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Predicting evaporation rates of droplet arrays
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The evaporation of multiple sessile droplets is both scientifically interesting and practically
important, occurring in many natural and industrial applications. Although there are
simple analytic expressions to predict evaporation rates of single droplets, there are no
such frameworks for general configurations of droplets of arbitrary size, contact angle
or spacing. However, a recent theoretical contribution by Masoud, Howell & Stone
(J. Fluid Mech., vol. 927, 2021, R4) shows how considerable insight can be gained into
the evaporation of arbitrary configurations of droplets without having either to obtain the
solution for the concentration of vapour in the atmosphere or to perform direct numerical
simulations of the full problem. The theoretical predictions show excellent agreement with
simulations for all configurations, only deviating by 25 % for the most confined droplets.
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1. Introduction

Sweat evaporating from an athlete’s skin, agrochemicals sprayed onto crops, inkjet
printers, industrial spray coolers and virus transmission from infected surfaces all depend
on the collective evaporation of many droplets on a surface. However, despite these
and many other applications, nearly all of the considerable analytical, experimental and
numerical work on droplet evaporation has focused on a single droplet. Typically, the rate
of evaporation is controlled by the diffusion of vapour in the quiescent atmosphere, and
is therefore described by the ‘diffusion-limited model’. In its simplest form this model
involves solving Laplace’s equation for the concentration of vapour in the atmosphere
subject to mixed boundary conditions representing complete saturation at the free surface
of the droplet, no flux of vapour through the unwetted part of the substrate and a far-field
condition representing the ambient vapour concentration. Lebedev (1965) and Popov
(2005) provide a well-known analytic solution to this problem, giving a simple form for
the diffusive vapour field and evaporation rate for a single droplet.

However, in practice, droplets rarely occur in isolation, and so understanding the
interactions between multiple droplets is of considerable scientific and
practical importance. Although research on three-dimensional arrays of droplets (e.g.
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aerosols) is an extensive field, two-dimensional arrays of interacting sessile droplets on
a surface are much less studied, and we summarise the key findings below. Kokalj et al.
(2010) applied computational methods to droplet arrays and demonstrated that cooling
was greatest for small dense droplet arrays, which would lead to a reduction in evaporation
rate. Sokuler et al. (2010) show that, in contrast to isolated droplets with constant contact
angle, for which the evaporation rate (defined as the change in droplet volume V per unit
time t) reduces over time as J = dV/dt ∝ t1/2, for large droplet arrays, approximated as
a continuous film, the evaporation rate is constant over time. For droplets with a pinned
contact line, Carrier et al. (2016) also find, both experimentally and theoretically, that
the total evaporation rate depends on droplet size and configurations. For small droplets,
evaporation is diffusion limited and proportional to the droplet’s size, whereas for droplets
larger than around 20 mm, evaporation becomes convective with the rate proportional to
the droplet area. They introduce the idea of a ‘superdrop’ to predict the evaporation rate
of droplet arrays and give a simple analytic expression to describe how the evaporation is
hindered due to the presence of other droplets. For droplets dissolving in a surrounding
fluid (an analogous situation also described by the Laplace equation), Chong et al. (2020)
found evidence for a similar transition from diffusion to a convective plume. However, in
their case, convection in the more dense arrays led to a surprising increase in dissolution
rate.

A key concept throughout these studies is the so-called ‘shielding’ effect, in which
the presence of vapour from the other droplets reduces the evaporation rate (and hence
increases the lifetime) of a droplet relative to that of the same droplet in isolation. However,
none of the works mentioned above explicitly consider the variation in evaporation rate
from one droplet to another, which will depend strongly on each droplet’s position within
the array. This more involved problem was in fact first solved by Fabrikant (1985) for
potential flow through a perforated membrane. Although a seemingly unrelated problem,
Wray, Duffy & Wilson (2020) recognised it as being analogous to the evaporation of
zero-thickness circular droplets, and were able to integrate the expression for evaporation
rate to obtain droplet drying times. These results are formally valid in the asymptotic limit
where the droplets are well separated, with the problem reducing to a system of N linear
equations describing the evaporation rate from each droplet. Both Fabrikant (1985) and
Wray et al. (2020) found good agreement between the theoretical predictions for a pair
of identical droplets with those of numerical calculations right up to the limit of touching
droplets. In this case the effect of shielding increases the lifetime of the droplets by one
third. In addition Wray et al. (2020) obtained expressions describing the variation of flux
across the surface of each droplet.

Very recently, Edwards et al. (2021) found very good agreement between the theoretical
predictions of Fabrikant (1985) and experimental results obtained using an interferometric
technique to directly measure the individual evaporation rate of up to 25 droplets in ten
different configurations.

2. Overview of Masoud, Howell & Stone (2021)

The work of Masoud et al. (2021) is important and novel as it extends the findings of
Fabrikant (1985), removing the restrictions of thin droplets and circular contact lines. They
used Green’s second identity to simply and elegantly obtain an exact relationship between
the local flux and total evaporation rate from the droplets. Using the method of reflections
and assuming that the droplets are well separated, they obtained a system of N linear
equations for the evaporation rates from each droplet Jn involving only the rate for the
isolated droplet Ĵn and φ(rnm), the normalised vapour concentration at the location of the
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F, normalized evaporation rate from numerical simulation

α π/6 β π/6 γ π/6

α π/3 β π/3 γ π/3

α π/2 β π/2 γ π/2

Figure 1. Comparison of the predictions using the new analytical approach to direct numerical simulations,
for various droplet arrangements and confinements (α – most confined, β and γ – least confined) and initial
contact angles (π/6, π/3 and π/2) for droplet separation of 2.5 radii.

mth droplet

F = Jn

Ĵn
= 1 −

N∑

m=1

φ(rnm)
Jm

Ĵn
. (2.1)

Using for example the expression of Popov (2005) for φ(rnm), this set of N equations can
be solved giving the evaporation rates for each droplet. For low contact angles the vapour
concentration term reduces to φ(rnm) = (2/π) arcsin(an/rnm), where an is the radius of
the nth droplet recovering the simpler form derived by Fabrikant (1985).

The authors evaluated the accuracy of their theoretical predictions by comparing with
the results of direct numerical simulations for twelve different configurations of identical
spherical-cap droplets using three different contact angles (π/6, π/3 and π/2) and droplet
separations of 2.5 and 3 radii (i.e. 72 different calculations). Figure 1 replots the dataset
provided in table 1 of Masoud et al. (2021) for the closest separations, confirming
the excellent agreement for the faster evaporation droplets, with F > 0.4. For slower
evaporating droplets (F < 0.4) which are more confined and have larger contact angles,
the theoretical results are systematically slower than the numerical results.

3. Future

The great merit of this work is that it quantifies the significance of the shielding effect
in arbitrary configurations of droplets of different sizes and contact angles without having
either to obtain the solution for the concentration of vapour in the atmosphere or to perform
time-consuming and technically challenging direct numerical simulations. Moreover, it
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opens the door to a greater understanding of the many applications of this effect and could
lead to improvements in inkjet printers or cooling systems, for example.

Here, we briefly mention three specific directions for potential future work. Firstly, the
systematic discrepancy seen for the most confined droplets could be investigated further.
As the droplets have a centre to centre separation of 2.5 radii the theory is expected to be
accurate, so the disagreement is most likely due to a more subtle effect of confinement
rather than the prediction being applied beyond its valid range. Any improvement to the
theory should be verified against additional numerical and experimental work. Secondly,
it would be interesting to explore the collective behaviour of an increasing number of
droplets and thereby determine to what extent a collection of many droplets can be
considered as one large ‘super droplet’ of an appropriate shape and size, as discussed
by Carrier et al. (2016). Thirdly, and most generally, the same theoretical approach can be
applied to other physical situations governed by Laplace’s equation such as for example
the dissolution of microbubbles, as reviewed by Lohse & Zhang (2015) and Qian, Arends
& Zhang (2019).
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