 720$	14
45	$\{3 \times(1,2), 2 \times(4,9),(3,8), 3 \times(1,3),(2,7),(1,4)\}$	2	$1 / 504$	14
46	$\{6 \times(1,2), 2 \times(4,9), 2 \times(2,5),(3,8), 3 \times(1,3),(3,10),(2,7),(1,4)\}$	3	$1 / 504$	14
46 b	$\{6 \times(1,2), 2 \times(4,9), 2 \times(2,5),(3,8), 3 \times(1,3),(5,17),(1,4)\}$	3	$7 / 6120$	14
48	$\{4 \times(1,2),(4,9),(3,7),(4,11),(1,3),(3,10),(1,4)\}$	2	$19 / 13860$	14
49	$\{5 \times(1,2),(5,11),(4,9), 2 \times(2,5),(3,8), 4 \times(1,3), 2 \times(2,7),(1,4)\}$	3	$47 / 27720$	14
49 a	$\{(5 \times(1,2),(9,20), 2 \times(2,5),(3,8), 4 \times(1,3), 2 \times(2,7),(1,4)\}$	3	$1 / 840$	14
50	$\{6 \times(1,2), 2 \times(2,9), 2 \times(2,5),(4,11), 3 \times(1,3), 2 \times(2,7),(1,4)\}$	3	$41 / 13860$	14
51	$\{6 \times(1,2), 2 \times(4,9), 2 \times(2,5),(3,8), 4 \times(1,3),(2,7),(3,11)\}$	3	$97 / 27720$	14
51.1	$\{6 \times(1,2), 2 \times(4,9),(2,5),(5,13), 4 \times(1,3),(2,7),(3,11)\}$	3	$71 / 45045$	14
52	$\{4 \times(1,2),(3,7), 2 \times(2,5), 2 \times(3,8), 2 \times(1,3),(1,5)\}$	2	$1 / 420$	14
53	$3 \times(1,2),(4,9), 3 \times(2,5),(3,8), 3 \times(1,3),(1,5)\}$	2	$1 / 360$	14
54	$\{2 \times(1,2), 2 \times(3,7), 3 \times(2,5),(3,8),(1,3),(2,7)\}$	2	$1 / 840$	14
56	$\{(1,2),(4,9),(3,7), 4 \times(2,5), 2 \times(1,3),(2,7)\}$	2	$1 / 630$	14
58	$\{4 \times(1,2),(4,9),(3,7), 4 \times(2,5), 2 \times(3,8), 2 \times(1,3),(2,7),(1,4)\}$	3	$1 / 630$	14
59	$\{2 \times(1,2), 2 \times(3,7), 2 \times(2,5),(3,8),(4,11),(1,4)\}$	2	$3 / 3080$	14
60	$3 \times(1,2), 2 \times(4,9), 5(2,5),(3,8), 3 \times(1,3),(2,7),(1,4)\}$	3	$1 / 504$	14
62	$\{(1,2),(4,9),(3,7), 3 \times(2,5),(4,11),(1,3),(1,4)\}$	2	$19 / 13860$	14

J. A. Chen and M. Chen

Table II1.

No.	$B^{0}(X)$	K_{X}^{3}	χ	$\left(P_{3}, P_{4}, P_{5}, P_{6}\right)$
1	$\{5 *(1,2), 2 *(1,3)\}$	$1 / 6$	0	$(3,5,7,11)$
2	$\{5 *(1,2),(1,3),(1,4)\}$	$1 / 12$	0	$(3,5,6,9)$
3	$\{18 *(1,2),(1,3)\}$,	$1 / 3$	1	$(1,5,6,13)$
4	$\{(18-4 t) *(1,2), 3 t *(1,3),(1,4)\}, t=0,1,2$	$1 / 4$	1	$(1+t, 5,5+t, 11+t)$
5	$\{(18-4 t) *(1,2), 3 t *(1,3),(1,5)\}, 5 \leqslant r \leqslant 12 ; t=0,1,2$	$1 / r$	1	$(1+t, 5,5+t, 10+t)$
6	$\{(17-4 t) *(1,2),(2+3 t) *(1,3)\}, t=0,1,2$	$1 / 6$	1	$(1+t, 4,4+t, 9+t)$
7	$\{(14-4 t) *(1,2),(2+3 t) *(1,3), 2 *(1,4)\}, t=0,1$	$1 / 6$	1	$(2+t, 5,5+t, 10+t)$
8	$\{(14-4 t) *(1,2),(2+3 t) *(1,3),(1,4),(1,5)\}, t=0,1$	$7 / 60$	1	$(2+t, 5,5+t, 9+t)$
9	$\{(14-4 t) *(1,2),(2+3 t) *(1,3),(1,4),(1,6)\}, t=0,1$	$1 / 12$	1	$(2+t, 5,5+t, 9+t)$
10	$\{(14-4 t) *(1,2),(1+3 t) *(1,3), 3 *(1,4)\}, t=0,1$	$1 / 12$	1	$(2+t, 5,4+t, 8+t)$
11	$\{(17-4 t) *(1,2),(1+3 t) *(1,3),(1,4)\}, t=0,1,2$	$1 / 12$	1	$(1+t, 4,3+t, 7+t)$

Table II2.

No.	$B^{0}(X)$	K_{X}^{3}	χ	$\left(P_{3}, P_{4}, P_{5}, P_{6}\right)$
1	$\{27 *(1,2), 2 *(1,3),(1, r)\}$	$\frac{1}{6}+\frac{1}{r}$	2	$(0,5,5,13)$
2	$\{(27-4 t) *(1,2),(1+3 t) *(1,3)$,			
	$2 *(1,4)\}, t=0,1$	1/3	2	$(t, 5,4+t, 12+t)$
3	$\begin{aligned} & \{(27-4 t) *(1,2),(1+3 t) *(1,3) \\ & (1,4),(1, r)\}, 5 \leqslant r ; t=0,1,2 \end{aligned}$	$\frac{1}{12}+\frac{1}{r}$	2	$(t, 5,4+t, 11+t)$
4	$\begin{aligned} & \{(27-4 t) *(1,2),(1+3 t) *(1,3) \\ & \left.\left(1, r_{1}\right),\left(1, r_{2}\right)\right\},\left(r_{1}, r_{2}\right) \in I_{4} ; t=0,1,2,3 \end{aligned}$	$\frac{1}{r_{1}}+\frac{1}{r_{2}}-\frac{1}{6}$	2	$(t, 5,4+t, 10+t)$
5	$\{(26-4 t) *(1,2),(4+3 t) *(1,3)\}, t=0,1$	$1 / 3$	2	$(t, 4,4+t, 12+t)$
6	$\begin{aligned} & \{(27-4 t) *(1,2), 3 t *(1,3), 3 *(1,4)\}, \\ & t=0,1,2,3 \end{aligned}$	1/4	2	$(t, 5,3+t, 10+t)$
7	$\begin{aligned} & \{(27-4 t) *(1,2), 3 t *(1,3), 2 *(1,4) \\ & (1, r)\}, 5 \leqslant r \leqslant 12 ; t=0,1,2,3 \end{aligned}$	$1 / r$	2	$(t, 5,3+t, 9+t)$
8	$\begin{aligned} & \left\{(27-4 t) *(1,2), 3 t *(1,3),(1,4),\left(1, r_{1}\right),\right. \\ & \left.\left(1, r_{2}\right)\right\},\left(r_{1}, r_{2}\right) \in I_{3} ; t=0,1,2,3 \end{aligned}$	$\frac{1}{r_{1}}+\frac{1}{r_{2}}-\frac{1}{4}$	2	$(t, 5,3+t, 8+t)$
9	$\begin{aligned} & \{(27-4 t) *(1,2), 3 t *(1,3), 3 *(1,5)\} \\ & t=0,1,2,3 \end{aligned}$	1/10	2	$(t, 5,3+t, 7+t)$
10	$\begin{aligned} & \{(26-4 t) *(1,2),(3+3 t) *(1,3),(1,4)\} \\ & t=0,1,2,3 \end{aligned}$	1/4	2	$(0,4,3+t, 10+t)$
11	$\begin{aligned} & \{(26-4 t) *(1,2),(3+3 t) *(1,3),(1, r)\}, \\ & 5 \leqslant r \leqslant 12 ; t=0,1,2,3 \end{aligned}$	$1 / r$	2	$(0,4,3+t, 9+t)$
12	$\{(25-4 t) *(1,2),(5+3 t) *(1,3)\}, t=0,1,2,3$	1/6	2	$(t, 3,2+t, 8+t)$

Explicit birational geometry of 3-FOLDS And 4-FOLDS

Table II2. Continued.

No. $B^{0}(X)$	K_{X}^{3}		$\left(P_{3}, P_{4}, P_{5}, P_{6}\right)$
$\begin{aligned} 13 & \{(26-4 t) *(1,2),(2+3 t) *(1,3), 2 *(1,4)\}, \\ & t=0,1,2,3 \end{aligned}$	1/6	2	$(t, 4,2+t, 8+t)$
$\begin{aligned} 14 & \{(26-4 t) *(1,2),(2+3 t) *(1,3),(1,4),(1,5)\} \\ & t=0,1,2,3 \end{aligned}$	7/60	2	$(t, 4,2+t, 7+t)$
$15 \quad \begin{aligned} & \{(26-4 t) *(1,2),(2+3 t) *(1,3),(1,4), \\ & \\ & (1,6)\}, t=0,1,2,3 \end{aligned}$	1/12	2	$(t, 4,2+t, 7+t)$
$\begin{aligned} 16 & \{(25-4 t) *(1,2),(4+3 t) *(1,3),(1,4)\}, \\ & t=0,1,2,3 \end{aligned}$	1/12	2	$(t, 3,1+t, 6+t)$
$\begin{aligned} 17 & \{(26-4 t) *(1,2),(1+3 t) *(1,3), 3 *(1,4)\} \\ & t=0,1,2,3 \end{aligned}$	1/12	2	$(t, 4,1+t, 6+t)$

where

$$
\begin{aligned}
I_{4} & =\left\{\left(r_{1}, r_{2}\right) \mid 1 / r_{1}+1 / r_{2} \geqslant 1 / 4, r_{i} \geqslant 5\right\} \\
& =\{(5,5), \ldots,(5,20),(6,6), \ldots,(6,12),(7,7),(7,8),(7,9),(8,8)\} \\
I_{3} & =\left\{\left(r_{1}, r_{2}\right) \mid 1 / r_{1}+1 / r_{2} \geqslant 1 / 3, r_{i} \geqslant 5\right\} \\
& =\{(5,5),(5,6),(5,7),(6,6)\} .
\end{aligned}
$$

Table II3.

$B^{0}(X)$	K_{X}^{3}	χ	$\left(P_{3}, P_{4}, P_{5}, P_{6}\right)$
$1\{32 *(1,2), 5 *(1,3), 2 *(1,4),(1, r)\}, 5 \leqslant r$	$\frac{1}{6}+\frac{1}{r}$	3	$(0,5,4,13)$
$\begin{aligned} 2 & \{(32-4 t) *(1,2),(5+3 t) *(1,3),(1,4), \\ & \left.\left(1, r_{1}\right),\left(1, r_{2}\right)\right\},\left(r_{1}, r_{2}\right) \in I_{6}, t \leqslant 1 \end{aligned}$	$\frac{1}{r_{1}}+\frac{1}{r_{2}}-\frac{1}{12}$	3	$(t, 5,4+t, 12+t)$
$\begin{aligned} 3 & \left\{(32-4 t) *(1,2),(5+3 t) *(1,3),\left(1, r_{1}\right),\right. \\ & \left.\left(1, r_{2}\right),\left(1, r_{3}\right)\right\},\left(r_{1}, r_{2}, r_{3}\right) \in J, t \leqslant 2 \end{aligned}$	$\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}-\frac{1}{3}$	3	$(t, 5,4+t, 11+t)$
$\begin{aligned} & 4 \quad\{(31-4 t) *(1,2),(7+3 t) *(1,3), \\ & \\ & \\ & 2 *(1,4)\}, t \leqslant 1 \end{aligned}$	$1 / 3$	3	$(t, 4,3+t, 12+t)$
$\begin{aligned} 5 & \{(31-4 t) *(1,2),(7+3 t) *(1,3), \\ & (1,4),(1, r)\}, 5 \leqslant r ; t \leqslant 2 \end{aligned}$	$\frac{1}{12}+\frac{1}{r}$	3	$(t, 4,3+t, 11+t)$
$\begin{array}{cl} 6 & \{(31-4 t) *(1,2),(7+3 t) *(1,3), \\ & \left.\left(1, r_{1}\right),\left(1, r_{2}\right)\right\},\left(r_{1}, r_{2}\right) \in I_{4} ; t \leqslant 3 \end{array}$	$\frac{1}{r_{1}}+\frac{1}{r_{2}}-\frac{1}{6}$	3	$(t, 4,3+t, 10+t)$
$7 \quad\{(30-4 t) *(1,2),(10+3 t) *(1,3)\}, t=0,1$	$1 / 3$	3	$(t, 3,3+t, 12+t)$
$\begin{aligned} & 8\{(31-4 t) *(1,2),(6+3 t) *(1,3), \\ &3 *(1,4)\}, t=0,1,2,3 \\ & \hline \end{aligned}$	1/4	3	$(t, 4,2+t, 10+t)$

J. A. Chen and M. Chen

Table II3. Continued.

$B^{0}(X)$	K_{X}^{3}	χ	$\left(P_{3}, P_{4}, P_{5}, P_{6}\right)$
$\begin{aligned} \hline 9 & \{(31-4 t) *(1,2),(6+3 t) *(1,3), \\ & 2 *(1,4),(1, r)\}, 5 \leqslant r \leqslant 12 ; t=0,1,2,3 \end{aligned}$	$1 / r$	3	$(t, 4,2+t, 9+t)$
$10 \quad\left\{(31-4 t) *(1,2),(6+3 t) *(1,3), \quad \text {, } \begin{array}{l} \left.\left.1, r_{2}\right)\right\},\left(r_{1}, r_{2}\right) \in I_{3} ; t \leqslant 3 \\ \\ \\ (1,4),\left(1, r_{1}\right),\left(1, r_{2}\right) \end{array}\right.$	$\frac{1}{r_{1}}+\frac{1}{r_{2}}-\frac{1}{4}$	3	$(t, 4,2+t, 8+t)$
	1/10	3	$(t, 4,2+t, 7+t)$
$\begin{aligned} 12 & \{(30-4 t) *(1,2),(9+3 t) *(1,3), \\ & (1,4)\}, t=0,1,2,3 \end{aligned}$	1/4	3	$(0,3,2+t, 10+t)$
$13 \begin{aligned} & \{(30-4 t) *(1,2),(9+3 t) *(1,3), \\ & (1, r)\}, 5 \leqslant r \leqslant 12 ; t=0,1,2,3 \end{aligned}$	$1 / r$	3	$(0,3,2+t, 9+t)$
$14 \begin{aligned} & \{(30-4 t) *(1,2),(8+3 t) *(1,3), \\ & 2 *(1,4)\}, t=0,1,2,3 \end{aligned}$	1/6	3	$(t, 3,1+t, 8+t)$
$15 \quad \begin{aligned} & \{(30-4 t) *(1,2),(8+3 t) *(1,3), \\ & \\ & \\ & (1,4),(1,5)\}, t=0,1,2,3 \end{aligned}$	7/60	3	$(t, 3,1+t, 7+t)$
$16 \quad\{(30-4 t) *(1,2),(8+3 t) *(1,3), ~ 子, ~(1,4),(1,6)\}, t=0,1,2,3)$	1/12	3	$(t, 3,1+t, 7+t)$
$\begin{aligned} 17 & \{(30-4 t) *(1,2),(7+3 t) *(1,3), \\ & 3 *(1,4)\}, t=0,1,2,3 \end{aligned}$	1/12	3	$(t, 3, t, 6+t)$

where

$$
\begin{aligned}
I_{4}= & \left\{\left(r_{1}, r_{2}\right) \mid 1 / r_{1}+1 / r_{2} \geqslant 1 / 4, r_{i} \geqslant 5\right\} \\
= & \{(5,5), \ldots,(5,20),(6,6), \ldots,(6,12),(7,7),(7,8),(7,9),(8,8)\} \\
I_{3}= & \left\{\left(r_{1}, r_{2}\right) \mid 1 / r_{1}+1 / r_{2} \geqslant 1 / 3, r_{i} \geqslant 5\right\} \\
= & \{(5,5),(5,6),(5,7),(6,6)\} . \\
I_{6}= & \left\{\left(r_{1}, r_{2}\right) \mid 1 / r_{1}+1 / r_{2} \geqslant 1 / 6, r_{i} \geqslant 5\right\} \\
= & \left\{\left(5, s_{5}\right),\left(6, s_{6}\right),\left(7, s_{7}\right),\left(8, s_{8}\right),\left(9, s_{9}\right),\left(10, s_{10}\right),(11,11),(11,12),(11,13),(12,12)\right\}, \\
& 5 \leqslant s_{1}, 6 \leqslant s_{2}, 7 \leqslant s_{7} \leqslant 42,8 \leqslant s_{8} \leqslant 24,9 \leqslant s_{9} \leqslant 18,10 \leqslant s_{10} \leqslant 15 . \\
J= & \left\{\left(r_{1}, r_{2}, r_{3}\right) \mid 1 / r_{1}+1 / r_{2}+1 / r_{3} \geqslant 5 / 12, r_{i} \geqslant 5\right\} \\
= & \left\{\left(5,5, s_{1}\right),\left(5,6, s_{2}\right),\left(5,7, s_{3}\right),(5,8,8),(5,8,9),(5,8,10),(5,9,9),\left(6,6, s_{4}\right),(6,7,7),(6,7,8),\right. \\
& (6,7,9),(6,8,8),(7,7,7)\}, 5 \leqslant s_{1} \leqslant 60,6 \leqslant s_{2} \leqslant 20,7 \leqslant s_{3} \leqslant 13,6 \leqslant s_{4} \leqslant 12 .
\end{aligned}
$$

References

BPV84 W. Barth, C. Peters and A. Van de Ven, Compact complex surfaces (Springer, New York, 1984).

BCHM10 C. Birkar, P. Cascini, C. D. Hacon and J. McKernan, Existence of minimal models for varieties of \log general type, J. Amer. Math. Soc. 23 (2010), 405-468.
Bom73 E. Bombieri, Canonical models of surfaces of general type, Publ. Math. Inst. Hautes Études Sci. 42 (1973), 171-219.

Explicit birational geometry of 3-FOLDS And 4-FOLDS

CP06 F. Catanese and R. Pignatelli, Fibrations of low genus. I, Ann. Sci. Éc. Norm. Supér. (4) 39 (2006), 1011-1049.

Che03 M. Chen, Canonical stability of 3-folds of general type with $p_{g} \geqslant 3$, Internat. J. Math. 14 (2003), 515-528.

Che07 M. Chen, A sharp lower bound for the canonical volume of 3-folds of general type, Math. Ann. 337 (2007), 887-908.
Che10 M. Chen, On pluricanonical systems of algebraic varieties of general type, in Algebraic geometry in East Asia-Seoul 2008, Advanced Studies in Pure Mathematics, vol. 60 (Mathematical Society of Japan, Tokyo, 2010), 215-236.
Che14 M. Chen, Some birationality criteria on 3-folds with $p_{g}>1$, Sci. China Math. 57 (2014), 2215-2234.

CC08 J. A. Chen and M. Chen, The canonical volume of 3-folds of general type with $\chi \leqslant 0$, J. Lond. Math. Soc. (2) 78 (2008), 693-706.
CC10a J. A. Chen and M. Chen, Explicit birational geometry of threefolds of general type, I, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), 365-394.
CC10b J. A. Chen and M. Chen, Explicit birational geometry of threefolds of general type, II, J. Differential Geom. 86 (2010), 237-271.

CCJ13 J. A. Chen, M. Chen and Z. Jiang, On 6-canonical map of irregular threefolds of general type, Math. Res. Lett. 20 (2013), 33-39.
CH07 J. A. Chen and C. D. Hacon, Pluricanonical systems on irregular 3-folds of general type, Math. Z. 255 (2007), 343-355.

CZ08 M. Chen and K. Zuo, Complex projective 3-fold with non-negative canonical Euler-Poincare characteristic, Comm. Anal. Geom. 16 (2008), 159-182.
Fuj78 T. Fujita, On Kähler fiber spaces over curves, J. Math. Soc. Japan 30 (1978), 779-794.
HM06 C. D. Hacon and J. McKernan, Boundedness of pluricanonical maps of varieties of general type, Invent. Math. 166 (2006), 1-25.
HM10 C. D. Hacon and J. McKernan, Boundedness of pluricanonical maps of varieties of general type, Proceedings of the International Congress of Mathematicians, vol. II (Hindustan Book Agency, New Delhi, 2010), 427-449.
Ian00 A. R. Iano-Fletcher, Working with weighted complete intersections, in Explicit birational geometry of 3-folds, London Mathematical Society Lecture Note Series, vol. 281 (Cambridge University Press, Cambridge, 2000), 101-173.
Kaw82 Y. Kawamata, A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann. 261 (1982), 43-46.

Kaw99 Y. Kawamata, On the extension problem of pluricanonical forms, in Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), Contemporary Mathematics, vol. 241 (American Mathematical Society, Providence, RI, 1999), 193-207.
Kaw08 Y. Kawamata, Flops connect minimal models, Publ. Res. Inst. Math. Sci. 44 (2008), 419-423.
KMM87 Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, Adv. Stud. Pure Math. 10 (1987), 283-360.
Kol89 J. Kollár, Flops, Nagoya Math. J. 113 (1989), 15-36.
KM98 J. Kollár and S. Mori, Birational geometry of algebraic varieties (Cambridge University Press, Cambridge, 1998).
Maş99 V. Maşek, Very ampleness of adjoint linear systems on smooth surfaces with boundary, Nagoya Math. J. 153 (1999), 1-29.
Miy76 Y. Miyaoka, Tricanonical maps of numerical Godeaux surfaces, Invent. Math. 34 (1976), 99-111.

Explicit birational geometry of 3-folds and 4-Folds

Rei78 M. Reid, Surfaces with $p_{g}=0, K^{2}=1$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 25 (1978), 75-92.
Rei87 M. Reid, Young person's guide to canonical singularities, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proceedings of Symposia in Pure Mathematics, vol. 46 (American Mathematical Society, Providence, RI, 1987), 345-414; Part 1.
Rei97 M. Reid, Chapters on algebraic surfaces, in Complex algebraic geometry (Park City, UT, 1993), IAS/Park City Mathematical Series, vol. 3 (American Mathematical Society, Providence, RI, 1997), 3-159.

Siu08 Y. T. Siu, Finite generation of canonical ring by analytic method, Sci. China Ser. A 51 (2008), 481-502.
Tak06 S. Takayama, Pluricanonical systems on algebraic varieties of general type, Invent. Math. 165 (2006), 551-587.

Tsu06 H. Tsuji, Pluricanonical systems of projective varieties of general type. I, Osaka J. Math. 43 (2006), 967-995.

Vie82 E. Viehweg, Vanishing theorems, J. Reine Angew. Math. 335 (1982), 1-8.

Jungkai A. Chen jkchen@ntu.edu.tw
National Center for Theoretical Sciences, Taipei Office, and Department of Mathematics,
National Taiwan University, Taipei, 106, Taiwan

Meng Chen mchen@fudan.edu.cn
Institute of Mathematics \& LMNS, Fudan University,
Shanghai 200433, PR China

[^0]: Received 30 September 2013, accepted in final form 1 August 2014, published online 30 December 2014. 2010 Mathematics Subject Classification 14E05 (primary), 14J30, 14J35 (secondary).
 Keywords: pluricanonical maps, algebraic 3 -folds and 4 -folds, linear system, algebraic fibrations.
 The first author was partially supported by NCTS/TPE and the National Science Council of Taiwan. The second author was supported by the National Natural Science Foundation of China (\#11171068, \#11121101, \#11231003) and Doctoral Fund of Ministry of Education of China (\#20110071110003).
 This journal is © Foundation Compositio Mathematica 2014.

[^1]: ${ }^{1}$ Even though minimal models are not necessarily unique, it is known that two birational minimal models are connected by flops (cf. [Kaw08]). Together with the fact that a three-dimensional flop preserves singularity types (cf. [Kol89]), it follows that baskets of V are independent of choices of minimal models.

