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Abstract

We investigate an inverse spectral problem for the singular rank-one perturbations of a Hill operator. We
give a necessary and sufficient condition for a real sequence to be the spectrum of a singular rank-one
perturbation of the Hill operator.
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1. Introduction

In this paper we discuss the spectrum of a singular rank-one perturbation of the Hill
operator

A =−
d2

dx2 in H= L2((0, 2π)),

Dom(A)=
{

u ∈ H2((0, 2π))

∣∣∣∣ u(2π−)= u(0+),
d

dx
u(2π−)=

d

dx
u(0+)

}
.

We recall the definition of a singular rank-one perturbation from the textbook of
Albeverio and Kurasov [5, Ch. 1]. Let 〈·, ·〉 stand for the inner product in H, and ‖ · ‖H
for the norm in H. For s ≥ 0, let Hs(A) be the Hilbert space Dom(As/2) equipped
with the norm ‖ψ‖s = ‖(A + 1)s/2ψ‖H. We designate by H−s(A) the dual space of
Hs(A). By 〈·, ·〉−s,s we denote the dual coupling of H−s(A) and Hs(A). Let ϕ be a
vector in H−2(A) \H satisfying the normalization condition

‖(A − i)−1ϕ‖H = 1.
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The restriction A0 of the operator A to the space

{ψ ∈ Dom(A) | 〈ϕ, ψ〉−2,2 = 0}

is a densely defined symmetric operator with deficiency indices (1, 1), and the
deficiency subspace Ker(A0∗

∓ i) is spanned by the vector g±i ≡ (A ∓ i)−1ϕ. For
γ ∈ R, let m(γ )= (γ + i)/(γ − i). Since |m(γ )| = 1, the von Neumann theory
implies that there is a unique selfadjoint extension Aγ of A0 for which

Dom(Aγ )= {u − c m(γ )gi + cg−i | u ∈ Dom(A0), c ∈ C}.

The map γ 7→ Aγ is a bijection from R onto the set of all selfadjoint extensions
of A0 except A. The operator Aγ is called a singular rank-one perturbation of A.
If ϕ /∈H−1(A), we say that the perturbation is form unbounded; otherwise we say
that it is form bounded. In the form bounded case, the operator Aγ admits the
representation A + α〈ϕ, ·〉−1,1ϕ, where α ≡ (−γ − 〈ϕ, A(A2

+ 1)−1ϕ〉−1,1)
−1; see

[5, Theorem 1.3.1]. In the form unbounded case, the operator Aγ possesses a similar
representation; see [5, Theorem 1.3.2]. It is also useful to recall that the resolvent of
Aγ is given by the Krein formula

1
Aγ − z

=
1

A − z
−

1

−γ + 〈ϕ, 1+z A
A−z

1
A2+1

ϕ〉−2,2

〈
1

A − z̄
ϕ, ·

〉
1

A − z
ϕ, (1.1)

where z ∈ ρ(Aγ ) ∩ ρ(A).
The purpose of this paper is to investigate an inverse spectral problem for the

singular rank-one perturbations of A. To this end, let us first describe basic spectral
properties of Aγ . We introduce some notation. For j ∈ N, we denote by µ j ≡

µ j (ϕ, γ ) the j th eigenvalue of Aγ counted with multiplicity. For j ∈ N, we define

g j = µ2 j+1 − µ2 j ,

which we call the j th gap of σ(Aγ ). Let ψ j (x)= (2π)−1/2ei j x . It is readily seen that
{ψ j }

∞

j=−∞ is a complete orthonormal system for H, and Aψ j = j2ψ j . We define the
Fourier coefficients of ϕ as α j = 〈ϕ, ψ j 〉−2,2 for j ∈ Z. We also define

β j = β j (ϕ)=
1

j4 + 1
(|α j |

2
+ |α− j |

2) for j ∈ N and β0 = β0(ϕ)= |α0|
2.

Since ‖(A − i)−1ϕ‖H = 1, we have
∑
∞

j=0 β j = 1. Let K =−γ −
∑
∞

j=0 j2β j . We
note that K =−∞ if and only if ϕ /∈H−1(A). For the sake of simplicity, we
henceforth consider the case where β j 6= 0 for every j ≥ 0. We have the following
implication concerning basic spectral properties of Aγ , which we demonstrate in
Section 2.

PROPOSITION 1.1. If β j 6= 0 for every j ≥ 0, then the following statements hold true.

(i) If K < 0, then µ1 < 0, ( j − 1)2 < µ2 j < j2 for every j ∈ N, and µ2 j+1 = j2 for
every j ∈ N.
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(ii) If K ≥ 0, then ( j − 1)2 < µ2 j−1 < j2 for every j ∈ N, and µ2 j = j2 for every
j ∈ N.

(iii) The vector ϕ belongs to H−1(A) if and only if
∑
∞

j=1 j−2g j <∞.

We note that j2 is a simple eigenvalue of Aγ for j = 1, 2, . . . , while j2 is a doubly
degenerate eigenvalue of A for j = 1, 2, . . . .

We now concentrate our attention on the form unbounded perturbations. Our main
result is stated as follows and proved in Section 3.

THEOREM 1.2. Let {τ j }
∞

j=1 be a real sequence satisfying τ j < ( j − 1)2 < τ j+1 for
every j ∈ N. In order for there to exist a vector ϕ in H−2(A) \H−1(A) and a real
number γ such that ‖(A − i)−1ϕ‖H = 1, β j (ϕ) 6= 0 for every j ≥ 0, µ1(ϕ, γ )= τ1,
and µ2 j (ϕ, γ )= τ j+1 for every j ∈ N, it is necessary and sufficient that

∞∑
j=1

τ j+1 − ( j − 1)2

j2 =∞ and
∞∑
j=1

j2
− τ j+1

j2 =∞.

We describe the background to our work here. There are numerous works
concerning inverse spectral problems for the Hill operators with locally integrable
coefficients; we refer to [6, 8, 9, 11, 18–20, 23] and the references therein. We also
mention that the spectrum of the Hill operator is determined by the spectra of the
periodic and antiperiodic problems; see [22, Theorem XIII.90]. Recently, the Hill
operators with distributional coefficients have attracted much attention. Kappeler and
Möhr [12] and Korotyaev [14] discuss the Hill operators whose coefficients belong to
a Sobolev space of order −1. These remarkable works led to our interest in an inverse
spectral problem for the Hill operators with more singular coefficients. One of the
ways to realize such an operator is to employ the H−2-perturbation theory. We note
that there are also a vast number of works on the H−2-perturbation theory; we refer
to [2–5, 10, 13, 16, 21] and the references therein. The theory of H−2-perturbations is
closely related to that of quantum Hamiltonians with singular interactions. Indeed,
the one-dimensional Schrödinger operators with point interactions—especially δ-
and δ′-interactions—have been vigorously studied by means of the H−2-perturbation
theory; see [2, 5, 16] and the references therein. Our work here is motivated by this
background.

In Section 4 we recall several known results on the Hill operator with the δ′-
interaction for the sake of comparison.

It is worth mentioning that the proof of the results in this paper is fairly simple. Our
work here is accessible to readers with a knowledge of elementary function theory and
basic functional analysis; one can follow the proof without preliminary knowledge of
the inverse Sturm–Liouville theory.
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2. Proof of Proposition 1.1

We first give a momentum representation of (1.1). We have

F(z) ≡ −γ +

〈
ϕ,

1+ z A

A − z

1

A2 + 1
ϕ

〉
−2,2

= −γ +

∞∑
j=0

β j
1+ j2z

j2 − z
. (2.1)

We define T : H→H by T = 〈(A − z̄)−1ϕ, ·〉(A − z)−1ϕ. Then

T u =
∞∑

n=−∞

∞∑
m=−∞

αmαn

(m2 − z)(n2 − z)
〈ψm, u〉ψn. (2.2)

The Krein resolvent formula (1.1) is now written as

1
Aγ − z

=
1

A − z
−

1
F(z)

T . (2.3)

PROOF OF ASSERTIONS (i) AND (ii). First, we prove the following two claims.

(a) For j = 1, 2, . . . , the number j2 is a simple eigenvalue of Aγ .
(b) 0 ∈ ρ(Aγ ).

Let E(·) be the projection-valued measure associated with Aγ . Let j be a positive
integer. We infer from (2.1), (2.2), and (2.3) that

E(( j2
− ε, j2

+ ε)) = −
1

2π i

∫
|z− j2|=ε

1
Aγ − z

dz

= −
1

|α j |
2 + |α− j |

2 [−|α− j |
2
〈ψ j , ·〉ψ j + α jα− j 〈ψ j , ·〉ψ− j

+ α− jα j 〈ψ− j , ·〉ψ j − |α j |
2
〈ψ− j , ·〉ψ− j ],

provided ε is a sufficiently small positive number. Since β j 6= 0 by assumption, we get
dim Ran(E(( j2

− ε, j2
+ ε)))= 1 when ε is sufficiently small and positive. Thus,

implication (a) follows. A similar argument also gives claim (b).
Next, we prove the following three claims.

(c) For j = 0, 1, . . . , the operator Aγ admits a unique eigenvalue in ( j2, ( j + 1)2)
counted with multiplicity.

(d) If K ≥ 0, then Aγ has no eigenvalue in (−∞, 0).
(e) If K < 0, then Aγ has a unique eigenvalue in (−∞, 0) counted with multiplicity.

Let j be a nonnegative integer. Since F ′(x) > 0 on ( j2, ( j + 1)2), we see
that F(x)→−∞ as x→ j2

+, and since F(x)→∞ as x→ ( j + 1)2−, we
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infer that F(x) admits a unique zero in ( j2, ( j + 1)2) counted with multiplicity.
Combining this with (2.3) and the fact that T is a rank-one operator, we
obtain dim Ran(E(( j2, ( j + 1)2)))= 1, which is assertion (c). By the monotone
convergence theorem, limx→−∞ F(x)= K . This, together with limx→0− F(x)=∞,
F ′(x) > 0 for every x < 0, and formula (2.3), yields implications (d) and (e). By
(a)–(e) we obtain (i) and (ii). 2

PROOF OF ASSERTION (iii). First, we prove the assertion in the case where K < 0.
We recall the formula

Tr
(

1
A − z

−
1

Aγ − z

)
=

d

dz
log F(z), (2.4)

where z ∈ ρ(Aγ ) ∩ ρ(A) and the branch of the logarithm can be fixed arbitrarily. Let
t = 2µ1. We utilize assertion (i) and integrate (2.4) on (−∞, t] to obtain∫ t

−∞

(
−

1
x
−

1
µ1 − x

)
dx +

∞∑
j=1

log
(

1−
g j

j2 − t

)
= lim

x→−∞
log
(

F(t)

F(x)

)
,

where we employ the principal branch of the logarithm here and in what follows. So∑
∞

j=1 g j/( j2
− t) <∞ if and only if limx→−∞ F(x) >−∞. We thus have (iii) in

the case where K < 0. Next, we consider the case where K ≥ 0. As was noted in
the Introduction, ϕ ∈H−1(A). In addition, an argument similar to that above gives∑
∞

j=1 j−2g j <∞. 2

3. Proof of Theorem 1.2

First, we prove that the condition is sufficient. We consider the function

G(z)=−

∏
∞

j=1(1− z/τ j )

z
∏
∞

j=1(1− z/j2)
.

Let us show that

G(t)= o(−t) as t→−∞. (3.1)

To this end we introduce the function

H(z)=

∏
∞

j=2(1− z/τ j+1)∏
∞

j=2(1− z/( j − 1)2)
.

We put k = 2τ1 and s j = τ j+1 − ( j − 1)2. For t < k,

log H(t)− log H(k)=
∞∑
j=2

[
log
(

1+
s j

( j − 1)2 − t

)
− log

(
1+

s j

( j − 1)2 − k

)]
.
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Thus,

lim
t→−∞

log
H(t)

H(k)
=−

∞∑
j=2

log
(

1+
s j

( j − 1)2 − k

)
=−∞,

where we have used the assumption
∑
∞

j=1 j−2s j =∞ and the monotone convergence
theorem. Therefore, we obtain H(t)→ 0 as t→−∞, from which (3.1) follows.

On the other hand, we infer from [17, Ch. VII, Section 1, Theorem 1] that
Im G(z) > 0 whenever Im z > 0, since τ j < ( j − 1)2 < τ j+1 for j = 1, 2, . . . . This,
together with the Nevanlinna theorem (see [1, Ch. VI, Section 59, Theorem 2]), implies
that the function G admits the representation

G(z)= az + b +
∫
∞

−∞

1+ wz

w − z
dσ(w), (3.2)

where a is a nonnegative constant, b is a real constant, and σ(w) is a real-valued
function which is nondecreasing and continuous from the right. Now

σ(w2)− σ(w1)= lim
y→0+

1
π

∫ w2

w1

Im G(t + iy)

1+ t2 dt = 0,

provided that σ(w) is continuous at w = w1, w2 and the closed interval between w1

and w2 contains no pole of G. Therefore, σ ′ = 0 on R \ { j2
| j = 0, 1, . . .}. Since σ

is of bounded variation, we obtain∫
∞

−∞

1+ wx

w − x
dσ(w)= o(−x) as x→−∞,

so that a = 0 by (3.1) and (3.2). Inasmuch as S ≡
∑
∞

j=1(σ ( j2)− σ( j2
−)) <∞, there

exists a ϕ ∈H−2(A) such that β j = (σ ( j2)− σ( j2
−))/S for j = 0, 1, . . . . We put

γ =−b/S. By (3.2) and a = 0,

F(z)=
1
S

G(z). (3.3)

Let us show that ϕ /∈H−1(A). Let l j = j2
− τ j+1 for j ≥ 1. For t < k,

log(−G(t))− log(−G(k))

=

∫ t

k

(
−

1
x
+

1
x − τ1

)
dx +

∞∑
j=1

[
log
(

1−
l j

j2 − t

)
− log

(
1−

l j

j2 − k

)]
.

As
∑
∞

j=1 j−2l j =∞ by assumption, G(t)→−∞ as t→−∞, which, with (3.3),
yields ϕ /∈H−1(A). It follows by (3.3) that µ1(ϕ, γ )= τ1 and µ2 j (ϕ, γ )= τ j+1

for every j ∈ N. Thus, the sufficiency part of the theorem holds.
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Next, we show that the condition is necessary. By (2.1), Im F(z) > 0 whenever
Im z > 0; from this and [17, Ch. VII, Section 1, Theorem 1] we deduce that there is a
positive constant k for which

F(z)=−k ·
(1− z/µ1)

∏
∞

j=1(1− z/µ2 j )

z
∏
∞

j=1(1− z/j2)
.

On the other hand, we infer from (2.1) and
∑
∞

j=0 β j <∞ that

F(x)= o(−x) as x→−∞.

Therefore, we obtain
∑
∞

j=1 j−2(µ2 j − ( j − 1)2)=∞ by an analogous argument to
that above. This completes the proof of Theorem 1.2.

4. Remarks

By L we designate the operator−d2/dx2 in H subject to the transmission condition

d

dx
u(π−)=

d

dx
u(π+), u(π+)− u(π−)= β

d

dx
u(π−)

as well as the periodic boundary condition

u(2π−)= u(0+),
d

dx
u(2π−)=

d

dx
u(0+),

where β ∈ R \ {0} is a parameter. Let δπ stand for the Dirac delta function supported
at the point π . We put C0 = 2

∑
∞

j=1 j2(1+ j4)−1 and C1 = 2
∑
∞

j=1(1+ j4)−1. We
note that if

ϕ =

√
2π
C0

d

dx
δπ and γ =

1
C0

(
2π
β
+ 1+ C1

)
,

then Aγ is equal to L; see [2, Ch. III.3, Formula (3.58)]. We also note that (d/dx)δπ ∈
Hs(A) for every s <−3/2, whereas (d/dx)δπ /∈H−3/2(A). So the operator L is one
of the form unbounded singular rank-one perturbations of A. Let us recall several
known results on the spectrum of L . For j ∈ N, let ν j stand for the j th eigenvalue of
L counted with multiplicity. Then ν2 j−1 = ( j − 1)2, j = 1, 2, . . . , for β > 0, while
ν2 j+1 = j2, j = 1, 2, . . . , for β < 0. Furthermore,

ν2 j+1 − ν2 j = j + O(1)

as j→∞; see [2, Ch. III.3, Theorem 3.6].
For results on the spectrum of the Hill operator with a more general point

interaction, see [7, 15].
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