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The interaction between deep oceanic currents and an ice base is critical to accurately
predict global ice melting rates, yet predictions are often affected by inaccuracies due
to inadequate dynamical modelling of the ice—water interface morphology. To improve
current predictive models, we numerically investigate the evolution of the ice—water
interface under a subsurface turbulent shear-dominated flow, focusing on the time and
length scales that govern both global and local morphological features. Based on our
previous work (Perissutti, Marchioli & Soldati 2024 Intl J. Multiphase Flow 181,
105007), where we confirmed the existence of a threshold Reynolds number below which
only streamwise-oriented topography forms and above which a larger-scale spanwise
topography emerges and coexists with the streamwise structures, we explore three orders
of magnitude for the Stefan number (the ratio of sensible heat to latent heat). We
examine its impact on ice melting and its role in shaping the interface across the two
distinct morphodynamic regimes. We identify characteristic time scales of ice melting
and demonstrate that the key features of ice morphodynamics scale consistently with the
Stefan number and the Péclet number (the ratio of heat advection to diffusion) in both
regimes. These scaling relationships can be leveraged to infer the main morphodynamic
characteristics of the ice—water interface from direct numerical simulation datasets
generated at computationally feasible values of Péclet and Stefan numbers, enabling the
incorporation of morphodynamics into geophysical melting models and thereby enhancing
their predictive accuracy.
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1. Introduction

The basal melting of ice plays a critical role in the regulation of oceanic currents (Ezat,
Fahl & Rasmussen 2024), sea level (Pritchard et al. 2012), water temperature (Clark,
Alley & Pollard 1999) and therefore broader climate dynamics (Alley et al. 2005; Golledge
et al. 2019). In fact, basal melting is one of the main contributors to global mass loss
of ice shelves in the ocean, accounting for as much of a loss as calving (Rignot et al.
2013). The melting process is significantly modulated by the interaction between the warm
deep-water currents and the ice base, which also shapes the morphology of the ice—water
interface. This effect, in turn, influences the global distribution of heat and salinity, thus
driving oceanic circulation patterns. The morphological patterns produced by melting,
e.g. on ice shelves (Hobson, Sherman & McGill 2011; Lucieer et al. 2016; Hirano 2023;
Washam 2023), result from a combination of heat and mass transfer processes, but also
depend on the speed of the water flow beneath the ice (Ashton & Kennedy 1972; Gilpin,
Hirata & Cheng 1980; Bushuk et al. 2019), which is most often turbulent (Davis & Nicholls
2019). When the water velocity exceeds a certain threshold, specific features appear on the
ice interface, creating feedback effects that can influence the hydrodynamic roughness
(Jia, Andreotti & Claudin 2023), overall melt rates (Gilpin et al. 1980; Wettlaufer 1991;
Feltham, Worster & Wettlaufer 2002) and, in turn, the stability of ice sheets (Joughin &
Alley 2011; Alley et al. 2016). A detailed understanding of these dynamics is thus crucial
to quantify global melt rates and refine the predictions of climate models (Patmore et al.
2023).

The dynamics of ice—water interfaces has been widely explored in the literature,
primarily in buoyancy-driven flows (Rabbanipour E. et al. 2018; Wang et al. 2021a,b,c;
Yang et al. 2022; Dhas, Roy & Toppaladoddi 2023; Du et al. 2023; Yang et al. 2023a;
Fang et al. 2024), but also in interplanetary environments (Gastine & Favier 2024) or in
porous media (Magnani et al. 2024). However, a complete explanation of the physical
mechanisms that control the interface evolution remains elusive, especially under strong
shear conditions (Bushuk ez al. 2019). In fact, most of the numerical studies that analyse
the interactions with a shearing flow, consider laminar conditions (Camporeale & Ridolfi
2012; Toppaladoddi & Wettlaufer 2019; Hester ef al. 2021; Yang et al. 2024), with very
few exceptions in the turbulent regime (Couston et al. 2021; Perissutti et al. 2024). The
need for further studies is driven by the fact that almost all current ice melting models
make use of empirical correlations or simplified heat transfer estimates that are based on
the assumption of a flat, isothermal interface. This is often the case for models of basal
melting in icebergs (FitzMaurice et al. 2016; Cenedese & Straneo 2023) and ice shelves
(Dinniman et al. 2016; Goldberg et al. 2019). However, such models can produce errors
in melt rate predictions of up to an order of magnitude (Yoshihiro et al. 2019; Jourdain
et al. 2020), and are often unable to capture the high variability observed in experimental
data (Bushuk et al. 2019). Incorporating morphodynamic effects on local heat and mass
transfer is therefore essential to improve model accuracy, the key challenge being how to
integrate these factors into existing parameterizations (Hewitt 2020; Du, Calzavarini &
Sun 2024; Toppaladoddi & Wells 2025).

The morphology of an ice—water interface subject to strong shear can be very complex.
Foundational studies by Ashton & Kennedy (1972) and Hsu, Locher & Kennedy (1979)
documented the formation of unstable spanwise wavy patterns (referred to as ripples
hereinafter) at the interface, a phenomenon later confirmed by laboratory experiments
(Gilpin et al. 1980; Ramudu et al. 2016; Bushuk er al. 2019). These patterns are quite
common in many other contexts where an ablative surface interacts with a shearing
flow (Claudin, Duran & Andreotti 2017). Examples include sand beds (Khosronejad &
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Sotiropoulos 2017; Duran Vinent et al. 2019; Yizhaq 2024), limestone caves eroded by
water (Curl 1974; Thomas 1979), air—ice interfaces (Bintanja, Reijmer & Hulscher 2001)
or even meteorites (Lin & Qun 1987). Ripples emerge when the shear Reynolds number of
the flow surpasses a critical threshold, defining the conditions by which the interaction
between ice streamwise advection and cross-stream diffusion of heat and momentum
results in the spontaneous formation of these ice structures.

Most of the studies that have documented the formation and dynamical evolution
of ice ripples are theoretical and/or experimental (Ashton & Kennedy 1972; Gilpin
et al. 1980; Camporeale & Ridolfi 2012; Bushuk et al. 2019). Only recently, the direct
numerical simulation (DNS) of turbulence, coupled with heat transfer and a phase-
changing interface, has been applied to the study of ice melting: specifically, Couston
et al. (2021) studied the shear-driven evolving topography of an ice layer. They reported
the formation and evolution of streamwise-oriented ice structures. Possibly due to the
low Reynolds number examined, they observed no spanwise-oriented ice topography
(Couston et al. 2021). Following Couston er al. (2021), in a previous work (Perissutti
et al. 2024) we performed a series of DNS to investigate the morphodynamics of an ice
layer melting and freezing over a turbulent stream of warm water, and we examined the
ice morphodynamics at a Reynolds number similar to that investigated by Couston et al.
(2021) and at one significantly higher. At the lower Reynolds number, streamwise-oriented,
streaky ice structures of much smaller length scale are formed, in agreement with the
findings of Couston (2021). At the higher Reynolds number, spanwise morphology evolves
exhibiting ripples of greater length scale that coexist with the streaky ice structures.
These findings confirm the existence of a certain minimum Reynolds number necessary
to observe these structures, and further establish that DNS is an accurate method for the
study ice melting in flowing fluids because it allows all the relevant thermofluid dynamic
processes to be directly implemented. The main limitation of this approach is the high
computational cost, which prevents its applicability to the large separations in time and
length scales that characterize actual environmental melting processes. In practical cases,
the large-scale fluid circulation is much slower than the smallest turbulence scales, and
similarly, the time scale of latent heat transfer is much larger than that of sensible heat
transfer. As a result, both the Reynolds number, which represents the ratio between the
flow advection and viscous time scales, and the Stefan number (S7), which represents the
ratio between the time scales of latent heat transfer and sensible heat transfer, tend to be
very large. Additionally, the melting process is characterized by the Péclet number (Pe),
which describes the relationship between the time scales of advection and heat diffusion.
Simulating realistic values for these three numbers — Reynolds, Stefan and Péclet — is
the biggest challenge when performing DNS of shear-driven melting. In fact, all previous
studies based on DNS (Couston 2021; Yang et al. 2023b; Perissutti et al. 2024) considered
Stefan numbers close to unity or smaller, these values being approximately two orders
of magnitude lower than those typical of shear-driven melting. Since the Stefan number
quantifies the time scale separation between melting and heat diffusion, simulating a lower
St reduces computational costs by fictitiously accelerating the melting process relative to
heat diffusion.

In the present work, we aim to address the effect of such time scale separation by
investigating a broader range of parameters that cover two orders of magnitude for the
Stefan number (up to a value St =10) and better describes real-case scenarios. The
simulated values of the Stefan number were chosen by exploiting the analytical solution
of the Stefan problem (discussed in § 2) as a compass for the simulations. This allowed
us to infer with precision the time scales of the melting process under investigation and,
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Figure 1. Schematic representation of the physical problem and heat flux balance. We consider an ice layer
of thickness & on top of a layer of flowing water that is heated from below. The heat flux supplied to the
water layer, g, is partly converted into sensible heat flux, gg ,,, which brings the meltwater to the same local
temperature of the water stream. The heat flux g, is then supplied to the ice—water interface, where it is partly
converted into latent heat of fusion, ¢z, which is responsible for the melting of the interface. The heat flux
g; is then extracted from the interface and partly converted into sensible heat, gs ;, which brings the ice to
melting temperature. Finally, the heat flux ¢, is extracted from the system through the top of the ice layer.
Due to melting, the thickness & reduces over time such that, given two generic time instants #; and £ > f1,
E(t1) < &(1p). At steady-state, gp = g; because all other sensible and latent heat contributions vanish.

in turn, the range of computational feasibility for the Stefan number by estimating the
cost of the simulations at high St. We also varied the Reynolds number (and consequently
the Péclet number), considering the same values as in Perissutti et al. (2024): one below the
critical threshold for ripple formation and one well above it. In this paper, we analyse
the morphodynamics of the ice—water interface in these two cases (§ 4), focusing first on
the effect of the Stefan number. We then assess how the different morphological features
of the interface scale with St and Pe. In particular, we investigate in detail the complex
dynamics of the ice ripples that form at the largest Reynolds number, providing scaling
relations that describe their evolution at varying St and Pe. These scaling relations can be
used to predict the main features of the interface morphodynamics and the characteristic
time scales of the melting process at Stefan and Péclet numbers that cannot be tackled
using DNS.

2. The Stefan problem for ice melting

In this section, we introduce a simple one-dimensional (1-D) analytical model that can be
used to estimate the time scales of melting of an ice layer heated from below by a turbulent
stream of warm water. A schematic representation of the problem is provided in figure 1.
The ice layer is subjected to a constant heat flux from below with an imposed temperature
at the top. As melting takes place, heat is exchanged through the water layer and the ice
layer. The heat flux, g, coming from the bulk of the water stream (or, equivalently, from
the bottom boundary of the computational domain) is partly converted into sensible heat,
gs.w, which is needed to bring the temperature of the meltwater (namely, the water that
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forms as a result of ice melting) to the local water temperature. The heat flux g,y = gp —
gs.w 1s exchanged through the ice—water interface and is partly converted into latent heat,
gL, during melting. The effective heat flux supplied to the ice layer, g; = g, — g, is then
partly converted into sensible heat, gs;, which is required to bring the ice to melting
temperature. As a result of such flux balance, the heat flux ¢; = g; — gs,; may be extracted
from the ice layer and leaves the domain through its top boundary. Note that, at steady-
state, the latent and sensible heat fluxes g1, gs ; and gs ,, are zero, yielding the equilibrium
condition gp = ¢;.

To derive the model, in § 2.1, we first consider the heat transfer balance within the ice
layer alone, described as a 1-D one-phase Stefan problem in which the standard Stefan
condition has been modified to account for the effect of g,, on the time evolution of the ice
thickness. We then solve this modified Stefan problem in the limit of high Stefan numbers:
in this limit, an analytical solution for the ice thickness can be obtained and a closed
formula for the time required to reach the equilibrium condition can be derived. In § 2.2,
we extend the model to incorporate the effect of the heat transfer within the water layer,
where g, represents the heat forcing input.

2.1. The one-phase Stefan problem

We consider a 1-D Stefan problem in which an ice layer of thickness & is subjected to
an arbitrary constant thermal forcing, ¢, at the bottom boundary (corresponding to the
moving ice—water interface) and an imposed temperature on the top boundary. The ice
layer extends from z =0 to z = &(¢), which represents the instantaneous position of the
ice—water interface. Any point where z > £ () falls inside the water layer. The temperature,
6 =0(z, 1), is set equal to a constant value below the freezing point, 6, <0, at z=0
and to the melting temperature, 6,, =0, at z = £(¢). Moreover, q,, is defined such that
it is positive when transferred from ice to water: hence, g, is always negative during
melting. The dimensionless governing equations (see Appendix A for details on their
non-dimensionalization) read as

d¢ 90
Pe St— = — + qw,
dr 9z, @0
30 1 9%
t Pedz?
with the following boundary conditions
0(z=0,1) =06, (2.2)
0(z=¢&(@), 1) =0, (2.3)
0(z,t=0)=6.(1 —z/&), 2.4)
§(0)=&. (2.5)
The dimensionless groups in (2.1) are defined as follows
st= £ pes Plpltrrhig, 2.6)
cpA0 A

where the notation e indicates that the quantity e is dimensional; L is the specific latent
heat, p the density, ¢, the specific heat at constant pressure, A the thermal conductivity,
A6 the reference temperature difference across the ice layer (defined here as A6 =

ém — 0~C), urer the reference velocity and fz,ef the reference length of the problem. In a
real case scenario, heat diffusion is significantly faster than melting. This means that
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the temperature distribution within the ice layer can quickly adapt to the motion of the
interface and can always be considered in equilibrium state. It is therefore reasonable to
assume that the time scale of heat diffusion, tp, is much smaller that the time scale of
melting, tr(. These two time scales can be defined as

dr ™
a0 _ Af 27
ot - D ’

where A is the characteristic temperature difference inside the ice layer (note that A6 =1
by definition). The condition To4 3> Tp, in combination with the system (2.1), yields

200
AD | — + qu
82 A9/§+Qw
St > = St> |1+ . 2.8
: o AGE 11+ gué| (2.8)
072

When the condition (2.8) is satisfied, the following analytical solution for the problem
(2.1) exists

6. S—1 S—1
)= ——— = _,
(1) 7w S §eq S
1 1 g2 t
—+In|S|=—+In|Sy| - & ——o,
‘S+n|| SO+n|o| 0. Pe St (2.9)
1
So=—"F"—,
I_SO/Seq

0(z, 1) =0 (1 —2/6(1)),

where &, = 0. /q., is the ice thickness at equilibrium. The reader is referred to Appendix B
for a detailed derivation of this solution. The second equation in (2.9) can be used to obtain
an estimate of the time required to reach the steady state, 7yeqqy- In principle, this equation
predicts an infinite time since § — 00 (and In |§| — o0) for § = &,,. Therefore, we define
Titeady as the time required to melt 99 % of all the ice that can melt once the equilibrium
condition § =&, is reached. When this condition is met, § =&y — 0.99(§0 — &.4), which

yields s~1=0.01 (6eq — &0)/6eq and, in turn,

0. Pe St
Tsteady = q—i [0.99(1 — gw&o/6c) + In (0.0D)]. (2.10)

w

2.2. The two-phase Stefan problem

To complete the model and account for the heat transfer balance in the water layer, the heat
flux g5, that brings the meltwater to local thermal equilibrium with the bulk water must
be included. This contribution is especially important at low St, when it is comparable to
the latent heat g; and cannot be neglected. In fact, if the assumption gg ,, ~ 0 is made
(which is analogous to assuming a constant heat flux ¢,, applied directly to the interface,
regardless of the velocity with which it evolves), the model predicts an instantaneous
evolution of &€ to the equilibrium position in the limit St — 0. In other words, the model
predicts an infinite velocity of the ice—water interface at vanishing Stefan numbers. In
reality, for small but finite values of St, the interface velocity is limited by thermal
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diffusivity, which is responsible for the presence of gs .. In the case of ice melted by
a turbulent flow of water, g5 ,, can be quantified as follows (in physical units)

s . - dE
Gsw=3qp —quw=(0p — Hm)pcpg, (2.11)

with 6, the bulk temperature of water. Equation (2.11) shows that gs ,, can be interpreted
as the heat flux required to bring the meltwater layer from the melting temperature 6,, to
the bulk temperature 6. In dimensionless form, (2.11) becomes

Obutr — Om)pEp | ( pEpity d& d§
g ] p — QP 2.12
qs.w =4qb — quw |: ﬁEpAQ 3 dt =Q € ( )
o Pe

where ,56PA§ is the reference sensible heat. Substituting (2.12) into (2.1) and assuming
constant g, yields a problem equal to that solved in the previous section, provided that
St is now replaced by Q + St and gy, by gp. Therefore, the analytical solution for the
evolution of the ice layer thickness, &, is

S—1
é(t):‘gequ o)
1 .
—+1n|S|_1—S—0_1 ‘1_5_0 _q_b £
S gﬁq Eéq 90

where * =t /[Pe(St + Q)] is the rescaled time. The expression for the time required to
reach the steady state, stemming from (2.10), becomes

OcPe (S
Treats = LD 10,901 — gy80/60) + 1 0.01]. 2.14)

qp

The accuracy of the model (2.13) has been verified by comparing its predictions with
the numerical solution of the full set of (2.1). Details of the model assessment are provided
in Appendix B.1.

3. Simulation methodology

We consider a layer of ice capping a turbulent flow of warm water in a domain that,
including the ice layer, has size L, x Ly x L, =2mh x wh x h along the streamwise
(x), spanwise (y) and wall-normal (z) directions, respectively. During the simulations,
the ice—water interface evolves dynamically as a result of ice melting and water freezing.
To capture the dynamics of the system, we combine DNS of the Navier—Stokes and energy
(EN) equations (Zonta, Sichani & Soldati 2022) with a phase-field method (Hester et al.
2020; Soligo, Roccon & Soldati 2021; Roccon, Zonta & Soldati 2023). The equations,
and all the involved physical quantities, are made dimensionless using the height of the
channel #, the temperature difference Ad and the shear velocity i, = /%, /5, where 7,
is the average shear stress at the ice—water interface. The reader is referred to Appendix A
for details on the non-dimensionalization of all flow variables.
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3.1. Governing equations

The system of dimensionless governing equations reads as

8¢> 6 1 —¢
—— — 1-2 Cco
ar SCPeSt[ 0 €2 a2 o+ )]
00 1 0
—=—V29—u-V9+St—¢,
ot Pe ot 3.1
] 1 2
_u= Vzu—u-Vu—Vp—¢—u,
ot Re; Ns
V.-u=90.

The first equation in this system is the modified Allen—Cahn (AC) equation, used to
track the evolution of the local ice volume fraction, ¢. The second equation is the EN,
used to track the evolution of the temperature field, 8. The last two equations are the
Navier—Stokes and continuity equations, used to track the evolution of the velocity field,
u. The dimensionless groups that appear in (3.1) are the shear Reynolds number, the Péclet
number and the Stefan number, defined as

i h 3¢ piich L
Yl pe=Re, pr=t" g 32)
v A cpAb

Re; =

with ¥ the kinematic viscosity, o the density, ¢, the specific heat and A the thermal
conductivity. For simplicity, we consider constant thermophysical properties across the
two phases. The definitions of St and Pe given in (3.2) are analogous to those provided
in §2, with #, replacing it,.r and h replacing href This yields Pe = Re; Pr with Pr=
(pcpv) /A the Prandtl number. The flow of water is driven by a mean pressure gradient

imposed in the streamwise direction. Since the average height of the water layer, /1, (f),
increases over time due to melting, the effective Reynolds number of the flow, Reqp=

fizhy /D, changes accordingly and Re; corresponds to the maximum value that Refr can

reach (when h, =h). In the following, we indicate the initial value of the Reynolds
number as Re; o and its final value as Re; ¢, such that Re; o < Reor < Rer f. In the type of
problem we decided to investigate, temperature is treated as a passive scalar and therefore
buoyancy effects are negligible (Zonta & Soldati 2018).

The modified AC equation is used to implicitly describe the morphodynamic changes
of the ice—water interface and is derived from a formulation of the phase-field method
specifically designed for problems involving melting and solidification (Hester et al.
2020). The equation includes a source term on the right-hand side that depends on
the local temperature 6, such that if the local temperature is below the freezing
point, then ice is generated, while water is generated and the ice volume fraction is
reduced if 6 is above the melting point. The phase field method ensures a smooth
transition between the ice phase (where ¢ = 1) and the water phase (where ¢ = 0) across
a thin separation layer centred around the ice—water interface (where ¢ =0.5). The
thickness of this layer is dictated by the phase field parameter, €, which is imposed
by computational requirements. In our simulations, € = 0.005, a value that corresponds
to a layer approximately 0.04% thick. The parameter C appearing in the AC equation
is the mobility coefficient of the phase-field method. From a physical point of view,
this parameter is associated with the energy of the transition layer that separates the
two phases. This energy (and, therefore, the value of C) affects the dependency of
the temperature at the interface on the local curvature in conditions of thermodynamic

1019 A34-8


https://doi.org/10.1017/jfm.2025.10615

https://doi.org/10.1017/jfm.2025.10615 Published online by Cambridge University Press

Journal of Fluid Mechanics

equilibrium (Gibbs—Thompson effect). Following Yang et al. (2023b) and Perissutti
et al. (2024), we neglect the Gibbs—Thompson effect, since the curvatures of the ice—
water interface are never large enough to make the interfacial temperature significantly
different from the melting point. Numerically, this is achieved by setting C = 10 (Perissutti
et al. 2024). This value does not affect significantly the numerical stiffness of the
problem, which increases with C. In such conditions, the phase field formulation enforces
the temperature to always be at the melting/freezing point (6 =0, as it follows from
the definition of dimensionless temperature) at the ice—water interface. In the EN, a source
term proportional to the time derivative of ¢ and to St is introduced to account for the
contribution of the latent heat during melting and freezing. Following previous studies
(Favier, Purseed & Duchemin 2019; Hester et al. 2020; Couston et al. 2021; Yang et al.
2022; Perissutti et al. 2024), a volume-penalization immersed boundary method (IBM)
is used in combination with the Navier—Stokes equations. In this method, a source term
is added in the momentum equations to force an exponential decay of the fluid velocity
where the ice volume fraction is not zero. This decay is ruled by the time constant g,
chosen as small as possible (7 x 10~ in this study) to minimize the error between the
exact solution of the Navier-Stokes equations and the IBM solution, which scales as /1,
when compared with the sharp interface formulation (Favier et al. 2019), and prevent any
velocity in the ice layer.

3.2. Numerical discretization and boundary conditions

The Navier-Stokes and continuity equations in the system (3.1) are rewritten in the
wall-normal velocity—vorticity formulation (Canuto et al. 2007) and solved, together
with the AC and EN equations, using a pseudospectral method that relies on discrete
Fourier transforms along the homogeneous directions (x and y) and discrete Chebyshev
transforms along the wall-normal direction (z). For this reason, the computational grid
(consisting of Ny x Ny x N, points) is uniform in x and y, while Chebyshev—Gauss—
Lobatto points are used in the z direction. The equations are advanced in time using an
implicit—explicit scheme: the nonlinear terms are discretized using an Adams—Bashforth
scheme, while for the linear terms, an implicit Euler scheme (for AC and EN) or a
Crank—Nicolson scheme (for the wall-normal velocity—vorticity equations) is employed.
More details about the numerical scheme can be found in Roccon (2024) and Roccon,
Soligo & Soldati (2025). The solver is parallelized using a message passing interface
(MPI) and leverages on a two-dimensional domain decomposition strategy. The code
is also accelerated exploiting graphics processing units (GPUs) through OpenACC
directives and CUDA Fortran instructions. The Nvidia cuFFT libraries are used to execute
the Fourier/Chebyshev transforms.

As far as the boundary conditions are concerned, for the Navier—Stokes equation, a no-
slip condition is enforced at the top boundary capping the ice layer, while a free shear
condition is applied at the bottom boundary of the water layer,

0 0
l_u _o. 17}

c— =0, k-u(z=0)=0, u(z=1=0. (3.3)
9z z=0

9z z=0

Note that the velocity is zero throughout the ice layer since a no-slip condition is
enforced at the ice—water interface by the IBM. In the EN, constant temperatures are
imposed at both boundaries: above the melting point at the bottom boundary, 6(z =1) =1,
and below the freezing point at the top one, 8(z =0) = —1. The choice imposing a
symmetric temperature difference between the top and bottom boundaries was made
to be fully consistent with our previous work (Perissutti et al. 2024) and ensures that
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Case Re;o Re;y St Pr  NyxNy,xN; Regime Tseady Relative computational cost
S1 170 189 0.1 1 256 x 256 x257  Subcritical 18.19 1.00

S2 170 190 1.0 1 256 x 256 x 257 Subcritical  45.47 2.50

S3 170 190 10 1 256 x256 x257 Subcritical  318.29 17.50

S4 636 802 0.1 1 512x512x513 Supercritical 11.73 20.63

S5 636 803 1.0 1 512x512x 513 Supercritical 29.33 51.60

S6 636 801 10 1 512x512x513 Supercritical 205.28 361.03

Table 1. Overview of the simulation parameters for each simulation (S1 to S6): Reynolds (initial and final),
Stefan and Prandtl numbers, number of grid points (Ny, Ny, N;), the ice morphology regime (subcritical or
supercritical), the predicted time required for the average ice thickness to reach its steady-state value, Teady,
and the estimated computational cost, normalized by the cost of the cheapest simulation, S1. One computational
cost unit is roughly 50 GPU hours on a petascale Tier-0 supercomputer.

the ice—water interface remains inside the domain. We remark here that imposing an
asymmetric temperature difference would only change the vertical equilibrium position
of the ice interface inside the domain: no significant changes would be produced in the ice
morphology. For the AC equation, no-flux conditions are applied at both boundaries,
99 =0, %9 =0. (3.4)
9z z=0 9z z=1
These conditions prevent any unphysical flux of the ice phase through the domain
boundaries and ensure that the changes in the volume fraction ¢ are only due to melting
and freezing. Along the homogeneous directions (x and y), periodic boundary conditions
are applied to all flow variables.

3.3. Simulation set-up

All simulations, summarized in table 1, start from the same initial condition, which
consists of an initially flat ice layer in the top part of the domain, from z =0.75to z =1.
The initial volume fraction is

1
do(x,y,2)= Etanh<

z— 0.75) 1 (3.5)

2e 2’
corresponding to the phase field equilibrium profile in the absence of melting and freezing.
The interface position associated with (3.5) ensures that the interface is not too close to the
channel centre (where the grid is coarser because of the Chebyshev nodes distribution),
but the ice layer is still thick enough to properly catch the transient of the melting process.
Below the flat ice layer, a fully developed turbulent flow is initialized by running a
preliminary simulation in which ice melting is artificially suppressed, and the ice—water
interface is kept flat and its thickness unchanged. This preliminary simulation is carried
out until the statistically steady state is reached for the flow field. The steady-state flow is
then used as the initial condition for the simulations with melting.

To conduct the study, two Reynolds numbers were simulated: one in the absence of the
instability of the ice—water interface that leads to the formation of ice ripples (referred
to as subcritical regime hereinafter, corresponding to a shear Reynolds number at the
beginning of the simulation Re; ¢ = 170) and one in which ice ripples form as a result of
the interaction between ice streamwise advection and cross-stream diffusion of heat and
momentum (referred to as supercritical regime hereinafter, corresponding to Re; o = 636).
These values were chosen considering that the characteristic wavelength Af . of the

X,Cr
unstable disturbances in the flow should be larger than 2100 in wall units, with the fastest

1019 A34-10


https://doi.org/10.1017/jfm.2025.10615

https://doi.org/10.1017/jfm.2025.10615 Published online by Cambridge University Press

Journal of Fluid Mechanics
growth rate being achieved at A} . ~ 3500 (Ashton & Kennedy 1972; Hsu et al. 1979).

X,cr —

The corresponding (estimated) critical Reynolds numbers above which ice ripples are
expected to form, are: ReS” =251 to have unstable modes, and Re” =418 to have the
fastest growing mode (Perissutti et al. 2024). It is worth mentioning that, at present, it is
not possible to quantitatively predict a critical Reynolds number to discriminate between
the two regimes based solely on the physical parameters of the system, primarily due to
the difficulty of modelling with accuracy the phase shift between the heat flux and the ice—
water interface (Perissutti ef al. 2024). The phase shift is typically taken into account using
empirical corrections (Thorsness, Morrisroe & Hanratty 1978), although recent studies
have attempted to address this limitation (Chedevergne et al. 2023).

Table 1 shows Re; ( together with the effective Reynolds number at the end of the
simulation (Re;, r). For each value of the Reynolds number, we simulated three different
Stefan numbers to evaluate the effect of the latent heat contribution. We already anticipated
in §2 that the main effect of St is to change the time required to reach the steady
state, Tyreaqy and that, at large St, Tsreqqy (and therefore the computational cost) becomes
significantly higher. For this reason, table 1 also shows the value of Tjeuqy for each
simulation as obtained from (2.14). Note that Teqqy is calculated assuming a constant
heat flux gp, through the bottom of the domain: g, = —6.2 at Re; o = 170 and g, = —19
at Re;,o = 636, in dimensionless units. These values were obtained directly from the DNS
data. The tabulated values of 7eqqy allow to estimate the computational cost needed to
reach the equilibrium ice thickness. For this estimation, we took as reference a petascale
Tier-0 supercomputer equipped with four GPUs per node and assumed perfect weak
scalability (which is indeed what we observed within the range of MPI tasks employed for
each simulation). Note that the computational cost is relative to the cheapest simulation
(S1) and one computational cost unit is roughly equivalent to 50 GPU hours. We remark
here that reaching the equilibrium ice thickness does not necessarily imply reaching a
statistically steady state for the ice morphology, which is what we want to examine. For
this reason, simulation runs were conducted beyond the equilibrium condition, implying
that their effective cost is larger than that presented in table 1.

4. Morphodynamics of ice melting

Figure 2 shows the physical domain considered to perform the simulations in the
subcritical regime (figure 2a, Re; o= 170) and in the supercritical regime (figure 2b,
Re; o =636) at St = 1. The imposed boundary conditions and the domain size in wall units
(w.u.) are also reported. Note that the size of the computational domain scales with Re; g.
Therefore, the domain in the supercritical regime is roughly 50 times larger than in the
subcritical regimes, volumewise. Water, shown in blue, flows underneath the ice (shown
in white) from left to right. The ice—water interface is given by the ¢ = 0.5 isosurface and
is kept at melting temperature 6,,. Water is warmer (light blue regions) near the bottom of
the domain, where a constant dimensionless temperature 8 = 1 is imposed. Warm water
is brought by turbulent convection to the bulk region of the domain, where it mixes with
the cold water (dark blue regions) coming from the near-interface region. Mixing results
in a bulk water temperature of 6, >~ 0.5 (and, hence, Q =0.5) and provides a heat flux
input, represented by g, to the ice—water interface. When g, is larger than the heat flux g,
through the ice layer, melting takes place and the average thickness of the ice layer, (£),
decreases over time. Angular brackets indicate an average in space, along both x and y.
As already mentioned in § 2, the excess of heat contributes not only to ice melting (latent
heat) but also warms up the ice that is about to melt as well as the meltwater (sensible
heat). When ¢g; = ¢g;, the system is at steady state and the average thickness remains
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Figure 2. Rendering of the physical domain considered for the simulations at Re; o = 170 (a) and Re. o = 636
(b). The domain is open at the bottom (where a free-shear condition is applied), while an ice layer (in white)
caps a water layer (in blue) that flows from left to right beneath the ice. The colourmap shows the regions of
lower temperature, in dark blue, and those of higher temperature, in light blue, at St = 1.

constant over time. Locally, however, the interface is always characterized by a complex
morphology that dynamically changes over time: this happens because the heat exchange
between ice and water is modulated by turbulence. To highlight the phenomenology of
the interface morphodynamics and better understand the role of turbulence, we discuss
first the results in the subcritical regime (Re. o= 170), focusing on the effect of St. In
particular, we compare the overall melting dynamics with the 1-D model presented in § 2
and quantify the space- and time-dependent features of the ice—water interface, &(x, y, ).
The same analysis is then carried out for the supercritical regime (Re; o= 636), with
particular attention to the formation and dynamics of the ice ripples.

4.1. Morphodynamics in the subcritical regime

Figure 3 shows the ice layer for Re; o = 170 and St =1 at statistically steady state. The
layer is flipped upside down to better visualize the ice—water interface. In this case,
the ice morphology is characterized by crests and valleys oriented in the streamwise
direction (referred to hereinafter as turbulence-driven ice streaks) and separated by a
characteristic wavelength A,. Figure 4 shows the effect of the Stefan number on the
ice morphology, more specifically on the fluctuating component of the ice thickness,
E'(x,y,t)=E&(x, y,t) — (£), is plotted for St =0.1 (figure 4a), St =1 (figure 4b) and
St =10 (figure 4c) at steady state. All the panels refer to the same rescaled time ¥,
defined in §2. As it will be clarified later, the main features of the melting dynamics
scale consistently with *. The turbulence-driven ice streaks are clearly visible over the
range of St we considered and their topological features do not change much with St. As
reported by Perissutti et al. (2024), these structures are directly generated by turbulence
and should not in principle be affected by a change in the latent heat flux. The non-
uniform heat flux provided by the near-wall fluid velocity streaks allows the ice crests
and valleys to mark their footprint on the ice—water interface. However, some quantitative
differences among the three cases can be observed. First, the maximum amplitude of the
ice thickness fluctuations, &', decreases as St increases and the interface appears to be
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Figure 3. Visualization of the ice layer, flipped upside down to highlight the interface morphology, in
the subcritical regime (Re; o= 170) and St =1. In this regime, the ice morphology is characterized by
turbulence-driven ice streaks that are aligned along the streamwise direction and separated by a characteristic
wavelength 4.

somewhat smoother in the streamwise direction, with &’ that remains almost unchanged
along the x direction. Conversely, at low St, the irregularity of the interface becomes
stronger and changes in &’ become noticeable also along the streamwise direction. This
behaviour is due to the fact that a larger latent heat contribution (i.e. larger St) reduces the
volume of ice that is melted (or frozen) locally by the heat flux fluctuations induced by
turbulence, reducing in turn the amplitude of &’. This also has a time-filtering effect on
the modifications of the ice thickness: a short pulse of high heat flux is less impactful on
the final ice morphology and allows the latter to become more regular. The crest-to-trough
height of the ice streaks ranges between roughly 5 and 15 w.u., a value large enough to
allow dynamic interactions with the turbulent structures of the flow. These interactions
cause the streamwise-oriented ice streaks to meander sideways, in a way that is similar to
what the near-wall fluid velocity streaks do (Marchioli & Soldati 2002), albeit to a lesser
extent. This can be explained considering that turbulent streaks are free to move sideways
near a non-evolving flat wall, not equally so in the presence of ice streaks. Low-speed
streaks of fluid tend to remain linked to the ice crests, while high-speed streaks tend to
form more often in the troughs. This creates a self-reinforcing mechanism that pins the
turbulent streaks by hindering their meandering and sustains the ice morphodynamics by
increasing the clearance between crests and troughs. The correlation between ice crests
and low-speed streaks (or equivalently, valleys and high-speed streaks) becomes stronger
at lower St, because the typical time scales with which the interface evolves become shorter
and hence closer to those of the fluid velocity streaks. The stronger the correlation, the
larger the height difference between crests and troughs, explaining why they become more
prominent at low St.

Figure 5 shows the evolution of the average ice thickness, (§), as a function of the
rescaled time, #*. The model discussed in § 2 predicts that, with such rescaling, the melting
process should evolve independently of St and should follow the behaviour indicated by
the black dashed line, which corresponds to the analytical solution of (2.13) that can be
obtained when ¢, is provided. Here, we used ¢, = —6.2, a value obtained directly from
the simulations. For St =1 and St = 10, the model captures well the evolution of the
average ice thickness, while the prediction is just slightly worse for St =0.1. Note that
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Figure 4. Influence of St on ice morphology in the subcritical regime (Re; o = 170). The spatial distribution
of the ice thickness fluctuation, &' =& — (&), at steady state is shown for St =0.1 (a), St =1 (b) and St =
(c). The snapshots refer to the same rescaled time (¢* = 0.17). Thicker ice regions are shown in white, thinner
ice regions in blue. The ice morphology is not dramatically affected by St, yet some differences among the
three cases can be noticed. At low S, the ice morphology is characterized by slight variations of & along the
streamwise direction, these variations being damped at high St.

this value is rather close to the lower bound for the range of Stefan numbers within which
the model is expected to perform reliably. The lower bound can be estimated using the
condition (2.8), which yields Sz >> 0.05 for the subcritical case, based on the initial value
of the ice thickness. In spite of this, the model prediction is still fairly accurate, as also
discussed in Appendix B. At the lower Stefan number, melting takes place very quickly
in the early stages, while progressively slowing as the equilibrium condition, (§) = (&.,),
is approached (at time 7, dy ™~ 0.134). This behaviour can be understood considering
that the effects of heat diffusivity are more important at low Sz, and melting is mainly
counteracted by the conductive heat flux through the ice layer. This heat flux is weak at
the beginning of the simulation, when the ice layer is thick, but becomes stronger as ice
gets thinner on a time scale that is dictated by the thermal diffusivity. At larger Stefan
numbers (St = 1 and St = 10), the latent heat flux is strong enough to overcome the effect
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Figure 5. Time evolution of the average ice thickness, (), at Re; o = 170 for St = 0.1 (orange line), St =1
(blue line) and St = 10 (purple line) as a function of the rescaled time ¢*. The prediction from the analytical
model is also shown (black dashed line). The model predicts a rescaled steady-state time equal to 7y, dy
0.134, also shown in the figure. The inset shows the evolution of the ice thickness when time is normalized by
the eddy turnover time of the flow, 7eqay, rather than rescaled using Pe and St.
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Figure 6. Time evolution of the ice fluctuation amplitude (i.e. the standard deviation of the ice thickness)
(5’2)1/2 at Re; o = 170 for St =0.1 (orange line), St =1 (blue line) and St = 10 (purple line). In all cases, a
statistically steady state is reached eventually, albeit at different times, ranging from 0.018 to 0.036 depending
on St (as indicated by the light blue vertical band in the figure). This range defines the characteristic time

scale of the turbulence-driven ice streaks formation, 7;;;6 akse 1D the subcritical regime. To allow a more direct

comparison between the different time scales at play, in the following we take 77, .. ~ 0.027, which is the

average value among the different cases. Note that, even at steady state, (£/2)!/2 oscillates significantly around
the averages steady-state value (marked for each case with a dashed line of the corresponding colour). For
St = 10, the standard deviation is significantly lower (™12 ~0.0052) compared with the other two cases
((£")1/2 2 0.0128 for St =1 and (£'?)!/2 ~0.0143 for St =0.1).

of thermal diffusivity (which is neglected in the model) and produce a slower and more
gradual melting, in better agreement with the theoretical prediction. The inset of figure 5
shows the evolution of (£) without rescaling: time is normalized by the eddy turnover time
Teddy = h/u- to highlight the dependence of the melting time scale on St. The simulation
at St =10 is the one that takes longer to reach the steady state for (£) (roughly 300
eddy turnover times) and, hence, is the one that is computationally more expensive: the
simulated time span covers over 600 eddy turnover times, almost three times that of the
St =1 simulation and almost 10 times that of the St = 0.1 simulation.

Although the average ice thickness reaches an equilibrium condition, the local ice
thickness continues to change over time while remaining in a statistically steady state.
This is shown in figure 6, where the instantaneous standard deviation of the ice thickness,
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Figure 7. Spanwise spectra of the ice layer thickness, |§y |, in the subcritical regime (Re; o = 170) for St = 0.1
(orange), St =1 (blue) and St = 10 (purple). All the spectra are averaged along the streamwise direction and
in time, over a short time interval Ar* =0.034 centred at time #* = 0.17, taken at steady state. As shown in the
inset, the spectra overlap almost perfectly when rescaled as |§;‘| = Pe+/St + Q\é yl.

(EH12 s plotted over the rescaled time #*. After a short initial transient, the standard
deviation oscillates around a value that remains roughly constant over time. Because the
turbulence-driven ice streaks are the only structures observed at low Re; o, the extent of
the transient may be interpreted as the characteristic time required to form the streaks,

sveaks- Here, we assume that the transient ends as soon as the standard deviation first
crosses its mean value at steady state. The crossover occurs at slightly different times,
depending on S?, within a range 0.018—0.036 (with average value equal to 0.027) that is
highlighted by the light blue vertical band in figure 6. This range defines the characteristic
time scale of the turbulence-driven ice streaks formation, S?‘r vaks> 10 the subcritical regime,
which is roughly five times shorter than the steady-state time 7, . dy shown in figure 5. This
indicates that the mechanism by which the ice streaks are generated, acts on time scales
that are significantly shorter than those needed to reach the equilibrium condition. Figure 6
also confirms that the ice interface is less deformed at higher Sz, as observed qualitatively
in figure 4. The average value of the standard deviation at St = 10 is (5/2)1/ 2 ~0.0052,
significantly lower than in the other two cases, which are fairly similar: (£’>)'/% 2~ 0.0128
at St =1 and (£"%)!/2~0.0143 at St =0.1, respectively. This observation suggests that
morphological changes of the interface are dominated by the latent heat effect at higher
St, whereas the heat diffusivity is predominant at lower St. To further analyse the interface
morphology, in figure 7 we show the spanwise spectra of the ice thickness, |§y|. These
spectra are obtained by averaging along the streamwise direction and over a short time
interval Ar* =0.034 centred at time t* =0.17. They are plotted as a function of the
spanwise wavenumber in w.u., k;r = ky/Re, with ky, =27 /A,. All spectra exhibit roughly
the same decaying trend, with differences in amplitude that become smaller as St increases.
This behaviour is consistent with previous observations and is confirmed by the inset
of figure 7, which clearly shows that the spectra nicely overlap when rescaled by the
Péclet and Stefan numbers as |EX| = Pe/St + Qléyl. This scaling relation was obtained
empirically from the collapse ofy the rescaled spectra. Further investigation, for instance
focused on the dynamical nature of the turbulence-driven ice streaks, is needed to provide
a theoretical background for the Pe+/St + Q scaling.
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Figure 8. Visualization of the ice layer (flipped upside down to highlight the interface morphology) in the
supercritical regime (Re; o = 636) at St = 1. This regime is characterized by the presence of turbulence-driven
ice streaks, having a characteristic wavelength Ay, and observed also in the subcritical regime, superposed to
wavy ice ripples aligned with the spanwise flow direction, having a characteristic wavelength A,.

4.2. Morphodynamics in the supercritical regime

The analysis carried out for the subcritical regime is applied here to the supercritical
regime. In figure 8, we show an instantaneous visualization of the ice—water interface
(flipped upside down to highlight its main morphological features) in the supercritical
regime (Re; o = 636) at St = 1. First, it can be observed that the ice layer is thinner than in
the subcritical regime, due to the highest heat flux resulting from the stronger turbulence
of the water flow. In addition, the ice morphology appears more complex than in the
subcritical regime due to the superposition of the turbulence-driven ice streaks with wave-
like ripples of greater length scale that develop orthogonally to the flow direction. These
structures are characterized by sharp crests separated by a wavelength, A,, and exhibit a
quasiperiodic behaviour along the streamwise direction. Ice ripples typically form as a
result of a morphodynamic instability that emerges only at high Reynolds numbers. The
sharpness of the crest, separated by concave depressions, is in line with what is observed in
dissolution patterns and can be explained solely by geometric arguments stemming from
the surface evolution (Chaigne et al. 2023).

Similar to the subcritical regime, the interface morphology is mildly affected by St, as
shown in figure 9, where the fluctuating component of the ice thickness, &', is reported
for St =0.1 (figure 9a), St =1 (figure 9b) and St =10 (figure 9c). All plots refer to
the same time instant, equal to the time at which the ice ripples are observed to reach
their maximum height, r* 2 0.0156. By visual inspection of figure 9, it is possible to
appreciate that the main morphological features of the ice—water interface do not change
dramatically with St: in all three cases, the ice—water interface is mainly characterized by
the presence of ice ripples that have fairly similar wavelength and amplitude. The latter, in
particular, can reach values of the order of 70-80 w.u., while the typical wavelength ranges
between ~530 and ~670 w.u. These values are significantly lower than the minimum
wavelength required for the onset of instability. This wavelength can be estimated using
the models proposed in the literature, e.g. the model developed by Hanratty (1981), which
predicts a minimum wavelength of approximately 1500 w.u., or the more recent model
by Chedevergne et al. (2023), which predicts a minimum wavelength of approximately
1000 w.u. This discrepancy might be due to the finiteness of the computational domain in
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Figure 9. Influence of St on ice morphology in the supercritical regime (Rer,o = 636). The fluctuating compo-
nent of the ice thickness map, &' =& — (&), is shown for St = 0.1 (a), St =1 (b) and St = 10 (c). All plots are
taken at the rescaled time * ~ 0.0156, which is when the amplitude of the ice ripples is observed to become
the highest. Thicker ice regions are shown in white, thinner ice regions in blue. For all Sz, the supercritical
morphology is characterized by the presence of ice ripples, which are fairly similar in shape. The main effect
of St is to reduce the size of the superposed turbulence-driven ice streaks, which are less visible at high Sz.

the wall-normal direction: the maximum size of the vortical structures is constrained by
the channel height, 4, favouring the development of lower wavelengths. Nonlinear effects
that the models are unable to capture may also explain the different values. Note that
the streamwise length of the computational domain in the subcritical regime is equal to
1420 w.u. and is sufficient to accommodate at least two ripple wavelengths as measured in
the supercritical regime. Considering that such wavelengths were found to be independent
of the flow Reynolds number when expressed in wall units (Hsu ez al. 1979; Thomas 1979),
it seems reasonable to conclude that the lack of ice ripples in the subcritical regime is not
related to the computational domain size.

Despite the limited St effects, figure 9 shows some interesting modifications: at high St,
the ice ripples seem less blurred, most likely because the latent heat flux acts as a temporal
filter and mitigates the effect of the heat fluctuations on the interface. Another reason
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Figure 10. Time evolution of the average ice thickness, (£), at Re; o = 636 for St = 0.1 (orange), St =1 (blue)
and St = 10 (purple). The prediction of the analytical model is represented by the black dashed line. The steady-

state time predicted by the model is also shown: 7%, dy 0.023. Similarly to the subcritical case, the prediction

is fairly accurate for large St, while becoming less precise for low St. The inset shows the evolution of the ice
thickness when time is normalized by the eddy turnover time, 744y, rather than rescaled using Pe and St.

may be that, while the amplitude of ice ripples seems unaffected by Sz, the depth of the
overlapping turbulence-driven ice streaks does depend on St, as discussed in the previous
section. This results in a smaller height of the turbulence-driven ice streaks relative to the
size of the ice ripples, which appear more defined.

Figure 10 shows the evolution of the average ice layer thickness, (£), as a function of
the rescaled time, t*. The model prediction, obtained solving (2.13) with g, = —19 as
provided by the numerical simulation, is again indicated by the black dashed line. Similarly
to the subcritical case, the accuracy of the model improves with increasing St: indeed,
the simulation at St = 10 (purple line) matches very well with the model prediction. The
prediction for St =1 (blue line) is still fairly accurate, indicating that the effect of the
latent heat becomes predominant: melting slows down and the evolution of (§) becomes
linear in time. Differences become more significant at St =0.1 since, in this case, the
condition (2.8) predicts that the model is accurate if St > 1.35. This is evident especially
during the early stages of the interface evolution, when fast melting occurs due to heat
diffusivity effects and the error of the model is large because the interface is still far
from equilibrium (see Appendix B). Similarly to the subcritical case, as the interface
approaches equilibrium, the error decreases, allowing the model to provide reasonably
accurate predictions even for St =0.1 and St =1. Note that, for the case St =1, the
melting rate (given by the slope of the curves in figure 10) is larger than the value predicted
by the model within the time interval from 7* ~ 0.01 and #* ~ 0.015. As it will be shown
later, this is the time window within which the ice ripples reach their maximum amplitude.
Interestingly, the model is always able to capture correctly the equilibrium ice thickness,
(€eq), which is independent of St and has the same value in all the simulations.

The rescaled steady-state time required to reach the equilibrium is also similar in all

the three cases: 7, dy 0.023, computed from (2.14). This implies that the model can

capture with acceptable accuracy the relevant time scales of the melting process even in
the supercritical regime. Note that, if no time rescaling is considered, then these time scales
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Figure 11. Time evolution of the ice fluctuation amplitude (equal to the standard deviation of the ice thickness),
(™12 in the supercritical regime (Re; o = 636) for St =0.1 (orange), St =1 (blue) and St = 10 (purple).
Due to the presence of the ice ripples, (°2)!1/? grows until reaching a maximum value (marked by a dot for
each case). The maximum value of (£'2)!/2 is attained within a time window (highlighted by the light blue
vertical band) centred at t* ~ 0.0156. This value represents the characteristic time scale required to fully form
the ripples and is indicated as rjfop 105 N the figure. Once the maximum amplitude is attained, (&” 2y1/2 decreases
until the steady state is reached (at different times depending on S7). The time required to form the turbulence-
driven ice streaks (also shown) is much shorter than the ice ripples time scale: 7 . ~8.14 . 1074,

are much bigger for larger St, as shown in the inset of figure 10, where (£) is plotted as a
function of the non-rescaled time ¢ normalized by the eddy turnover time, 7cqqy. The inset
shows that, as in the subcritical regime (see discussion of figure 5), the most expensive
simulation from a computational point of view is the one at St = 10, which covers almost
250 eddy turnover times.

A notable difference between the subcritical and supercritical regimes is that, in the
latter regime, the standard deviation, (&” 2) 172 does not simply oscillate around a constant,
steady-state value but rather exhibits an initial growth followed by a decrease before
reaching the steady state, as shown in figure 11. The fluctuation amplitude grows until
a maximum value (highlighted by the dot in each curves) is reached. The maximum is
reached at different times depending on Sz, but within a relatively narrow time range
(marked with the light blue region in the figure), centred at * ~ 0.0156. This value
represents the characteristic time scale required to fully form the ripples (see also
discussion of figure 9). Once the maximum amplitude is attained, (¢’ 2y1/2 decreases until
the steady state is reached (again, at different times depending on St). This behaviour can
be understood considering that the fluctuation amplitude is influenced not only by the
presence of the turbulence-driven ice streaks, as is the case in the subcritical regime, but
also (mostly, in fact) by the ice ripples, which are much larger in size and hence more
impactful on the behaviour of (&’ 2172 As will be detailed in § 4.3, we can anticipate that
ice ripples undergo the same dynamics (initial growth, maximum amplitude, subsequent
decay), suggesting that the peak of (¢'2)!/2 and the maximum amplitude of the ice ripples
occur approximately at the same time, namely ;{Up les®

The trends shown in figure 11 do not allow a straightforward quantification of the
time scale required to form the turbulence-driven ice streaks, 7; in the supercritical

cannot be simply set equal to the

streaks’
regime. Due to the presence of the ripples, 7. i

steady-state time for (£'2)!/2, as done for the subcritical regime, see figure 6. The reason
is that the steady state is reached only when the ice ripples stabilize. The alternative
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streaks ~
spanwise-spectrum amplitude of the ice interface, |&,|. This spectrum is evaluated at
the wavenumber that corresponds to the typical wavelength of the turbulence-driven ice

streaks (/l;L ~ 100), not shown here for brevity. More specifically, for each case, 7, .., is

definition we adopted in this case is to set equal to the steady-state time for the

set equal to the rescaled time at which |§y | 1+ =100 first falls within 5 % of its time-averaged

* : : *
value (computed from 7 . - onward). This results in a narrow range of values of 7 .,

centred around 8.14 x 10, between the different simulations, highlighted by the light

blue vertical band in figure 11. In the supercritical case, the difference between 77 dy and

« . . o . . 3
sreaks> corresponding to a ratio 7y, dy /T rears = 30, 1s larger than in the subcritical case,

where corresponding to a ratio 7, dy/ areaks = 5. This is likely due to the size of the
turbulence-driven ice streaks, which is significantly smaller than the domain size (which
increases linearly with Re; o in each flow direction) in the supercritical case. The time
scale of the turbulence-driven ice streaks is also much smaller than that of the ice ripples,
7;?]7]71 os» their ratio being rj‘ppl os/ Totroars ~ 20. This indicates that the two phenomena
are well separated in time and are governed by independent physical mechanisms. We
also notice that the steady-state value of (£”)1/2 is attained between r* ~0.023 and
t*~0.025, which is approximately the same time at which the steady state for (£) is
reached (see value of 7;, dy in figure 10).

As mentioned, it is not possible to filter out the effect of the ice ripples on the
ice thickness fluctuations from figure 11. To isolate and characterize the effect of the
turbulence-driven ice streaks, we thus examine the spanwise spectra shown in figure 13.
These spectra are unaffected by the presence of the ripples, which induce significant
interface deformations along the streamwise direction only. As done in figure 7, spectra
are averaged in space (along x) and time, over a time interval Ar* =0.003 centred at
t*=0.0156 =7, ;f‘p ples’ within this interval, the ice ripples reach their maximum amplitude
regardless of St. Figure 13 shows clearly that, also in the supercritical regime, spanwise

spectra share the same decaying trend and overlap nicely when rescaled as |§;‘| =

|§y |Pes/St 4+ Q (see figure inset). Additionally, the inset shows the rescaled spectra for the
subcritical cases (dashed lines), which collapse on top of the simulations at Re; o = 636.
This indicates that the morphology of the turbulence-driven ice streaks is similar over
the range of St investigated in our study, but also over the range of Re;o (namely
Pe) characterizing the different regimes. The emergence of ripples does not affect the
spanwise features of the ice—water interface, but increases the variability of the interface
morphology along the streamwise direction, as confirmed by the streamwise spectra, Ié |
shown in figure 12. These spectra are averaged in space, along the spanwise direction,
and in time, over the same interval of figure 13. Three peaks, indicating the presence
of the ice ripples, are clearly visible at slightly different values of the dimensionless
streamwise wavenumber, k,: more precisely, kx max =8, kx max = 10 and kx qax =9 for
St =0.1, St =1 and St = 10, respectively. Note that no peak is observed in the subcritical
spectra (Re; o = 170), shown with dashed lines in the inset of figure 12. Recalling that
ki =ky/Re; =2m/A} and L} =2mRe., it follows that the supercritical peak values

of |&,| correspond to characteristic wavelengths of the ripples A7 = L}/8, L1/10 and
LT /9. Once rescaled, these wavenumbers cover a narrow range of values centred at k;” =
ky/Re; ~ 1072 this implies that A, is weakly affected by Sz, confirming the qualitative
observations drawn from figure 9. Also poorly affected by the Stefan number is the
amplitude of the ice ripples, given that the peak values of |§y| are almost identical in

the three simulations: |§x|max ~3x 1073,
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Figure 12. Streamwise spectra of the ice thickness, |§x|, in the supercritical regime (Re; o = 636, solid lines)
for St =0.1 (orange), St =1 (blue) and St = 10 (purple). The spectra are averaged both in space, along the
spanwise direction, and time, within the interval A#* = 0.003 centred at time * = 0.0156 = erpl os- Inall cases,
spectra are characterized by a peak, indicated with a filled circle, that occurs at slightly different wavenumbers
kx.max, and is associated with the presence of the ice ripples. Spectra in the inset, corresponding to the Re; g =

170 case, exhibit no peak.

10° 10! 102

Figure 13. Spanwise spectra of the ice layer thickness, |§y |, in the supercritical regime (Re; o = 636) for St =
0.1 (orange), St =1 (blue) and St = 10 (purple). All the spectra are averaged along the streamwise direction
and in time, over a short time interval Ar* =0.003 centred at time t* =0.0156 = r;f};plm. The inset shows
the rescaled spectra, \§;| = Pe/St + Q|§y|, also for the subcritical regime (dashed lines). All curves overlap,
indicating that the (Pe, St) scaling holds regardless of the morphodynamic regime.

4.3. Characterization of ripple dynamics

As discussed in the previous section, the key morphological feature in the supercritical
regime is the presence of the ice ripples. In this section, we examine their growth over
time, which occurs because the heat flux supplied by the warm water stream is not in
phase with the ice layer thickness, £. In particular, ice ripples can grow only if the heat flux
lags behind & by an angle greater than /2 (Ashton & Kennedy 1972; Gilpin et al. 1980).
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Figure 14. Time evolution of the maximum value, |§x| max, Of the streamwise spectrum of the ice thickness
as a function of the rescaled time, ¢*, at varying St. As shown in figure 12, the peak value is obtained at
ky =8 for St = 0.1 (orange), at k, = 10 for St =1 (blue) and at k, =9 for St = 10 (purple). Regardless of Sz,
the amplitude grows in the early stages of the simulation, reaching a maximum (marked by a dot) within a
relatively narrow range, represented by the larger light blue vertical band. This range does depend on St and is

centred at t* =~ 0.0156 = 7::»*[,!),83. Note that rj;ples is significantly larger than 7 .- while being of the same

order of 77 dy* The final stages of the evolution are characterized by a decay of the amplitude due to the

increasing strength of heat conduction within the ice layer, which eventually leads to the steady state.

Physically, this means that the amplitude of the ripples increases only if the heat flux
perturbations induced by the wavy interface reach a minimum near the crest and a
maximum near the trough.

To quantify the growth of the ice ripples and its dependence on St, in figure 14 we
show the time evolution of |& |mayx, Which corresponds to the peak value of the spectra
in figure 12 and represents the amplitude of the frequency mode associated with the ice
ripples. It is apparent that the qualitative behaviour of |£;|,ex does not depend on St.
The amplitude of the ripples grows in the early stages of the simulations, during the
transient dominated by the already-formed turbulence-driven ice streaks. Around time
1*~0.0085, namely at approximately one-third of the supercritical, steady-state time
7;;"eady, the mode associated with the ice ripples becomes dominant in the streamwise
spectra, thus marking the transition to a phase in which the ice morphology is dominated
by the ice ripples growth. The ice ripples reach their maximum amplitude around #* ~
0.0160 for St =0.1, t*~ 0.0149 for St =1 and t* ~ 0.0162 for St = 10, namely within
a relatively narrow interval (highlighted in light blue in figure 14) centred at rj‘ppl s
0.0156. This confirms the large time separation that characterizes the formation of streaks

and ripples ( rj.})pl s/ Torears > 1)» and suggests that these two processes can be decoupled

and modelled separately.

We observe also that rfpp 1es 18 TOUghly equal to 2/3 of the steady-state time reported in
figure 10, namely 7;’1.;171 os! Tooa ay = O(1): this implies that the morphodynamic evolution
of the ice ripples is strongly dependent on the average thickness of the ice layer. This is
consistent with the theory formulated by Ashton & Kennedy (1972). According to this

theory, the growth rate of the ice ripples depends on two competing effects: the heat
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flux supplied by the warm water flow, which increases the amplitude of the ripples, and
the diffusive heat flux from the ice layer, which flattens the ripples. The latter is closely
related to the average thickness of the ice layer since, as (£) decreases, the diffusive heat
flux through the ice layer increases (in the quasistationary approximation, it is inversely
proportional to (§)). At some point, the diffusive heat flux overcomes the effect of the

heat flux supplied by the water stream, leading to a reduction of € |max and explaining
the decaying trend observed in figure 10 at times larger than ;ppl s+ The decay suggests
that ripples would not form if the supercritical simulations were started using the ice
layer morphology at equilibrium as initial condition. This shows that the formation of ice
ripples is favoured when the ice layer is shrinking. The maximum value of the ice ripples
amplitude for St =1 and St = 10 is similar, while being larger for St =0.1. This could
be due to the fact that the diffusive heat flux through the ice layer does not immediately
adjust to changes in the ice morphology but is delayed due to the time scales at which the
thermal diffusivity acts. This delay may hamper the capability of heat diffusion within the
ice to flatten the interface. Besides this low-St effect, however, the limited variability we
observe for the maximum amplitudes is not surprising. It is reasonable to assume that heat
flux anomalies at the ice—water interface are mostly influenced by the ice morphology and
therefore do not depend on the latent heat.

Figure 14 also shows a nearly exponential growth of € lmax for St =1 and St = 10.
This is again consistent with the theory by Ashton & Kennedy (1972), which associates the
growth of amplitude of the ripples to a time scale that is directly proportional to the thermal
diffusivity (namely Pe~') and inversely proportional to the latent heat (namely Sz~!). As
a result, the growth rate of the ripples at larger St should be similar when evaluated in
terms of the rescaled time ¢*. We remark here that, in our problem, ¢* also depends on the
additional sensible heat contribution Q, defined in § 2.2. This contribution is not accounted
for in the theory by Ashton & Kennedy (1972), which is based on the quasistationary
approximation for the temperature fields. As discussed in § 2, this condition holds only for
very large St, so the effect of Q must be included for a proper comparison at low Sz, when
such approximation does not hold. For St = 0.1, we observe an earlier onset of the growth
due to the low latent heat flux, quickly followed by a slower increase compared with the
two cases at higher St, limited by the propagation speed of thermal diffusivity.

5. Conclusions

In this paper, we have investigated how the morphology of an ice layer changes over time
when subject to the melting induced by a turbulent flow of warm water. The main objective
of the study is to examine the different patterns that form at the ice—water interface as
melting takes place in connection with the time and length scales that characterize the
problem. The time scales, in particular, have been quantified in terms of two dimensionless
numbers: the Péclet number and the Stefan number, the latter being the most relevant
parameter for the purposes of our analysis because it quantifies the separation between
the time scales of heat diffusion and melting. In addition, to fully describe the physical
system, we have considered the role of the Reynolds number of the water stream, which
governs the separation between the advection and viscous time scales of the system but
also influences the features of the ice morphology.

We have first developed a 1-D model based on the solution of a two-phase Stefan
problem to estimate the time scale that is required to reach the steady state, namely to
melt all the ice that can be melted for a given (imposed) thermal heat flux supplied to
the ice by the water. The model relies on the assumption that heat diffusion within the
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ice layer is significantly faster than melting. This is indeed what happens in a realistic
melting scenario, where the Stefan number is typically very large and the temperature
distribution in the ice layer adapts quickly to the modifications of the ice—water interface
morphology that are caused by melting. The predictive capability of the model has been
assessed successfully by comparing its predictions with the numerical solution of the
governing equations of the Stefan problem. Then, the model has been used to estimate
the computational cost of a three-dimensional (3-D), time-dependent simulation aiming
at reproducing the interface morphodynamics in realistic environmental ice melting
processes. By doing so, we have been able to define a range of computational feasibility
for the Stefan number, which scales with the magnitude of the latent heat contribution that
characterizes melting, but also provide a tool to identify the largest scale separation that is
computationally affordable for DNS.

Based on the model estimates, we performed simulations over two orders of magnitude
of the Stefan number, up to St =10, and different Reynolds numbers, Re; o for a
total of six different cases. The selected Reynolds numbers correspond to two distinct
morphodynamic regimes: a subcritical regime, associated with the lower value of Re; o, in
which the near-wall turbulence of the water stream generates streamwise-oriented streaky
structures of ice at the ice at the ice—water interface, and a supercritical regime, associated
with the higher vale of Re, in which ripples emerge and coexist with the much smaller
streamwise ice streaks. Our results show that the streamwise ice streaks are only marginally
affected by St and the mechanism that leads to their formation is essentially the same
in both regimes. The characteristic time scale of streak formation is smaller than the
characteristic time required to reach the steady state of the ice melting process, especially
in the supercritical regime. However, we have also observed that the ice ripples in this
regime undergo complex dynamics that are quantitatively modulated by St: the ripples
grow in the early stages of the melting process and later decay once the ice layer becomes
thinner due to the competing effects of turbulence-driven convection and heat diffusion
within the ice layer. The typical time required to maximize the amplitude of the ripples
is found to be comparable to the time required to reach the steady state. We find that
the morphological features of the ice—water interface are only weakly influenced by St.
Therefore, it is reasonable to infer that the heat distribution is also weakly affected, with
the possible exception of the amplitude of the local heat flux perturbations. However,
a detailed investigation of how the ice morphodynamics influence the heat transfer
rate would require a more comprehensive analysis that is out of scope for the present
work.

An important finding of our work is that the most relevant features of the ice—water
interface morphology, and not just the average ice thickness, appear to scale consistently
with Pe and St. For instance, we have reported that the spectral properties of the
streamwise-oriented ice streaks (i.e. their typical size), scale with Pe~'Sr=0>. We have
shown as well that all the relevant time scales of the problem, such as the time required
to reach the equilibrium ice layer thickness, the growth rate of the ice ripples and the
time at which the ripples attain their maximum amplitude, scale with Pe~! and Sr~—'.
A fundamental aspect of these scalings, especially for the low and intermediate values
of St considered in our study, is the contribution by the sensible heat, Q, which brings
the meltwater generated by the melting of the interface to the same local temperature of
the water stream. In our opinion, the scalings that we were able to identify, can help to
predict the ice morphodynamics at the very high values of the Péclet and Stefan numbers
that characterize real melting processes, which are computationally unfeasible for DNS.
For instance, the (Pe, St) scaling could be used to infer the main morphodynamic features
from DNS datasets generated at lower values for Pe and St. This might be a crucial step to
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include the morphodynamical effects into the large-scale geophysical models for melting
ice, therefore helping to improve their accuracy and that of global climate predictions.

Supplementary movies. Supplementary movies are available at https://doi.10.1017/jfm.2025.10615.
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Appendix A. Non-dimensionalization

All the equations of the 1-D model and 3-D simulations, are made non-dimensional using
areference length h,,r (that is the height of the channel 4 for the the 3-D simulations), and
a reference velocity it (that is the shear velocity . for the 3-D simulations), namely

N - : 2
& 32 ey g Ve o, Ve

: , = (A1)
href href href h%ef

(x,y,2)=

In the previous, and in the rest of the following derivation, all the quantities marked with
the tilde are dimensional, while for their non-dimensional counterpart the tilde is dropped.
The momentum equation in the dimensional form reads as

o  _~n. . o=

—~=vV2u—u-Vu—T——u (A2)

ot 1Y Ns
where p is the density, D the kinematic viscosity and 7, the relaxation time for the IBM.
The former, in non-dimensional form becomes

u 1 2
Loy wevu—vp— (A3)
at Re; Ns
where
u p Uref
u=—1, p=—.  N==Li,. (A4)
Uref purgf href
The EN, in the dimensional form reads as
30 A s~ -~ L9
—=— V% -u-Vi+ ——, (A5)
ot pcy cp ot

where ¢, is the specific heat, A the thermal conductivity and L the specific latent heat. The
former, in non-dimensional form becomes
a0 1 ad
—:—V20—u-V0+St8—<f

A6
Jt Pe (AB)
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where temperature is made non-dimensional employing the reference temperature
difference of the problem as follows

6 — O
A6

The reference temperature, is defined for this problem as the difference between the

melting temperature 6,, and the imposed temperature at the cold wall 6., namely A0 =

0= (A7)

(0, — 6,). The Stefan condition in the dimensional form reads as
dé a6
~£—., - - q 5 A8
1Y a7 9%l : + quw (AB)
X=

where ¢, is the specific heat, A the thermal conductivity and L the specific latent heat. The
former, in non-dimensional form, becomes

dé 96
PeSt_: b +Qwv (A9)
dr 9x |,
where
§ href ~
=, . (A10)
: P TV

For the phase field, we employed the same AC equation presented by Hester et al
(2020), simplified for the single component case,

St A Ly - ¢<1—¢>[y(1—2¢>+e(0 Om)], (A1D)

where the constants € and y are phase field parameters. By introducing the following
quantities

N (A12)

the dimensionless AC equation reads as

g 6 1 [vz 1—2¢
€

TSRS 20 + (39)} . (A13)

Appendix B. Analytical solution of the quasistationary Stefan problem
By performing the following change of coordinates

t
n=z/50, Y= / § 7 (n)dr, (B1)
0
the system (2.1) can be rewritten as
d 00
A e
= (B2)

00 1 azeJraedgs
o Pedan?  ondio
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with the assumption that & 7 0 for # > 0. The standard Fourier equation is recovered from
the second equation of (B2) if

1 3%6 96 d&
—— > ——£&n, B3
Pe o2 > o dtén (B3)
which can be expressed in terms of tp and T4,
AO _, AO ,
—&T > —¢&°. (B4)
™ M

Therefore, if Toq > Tp, then the temperature field does not depend on v/, being the initial
condition for 6 already a steady solution for the standard Fourier equation,

O, ¥)=0.(1—-n) . (BS)
This allows to rewrite the first equation of (B2) as
d¢ 00
PeSi— =& —| +&q,=—0&+qué". (B6)
When ¢, # 0 (the case g, = 0 is trivial), (B6) can be integrated analytically to obtain
§ Oc
Inl———|=— , B7
M bjaqm| T Pesi? TG ®B7)

where ¢ is an integration constant. The interface thickness can then be expressed using
the first equation of the system (2.9),
6. S—1

EW) = PRI (B8)

with

0 .
1 —exp [Vgtvf —|—c1:| if§ —6./qy >0,

S= (B9)

6,
1 +exp [?‘Stwrcl} if& —6./q, <0.

By definition, ¥ =0 for t =0 and, therefore, the value of the constant ¢ can be set in
order to satisfy the initial condition & (¢ = 0) = &y. With this value of ¢ the definition of
S, regardless of the sign of & — 6./q,,, becomes

1 50 06
S=1 P exp |:Pe < w:| . (B10)

Note that, if § = &,, = 0. /g, then the interface is at equilibrium — (B6) shows that & does
not evolve in time — and the rescaling procedure is not valid anymore. It is possible to
derive the second equation of the system (2.9) by using the definitions (B1),

a=eap =g g 2 LS DS Ly 0SS Ly )
dé g2 S? 6. S—1 q2 s2
This equation can be integrated analytically as
b t:l—i-lnS—i—cz, (B12)
Pe St S
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Figure 15. Time evolution of the ice thickness, £. The solid lines show the numerical 1-D solution of problem
(B2) for St =0.1 (orange), St =1 (blue) and St = 10 (purple), respectively. The model predictions are shown
by the dashed lines (same colour code). For each value of Sz, the steady-state time 7yeqqy — computed using
(2.14) — is also shown. In particular, ﬂ,eady corresponds to the time at which 99 % of the ice layer has
melted before reaching the steady state thickness, & = &, (grey dotted line). The inset shows the ice thickness
evolution against the rescaled time ¢*, as derived from the analytical model. Using this rescaling, the model
predictions (represented by the black dashed line) as well as the rescaled steady-state time, become
independent of St.

&
steady’

in which ¢, is a further constant of integration. Imposing ¢ =0 for r =0 leads to ¢; =
—1/80 —In Sy, where Sy = S(t =0) and its expression is reported in the system (2.9).
With this substitution, (B12) becomes the second equation of the system (2.9).

B.1. Model assessment

To test the validity of the model, its results are compared with the numerical solution of
the 1-D problem (B2), coupled with the condition (2.12). The simulation parameters are
&0 =0.25, Pe =848.4, 0. = —1, q,, = —18 and Q =0.5. Here, we analyse the results for
three different Stefan numbers: St =0.1, St =1 and St = 10. Note that these parameters
are similar to those used to perform the 3-D simulations that will be discussed in the next
sections. The numerical solution for the system (B2) is computed using a second-order
finite difference discretization scheme for the modified Fourier equation: a central scheme
is employed for the discretization of the second derivative, while the first derivative of the
nonlinear term is computed using an upwind discretization (with respect to the velocity of
the moving front). A first-order scheme is used to compute the temperature derivative at
the moving boundary, which is needed for the Stefan law. An explicit Euler discretization
is used for time stepping.

Results are shown in figure 15, where the time evolution of the ice thickness, &(7), is
plotted for the three different St analysed. The model (dashed lines) captures very well the
dynamics of the moving interface resulting from the 1-D simulations (solid lines) for each
value of St. The figure shows also how the time 7 yqqy required to reach the steady state
condition (computed from (2.14)) is strongly affected by St. In the inset of figure 15, the
interface position is plotted as a function of the rescaled time, t*. According to the model,
the predicted ice front position (black dashed line) should become independent of St when
t* is used instead of 7. This is indeed what we observe in the plot, even if there is a small
discrepancy between the model prediction and the 1-D simulations before the steady state
is reached. Howeyver, as can also be inferred from the condition (2.8), when the interface
thickness approaches the equilibrium value &, the error tends to vanish. At equilibrium,
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& =6./qy — see (B6) of the manuscript — and the right-hand side of (2.8) becomes zero.
As a result, the model is able to capture fairly well the overall dynamics even at low St.
Note that the rescaled steady-state time, 7, ay ~ 0.025, is also independent of St.

We remark here that other models, similar to the one presented here, have been
reported in the literature (Landau 1950; Murray & Landis 1959; Lunardini 1991; Kurylyk
et al. 2014), but with different boundary conditions. In addition, sophisticated models to
estimate melting in the presence of buoyancy effects and/or accounting for the actual
ice morphology have been recently developed (Favier e al. 2019; Couston et al. 2021).
However, these models require numerical integration and additional input parameters for
the morphology, which can only be known through costly simulations. The model we
propose neglects morphological effects, but provides an analytical solution that allows
to estimate a priori (namely before performing the simulation) and very easily the time
required to reach the equilibrium condition. This information is crucial to determine
beforehand the computational feasibility of a simulation. Consider, for instance, a DNS of
an ice layer melted by a turbulent flow of water at shear Reynolds number Re; ~ O(10°).
Typical water temperatures that can be found in ice-shelf melting are of the order of 1°C,
which, considering the thermophysical properties of ice and water, yields St ~ O(10?).
Such values of Re; and St would require a computational cost of around 1.6 x 103 GPU
hours on a modern petascale Tier-O supercomputer, corresponding roughly to 2.25 years
of run time. In addition, considering that the typical value of the shear velocity beneath ice
shelves is ii; ~0.01 ms™!, it can be estimated that only an ice layer 1.7 cm thick would
melt during the simulation. These are clearly prohibitive costs, which can be avoided only
if simulations at low Sz, e.g. St~ O(10) or lower, can be exploited to infer the actual
morphological features of the ice layer at high Sz, e.g. St =~ O(10) or higher. Our model
could, in principle, be extended to a Rayleigh-Bénard configuration, as in the case of
Favier et al. (2019). However, unlike the model proposed by Favier et al. (2019), we do not
assume that the ice is isothermal and fixed at the melting temperature. Instead, we account
for the heat conduction that occurs within the ice layer, which becomes relevant when the
temperature at the top of the ice layer is maintained below the freezing point. If the heat
flux gy, supplied to the water layer, is constant — as is the case when the Nusselt number
scales with the Rayleigh number as Nu oc Ra!/3 (Grossmann & Lohse 2000; Favier et al.
2019) — then the analytical solution remains valid in the Rayleigh-Bénard configuration,
provided an appropriate value of gy is used.
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