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Tree Posets: Supersaturation, Enumera-
tion, and Randomness∗

Tao Jiang, Sean Longbrake, Sam Spiro and Liana Yepremyan

Abstract. Wedevelop a powerful tool for embedding any tree poset 𝑃 of height 𝑘 in theBoolean lattice
which allows us to solve several open problems in the area. We show that:

• If F is a family in B𝑛 with | F | ≥ (𝑞 − 1+ 𝜀)
( 𝑛
⌊𝑛/2⌋

)
for some 𝑞 ≥ 𝑘, then F contains on the order

of as many induced copies of 𝑃 as is contained in the 𝑞 middle layers of the Boolean lattice. This
generalizes results of Bukh [9] and Boehnlein and Jiang [8] which guaranteed a single such copy in
non-induced and induced settings respectively.

• The number of induced 𝑃-free families of B𝑛 is 2(𝑘−1+𝑜 (1) ) (
𝑛

⌊𝑛/2⌋) , strengthening recent inde-
pendent work of Balogh, Garcia, Wigal [1] who obtained the same bounds in the non-induced
setting.

• The largest induced 𝑃-free subset of a 𝑝-random subset of B𝑛 for 𝑝 ≫ 𝑛−1 has size at most
(𝑘 − 1 + 𝑜 (1) ) 𝑝

( 𝑛
⌊𝑛/2⌋

)
, generalizing previous work of Balogh, Mycroft, and Treglown [4] and of

Collares and Morris [10] for the case when 𝑃 is a chain.

All three results are asymptotically tight and give affirmative answers to general conjectures of
Gerbner, Nagy, Patkós, and Vizer [18] in the case of tree posets.

1 Introduction

The celebrated Sperner’s theorem [41] in extremal set theory determines the size of
the largest family of sets in [𝑛] not containing a 2-chain 𝐹1 ⊃ 𝐹2. Later, Erdős [16]
extended Sperner’s theorem to determine the largest family not containing any 𝑘-chain
and showed how Sperner’s lemma can be used to solve the classical Littlewood–Offord
problem [28]. Afterwards, Katona and Tarján [25] initiated a systematic study of the size
of the largest family in the Boolean lattice B𝑛 that avoids a given subposet. This topic
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2 T. Jiang, S. Longbrake, S. Spiro, and L. Yepremyan

has attracted much attention and witnessed many advances in the last decades; we refer
the interested reader to the nice survey paper by Griggs and Li [20] for more.

The question we are interested in this paper is one of supersaturation, that is, how many
copies of a poset are we guaranteed once we are above the threshold of containing one.
The simplest poset to consider the supersaturation question for are 2-chains. Erdős and
Katona conjectured that a family with

( 𝑛
⌊𝑛/2⌋

)
+𝑡 sets in [𝑛]must contain at least 𝑡 · ⌊ 𝑛+12 ⌋

many2-chains. This conjecturewas confirmed byKleitman [23],who in fact showed that
for every 0 ≤ 𝑎 ≤ 2𝑛, every family in [𝑛] with size 𝑎 contains at least as many 2-chains
as the so-called centralized family of size 𝑎, i.e. a family of 𝑎 sets whose cardinalities
are as close to 𝑛/2 + 1/4 as possible. Kleitman [23] further conjectured that the same
families should also minimize the number of 𝑘-chains for every 𝑘 . Five decades later,
Kleitman’s result was rediscovered by Das, Gan, and Sudakov [11] and independently by
Dove, Griggs, Kang, and Sereni [14]. Both papers further confirmed Kleitman’s conjec-
ture for every 𝑘 and 𝑎 belonging to a certain range above the sum of the 𝑘 − 1 largest
binomial coefficients. Subsequently, Balogh and Wagner [6] proved Kleitman’s conjec-
ture for all 𝑘 and 𝑎 ≤ (1 − 𝜀)2𝑛, provided that 𝑛 is sufficiently large with respect to 𝑘
and 𝜀. Finally, in a remarkable paper, Samotij [39] resolved Kleitman’s conjecture in full.
There have been further generalizations of the supersaturation problem for 2-chains to
more general hosts other than the Boolean lattice such as the collection of subspaces
of F𝑛𝑞 ordered by set inclusion [32] or {0, 1, 2, . . . 𝑟}𝑛 [6, 32]. The latter problem gives
rise to a natural generalization of Kleitman’s problem, and while weaker approximate
results do hold for 𝑟 ≥ 2 as shown byNoel, Sudakov and Scott [32], the exact analogue of
Kleitman’s conjecture (see [6, 32]) fails as shown by Balogh, Petříčková, andWagner [7].

Our main goal is to establish similar supersaturation results for more general family of
posets beyond 2-chains, and in particular we do this for so-called tree posets, which are
posets whose Hasse diagram is a tree. To state our results, we need a short prelude on
the precise definition of extremal numbers for posets, since below this extremal number
we can not guarantee any copies of our poset.

Let P, Q be two finite posets, that is, they are finite sets equipped with partial orders
<𝑃 and <𝑄 . A poset homomorphism is a function 𝑓 : 𝑃 → 𝑄 such that 𝑓 (𝑥) <𝑄 𝑓 (𝑦)
whenever 𝑥 <𝑃 𝑦. An induced poset homomorphism is a function 𝑓 : 𝑃 → 𝑄 such that
𝑓 (𝑥) <𝑄 𝑓 (𝑦) if and only if 𝑥 <𝑃 𝑦. We say that a poset 𝑄 contains another poset 𝑃 if
there is an injective poset homomorphism from 𝑃 to𝑄. We say that a poset𝑄 contains
an induced copy of another poset𝑃 if there is an injective induced poset homomorphism
from 𝑃 to𝑄. If a poset𝑄 does not contain a copy of another poset 𝑃, we say that𝑄 is 𝑃-
free. If𝑄 does not contain an induced copy of 𝑃, we say that𝑄 is induced 𝑃-free. Given a
poset 𝑃 and an integer 𝑛, we define 𝐿𝑎(𝑛, 𝑃) to be the largest size of a 𝑃-free subfamily
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of B𝑛 and 𝐿𝑎∗ (𝑛, 𝑃) the largest size of an induced 𝑃-free subfamily of B𝑛. Motivated
by a number of early results in the study of 𝐿𝑎(𝑛, 𝑃) (see for example [12, 13, 19, 42]),
Griggs and Lu [21] and independently Bukh [9] made the following conjecture on the
form of 𝐿𝑎(𝑛, 𝑃).

Conjecture 1.1 (Bukh[9], Griggs-Lu [21]). Let 𝑃 be a poset. Then

𝐿𝑎(𝑛, 𝑃) = (1 + 𝑜(1))𝑒(𝑃)
(
𝑛

⌊𝑛/2⌋

)
,

where 𝑒(𝑃) denotes the largest integer ℓ such that for all 𝑗 and 𝑛 the family
⋃ℓ
𝑖=1

([𝑛]
𝑖+ 𝑗

)
is

𝑃-free.

A similar conjecture for the induced case as well as a supersaturation version of both
results were stated in Gerbner, Nagy, Patkós, and Vizer (see Conjecture 1 and Conjec-
ture 3 [18]). An approximate version of Conjecture 1.1 was proven by Methuku and
Pálvölgyi [30] who showed that for every poset 𝑃, there exists a constant 𝐶𝑃 such that
𝐿𝑎∗ (𝑛, 𝑃) ≤ 𝐶𝑃

( 𝑛
⌊𝑛/2⌋

)
. The value of 𝐶𝑃 was later improved by Tomon [43]. However,

this conjecture as well as the companion ones from [18] were proven to be false for 𝑃
the 𝑑-dimensional Boolean lattice with 𝑑 ≥ 4 due to a recent beautiful construction of
Ellis, Ivan, and Leader [15].

Nevertheless there are still a number of families of 𝑃 for which Conjecture 1.1 remains
true (see [20] for more), the most general family perhaps being that of tree posets as
established by Bukh [9].

Theorem 1.2 (Bukh [9]). Let 𝑃 be a tree poset of height 𝑘 . Then

𝐿𝑎(𝑛, 𝑃) =
(
𝑘 − 1 +𝑂

(
1
𝑛

)) (
𝑛

⌊𝑛/2⌋

)
.

Bukh’s result was later extended to the induced setting by Boehnlein and Jiang [8], who

showed that 𝐿𝑎∗ (𝑛, 𝑃) = (𝑘 − 1 + 𝑂 (
√
𝑛 log 𝑛
𝑛

))
( 𝑛
⌊𝑛/2⌋

)
for any tree poset of height 𝑘 .

Our main result is the following supersaturation extension of these results.

Theorem 1.3. Let 𝑘 be a fixed positive integer and 𝑃 a tree poset of height 𝑘 . Then for any
real 𝜀 > 0 and integer 𝑞 ≥ 𝑘 , there exists a real 𝛿 > 0 such that every family F ⊆ B𝑛
with |F | ≥ (𝑞 − 1 + 𝜀)

( 𝑛
⌊𝑛/2⌋

)
contains at least 𝛿 · 𝑀∗ (𝑛, 𝑞, 𝑃) induced copies of 𝑃 where

𝑀∗ (𝑛, 𝑞, 𝑃) denotes the number of induced copies of 𝑃 in the 𝑞 middle levels of B𝑛.

This result answers [18, Conjecture 3] in a strong form for tree posets which stated their
conjecture only in the special case of 𝑞 = 𝑘 . In fact, an analog of Theorem 1.3 holds
if we replace |F | with F ’s Lubell weight, see Theorem 5.4 for the precise statement. It
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is worth noting that we do not know of an explicit formula for 𝑀∗ (𝑛, 𝑞, 𝑃) in general,
but this does not end up being a significant barrier to the proof (see Section 3 for more
details). However, as a corollary to Theorem 1.3, we can get the following explicit result
which is tight for saturated tree posets, i.e. those for which every maximal chain has the
same length.

Corollary 1.4. Let 𝑘 be a fixed positive integer and 𝑃 a tree poset of height 𝑘 . For any real 𝜀 >
0, there exists a real 𝛿 > 0 such that every subfamily F ⊆ B𝑛 with |F | ≥ (𝑘 −1+𝜀)

( 𝑛
⌊𝑛/2⌋

)
contains at least 𝛿𝑛 |𝑃 |−1

( 𝑛
⌊𝑛/2⌋

)
induced copies of 𝑃.

A slight modification of our approach can extend Corollary 1.4 into a balanced super-
saturation result, Theorem 5.6, which roughly speaking says that we can guarantee our
collection of copies of 𝑃 to be such that no subset ofF is contained in toomany induced
copies of 𝑃 in this collection. Balanced supersaturation while interesting on its own is
usually used in combination with the container method to establish counting results.
The container method originated in papers by Kleitman and Winston [26, 27] in early
1980s and was further independently developed by Balogh, Morris, and Samotij [2] and
Saxton and Thomason [40], and has had a tremendous impact on combinatorics since
then. Containers have beenwidely used to establish counting results and randomTurán-
type in various settings such as for 𝐻-free graphs or hypergraphs for a fixed graph 𝐻,
AP-free sets in additive combinatorics and so on. See the excellent survey by Balogh,
Morris and Samotij [3] for an extensive overview on the method.

In the setting of posets, containers have been most widely used in counting subsets of
B𝑛 avoiding 2-chains, which is equivalent to the problem of counting antichains. When
the host is the Boolean lattice, this problem was solved independently by Balogh, Tre-
glown, andWagner [5] and by Noel, Sudakov, and Scott [32]. The second group [32] also
generalized this to hosts being subspaces of F𝑞𝑛 ordered by inclusion, and sets of divi-
sors of a square of a square free integer. Note that the latter is equivalent to studying
{0, 1, 2}𝑛 under the natural ordering. In themore general setting of counting antichains
in [𝑡]𝑛, which turns out to be connected to a Ramsey-theoretic question in ordered
hypergraphs [31], there has been much recent progress, most notably by Pohoata and
Zakharov [37], Park, Sarantis, and Tetali [34] and finally, by Falgrav-Ravry, Rävy, and
Tomon [17].

Our main counting result gives tight bounds for the number of induced 𝑃-free families
ofB𝑛 for all tree posets 𝑃, solving Conjecture 4 from [18] in this case. This extends pre-
vious work of Patkós and Treglown [36] and Gerbner, Nagy, Patkós, and Vizer [18] who
obtained similar results for special subclasses of tree posets. Our result also strengthens
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the recent work of Balogh, Garcia, and Wigal [1] who independently obtained the same
counting result but in the non-induced setting.

Theorem 1.5. If 𝑃 is a tree poset of height 𝑘 , then the number of induced 𝑃-free sets in B𝑛
is at most

2(𝑘−1+𝑜 (1) ) (
𝑛
𝑛/2) .

With a similar approach, we also obtain tight bounds for the largest size of an induced 𝑃-
free family of a random subset of B𝑛 for all tree posets 𝑃. Let P(𝑛, 𝑝) be the uniformly
random subset of B𝑛, where each set survives with probability 𝑝 such that 𝑝𝑛 → ∞.
This model P(𝑛, 𝑝) was first investigated by Renyi [38], after which Kohayakawa and
Kreuter [24] studied the size of the largest 2-chain-free subset of P(𝑛, 𝑝). Their results
were subsequently improved by Osthus [33] and Balogh, Mycroft and Treglown [4], the
latter establishing optimal bounds, and independently by Collares and Morris [10] who
established the analogous results for 𝑘-chains for all 𝑘 ≥ 2. Other results in this direc-
tionwere obtained by Patkós andTreglown [36] and byGerbner,Nagy, Patkós, andVizer
[18] for some special subfamilies of tree posets. We establish a far-reaching generaliza-
tion of all these results by establishing the corresponding result on P(𝑛, 𝑝) for all tree
posets 𝑃 in the induced setting, solving Conjecture 7 of [18] in this case.

Theorem 1.6. If 𝑃 is a tree poset and 𝑝𝑛 → ∞, then with high probability, the largest
induced 𝑃-free subset of P(𝑛, 𝑝) has size (𝑘 − 1 + 𝑜(1))𝑝

( 𝑛
𝑛/2

)
.

The hypothesis that 𝑝𝑛 → ∞ is best possible for this result to hold. Indeed, as noted
in [4, 10], if 𝑝 = 𝑐𝑛−1 then a computation due to Osthus [33] shows that with high
probability there exists subsets of P(𝑛, 𝑝) of size at least (𝑘 − 1 + 𝑒−𝑐 + 𝑜(1))

( 𝑛
𝑛/2

)
which contains no 𝑘-chain and thus also no tree poset of height 𝑘 .

Finally, it is worth highlighting that themain tool of this paper, Theorem 4.15, which we
believe is of independent interest, and can be viewed as a general tool similar to results
in graphs of passing to subgraphs of high minimum degree. While the exact analogue of
such a result is out of reach, that is, obtaining a subfamily in the poset setting of “high
minimum degree” we obtain a sequence of nested subfamilies of our original family F
having high minimum degree in the predecessor of the sequence which still allows us to
greedily find many embeddings of a tree poset, similar to embedding copies of a fixed
tree in a high minimum degree subgraph. We believe that this result will have further
applications in the future.

The rest of this paper is organized as follows. In Section 2 we introduce some notation.
In Section 3we present a sketch of the proof of Theorem 1.3. In Section 4 after gathering
some preliminary lemmas, we prove Theorem 4.15, in Section 5we prove both the usual
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and balanced supersaturation results Theorem 1.3 and Theorem 5.6. In Section 6we use
hypergraph containers together with balanced supersaturation to prove Theorem 1.5
and Theorem 1.6.

2 Notation

Throughout our paper, we drop floors and ceiling whenever these are not crucial to our
analysis. Let

B̃𝑛 :=
{
𝐹 ∈ B𝑛 :

���𝐹 − 𝑛

2

��� < 2
√
𝑛 ln 𝑛

}
.

Using some standard tools, we will assume that the family F we are working with is
subfamily of B̃𝑛 instead of B𝑛.

We define the Hasse diagram of 𝑃, denoted 𝐻 (𝑃), as a directed graph with vertex set 𝑃
where there is an edge from 𝑥 to 𝑦 only if 𝑦 > 𝑥 and there is no 𝑧 such that 𝑦 > 𝑧 > 𝑥.
Notice that this definition differs slightly from the classical definition of Hasse diagram
via undirected graphs embedded on the plane, but for us it will be more convenient to
use the directed setting.

Given a subfamily F ⊆ B𝑛 and a positive integer 𝑞, we say that a tuple (𝐹1, . . . , 𝐹𝑞)
of members of F is a 𝑞-chain if 𝐹1 ⊃ 𝐹2 ⊃ · · · ⊃ 𝐹𝑞 . In particular, when we refer
to the 𝑖th element of any 𝑞-chain we mean the one with 𝑖th largest cardinality. We will
abuse notation slightly by occasionally identifying decreasing tuples (𝐹1, . . . , 𝐹𝑞) by the
corresponding set {𝐹1, . . . , 𝐹𝑞}. We use C to denote the family of all full chains of B𝑛
(with 𝑛 fixed), i.e. C is the set of chains of length 𝑛+1 inB𝑛. The height of 𝑃 is the largest
length of a chain in 𝑃.

Given a 𝑞-chain𝑄 in F and a full chain 𝜒 in B𝑛 that contains all of the members of𝑄,
we call the pair (𝜒,𝑄) a 𝑞-marked chain with markers in F or a 𝑞-marked chain from F .
Given a family of 𝑞-marked chainsM , let

L𝑖 (M) = {𝐷 ∈ B𝑛 : 𝐷 is the 𝑖th member of a 𝑞-chain inM}.

Our proof will rely on obtaining a nice nested sequence of 𝑞-marked chains from F
that are of a specific form. To this end, given a family T of 1-marked chains of some
subfamily F ⊆ B𝑛 and 𝜒 ∈ C, we define T (𝜒) = {𝐹 : (𝜒, 𝐹) ∈ T }. We say that T is
𝑞-strong if for each 𝜒 ∈ C where T (𝜒) ≠ ∅, we have that |T (𝜒) | ≥ 𝑞. For a 𝑞-strong
1-marked chain family T from F , we define the 𝑞-th power of T , denoted by T [𝑞] , to
be the 𝑞-marked chain family

T [𝑞] =
{
(𝜒,𝑄) : 𝑄 ∈

(
T (𝜒)
𝑞

)}
(1)
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We will consider some of our results in a somewhat more general setting. To this end,
we define the Lubell weight of a family F , denoted by 𝜇(F ), by

𝜇(F ) =
∑︁
𝐹∈F

1( 𝑛
|𝐹 |

) . (2)

The Lubell weight is a naturalmeasure to put on families inB𝑛, and in particularwe note
that 𝜇(F ) is the expected number of members of F that are contained in a uniformly
randomly chosen full chain.While this notion is not strictly needed for our work, we are
able to apply our methodology in this more general setting which has historically been
of interest to extremal problems for posets, see for example [29].

In Section 6, we will use the Chernoff’s Inequality in the following form, see [22]:

Lemma 2.1. If 𝑋 = Bin(𝑛, 𝑝) and 𝛿 ≤ 1,

Prob( |𝑋 − E[𝑋]) | ≥ 𝛿E[𝑋] ≤ 2 exp
(
−𝛿

2

3
E[𝑋]

)
.

3 Sketch of The Proof of Theorem 1.3

Here we sketch how to prove Theorem 1.3 which we recall says that every large family
F ⊂ B𝑛 contains many copies of a given tree poset 𝑃. We will do this by showing that
there are many ways of embedding 𝑃 into F , but before we get into this we need some
preliminaries.

It will be convenient to associate each member 𝐹 of a given subfamily F ⊆ B𝑛 with
the full chains 𝜒 of B𝑛 that contain it, so we will work with pairs (𝜒, 𝐹) instead of
individual members 𝐹 , where 𝐹 ∈ F and 𝜒 is any full chain in the Boolean lattice.
Likewise, we will associate each 𝑞-chain𝑄 in our family F with the full chains 𝜒 of B𝑛
that contain it and call such pairs (𝜒,𝑄) 𝑞-marked chains. It is worth mentioning that
the approach of workingwith 𝑞-marked chainswas originated by Bukh [9] andwas later
further developed by Boehnlein and Jiang [8].

Using Chernoff bounds, it is standard [8, 21] to show that the number of sets 𝐹 ∈ B𝑛
with | |𝐹 | − 𝑛/2| > 2

√
𝑛 ln 𝑛 is 𝑜(

( 𝑛
𝑛/2

)
). Thus, whenever we are given a dense subfamily

F of B𝑛 i.e. |F | = Ω(
( 𝑛
𝑛/2

)
), by leaving out at most 𝑜(

( 𝑛
𝑛/2

)
) members of F , we may

assume that all 𝐹 ∈ F lie in the family B̃𝑛.

At the heart of all of our arguments is a general result Theorem 4.15 which says that
any subset F ⊆ B̃𝑛 of large Lubell weight, more precisely at least of weight at least
𝑞−1+𝜀, contains a nested sequence of large 𝑞-marked chain families that have a certain
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8 T. Jiang, S. Longbrake, S. Spiro, and L. Yepremyan

robustness propertywhichwewill describemomentarily.Note that ifF is of size at least
(𝑞 − 1 + 𝜀)

( 𝑛
⌊𝑛/2⌋

)
, then the hypothesis above on the Lubell weight is satisfied.

Before the embedding starts, we fix an ordering 𝑥1, 𝑥2, . . . , 𝑥 |𝑃 | of vertices of 𝑃 such
that each 𝑥 𝑗+1 has a unique neighbour (called the parent) among 𝑥1, . . . 𝑥 𝑗 , and we fix
a poset homomorphism r : 𝑃 → [𝑞] , with [𝑞] under the reverse of the natural total
ordering. As a pre-processing step, we use our main tool Theorem 4.15 to generate a
nested family of 𝑞-marked chains M0 ⊇ M1 ⊇ · · · ⊇ M |𝑃 | such that if 𝐹 ∈ F
is in some 𝑞-marked chain of M𝑖 family then it is “robust” with respect to M𝑖−1 as
well, meaning 𝐹 is contained in “many” 𝑞-chains of M𝑖−1 as well. The idea of nested
families M𝑖 may seem a bit peculiar but unfortunately we were not able to guarantee
the existence of a single marked chain family M with the property of every 𝐹 being
contained in the desired number of copies of 𝑞-marked chains in M. To obtain this
nested sequence, we iteratively remove all the sets 𝐹 ∈ F which are bad with respect
toM 𝑗−1 and the relevant 𝑞-chains fromM 𝑗−1 subsequently, and ensure that the sizes
ofM 𝑗 do not shrink dramatically, thus guaranteeing that after |𝑃 | many steps we still
have a large family of 𝑞-marked chains.

Having run the cleaning process, we embed the vertices 𝑥1, 𝑥2, . . . 𝑥 |𝑃 | iteratively so that
at the 𝑗 th step we find many partial embedding of the form 𝜑 𝑗 : {𝑣1, 𝑣2, . . . , 𝑣 𝑗 }. We
embed 𝑣1 arbitrarily in the r(𝑣1)-level of any 𝑞-marked chain insideM |𝑃 | . Notice that
the number of elements in the r(𝑣1)-level of a chain inM |𝑃 | gives us a lower bound on
the number of ways to embed 𝑣1. Also while M |𝑃 | is the smallest family of 𝑞-marked
chains it has the property that every 𝐹 in a 𝑞-chain ofM |𝑃 | is “robust" which respect to
everyM 𝑗 with 𝑗 < |𝑃 |. This is the incentive behind embedding the vertices of 𝑃 in the
reverse order of the nested families,more precisely, 𝑣 𝑗 will be embedded inM |𝑃 |− 𝑗+1. At
the 𝑗 th step, we embed 𝑣 𝑗 , assuming that its parent 𝑦who is among {𝑣1, 𝑣2, . . . , 𝑣 𝑗−1} is
already embedded.Wewish to embed 𝑣 𝑗 in the r(𝑣 𝑗 )th position of some 𝑞-marked chain
ofM |𝑃 |− 𝑗+1 which has 𝜑 𝑗−1 (𝑦) in the r(𝑦)th position. By the cleaning process we ran
earlier, we are guaranteed to have many such choices to embed 𝑣 𝑗 and find many partial
embeddings 𝜑 𝑗 . This embedding procedure in total gives a lower bound on the number
of induced copies of 𝑃 inF as a function of our choice of r. It turns out there is a relation
between 𝑀∗ (𝑛, 𝑞, 𝑃) and the counting of copies of 𝑃 via all such rank functions r (see
Lemma 5.5). Thus we may choose r suitably and get this lower bound to be a constant
fraction of 𝑀∗ (𝑛, 𝑞, 𝑃). This gives us our desired supersaturation result saying that the
number of induced copies of 𝑃 guaranteed in F is as least as large as a fraction of the
number of induced copies of 𝑃 in the middle 𝑞-levels without knowing 𝑀∗ (𝑛, 𝑞, 𝑃)
explicitly.
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The full details of this embedding are slightly technical, as one also needs to make
sure that the embedding guarantees noncomparable pairs stay noncomparable and
other nuances, however the main gist of the argument is that the cleaning process in
Theorem 4.15 provides the framework to do this successfully.

4 Key Tools

In this section, we state and prove our main tool Theorem 4.15, which roughly speak-
ing guarantees in any large F ⊆ B𝑛 the existence of a nested sequence of 𝑞-marked
chainsM |𝑃 | ⊆ M |𝑃 |−1 ⊆ · · · ⊆ M0 which are “robust” in a certain way. We begin by
establishing some preliminary lemmas.

4.1 Counting Lemmas on Marked Chains

In this section, we collect some basic counting lemmas about marked chains that we
will use in the final step of our proof Theorem 5.4. We begin by recalling the following
lemma of Bukh [9, Lemma 4] for 𝑞-marked chains.

Lemma 4.1 ([9]). If F ⊆ B𝑛 and |F | ≥ (𝑞 − 1 + 𝜀)
( 𝑛
𝑛/2

)
, then there are at least 𝜀

𝑞
𝑛!

𝑞-marked chains with markers from F .

For our purposes we will need the following variant of Lemma 4.1.

Lemma 4.2. Let 𝑞 be a positive integer and 𝜀 > 0. Let F ⊆ B𝑛. Suppose 𝜇(F ) ≥ 𝑞−1+𝜀
and let

T = {(𝜒, 𝐹) : 𝜒 ∈ C, 𝐹 ∈ 𝜒 ∩ F , |𝜒 ∩ F | ≥ 𝑞}.

Then, T is a 𝑞-strong 1-marked chain family from F , satisfying |T | ≥ 𝜀𝑛!. In particular, if
|F | ≥ (𝑞 − 1 + 𝜀)max𝐹∈F

( 𝑛
|𝐹 |

)
then |T | ≥ 𝜀𝑛!

Proof LetM = {(𝜒, 𝐹) : 𝜒 ∈ C, 𝐹 ∈ F }. For each 𝑖 ∈ [𝑛] , let𝐶𝑖 denote the number
of full chains 𝜒 that contain exactly 𝑖 members of F . Then |M| = ∑𝑛

𝑖=1 𝑖𝐶𝑖 . On the
other hand, for each 𝐹 ∈ F , the number of full chains in B𝑛 that contain 𝐹 is exactly
𝑛!
( 𝑛|𝐹 |)

. Hence,

𝑛∑︁
𝑖=1
𝑖𝐶𝑖 =

∑︁
𝐹∈F

𝑛!( 𝑛
|𝐹 |

) = 𝜇(F )𝑛! ≥ (𝑞 − 1 + 𝜀)𝑛!.

Clearly,
∑
𝑖<𝑞 𝑖𝐶𝑖 ≤ (𝑞 − 1)𝑛!. Hence, |T | = ∑

𝑖≥𝑞 𝑖𝐶𝑖 ≥ 𝜀𝑛!.
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For the second statement, suppose |F | ≥ (𝑞 − 1 + 𝜀)max𝐹∈F
( 𝑛
|𝐹 |

)
. Then

𝜇(𝐹) =
∑︁
𝐹∈F

1( 𝑛
|𝐹 |

) ≥ |F |
max𝐹∈F

( 𝑛
|𝐹 |

) ≥ 𝑞 − 1 + 𝜀.

So, the statement follows from the first statement. ■

Wenote that althoughLemma4.2 is stated in terms of a particular 1-marked chain family
T , it being 𝑞-strong immediately implies that F contains at least 𝜀

𝑞
𝑛! 𝑞-marked chains.

This recovers Bukh’s original lemma that says if |F | ≥ (𝑞−1+𝜀)
( 𝑛
𝑛/2

)
then it contains at

least 𝜀
𝑞
𝑛! 𝑞-marked chains and more generally recovers it under the weaker hypothesis

𝜇(F ) ≥ 𝑞 − 1 + 𝜀.

We will also need the following technical lemma, which roughly says that if T is a large
𝑞-strong 1-marked chain family, then there are many members of F that can start our
embedding of 𝑃 at the “𝑖th level” for all 𝑖 ∈ [𝑞].

Lemma 4.3. Let F be a subfamily of B𝑛 and 𝑞 a positive integer. Let T be a 𝑞-strong 1-
marked chain family from F and letM = T [𝑞] be the 𝑞-th power of T . For each 𝑖 ∈ [𝑞]
and each 𝜒 ∈ C let

L𝑖 (M, 𝜒) := {𝐹 ∈ F : ∃(𝜒,𝑄) ∈ M such that 𝐹 is the 𝑖-th member on𝑄},

and let L𝑖 (M) = ⋃
𝜒∈C L𝑖 (M, 𝜒). If |T | ≥ 𝜀𝑛!, then for each 𝑖 ∈ [𝑞] , we have

|L𝑖 (M)| ≥ 𝜀

𝑞
min
𝐹∈F

(
𝑛

|𝐹 |

)
.

Proof Consider any 𝜒 ∈ C where T (𝜒) ≠ ∅. Because T is 𝑞-strong, we have
|T (𝜒) | ≥ 𝑞 by definition. Note that for each 𝐹 ∈ T (𝜒) that is not among the largest
𝑖 − 1 members or smallest 𝑞 − 𝑖 − 1 members in T (𝜒), there exists a 𝑞-chain in

(T(𝜒)
𝑞

)
that contains 𝐹 as the 𝑖-th member. Hence, |L𝑖 (M, 𝜒) | ≥ 1

𝑞
|T (𝜒) | and therefore

∑︁
𝜒∈C

|L𝑖 (M, 𝜒) | ≥ 1
𝑞

∑︁
𝜒∈C

|T (𝜒) | ≥ 𝜀

𝑞
𝑛!. (3)

On the other hand, for each 𝐹 ∈ L𝑖 (M), 𝐹 is contained in exactly 𝑛!/
( 𝑛
|𝐹 |

)
full chains

of B𝑛 and hence belongs to L𝑖 (M, 𝜒) for at most 𝑛!/
( 𝑛
|𝐹 |

)
different 𝜒. Hence,∑︁

𝜒∈C
|L𝑖 (M, 𝜒) | ≤

∑︁
𝐹∈L𝑖 (M)

𝑛!( 𝑛
|𝐹 |

) ≤ 𝑛! · |L𝑖 (M)|
min𝐹∈F

( 𝑛
|𝐹 |

) . (4)

Combining (3) and (4), we get |L𝑖 (M)| ≥ 𝜀
𝑞
min𝐹∈F

( 𝑛
|𝐹 |

)
. ■
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4.2 Main Cleaning Result

Given a family F ⊆ B𝑛 and a familyM of 𝑞-marked chains from F , we define for each
𝑖 ∈ [𝑞] , 𝐹 ∈ F and 𝜒 ∈ C the sets

M(𝜒, 𝐹, 𝑖) = {(𝜒,𝑄) ∈ M : 𝐹 is the 𝑖-th member of𝑄},

M(𝐹, 𝑖) =
⋃
𝜒∈C

M(𝜒, 𝐹, 𝑖).

Definition 4.4. For any 𝑖 ∈ [𝑞] , we say a member 𝐹 ∈ B𝑛 is (𝑖, 𝛿)-lower bad with
respect to M if M(𝐹, 𝑖) ≠ ∅ and if there exists a subfamily W ⊆ B𝑛 such that the
following three properties hold:

(𝑎) Every 𝐷 ∈ W satisfies 𝐷 ⊆ 𝐹 .
(𝑏) For every (𝜒,𝑄) ∈ M(𝐹, 𝑖), we have𝑄 ∩W ≠ ∅.
(𝑐) We have

Prob[𝜒0 ∩W ≠ ∅|𝐹 ∈ 𝜒0] ≤ 𝛿,

where 𝜒0 is a uniformly randomly chosen full chain of B𝑛.

Any such subfamilyW will be called an (𝑖, 𝛿)-lower witness for 𝐹 .

Informally,𝐹 being (𝑖, 𝛿)-lower badmeans that there exists a subfamily of smallmeasure
(in the sense of property (c))W of members below 𝐹 such that every chain inM which
has 𝐹 as the 𝑖th member must pass through this subfamily. While there may be many
subfamiliesW which are (𝑖, 𝛿)-lower witnesses for 𝐹 , in some contexts it will be useful
toworkwith some fixed canonical witness. To this end, for any 𝐹 that is (𝑖, 𝛿)-lower bad
with respect toM , we letW(𝐹, 𝑖,M) denote the lexicographically minimalW which
is an (𝑖, 𝛿)-lower witness. Note that for allW,

Prob[𝜒0 ∩W ≠ ∅|𝐹 ∈ 𝜒0] ≤
∑︁
𝐷∈W

Prob(𝐷 ∈ 𝜒0 |𝐹 ∈ 𝜒0) =
∑︁
𝐷∈W

1( |𝐹 |
|𝐹−𝐷 |

) , (5)

where the right hand side can be thought of as the Lubell weight ofW relative to 𝐹 .

Definition 4.5. Similarly, we say 𝐹 is (𝑖, 𝛿)-upper badwith respect toM if there exists
a set Ŵ such that the following three properties hold:

(𝑎̂) Every 𝐷 ∈ Ŵ satisfies 𝐷 ⊇ 𝐹 .
(𝑏̂) For every (𝜒,𝑄) ∈ M(𝐹, 𝑖), we have𝑄 ∩ Ŵ ≠ ∅.
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(𝑐) We have

Prob[𝜒0 ∩ Ŵ ≠ ∅|𝐹 ∈ 𝜒0] ≤ 𝛿,

where 𝜒0 is a uniformly randomly chosen full chain.

Such Ŵ is called an (𝑖, 𝛿)-upper witness for 𝐹 .

Definition 4.6. We say that a member 𝐹 ∈ B𝑛 is 𝛿-robust with respect to a 𝑞-marked
chain familyM if for each 𝑖 ∈ [𝑞] , 𝐹 is neither (𝑖, 𝛿)-lower-bad nor (𝑖, 𝛿)-upper-bad
with respect toM.

The rest of the section is dedicated to proving the following result which builds a nested
sequence of families of 𝑞-marked chains with some robustness features with the addi-
tional property that each of these families is the 𝑞-th power of some family of 1-marked
chains (recall the definition of the 𝑞-th power of a 1-marked chain family from (1)). This
theorem provides the most important ingredient of our proof of Theorem 4.15.

Theorem 4.7. For all integers 𝑞 ≥ 1 and for all reals 𝜀 > 0, there exists some 𝛿 > 0
such that the following holds. Let F ⊆ B̃𝑛 and let T 0 be a 𝑞-strong 1-marked chain family
with markers from F such that |T 0 | ≥ 𝜀𝑛!. Then there exists a collection of 1-marked chains
T |𝑃 | ⊆ T |𝑃 |−1 ⊆ · · · ⊆ T 0 satisfying the following:

(1) For each 𝑗 = 0, . . . , |𝑃 |, T 𝑗 is 𝑞-strong.
(2) For each 𝑗 = 1, . . . , |𝑃 |, for each (𝜒,𝑄) ∈ T 𝑗 [𝑞] and 𝐹 ∈ 𝑄, 𝐹 is 𝛿-robust with

respect to T 𝑗−1 [𝑞].
(3) |T |𝑃 | | ≥ 2𝜀

3 𝑛!.

Before starting the proof, we set up some notation and claims that will be useful. In what
follows, we fix F ⊆ B̃𝑛 as in the theorem statement together with the large constant

Δ := 12|𝑃 | + 𝑞 + 2,

and for later convenience we define

𝐾 := Δ𝑞2
(

Δ

Δ − 2

) |𝑃 |
.

Starting with T 0, we will build our subsets T 𝑗 as follows. Suppose T 𝑗−1 has already
been defined for some 1 ≤ 𝑗 ≤ |𝑃 |, and for ease of notation let M 𝑗−1 = T 𝑗−1 [𝑞].
For each 𝑖 = 1, . . . , 𝑞 and for every 𝜒 ∈ C, let 𝐵 𝑗−1 (𝜒, 𝑖, ↑) be the set of members 𝐹 in
T 𝑗−1 (𝜒) such that 𝐹 is the 𝑖th member of some 𝑞-chain inM 𝑗−1 (𝜒) and 𝐹 is (𝑖, 𝛿)-
upper bad toM 𝑗−1. Let 𝐵 𝑗−1 (𝜒, 𝑖, ↓) be the set of members 𝐹 in T 𝑗−1 (𝜒) such that 𝐹
is 𝑖th member of some 𝑞-chain in M 𝑗−1 (𝜒) and 𝐹 is (𝑖, 𝛿)-lower bad with respect to
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M 𝑗−1. For convenience we denote the union of these sets by

𝐵 𝑗−1 (𝜒, ↓) =
⋃

1≤𝑖≤𝑞
𝐵 𝑗−1 (𝜒, 𝑖, ↓),

𝐵 𝑗−1 (𝜒, ↑) =
⋃

1≤𝑖≤𝑞
𝐵 𝑗−1 (𝜒, 𝑖, ↑),

𝐵 𝑗−1 (𝜒) = 𝐵 𝑗−1 (𝜒, ↓) ∪ 𝐵 𝑗−1 (𝜒, ↑).

We now classify our chains 𝜒 ∈ C based on whether they contain a relatively large
number of bad members or not. To this end we define

C 𝑗1 (↓) =
{
𝜒 : |𝐵 𝑗−1 (𝜒, ↓)| > |T 𝑗−1 (𝜒) |/Δ

}
,

C 𝑗1 (↑) =
{
𝜒 : |𝐵 𝑗−1 (𝜒, ↑)| > |T 𝑗−1 (𝜒) |/Δ

}
,

C 𝑗2 = C − C 𝑗1 (↓) − C 𝑗1 (↑).

Let

T 𝑗 = {(𝜒, 𝐹) : 𝜒 ∈ C 𝑗2 , 𝐹 ∈ T 𝑗−1 (𝜒) − 𝐵 𝑗−1 (𝜒)}.

In other words, to form T 𝑗 from T 𝑗−1, we remove all (𝜒, 𝐹) ∈ T 𝑗−1 from each 𝜒 ∈
C 𝑗1 (↓) ∪ C 𝑗1 (↑) (i.e. from those 𝜒 with a large number of bad members), and for each
𝜒 ∈ C 𝑗2 we remove those (𝜒, 𝐹) where 𝐹 is bad. In particular, we record the following
immediate consequence of the definition of C 𝑗2 .

Lemma 4.8. If 𝜒 ∈ C 𝑗2 for some 𝑗 , then

|T 𝑗 (𝜒) | ≥
(
1 − 2

Δ

)
|T 𝑗−1 (𝜒) |.

It remains to analyze our process for constructing T 𝑗 . For this, we develop some
properties of full chains 𝜒 in C 𝑗1 (↓) and we will then use these properties to show∑
𝜒∈C 𝑗1 (↓)

|T 𝑗−1 (𝜒) | is relatively small; the situation forC 𝑗1 (↑) is similar. For this result,
given an index 𝑖 and a full chain 𝜒, let 𝜒F (𝑖) be the 𝑖th member of F ∩ 𝜒. If no such
member exists, by convention we let this denote the empty set.

Lemma 4.9. For every 𝑗 , there exists a function ®𝑏 from 𝜒 ∈ C 𝑗1 (↓) to increasing sequences
of integers of even length of the form (𝑏1, 𝑏′1, 𝑏2, 𝑏′2, . . . ) with the following properties:

(1) There exists an 𝑖 ∈ [𝑞] such that for all 1 ≤ ℓ ≤ | ®𝑏 (𝜒) |
2 , we have 𝜒F (𝑏ℓ) ∈

𝐵 𝑗−1 (𝜒, 𝑖, ↓).
(2) For all 1 ≤ ℓ ≤ | ®𝑏 (𝜒) |

2 , we have 𝜒F (𝑏′ℓ) ∈ W(𝜒F (𝑏ℓ), 𝑖,T 𝑗−1 [𝑞]).
(3) If | ®𝑏(𝜒) | = 2𝑚, then |T 0 (𝜒) | ≤ 𝐾𝑚 and ®𝑏(𝜒) ∈

([𝐾𝑚]
2𝑚

)
.
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(4) For any vector of increasing integers ®𝑐 of length 2𝑚, there are at most 𝑞𝛿𝑚𝑛! chains 𝜒
satisfying ®𝑏(𝜒) = ®𝑐.

Proof We begin by explicitly defining ®𝑏(𝜒) for each 𝜒 ∈ C 𝑗1 (↓), and will refer to this
vector as the lower-bad profile for 𝜒 relative toM 𝑗−1 .

Fix some 𝜒 ∈ C 𝑗1 (↓). Let 𝐹1 ⊃ 𝐹2 · · · ⊃ 𝐹𝑡 be the members of T 0 (𝜒). Let 𝐹𝑎1 ⊃
𝐹𝑎2 ⊃ · · · ⊃ 𝐹𝑎𝑟 be the subsequence of 𝐹1, . . . 𝐹𝑡 consisting of all of the members
in T 𝑗−1 (𝜒). By definition of C 𝑗1 (↓), we have |𝐵 𝑗−1 (𝜒, ↓)| > |T 𝑗−1 (𝜒) |/Δ. By the
pigeonhole principle, there exist some 𝑖 ≤ 𝑞 such that

|𝐵 𝑗−1 (𝜒, 𝑖, ↓)| > |T 𝑗−1 (𝜒) |/𝑞Δ.

Fix such an 𝑖. We will now greedily build a tuple of integers ®𝑏(𝜒) =

(𝑏1, 𝑏′1, 𝑏2, 𝑏′2, . . . , 𝑏𝑚, 𝑏′𝑚) such that for all 1 ≤ ℓ ≤ 𝑚, 𝐹𝑏ℓ is (𝑖, 𝛿)-lower bad
relative toM 𝑗−1 and 𝐹𝑏′

ℓ
∈ W(𝐹𝑏ℓ , 𝑖,T 𝑗−1 [𝑞]), as follows.

Let 𝑑 be the smallest integer such that 𝐹𝑎𝑑 ∈ 𝐵 𝑗−1 (𝜒, 𝑖, ↓); such a 𝑑 exists because
𝐵 𝑗−1 (𝜒, 𝑖, ↓) ≠ ∅. By definition, 𝐹𝑎𝑑 is the 𝑖th member of somemarked chain (𝜒,𝑄) in
M 𝑗−1 (𝜒).

In particular, this implies there are at least 𝑞 − 𝑖 additional members of T 𝑗−1 (𝜒) on 𝜒
below 𝐹𝑎𝑑 . Because 𝐹𝑎𝑑 ∈ 𝐵 𝑗−1 (𝜒, 𝑖, ↓), it is the 𝑖th member of some 𝑞-marked chain
in M 𝑗−1 (𝜒) =

(T 𝑗−1 (𝜒)
𝑞

)
, and in particular there exists at least 𝑖 − 1 members which

come before it, and at least 𝑞 − 𝑖 members coming after in inside T 𝑗−1 (𝜒). By prop-
erty (𝑏) of witness sets we have then {𝐹𝑎𝑑+1 , . . . 𝐹𝑎𝑑+𝑞−𝑖 } ∩ W(𝐹𝑎𝑑 , 𝑖,T ( 𝑗−1) [𝑞]) ≠

∅. Let 𝑏1 = 𝑎𝑑 and let 𝑏′1 be the index of the any member {𝐹𝑎𝑑+1 , . . . 𝐹𝑎𝑑+𝑞−𝑖 } ∩
W(𝐹𝑎𝑑 , 𝑖,T ( 𝑗−1) [𝑞]).

Now let 𝑑′ be the smallest integer such that 𝐹𝑎𝑑′ ∈ 𝐵 𝑗−1 (𝜒, 𝑖, ↓) and 𝑎𝑑′ > 𝑏′1
if it exists. Just as before, we are guaranteed one of 𝐹𝑎𝑑′+1 , . . . 𝐹𝑎𝑑′+𝑞−𝑖 belongs to
W(𝐹𝑎𝑑′ , 𝑖,T ( 𝑗−1) [𝑞]), and we let 𝑏2 = 𝑎𝑑′ and 𝑏′2 be the index of the any member
of W(𝐹𝑎𝑑′ , 𝑖,T ( 𝑗−1) [𝑞]) ∩ {𝐹𝑎𝑑′+1 , . . . 𝐹𝑎𝑑′+𝑞−𝑖 }. We continue to repeat the process,
e.g. by defining 𝑑′′ to be the smallest integer such that 𝐹𝑎𝑑′′ ∈ 𝐵 𝑗−1 (𝜒, 𝑖, ↓) and
𝑎𝑑′′ > 𝑏

′
2, if it exists, until nomore choices remain.Note that the process goes on at least

1
𝑞−𝑖 |𝐵

𝑗−1 (𝜒, 𝑖, ↓)| many steps, as between 𝐹𝑏𝑖 and 𝐹𝑏′𝑖 there are at most 𝑞 − 𝑖 members
of 𝐵 𝑗−1 (𝜒, 𝑖, ↓). Furthermore, ®𝑏(𝜒) ⊆ [|T 0 (𝜒) |].

Claim. If ®𝑏(𝜒) has length 2𝑚, then |T 0 (𝜒) | ≤ 𝐾𝑚. ■

Proof By our assumption of 𝜒 ∈ C 𝑗1 (↓), we must have 𝜒 ∈ Cℓ2 for ℓ = 0, 1, . . . , 𝑗 − 1
and 𝜒 ∈ C 𝑗1 (↓). Therefore, for 1 ≤ ℓ ≤ 𝑗 − 1, we know that |T ℓ (𝜒) | ≥ (1 −
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2
Δ
) |T ℓ−1 (𝜒) |, and hence |T 0 (𝜒) | ≤ ( Δ

Δ−2 )
𝑗 |T 𝑗−1 (𝜒) |. By definition of 𝜒 ∈ C 𝑗1 (↓),

we know that |𝐵 𝑗−1 (𝜒, ↓)| ≥ |T 𝑗−1 (𝜒) |/Δ. By our choice of 𝑖, |𝐵 𝑗−1 (𝜒, 𝑖, ↓)| ≥
1
𝑞
|𝐵 𝑗−1 (𝜒, ↓)|. By our earlier observation, we have that 𝑚 ≥ 1

𝑞−𝑖 |𝐵
𝑗−1 (𝜒, 𝑖, ↓)|. It

therefore follows that

|T 0 (𝜒) | ≤
(

Δ

Δ − 2

) |𝑃 |
Δ|𝐵 𝑗−1 (𝜒, ↓)| ≤ Δ𝑞2

(
Δ

Δ − 2

) |𝑃 |
𝑚 ≤ 𝐾𝑚

. ■

Claim. Let 𝜒 ∈ C 𝑗1 (↓). Suppose ®𝑏(𝜒) has length 2𝑚. Then ®𝑏(𝜒) ∈
([𝐾𝑚]

2𝑚
)
. ■

Proof Since ®𝑏(𝜒) has length 2𝑚, by Claim 4.10, 𝑡 := |T 0 (𝜒) | ≤ 𝐾𝑚. Since the entries
in (𝑏1, 𝑏′1, . . . , 𝑏𝑚, 𝑏′𝑚) are all inside {1, 2, . . . , 𝑡} ⊆ [𝐾𝑚] , we have ®𝑏(𝜒) ∈

([𝐾𝑚]
2𝑚

)
.
■

To prove the last part of the lemma, we will use the following technical result, where
here we roughly think of S as the 𝐹 which are (𝑖, 𝛿)-lower bad and W∗ (𝐹) =

W(𝐹, 𝑖,T 𝑗−1 [𝑞]).

Claim. Let 𝜒 be a uniformly randomly chosen full chain in B𝑛. Let S ⊆ F be such that for
every 𝐹 ∈ S, there is a subfamily W∗ (𝐹) ⊆ B𝑛 such that Prob[W∗ (𝐹) ∩ 𝜒 ≠ ∅|𝐹 ∈
𝜒] ≤ 𝛿. Then given an increasing tuple ®𝑐 = (𝑐1, 𝑐′1, 𝑐2, 𝑐′2 . . . , 𝑐𝑚, 𝑐′𝑚), the probability that
𝜒 satisfies 𝜒F (𝑐ℓ) ∈ S and 𝜒F (𝑐′ℓ) ∈ W∗ (𝜒F (𝑐𝑖)) for all 1 ≤ ℓ ≤ 𝑚 is less than 𝛿𝑚. ■

Proof Let 𝐴ℓ be the event that 𝜒F (𝑐ℓ) ∈ S and 𝜒F (𝑐′ℓ) ∈ W∗ (𝜒F (𝑏ℓ)). Then,

Prob[𝐴1 ∩ 𝐴2 ∩ · · · ∩ 𝐴𝑚] = Prob[𝐴1] Prob[𝐴2 |𝐴1] . . . Prob[𝐴𝑚 |𝐴1 ∩ 𝐴2 ∩ · · · ∩ 𝐴𝑚−1] .

Note that

Prob[𝜒F (𝑏′ℓ) ∈ W∗ (𝐹) | (𝜒F (𝑐ℓ) = 𝐹)∩𝐴1∩𝐴2∩· · ·∩𝐴ℓ−1] = Prob[𝜒F (𝑏′ℓ) ∈ W∗ (𝐹) |𝜒F (𝑐ℓ) = 𝐹],

since conditioned on 𝜒F (𝑐ℓ) = 𝐹 the events 𝜒F (𝑐′𝑖) ∈ W∗ (𝐹) and 𝐴1∩ 𝐴2∩ . . . 𝐴ℓ−1
are independent.

Thus, by definition ofW∗ (𝐹), we have

Prob[𝜒F (𝑏′ℓ) ∈ W∗ (𝐹) |𝜒F (𝑐𝑖) = 𝐹)] ≤ Prob[𝜒 ∩W∗ (𝐹) ≠ ∅|𝜒F (𝑐ℓ) = 𝐹)]
≤ 𝛿

Observe that 𝐴ℓ is exactly the union over the events 𝜒F (𝑐ℓ) = 𝐹 over 𝐹 ∈ S and
𝜒F (𝑐′ℓ) ∈ W∗ (𝐹). Since these events are disjoint, we have that the following series of
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16 T. Jiang, S. Longbrake, S. Spiro, and L. Yepremyan

inequalities hold:

Prob[𝐴ℓ |𝐴1 ∩ 𝐴2 ∩ · · · ∩ 𝐴ℓ−1] =
∑︁
𝐹∈S

(
Prob[𝜒F (𝑐ℓ) = 𝐹 |𝐴1 ∩ 𝐴2 ∩ . . . 𝐴ℓ−1]

· Prob[𝜒F (𝑐′ℓ) ∈ W∗ (𝐹) | (𝜒F (𝑐𝑖) = 𝐹) ∩ 𝐴1 ∩ 𝐴2 ∩ . . . 𝐴ℓ−1]
)

≤
∑︁
𝐹∈S

Prob[𝜒F (𝑐ℓ) = 𝐹 |𝐴1 ∩ 𝐴2 ∩ . . . 𝐴ℓ−1]𝛿

≤ 𝛿.

Therefore,

Prob[𝐴1 ∩ 𝐴2 . . . 𝐴𝑚] = Prob[𝐴1] Prob[𝐴1 |𝐴2] . . . Prob[𝐴𝑚 |𝐴1 ∩ 𝐴2 ∩ . . . 𝐴𝑚−1]
≤ 𝛿𝑚.

■

We now prove the last part of the lemma. Note that for each chain 𝜒 ∈ C 𝑗1 (↓) which sat-
isfies ®𝑏(𝜒) = ®𝑐, all of the sets of the form 𝜒F (𝑐ℓ) are (𝑖, 𝛿)-lower bad for some 𝑖 ∈ [𝑞]
with 𝜒F (𝑐′ℓ) in the corresponding setW(𝐹, 𝑖,T 𝑗−1 [𝑞]). Thus, applying Lemma 4.12
with S =

⋃
𝜒∈C 𝑗1 (𝜒)

𝐵 𝑗−1 (𝜒, 𝑖, ↓) the set of (𝑖, 𝛿)-lower bad members, and taking
W∗ (𝐹) = W(𝐹, 𝑖,T 𝑗−1 [𝑞]), we have that 𝜒 satisfies the conclusion of Lemma 4.12.
Thus, there are no more than 𝛿𝑚𝑛! such chains. Summing over all 𝑖, there are at most
𝑞𝛿𝑚𝑛! many chains satisfying ®𝑏(𝜒) = ®𝑐.

Lemma 4.13. For each 1 ≤ 𝑗 ≤ |𝑃 |,∑︁
𝜒∈C 𝑗1 (↓)

|T 𝑗−1 (𝜒) | ≤ 𝜀

18|𝑃 | 𝑛!.

Proof Let ®𝑏 be the function from Lemma 4.9.

Recall that Lemma 4.9.3 states that for all 𝑚 ∈ [𝑛] , each bad profile of length 2𝑚 is a
member of

([𝐾𝑚]
2𝑚

)
. This together with part Lemma 4.9.4 implies
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∑︁
𝜒∈C 𝑗1 (↓)

|T 𝑗−1 (𝜒) | ≤
𝑛∑︁
𝑚=1

∑︁
®𝑐∈( [𝐾𝑚]

2𝑚 )

∑︁
𝜒: ®𝑏 (𝜒)=®𝑐

|T 𝑗−1 (𝜒) |

≤
𝑛∑︁
𝑚=1

∑︁
®𝑐∈( [𝐾𝑚]

2𝑚 )

∑︁
𝜒: ®𝑏 (𝜒)=®𝑐

|T 0 (𝜒) |

≤
𝑛∑︁
𝑚=1

∑︁
®𝑐∈( [𝐾𝑚]

2𝑚 )

∑︁
𝜒: ®𝑏 (𝜒)=®𝑐

𝐾𝑚 (By Lemma 4.9.3)

≤
𝑛∑︁
𝑚=1

∑︁
®𝑏∈( [𝐾𝑚]

2𝑚 )
(𝛿𝑚𝑛!)𝑞𝐾𝑚

≤ 𝑞

𝑛∑︁
𝑚=1

2𝐾𝑚𝐾𝑚𝛿𝑚𝑛!

≤ 2𝐾+1𝐾𝑞𝛿𝑛!,

provided that 𝛿 < 1
2𝐾+2𝐾

. Thiswill be less than 𝜀
18 |𝑃 | provided that 𝛿 <

𝜀
18 |𝑃 |2𝐾+1𝐾𝑞

. ■

By a similar argument,

Lemma 4.14. For each 1 ≤ 𝑗 ≤ |𝑃 |,∑︁
𝜒∈C 𝑗1 (↑)

T 𝑗−1 (𝜒) ≤ 𝜀

18|𝑃 | 𝑛!.

We are now in a position to prove our main theorem in this section.

Proof For each 𝑗 ∈ |𝑃 |, when building T 𝑗 from T 𝑗−1 we made sure to remove all
the members that are either (𝑖, 𝛿)-lower-bad or (𝑖, 𝛿)-upper-bad relative to T 𝑗−1 [𝑞]
for any 𝑖 ∈ [𝑞]. So every member 𝐹 on a 𝑞-chain in T 𝑗 [𝑞] is 𝛿-robust with respect to
T 𝑗−1 [𝑞].

We will inductively prove for all 0 ≤ 𝑗 ≤ |𝑃 | that

T 𝑗 is 𝑞-strong and |T 𝑗 | ≥
(
1 − 1

3|𝑃 |

) 𝑗
|T 0 |,

The base case holds by our conditions. Assume that we have proven the statements for
all ℓ ≤ 𝑗 − 1, which in particular means |T 𝑗−1 | ≥ 2

3𝜀𝑛! since |T
0 | ≥ 𝜀𝑛! by hypothesis.

Consider any 𝑗 ∈ [|𝑃 |]. Let 𝜒 be a full chain in B𝑛 with T 𝑗 (𝜒) ≠ ∅. Then by our
process, this means that 𝜒 ∈ Cℓ2 for each ℓ = 1, . . . , 𝑗 − 1. If T 𝑗 (𝜒) = T 𝑗−1 (𝜒), then
by induction hypothesis, |T 𝑗 (𝜒) | ≥ 𝑞. Hence, wemay assume thatT 𝑗−1 (𝜒) contains at
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least one badmember. If |T 𝑗−1 (𝜒) | < Δ, then 𝜒would have been inC 𝑗1 , a contradiction.
So |T 𝑗−1 (𝜒) | ≥ Δ. By definition of 𝜒 ∈ C 𝑗2 , we have by Lemma 4.8 that

|T 𝑗 (𝜒) | ≥
(
1 − 2

Δ

)
|T 𝑗−1 (𝜒) | ≥ Δ − 2 ≥ 𝑞.

Thus, T ( 𝑗 ) is 𝑞-strong. Furthermore,

|T 𝑗 | =
∑︁
𝜒∈B𝑛

|T 𝑗 (𝜒) | ≥
∑︁
𝜒∈B𝑛

|T 𝑗−1 (𝜒) | −
∑︁
𝜒∈C 𝑗2

|𝐵 𝑗−1 (𝜒) | −
∑︁

𝜒∈𝐶 𝑗1 (↓)

|T 𝑗−1 (𝜒) | −
∑︁

𝜒∈𝐶 𝑗1 (↑)

|T 𝑗−1 (𝜒) |

≥
∑︁
𝜒∈B𝑛

|T 𝑗−1 (𝜒) | − 2
Δ

∑︁
𝜒∈B𝑛

|T 𝑗−1 (𝜒) | − 𝜀

9|𝑃 | 𝑛! (By Lemma 4.13 and Lemma 4.14)

≥ |T 𝑗−1 | − 1
3|𝑃 | |T

𝑗−1 |,

where in this last step used Δ ≥ 12|𝑃 | and that inductively 2
3𝜀𝑛! ≤ |T 𝑗−1 |.

Thus, we have for all 1 ≤ 𝑗 ≤ |𝑃 |,

|T 𝑗 | ≥
(
1 − 1

3|𝑃 |

) |𝑃 |
|T 0 | ≥ 2

3
|T 0 | ≥ 2𝜀

3
𝑛!,

completing the proof. ■

Finally, we combine all of the results we have established up to this point into a single
statement. Also note that the second part of this result is not needed for our proofs, but
we include it in the statement since it adds no extra difficulty to the proof and may be
useful for future applications.

Theorem 4.15. For all integers 𝑞 ≥ 1 and reals 𝜀 > 0, there exists some 𝛿 > 0 such that
the following holds. If F ⊆ B̃𝑛 is a family with 𝜇(F ) ≥ 𝑞 − 1 + 𝜀, then there exists a nested
sequence of 𝑞-marked chainsM |𝑃 | ⊆ M |𝑃 |−1 ⊆ · · · ⊆ M0 such that for all 𝑗 ∈ [|𝑃 |] we
have:

• For each (𝜒,𝑄) ∈ M 𝑗 and 𝐹 ∈ 𝑄, we have that 𝐹 is 𝛿-robust with respect toM 𝑗−1.
• For each 𝑖 ∈ [𝑞], we have

|L𝑖 (M 𝑗 ) | ≥ 2𝜀
3𝑞

min
𝐹∈F

(
𝑛

|𝐹 |

)
.

Proof By Lemma 4.2 there exists a 𝑞-strong 1-marked family T 0 from F with
|T 0 | ≥ 𝜀𝑛!. We can thus apply Theorem 4.7 with this T 0 to obtain a nested sequence
T |𝑃 | ⊆ · · · ⊆ T 0 of 𝑞-strong 1-marked chain families such that property 1 holds for
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M 𝑗 := T 𝑗 [𝑞]. Moreover, Theorem 4.7 guarantees |T 𝑗 | ≥ |T |𝑃 | | ≥ 2𝜀
3 𝑛!, so applying

Lemma 4.3 to T 𝑗 gives property 2, completing the proof. ■

4.3 Tools for Induced Posets

Throughout this subsection, let 𝑃 be a fixed tree poset of height 𝑘 ≤ 𝑞. Given a set
𝐹 ∈ B𝑛, we let𝑈 (𝐹) = {𝑆 ∈ B𝑛 : 𝑆 ⊇ 𝐹} and 𝐷 (𝐹) = {𝑆 ∈ B𝑛 : 𝑆 ⊆ 𝐹}. If S is a
subfamily of 𝐵𝑛 we let

𝑈 (S) =
⋃
𝑆∈S

𝑈 (𝑆) and 𝐷 (S) =
⋃
𝑆∈S

𝐷 (𝑆)

Let

Comp(S) = 𝑈 (S) ∪ 𝐷 (S).

Note that Comp(S) is the set of members ofB𝑛 which comparable to some member of
S.

Furthermore, given a set 𝐹 and family S such that S ∩𝑈 (𝐹) = ∅, we set:

𝐷∗ (𝐹,S) = (𝐷 (𝐹) \ {𝐹}) ∩ Comp(S) ∩ B̃𝑛

and if S ∩ 𝐷 (𝐹) = ∅

𝑈∗ (𝐹,S) = (𝑈 (𝐹) \ {𝐹}) ∩ Comp(S) ∩ B̃𝑛

We call these sets the forbidden neighborhood of S with respect to 𝐹 . We note that these
notions are needed only for the induced part of our proof. To that end, we need two
lemmas from [8].

Lemma 4.16. [Lemma 3.1 in [8]] Let 𝐹 ∈ B̃𝑛,S ⊆ B̃𝑛 where S ∩ 𝑈 (𝐹) = ∅ and
|S| ≤ 𝑛/6. Let 𝜒 be a uniformly random full chain in C. Then,

Prob[𝜒 ∩ 𝐷∗ (𝐹,S) ≠ ∅|𝐹 ∈ 𝜒] ≤ 39|S|
√
𝑛 ln 𝑛

𝑛

Lemma 4.17. [Lemma 3.2 in [8]] Let 𝐹 ∈ B̃𝑛,S ⊆ B̃𝑛 where S ∩ 𝐷 (𝐹) = ∅ and
|S| ≤ 𝑛/6. Let 𝜒 be a uniformly random full chain in C. Then,

Prob[𝜒 ∩𝑈∗ (𝐹,S) ≠ ∅|𝐹 ∈ 𝜒] ≤ 39|S|
√
𝑛 ln 𝑛

𝑛
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LetM be a family of 𝑞-marked chains. Let 𝑖 ∈ [𝑞] , 𝐹 ∈ B𝑛. Recall that for each 𝜒 ∈ C,
we letM(𝜒, 𝐹, 𝑖) denote the set of all (𝜒,𝑄) ∈ M such that 𝐹 is the 𝑖-th member of
𝑄, and we letM(𝐹, 𝑖) = ⋃

𝜒M(𝜒, 𝐹, 𝑖).

We say a family F ⊆ B𝑛 is ℓ-gapped if for every 𝐹, 𝐺 ∈ F , with 𝐹 ⊊ 𝐺 , |𝐺 − 𝐹 | ≥ ℓ.
For 𝑞 ≥ 1, we say that a 𝑞-marked chain familyM with markers from F is ℓ-gapped if
F is ℓ-gapped.

Definition 4.18. Fix 𝛾 > 0. Let 𝑖, 𝑠 ∈ [𝑞] with 𝑖 < 𝑠. We say that 𝐹 ∈ L𝑖 (M) is
(𝑖, 𝑠, 𝛾)-bad with respect to an ℓ-gapped family M , if there exist two families of sets
W1,W2 ⊆ B̃𝑛 such that the following conditions hold.

(1) W1 ∩𝑈 (𝐹) = ∅ and |W1 | ≤ |𝑃 |.
(2) |W2 | ≤ 𝛾𝑛ℓ (𝑠−𝑖) .
(3) For each (𝜒,𝑄) ∈ M(𝐹, 𝑖), either𝑄 ∩ 𝐷∗ (𝐹,W1) ≠ ∅ or the 𝑠th member of𝑄

is inW2.

Definition 4.19. Similarly for 𝑖, 𝑠 ∈ [𝑞] with 𝑖 > 𝑠, we say that 𝐹 ∈ L𝑖 (M) is (𝑖, 𝑠, 𝛾)-
bad with respect to an ℓ-gapped familyM if there exists two families of setsW1,W2 ⊆
B̃𝑛 such that the following conditions hold.

(1) W1 ∩ 𝐷 (𝐹) = ∅ and |W1 | ≤ |𝑃 |.
(2) |W2 | ≤ 𝛾𝑛ℓ (𝑖−𝑠) .
(3) For each (𝜒,𝑄) ∈ M(𝐹, 𝑖), either𝑄 ∩𝑈∗ (𝐹,W1) ≠ ∅ or the 𝑠th member of𝑄

is inW2.

This next lemma connects this newly defined notion of badness with the badness notion
defined in the previous section.

Lemma 4.20. For every 𝛿 > 0, and every ℓ, 𝑞 positive integers, there exists 𝛾 = 𝛾(𝛿, ℓ, 𝑞)
such that the following holds for every 𝑖, 𝑠 ∈ [𝑞] such that 𝑖 ≠ 𝑠. LetM be a ℓ-gapped family
of 𝑞-marked chains with markers from B̃𝑛 and let 𝐹 ∈ L𝑖 (M). Suppose 𝐹 is (𝑖, 𝑠, 𝛾)-bad
with respect toM and that 𝑛 is sufficiently large.

• If 𝑖 < 𝑠, then 𝐹 is (𝑖, 𝛿)-lower bad with respect toM.
• If 𝑖 > 𝑠, then 𝐹 is (𝑖, 𝛿)-upper bad with respect toM.

Proof We will only prove the case 𝑖 < 𝑠, the other case is analogous. Because 𝐹 is
(𝑖, 𝑠, 𝛾)-bad, there exist two setsW1,W2 satisfying the conditions in the definition and
we will chooseW2 to be minimal i.e. noW′

2 ⊊W2 satisfies condition three withW1.
Observe that this minimality ofW2 implies that every 𝐷 ∈ W2 is in the 𝑠th position of
some 𝑞 chain inM(𝐹, 𝑖).
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We will show that 𝐹 is (𝑖, 𝛿)-lower bound with respect to M with 𝑊 := W2 ∪
𝐷∗ (𝐹,W1) being an (𝑖, 𝛿)-lower witness. Since M is ℓ-gapped and for all 𝐷 ∈ W2,
𝐷 is in the 𝑠th position of some 𝑞-chain inM(𝐹, 𝑖), we have |𝐹 − 𝐷 | ≥ ℓ(𝑠 − 𝑖). Since
𝑛 is sufficiently large and 𝐹, 𝐷 ∈ B̃𝑛, |𝐹 − 𝐷 | ≤ 𝑛/6. Thus for a uniformly chosen
random full chain 𝜒 ∈ C we have

Prob[𝜒 ∩W2 ≠ ∅|𝐹 ∈ 𝜒] ≤
∑︁
𝐷∈W2

1( |𝐹 |
|𝐹−𝐷 |

) by (5)

≤ |W2 |
1( 𝑛/3

ℓ (𝑠−𝑖)
)

≤ 𝛾𝑛ℓ (𝑠−𝑖) (3ℓ(𝑠 − 𝑖))ℓ (𝑠−𝑖)𝑛−ℓ (𝑠−𝑖)

≤ 𝛾(3ℓ(𝑠 − 𝑖))ℓ (𝑠−𝑖)

≤ 𝛿

2
,

by the choice of 𝛾 = 𝛿

2(3ℓ𝑞)ℓ𝑞 . On the other hand by Proposition 4.16,

Prob[𝜒 ∩ 𝐷∗ (𝐹,W1) ≠ ∅|𝐹 ∈ 𝜒] ≤ 39|𝑃 |
√
𝑛 ln 𝑛
𝑛

≤ 𝛿

2
.

Thus, by the union bound,

Prob[𝜒 ∩W ≠ ∅|𝐹 ∈ 𝜒] ≤ 𝛿.

This implies that 𝐹 is (𝑖, 𝛿)-lower bad, because by definition, every (𝜒,𝑄) ∈ M(𝐹, 𝑖)
intersects𝑊 . ■

5 Embedding Tree Posets

In this section we use the tools developed in the previous section to prove our twomain
supersaturation results: Theorem 1.3 and a balanced supersaturation version of Corol-
lary 1.4 stated formally as Theorem 5.6. Both of these proofs will follow essentially the
same scheme for embedding a tree poset 𝑃 into a large family F one member at a time
by using Theorem 4.15 to show that at every step, we always have many choices for how
to embed the next member of 𝑃 even when we forbid some number of “bad” choices in
F .

5.1 Embedding Process

We establish the following general embedding result Theorem 5.2 using Theorem 4.15.
It basically states that given some sufficiently sparse forbidden set Γ ⊆ 2F , we can grow
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many induced copies of 𝑃 not in Γ. For the non-balanced supersaturation we actually
do no need to have such a forbidden set (i.e. Γ = ∅) but for the balanced supersaturation
result, Γ will be the upward closure of all the sets which are already contained in too
many induced copies (i.e. saturated sets) of 𝑃 in the current collection.

Definition 5.1. Given an ℓ-gapped family F , we say a collection Γ ⊆ 2F is a (𝛾, ℓ, F )-
bounded family if it satisfies the two properties below

(1) We have {𝐹} ∉ Γ for all 𝐹 ∈ F .
(2) IfD ∉ Γ, then the number of 𝐹 ∈ F such that {𝐹} ∪ D ∈ Γ is less than 𝛾𝑛ℓ .

Theorem 5.2. Let 𝑃 be a tree poset of height 𝑘 . Let 𝑞 ≥ 𝑘 and ℓ be positive integers and
𝜀 > 0 then there exists a constant 𝛾 = 𝛾(𝜀, 𝑞, ℓ) such that the following holds for any 𝑣 ∈ 𝑃
and for any r : 𝑃 → [𝑞] a poset homomorphism. Let F ⊆ B̃𝑛 be an ℓ-gapped family and has
Lubell weight 𝜇(𝐹) ≥ 𝑞 − 1 + 𝜀 and Γ a ( 𝛾2 , ℓ, F )- bounded family. Then, there is 𝐹 ∈ F
such that the number of injective induced homomorphisms 𝜑 : 𝑃 → F ′ satisfying 𝜑(𝑃) ∉ Γ

and 𝜑(𝑣) = 𝐹 is at least (𝛾
2

) |𝑃 |−1 ©­«
∏

𝑥𝑦∈𝐻 (𝑃)
𝑛ℓ |r(𝑦)−r(𝑥 ) |

ª®¬ .
Proof Because𝑃 is a tree poset, there exists an ordering 𝑣1, 𝑣2, . . . 𝑣 |𝑃 | of themembers
of 𝑃 with 𝑣1 = 𝑣 such that every member 𝑣 𝑗 with 𝑗 ≥ 2 has exactly one neighbor 𝑣 𝑗′
with 𝑗 ′ < 𝑗 in the Hasse diagram of 𝑃, and we call this 𝑣 𝑗′ the parent of 𝑣 𝑗 .

Apply Theorem 4.15 to F with 𝑞, 𝜀 to find a 𝛿 = 𝛿(𝜀, 𝑞) > 0 and a nested sequence of
𝑞-marked chainsM |𝑃 | ⊆ M |𝑃 |−1 ⊆ · · · ⊆ M0 with markers from F such that for all
𝑗 ∈ [|𝑃 |] we have that for each (𝜒,𝑄) ∈ M 𝑗 and 𝐹 ∈ 𝑄, we have that 𝐹 is 𝛿-robust
with respect toM 𝑗−1.

Fix 𝛾 be obtained from Lemma 4.20 applied with 𝑞, ℓ, 𝛿.

Fix 𝐹0 ∈ Lr(𝑣1 ) (M |𝑃 | ) and define our initial embedding 𝜑1 (𝑣1) := 𝐹0. To define the
final embedding, we iteratively extend 𝜑 𝑗 : {𝑣1, 𝑣2, . . . , 𝑣 𝑗 } → F to 𝜑 𝑗+1 maintaining
the following properties.

(𝐶1): Let 𝐻 𝑗 (𝑃) := 𝐻 (𝑃) [{𝑣1, 𝑣2, . . . , 𝑣 𝑗 }] , that is the Hasse diagram induced by the
first 𝑗 elements of 𝑃. For all edges 𝑣𝑎𝑣𝑏 in𝐻 𝑗 (𝑃), there exists a (𝜒,𝑄) inM |𝑃 |− 𝑗

with 𝜑 𝑗 (𝑣𝑎) in the r(𝑣𝑎)th position of𝑄 and 𝜑 𝑗 (𝑣𝑏) in the r(𝑣𝑏)th position of𝑄.
(𝐶2): For all noncomparable pairs 𝑣𝑎, 𝑣𝑏 ∈ {𝑣1, . . . , 𝑣 𝑗 }2, 𝜑 𝑗 (𝑣𝑎) and 𝜑 𝑗 (𝑣𝑏) are not

comparable in B𝑛.
(𝐶3): {𝜑 𝑗 (𝑣1), 𝜑 𝑗 (𝑣2), . . . 𝜑 𝑗 (𝑣 𝑗 )} ∉ Γ.
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Note that these properties are satisfied for 𝜑1, since (𝐶1), (𝐶2) both hold vacuously and
(𝐶3) holds because 𝐹0 ∉ Γ by Definition 5.1 part 1.

Let us emphasize that the choice of 𝐹0 and (𝐶1) ensures 𝜑 𝑗 (𝑣𝑐) ∈ Lr(𝑣𝑐 ) (M |𝑃 |− 𝑗 ) for
all 𝑣𝑐 ∈ {𝑣1, . . . 𝑣 𝑗 }. This will be useful later.

Furthermore, (𝐶1), (𝐶2) ensures the poset induced by 𝜑 𝑗+1 (𝑣1), 𝜑 𝑗 (𝑣2), . . . , 𝜑 𝑗 (𝑣 𝑗 )
has Hasse diagram isomorphic to 𝐻 𝑗 (𝑃). As two posets are isomorphic if and only if
theirHasse diagrams are isomorphic, by the end of the processwewill obtain an induced
copy 𝑃′ of 𝑃. Let us now show that indeed these partial embeddings are possible to
construct, and count how many choices we have at each step.

Now let 𝑗 ≥ 1 and suppose (𝐶1), (𝐶2), and (𝐶3) hold for 𝜑 𝑗 . We want to extend 𝜑 𝑗 to
a partial embedding 𝜑 𝑗+1 so that (𝐶1) − (𝐶3) hold for 𝜑 𝑗+1.

For notational convenience let 𝑥 := 𝑣 𝑗+1, and let 𝑦 denote the unique parent of 𝑥 which
has already been embedded.Wewish to find at least oneway of embedding 𝑥. For further
convenience, we only consider the case 𝑦 >𝑃 𝑥, the other case being analogous. This in
particular implies r(𝑦) < r(𝑥).

Recall the formal definition of 𝐷∗ (𝐹,S) from Section 4.3 for a member 𝐹 ∈ F and a
familyS which is simply the set of all members 𝑆 ∈ S which are downsets of 𝐹 and are
comparable to some set of S. Furthermore, let M̂ |𝑃 |− 𝑗−1 := M |𝑃 |− 𝑗−1 (𝜑 𝑗 (𝑦), r(𝑦)),
that is the family of all 𝑞-marked chains inM |𝑃 |− 𝑗−1 which have 𝜑 𝑗 (𝑦) in their r(𝑦)th
position. Let P 𝑗 = {𝜑 𝑗 (𝑧) : 𝑧 ≱𝑃 𝑦, 𝑧 ∈ {𝑣1, 𝑣2, . . . , 𝑣 𝑗 }}, that is the set of all images
of currently embedded elements of 𝑃 which are either below 𝑦 or incomparable with 𝑦,
and thus not cannot be comparable with 𝜑 𝑗+1 (𝑥) because in the embedding 𝜑 𝑗 , 𝑥 has
the unique neighbor 𝑦.

The following set encodes the choices for 𝑥 that would preserve 𝜑 𝑗+1 being an induced
homomorphism. Now let

A = Lr(𝑥 ) (M̂ |𝑃 |− 𝑗−1) − 𝐷∗ (𝜑 𝑗 (𝑦),P 𝑗 ),

i.e. this is the set of 𝐹 which are not in the forbidden neighborhood of P 𝑗 and which
are in the r(𝑥)th position of some 𝑞-marked chain ofM |𝑃 |− 𝑗−1 which has 𝜑 𝑗 (𝑦) in the
r(𝑦)th position.

Claim.

|A| ≥ 𝛾𝑛ℓ (r(𝑥 )−r(𝑦) )

■
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Proof Suppose |A| < 𝛾𝑛ℓ (r(𝑥 )−r(𝑦) ) . We derive a contradiction by showing this
would imply 𝜑 𝑗 (𝑦) is (r(𝑦), r(𝑥), 𝛾)-bad (recall Definition 4.18) with W1 = P 𝑗 and
W2 = A. This is a contradiction because Lemma 4.20 implies that 𝜑 𝑗 (𝑦) is (r(𝑦), 𝛿)-
bad with respect toM |𝑃 |− 𝑗−1. However, this cannot happen since we constructed our
marked chain families usingTheorem4.15which guarantees that 𝜑 𝑗 (𝑦) is 𝛿-robustwith
respect toM |𝑃 |− 𝑗−1 (see Definition 4.6).

Note that by definition of P 𝑗 we have P 𝑗 ∩ 𝑈 (𝜑 𝑗 (𝑦)) = ∅ and |P 𝑗 | ≤ |𝑃 |, and
by hypothesis we are assuming |W2 | ≤ 𝛾𝑛ℓ (r(𝑥 )−r(𝑦) ) . It thus remains to check the
last condition in the definition of (r(𝑦), r(𝑥), 𝛾)-badness, i.e. that for each (𝜒,𝑄) ∈
𝑀 |𝑃 |− 𝑗−1, either𝑄∩𝐷∗ (𝜑 𝑗 (𝑦),P 𝑗 ) ≠ ∅ or𝑄 contains amember fromA in the r(𝑥)th
position.

Consider any (𝜒,𝑄) ∈ M̂ |𝑃 |− 𝑗−1. If𝑄 ∩ 𝐷∗ (𝜑 𝑗 (𝑦),P 𝑗 ) = ∅, then the r(𝑥)th member
of 𝑄 lies in A by definition of A. Therefore, every (𝜒,𝑄) ∈ M̂ |𝑃 |− 𝑗−1 has 𝑄 either
intersecting 𝐷∗ (𝜑 𝑗 (𝑦),P 𝑗 ) orA. ■

Let A′ = A − {𝐹 ∈ F : {𝐹, 𝜑 𝑗 (𝑣1), 𝜑 𝑗 (𝑣2), . . . 𝜑 𝑗 (𝑣 𝑗 )} ∈ Γ}. By (𝐶3) and Defini-
tion 5.1, |A′ | ≥ 1

2𝛾𝑛
ℓ (r(𝑥 )−r(𝑦) ) . Fix one such 𝐹 ∈ A′. We claim that by embedding

𝑥 into any set in A′, we will extend 𝜑 𝑗 to 𝜑 𝑗+1, satisfying all the desired properties
(𝐶1) − (𝐶3). Indeed, define 𝜑 𝑗+1 (𝑣𝑎) = 𝜑 𝑗 (𝑣𝑎) for all 𝑎 ∈ [ 𝑗] and 𝜑 𝑗+1 (𝑥) = 𝐹 . Let us
now check that 𝜑 𝑗+1 satisfies (𝐶1) − (𝐶3).

SinceM |𝑃 |− 𝑗 ⊆ M |𝑃 |− 𝑗−1, for all 𝑎, 𝑏 ∈ [ 𝑗] , (𝐶1) and (𝐶2) hold for all such pairs so
we only need to check that these two conditions are satisfied for pairs of form (𝑥, 𝑣𝑎)
for any 𝑎 ∈ [ 𝑗].

By definition ofA, 𝜑 𝑗+1 (𝑥) is in the r(𝑥)th position of some (𝜒,𝑄) ∈ M |𝑃 |− 𝑗−1 which
has 𝜑 𝑗+1 (𝑦) in the r(𝑦)th position.

Let 𝑎 ∈ [ 𝑗] , and suppose 𝑣𝑎 is not comparable with 𝑥. We would like to show that
𝜑 𝑗+1 (𝑣𝑎) and 𝐹 are incomparable. It is easy to see that 𝑣𝑎 ≱ 𝑦, so 𝜑 𝑗+1 (𝑣𝑎) = 𝜑 𝑗 (𝑣𝑎) ∈
P 𝑗 . Since 𝐹 ∈ 𝐷 (𝜑 𝑗 (𝑦)) \𝐷∗ (𝜑 𝑗 (𝑦),P 𝑗 ) by our choice, 𝐹 is not comparable with any
element in P 𝑗 , in particular, 𝜑 𝑗+1 (𝑣𝑎).

To see 𝜑 𝑗+1 satisfies (𝐶3), notice that 𝐹 was chosen so that
{𝐹, 𝜑 𝑗 (𝑣1), 𝜑 𝑗 (𝑣2), . . . 𝜑 𝑗 (𝑣 𝑗 )} ∉ Γ.

Finally, to check that the desired counting bound does hold, it is enough to observe
that at every step while going from 𝜑 𝑗 to 𝜑 𝑗+1 starting at 𝑗 ≥ 2 we had at least
1
2𝛾𝑛

ℓ (r(𝑥 )−r(𝑦) ) many choices to embed 𝑥 = 𝑣 𝑗+1, where 𝑦 is the parent of 𝑥 among
already embedded vertices 𝑣1, 𝑣2, . . . , 𝑣 𝑗 . Taking the product over all 𝑗 = 2, . . . , |𝑃 | −1
gives us the desired result.
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5.2 Proof of Theorem 1.3

We begin by proving an analogue of Theorem 1.3 in the setting of Lubell weight and
ℓ-gapped families and deduce Theorem 1.3 from it.

Theorem 5.4. For every tree poset 𝑃 of height 𝑘 , positive integers 𝑞, ℓ with 𝑞 ≥ 𝑘 , and
𝜀 > 0, there exists 𝛾 = 𝛾(𝜀, 𝑞, ℓ) such that the following holds for any r : 𝑃 → [𝑞] a poset
homomorphism. Let F ⊆ B̃𝑛 be an ℓ-gapped family such that for all S ⊆ F with |S| = 𝑁
we have 𝜇(F − S) ≥ 𝑞 − 1 + 𝜀. Then, the number of induced copies of 𝑃 in F is at least(𝛾

2

) |𝑃 |−1 ©­«
∏

𝑥𝑦∈𝐻 (𝑃)
𝑛ℓ |r(𝑦)−r(𝑥 ) |

ª®¬ · 𝑁.
Proof Let 𝑣 be any vertex of 𝑃 and 𝛾 = 𝛾(𝜀, 𝑞, ℓ) the real number returned by
Theorem 5.2 applied with 𝜀, 𝑞, ℓ.

Assume on the contrary that F contains less than(𝛾
2

) |𝑃 |−1 ©­«
∏

𝑥𝑦∈𝐻 (𝑃)
𝑛ℓ |r(𝑦)−r(𝑥 ) |

ª®¬ · 𝑁,
induced copies of 𝑃.

Let Fb be the set of elements in F which are embedded as 𝑣 in more than( 𝛾
2
) |𝑃 |−1 ∏

𝑥𝑦∈𝐻 (𝑃) 𝑛
ℓ |r(𝑦)−r(𝑥 ) | induced copies of 𝑃.

Since by assumption, we know that

|Fb | ·
(𝛾
2

) |𝑃 |−1 ∏
𝑥𝑦∈𝐻 (𝑃)

𝑛ℓ |r(𝑦)−r(𝑥 ) | ≤
(𝛾
2

) |𝑃 |−1 ©­«
∏

𝑥𝑦∈𝐻 (𝑃)
𝑛ℓ |r(𝑦)−r(𝑥 ) |

ª®¬ · 𝑁,
=⇒ |Fb | ≤ 𝑁.

Let F ′ = F − Fb. Then, 𝜇(F ′) ≥ 𝑞 − 1 + 𝜀 by assumption.

Now, apply Theorem 5.2 to F ′ with Γ = ∅, 𝑞, ℓ, 𝜀. Then, there is 𝐹 ∈ F playing the
role of 𝑣 in at least (𝛾

2

) |𝑃 |−1 ∏
𝑥𝑦∈𝐻 (𝑃)

𝑛ℓ |r(𝑦)−r(𝑥 ) | ,

induced copies of 𝑃. This contradicts the construction of F ′, and so F contains at least

(𝛾
2

) |𝑃 |−1 ©­«
∏

𝑥𝑦∈𝐻 (𝑃)
𝑛ℓ |r(𝑦)−r(𝑥 ) |

ª®¬ · 𝑁,
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induced copies of 𝑃, completing the proof of the theorem.

■

Lastly, we will need the following upper bound on 𝑀∗ (𝑛, 𝑞, 𝑃) in terms of all poset
homomorphisms r : 𝑃 → [𝑞]. Recall that 𝑀∗ (𝑛, 𝑞, 𝑃) is the number of copies of 𝑃 in
the 𝑞 middle levels of B𝑛.

Lemma 5.5. If 𝑃 is a tree poset and 𝑞 is any positive integer, then

𝑀∗ (𝑛, 𝑞, 𝑃) ≤
∑︁
r

∏
𝑥𝑦∈𝐻 (𝑃)

𝑛 |r(𝑥 )−r(𝑦) | ·
(
𝑛

𝑛/2

)
,

where the sum ranges over all poset homomorphisms r : 𝑃 → [𝑞].

Proof For ease of notation, letM𝑛,𝑞 be themiddle 𝑞 layers ofB𝑛. Given a poset homo-
morphism r : 𝑃 → [𝑞] , we say that a copy 𝑃′ of 𝑃 inM𝑛,𝑞 is of type-𝑟 if for each 𝑥 ∈ 𝑃,
the member 𝐹𝑥 ∈ 𝑃′ corresponding to 𝑥 lies in the r(𝑥)th level ofM𝑛,𝑞 . Observe that
every copy of 𝑃 ∈ M𝑛,𝑞 must be of type r for some r. As such, to prove the result it
will suffice to show that for all homomorphisms r, the number of induced copies of 𝑃
or type r inM𝑛,𝑞 is at most ∏

𝑥𝑦∈𝐻 (𝑃)
𝑛 |r(𝑥 )−r(𝑦) | ·

(
𝑛

𝑛/2

)
.

Let 𝑥1, . . . , 𝑥 |𝑃 | be an ordering of 𝑃 such that for all 𝑗 ≥ 2 𝑥 𝑗 has a unique neighbour,
called the parent of 𝑥 𝑗 , among 𝑥1, . . . , 𝑥 𝑗−1 if we view 𝐻 (𝑃) as an undirected graph.
Note that such an ordering exists since 𝑃 is a tree poset. We can identify the copies of
𝑃 in M𝑛,𝑞 of type-r by tuples (𝐹1, . . . , 𝐹|𝑃 | ) of members of M𝑛,𝑞 such that the map
𝑓 (𝑥𝑖) = 𝐹𝑖 defines a copy of 𝑃 of type r. So, it is enough to upper bound the number of
such tuples.

Since 𝐹1 must be a member of the r(𝑥1)th layer ofM𝑛,𝑞 , the number of choices for 𝐹1
is at most

( 𝑛
𝑛/2

)
. Given that 𝐹1, . . . , 𝐹𝑗−1 have been selected, let 𝑥𝑖 be the parent of 𝑥 𝑗 .

If 𝑥𝑖 < 𝑥 𝑗 , then 𝐹𝑗 must be a set containing 𝐹𝑖 together with r(𝑥𝑖) − r(𝑥 𝑗 ) additional
elements from [𝑛] , and the number of such sets is at most 𝑛r(𝑥𝑖 )−r(𝑥 𝑗 ) . Similarly if 𝑥 𝑗 <
𝑥𝑖 then the number of choices for 𝐹𝑗 is at most 𝑛r(𝑥 𝑗 )−r(𝑥𝑖 ) . Multiplying the number of
choices for each step gives the total result, since each edge of 𝐻 (𝑃) is counted exactly
once by some 𝑛 |r(𝑥𝑖 )−r(𝑥 𝑗 ) | term. ■

With all of this established we can now complete the proof of our main supersaturation
theorem.
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Proof Using Chernoff bounds, it is standard [8, 21] to show that the number of sets
𝐹 ∈ B𝑛 with | |𝐹 | − 𝑛/2| > 2

√
𝑛 ln 𝑛 is 𝑜(

( 𝑛
𝑛/2

)
). Thus, we may assume F ⊆ B̃𝑛.

Note that F is one-gapped and for every subfamily S of size 𝑁 = 𝜀
2
( 𝑛
𝑛/2

)
, we have that

𝜇(F −S) ≥ 𝑞 − 1 + 𝜀
2 . Thus, applying Theorem 5.4 with F , 𝑞, ℓ = 1, 𝜀2 and taking the

maximum over r : 𝑃 → [𝑞] we have that the number of induced copies of 𝑃 in F is at
least

Ω
©­«max

r

∏
𝑥𝑦∈𝐻 (𝑃)

𝑛 |r(𝑦)−r(𝑥 ) | ·
(
𝑛

𝑛/2

)ª®¬ = Ω
©­«
∑︁
r

∏
𝑥𝑦∈𝐻 (𝑃)

𝑛 |r(𝑦)−r(𝑥 ) | ·
(
𝑛

𝑛/2

)ª®¬ = Ω (𝑀∗ (𝑛, 𝑞, 𝑃)) ,

where the first equality holds since there are at most |𝑃 |𝑞 = 𝑂𝑞,𝑃 (1) possible poset
homomorphisms r : 𝑃 → [𝑞] , and the second does because of Lemma 5.5. ■

5.3 Balanced Supersaturation

As mentioned above, a similar proof to that of Theorem 1.3 can be used to improve
Corollary 1.4 to a balanced supersaturation result. To state this formally, given a hyper-
graphH and a set of verticesD , we define the degree degH (D) ofD to be thenumber of
edges ofH containing the setD , and for an integer 𝑗 we define the maximum 𝑗-degree
as

Δ 𝑗 (H) := max
D⊆𝑉 (H) , |D |= 𝑗

degH (D).

Given a collectionH of induced copies of a poset 𝑃 in a family F , we can identifyH
as a |𝑃 |-uniform hypergraph with vertex set F and with hyperedges consisting of sets
of members of F which form an induced copy of 𝑃 in H . With this we can now state
our balanced supersaturation result, where here we recall that a family F is ℓ-gapped if
|𝐹 − 𝐺 | ≥ ℓ for all 𝐹, 𝐺 ∈ F with𝐺 ⊊ 𝐹 .

Theorem 5.6. For every tree poset 𝑃 with height 𝑘 , real number 𝜀 > 0, and integer ℓ; there
exists 𝛿 = 𝛿(𝜀, 𝑃, ℓ) such that the following holds. Let 𝑛 be sufficiently large and F ⊆ B̃𝑛
satisfy |F | ≥ (𝑘 − 1 + 𝜀)

( 𝑛
𝑛/2

)
, and suppose F is ℓ-gapped. Then there is a collectionH of

induced copies of 𝑃 from F satisfying

(1) |H | ≥ 𝛿 |𝑃 |𝑛ℓ ( |𝑃 |−1)
( 𝑛
𝑛/2

)
,

(2) Δ 𝑗 (H) ≤ (𝛿𝑛ℓ) |𝑃 |− 𝑗 for all 1 ≤ 𝑗 ≤ |𝑃 |.

Note that this in particular implies Corollary 1.4 since every F is 1-gapped.

Lemma5.7. For every tree poset𝑃with height 𝑘 and 𝜀 > 0, there exists a 𝛿 = 𝛿(𝜀, ℓ, 𝑃) such
that the following holds. Let 𝑛 is sufficiently large and F ⊆ B𝑛 satisfy |F | ≥ (𝑘−1+𝜀)

( 𝑛
𝑛/2

)
and suppose F is ℓ-gapped. IfH is a collection of copies of 𝑃 from F satisfying
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(P1). |H | ≤ 𝛿 |𝑃 |𝑛ℓ ( |𝑃 |−1)
( 𝑛
𝑛/2

)
,

(P2). For all 1 ≤ 𝑗 ≤ |𝑃 |, Δ 𝑗 (H) ≤ (𝛿𝑛ℓ) |𝑃 |− 𝑗 ,

then there exists an induced copy 𝑃′ of 𝑃 not inH such thatH ′ = H ∪ {𝑃′} satisfies

Δ 𝑗 (H ′) ≤ (𝛿𝑛ℓ) |𝑃 |− 𝑗

for all 1 ≤ 𝑗 ≤ |𝑃 |.

Observe that Theorem 5.6 follows immediately from repeatedly applying Lemma 5.7
until |H | ≥ 𝛿 |𝑃 |𝑛ℓ ( |𝑃 |−1)

( 𝑛
𝑛/2

)
, so it will suffice to prove this result.

Proof We say thatD ⊆ B𝑛 is saturated if 1 ≤ |D| ≤ |𝑃 | and

deg(D) = ⌊(𝛿𝑛ℓ) |𝑃 |− |D |⌋ .

We say a subfamily K ⊆ B𝑛 with |K | ≤ |𝑃 | is inadmissible if there exists a subfamily
D ⊆ K that is saturated. Otherwise, we sayK is admissible.

Observe that proving the lemma is equivalent to saying that there exists an admissible
set K which forms an induced copy of 𝑃 which is not already in H . To show this, we
will start by removing from F any 𝐹 such that {𝐹} is saturated, as no such 𝐹 can ever
be used in an admissibleK . For this we observe the following.

Claim. If Fsat ⊆ F denotes the set of 𝐹 ∈ F such that {𝐹} is saturated, then |Fsat | ≤
𝜀
2
( 𝑛
𝑛/2

)
. ■

Here and throughout the proof we will make frequent use of the inequality
⌊(𝛿𝑛ℓ) |𝑃 |−𝑖⌋ ≥ 1

2 (𝛿𝑛
ℓ) |𝑃 |−𝑖 for all 𝑖 ≤ |𝑃 |, since 𝑛 is sufficiently large.

Proof We first show that

⌊(𝛿𝑛ℓ) |𝑃 |−1⌋ · |Fsat | ≤
∑︁
𝐹∈Fsat

deg({𝐹}) ≤ |𝑃 | · |H |.

Indeed, the lower bound for the sum follows from the definition ofwhat itmeans for {𝐹}
to be saturated; the upper bound comes from the fact that the sum counts the number
of pairs (𝑃′, 𝐹) with 𝑃′ a copy of 𝑃 inH and 𝐹 ∈ 𝑃′ ∩ Fsat.

Using the inequality above together with (P1) shows that

1
2
(𝛿𝑛ℓ) |𝑃 |−1 · |Fsat | ≤ ⌊(𝛿𝑛ℓ) |𝑃 |−1⌋ · |Fsat | ≤ |𝑃 | · |H | ≤ |𝑃 | · 𝛿 |𝑃 |𝑛ℓ ( |𝑃 |−1)

(
𝑛

𝑛/2

)
,

and rearranging gives the desired result, by choosing 𝛿 sufficiently small with respect to
𝜀, 𝑃. ■
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Define F ′ := F − Fsat. Note that

|F ′ | ≥ (𝑘 − 1 + 𝜀/2)
(
𝑛

𝑛/2

)
.

For everyK ⊆ 𝐵𝑛, let us define

Z(K) := {𝐹 ∈ F ′ : {𝐹} ∪ K is inadmissible}.

The intuition here is that if we have already partially built some setK to eventually be
used in a copy of 𝑃, thenZ(K) represents the set of “bad choices” of 𝐹 that we could
add to K to make it inadmissible. A simple double counting argument shows that the
number of such “bad choices” is relatively small.

Claim. For any admissibleK ⊆ B𝑛 and |K | ≤ |𝑃 |, we have

|Z(K)| ≤ 2 |K | · 2𝛿 |𝑃 |𝑛ℓ .

■

Proof For every subfamilyD ⊆ K , let

S(D) := {𝐹 ∈ B𝑛 : {𝐹} ∪ D is saturated}.

Observe that sinceK is admissible, having {𝐹}∪K inadmissible implies that the subsets
of {𝐹} ∪ K that are saturated must be of the form {𝐹} ∪ D for some D ⊆ K , i.e. we
haveZ(K) = ⋃

D⊆K S(D). Moreover, because every 𝐹 ∈ Z(K)⊆ F ′ is unsaturated,
we have that S(∅) = ∅. In total, then we see that

Z(K) =
⋃

D⊆K ,D≠∅
S(D), (6)

and it now suffices to bound |S(D)| for eachD ≠ ∅.

Fix some D ⊆ K non-empty. Let E denote the set of pairs (𝑃′, 𝐹) where 𝑃′ is a copy
containingD and 𝐹 ∈ 𝑃′ is arbitrary. Let E′ ⊆ E be the set of tuples (𝑃′, 𝐹) ∈ E with
the additional property that 𝐹 ∈ S(D). With this we see∑︁

𝐹∈S(D)
deg({𝐹} ∪ D) = |E′ | ≤ |E | = |𝑃 | deg(D). (7)

Since {𝐹} ∪ D is saturated for each 𝐹 ∈ S(D), we have deg({𝐹} ∪ D) =

⌊(𝛿𝑛ℓ) |𝑃 |− |D |−1⌋. Since D ⊆ K is unsaturated (because K is admissible), we have
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deg(D) ≤ (𝛿𝑛ℓ) |𝑃 |− |D | . Therefore, (7) implies

|S(D)|⌊(𝛿𝑛ℓ) |𝑃 |− |D |−1⌋ =
∑︁

𝐹∈S(D)
deg({𝐹}∪D) ≤ |𝑃 | deg(D) ≤ |𝑃 | (𝛿𝑛ℓ) |𝑃 |− |D | .

This implies

|S(D)| ≤ 2𝛿 |𝑃 |𝑛ℓ .

This together with (6) gives |Z(K)| ≤ 2 |K | · 2𝛿 |𝑃 |𝑛ℓ as desired. ■

To complete the proof let 𝛾 = 𝛾(𝜀, 𝑘, ℓ) be derived from Theorem 5.2 applied with
parameters 𝑃, 𝑞 = 𝑘 , ℓ, and 𝜀

2 . We let Γ be the set of all inadmissible sets. Note that by
choosing 𝛿 sufficiently small with respect to 𝛾, we may ensure that for allK admissible,
Z(K) ≤ 𝛾

2 𝑛
ℓ by Claim 5.9. This guarantees Γ to be ( 𝛾2 , ℓ, F

′)-bounded family. Now,
applying Theorem 5.2 to F ′, Γ, and any 𝑣 ∈ 𝑃, we obtain an induced copy 𝑃′ of 𝑃
such that deg(D) < ⌊(𝛿𝑛ℓ) |𝑃 |− |D |⌋ for allD ⊆ 𝑃′, and so 𝑃′ ∉ H . Adding 𝑃′ to our
collectionH preserves the desired maximum degree condition.

6 Using Balanced Supersaturation

In this section, we use our balanced supersaturation result Theorem 5.6 together with
the powerful method of hypergraph containers in order to prove Theorem 1.5 and
Theorem 1.6. In the next subsection, we prove our main container result Theorem 6.4,
after which we use it together with standard arguments to conclude our main results.

6.1 Hypergraph Containers

For a hypergraphH , we let I(H) be the set of independent sets ofH .

Lemma 6.1 (Container Lemma [2, 40]). For every 𝑎 ∈ N and 𝑐 > 0 there exists a 𝛿 > 0
such that the following holds. Let 𝜏 ∈ (0, 1) and supposeH is a 𝑎-uniform hypergraph on 𝑁
vertices such that

Δ𝑏 (H) ≤ 𝑐𝜏𝑏−1 |H |
𝑁
.

for every 1 ≤ 𝑏 ≤ 𝑎. Then there exists a family C of subsets of 𝑉 (H) and a function
𝑓 : 2𝑉 (H) → C such that:

(1) For every 𝐼 ∈ I(H), there is a 𝑇 (𝐼) ⊆ 𝐼 with |𝑇 (𝐼) | ≤ 𝑎 · 𝜏𝑁 and 𝐼 ⊆ 𝑓 (𝑇 (𝐼)) ∪
𝑇 (𝐼).
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(2) |𝐶 | ≤ (1 − 𝛿)𝑁 for every 𝐶 ∈ C.

Given a poset 𝑃, let G𝑃 be the |𝑃 |-uniform hypergraph with vertex set B𝑛, where a set
is hyperedge if the poset the set induces is isomorphic to 𝑃.

Fix a tree poset 𝑃 of height 𝑘 . For subsets F ⊆ B𝑛 we define

𝜏(F , 𝑘) :=


1
𝑛

if |F | < 3𝑘
( 𝑛
𝑛/2

)
1
𝑛3

if |F | ≥ 3𝑘
( 𝑛
𝑛/2

)
.

We will use Theorem 5.6 to prove the following result:

Corollary 6.2. Let 𝑃 be a tree poset of height 𝑘 . Then for every 𝜀 > 0, there exists 𝛿 =

𝛿(𝜀, 𝑘) > 0 such that the following holds. Let 𝑛 ∈ N be sufficiently large and F ⊆ B𝑛 with
|F | ≥ (𝑘 − 1 + 𝜀)

( 𝑛
𝑛/2

)
. Then there exists a collection C ⊆ 2F and a function 𝑓 : 2F → C

such that:

(1) For every set 𝐼 ∈ I(G𝑃 [F ]), there exists a 𝑇 with |𝑇 (𝐼) | ≤ |𝑃 | · 𝜏(F , 𝑘) |F | and
𝑇 (𝐼) ⊆ 𝐼 ⊆ 𝑓 (𝑇 (𝐼)) ∪ 𝑇 (𝐼).

(2) For every 𝐶 ∈ C, |𝐶 | ≤ (1 − 𝛿) |F |.

Proof If (𝑘 − 1 + 𝜀)
( 𝑛
𝑛/2

)
≤ |F | ≤ 3𝑘

( 𝑛
𝑛/2

)
, then we apply Theorem 5.6 with 𝜀, ℓ = 1,

to find a 𝛿1 := 𝛿1 (𝜀, 𝑃) and a subgraphH ⊆ G𝑃 [F ] with properties

(1) |H | ≥ 𝛿 |𝑃 |1 𝑛 |𝑃 |−1
( 𝑛
𝑛/2

)
,

(2) Δ 𝑗 (H) ≤ (𝛿1𝑛) |𝑃 |− 𝑗 for all 1 ≤ 𝑗 ≤ |𝑃 |.

Note this satisfies the conditions of Lemma 6.1, with 𝑐 = 2
𝛿
|𝑃 |
1

and 𝜏 = 𝜏(F , 𝑘) = 1
𝑛
.

Applying Lemma 6.1 toH then gives the result.

If |F | ≥ 3𝑘
( 𝑛
𝑛/2

)
, then we arbitrarily split F into 𝑡 + 1 families F = F0 ∪ F1 ∪ · · · ∪ F𝑡

such that |F0 | < 3𝑘
( 𝑛
𝑛/2

)
and each |F𝑖 | = 3𝑘

( 𝑛
𝑛/2

)
. For each F𝑖 and 𝑗 ∈ {0, 1, 2}, define

F 𝑗

𝑖
:= {𝐹 ∈ F𝑖 : |𝐹 | ≡ 𝑗 mod 3}.

Since the F 𝑗

𝑖
partition F𝑖 , there exists some 𝑗 where |F 𝑗

𝑖
| ≥ 𝑘

( 𝑛
𝑛/2

)
. For this 𝑗 , let

F ′
𝑖
= F 𝑗

𝑖
.

Since F ′
𝑖
is a 3-gapped family, we may apply Theorem 5.6 to F ′

𝑖
with 𝜀 = 1

2 , ℓ = 3, to
find a 𝛿2 := 𝛿2 (𝜀, 𝑃) a subgraphH𝑖 ⊆ G𝑃 [F𝑖] with properties

(1) |H | ≥ 𝛿 |𝑃 |2 𝑛3( |𝑃 |−1)
( 𝑛
𝑛/2

)
,

(2) Δ 𝑗 (H) ≤ (𝛿2𝑛)3( |𝑃 |− 𝑗 ) for all 1 ≤ 𝑗 ≤ |𝑃 |.
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Consider now the collection H = ∪𝑡
𝑖=1H𝑖 ⊆ G𝑃 [F ] , noting that because the H𝑖 are

vertex disjoint we have Δℓ (H) = max𝑖 Δℓ (H𝑖) for all 1 ≤ 𝑏 ≤ |𝑃 |, and hence

Δ𝑏 (H) = max
𝑗

Δ𝑏 (H 𝑗 ) = (𝛿2𝑛)3( |𝑃 |−𝑏) ≤
6𝑘

𝛿
|𝑃 |
2

𝑛3(1−𝑏) ·
𝑡𝛿

|𝑃 |
2 𝑛3( |𝑃 |−1)

( 𝑛
𝑛/2

)
6𝑘𝑡

( 𝑛
𝑛/2

) ≤ 6𝑘

𝛿
|𝑃 |
2

𝑛3(1−𝑏) · |H |
|F | ,

where this last step used that |F | ≤ 3𝑘 (𝑡 + 1)
( 𝑛
𝑛/2

)
≤ 6𝑘𝑡

( 𝑛
𝑛/2

)
by how we defined 𝑡 and

that |H | = ∑ |H 𝑗 | ≥ 𝑡 · 𝛿 |𝑃 |2 𝑛3( |𝑃 |−1)
( 𝑛
𝑛/2

)
. With this we can apply Lemma 6.1 to H

with 𝑐 = 6𝑘
𝛿
|𝑃 |
2

and 𝜏 = 𝜏(F , 𝑘) = 1
𝑛3
. ■

In this section, we follow directly the framework set up in [10] following [2, 40].

Definition 6.3. A fingerprint of G𝑃 is a triple (T , 𝑔, 𝐶) such that:

(1) T is a collection of “certificates”, which are vectors 𝑇 = (𝑇1, . . . , 𝑇𝑚) of disjoint
subsets of𝑉 (G𝑃). For such a vector we let 𝑇 =

⋃
𝑖 𝑇𝑖 .

(2) 𝑔 : I(G𝑃) → T is a “fingerprint function” which satisfies 𝑔(𝐼) ⊆ 𝐼 for every
𝐼 ∈ I(G𝑃).

(3) 𝐶 : T → 2𝑉 (G𝑃 ) is a “container function” such that 𝐼 ⊆ 𝐶 (𝑔(𝐼)) for every
𝐼 ∈ I(G𝑃).

We will now apply Corollary 6.2 iteratively to construct a fingerprint of “small" size.
This fingerprint will then be directly used to prove Theorem 1.5 and Theorem 1.6.

Theorem 6.4. For every tree poset 𝑃 of height 𝑘 ≥ 2 and every 𝜀 > 0, there exists a constant
𝐾 = 𝐾 (𝜀, 𝑃) > 0 and a fingerprint (T , 𝑔, 𝐶) of G𝑃 such that if 𝑛 is sufficiently large, the
following holds:

(a) Every 𝑇 ∈ T satisfies |𝑇 | ≤ 𝐾
𝑛

( 𝑛
𝑛/2

)
.

(b) The number of members 𝑇 ∈ T with |𝑇 | = 𝑠 is at most(
𝐾

( 𝑛
𝑛/2

)
𝑠

)𝑠
exp

(
𝐾

𝑛

(
𝑛

𝑛/2

))
.

(c) |𝐶 (𝑔(𝐼)) | ≤ (𝑘 − 1 + 𝜀)
( 𝑛
𝑛/2

)
for every 𝐼 ∈ I(G𝑃).

To prove part (b) of this theorem, we will use the Lemma 4.3 from [10], stated below.

Lemma 6.5. Let 𝑀 > 0, 𝑠 > 0 and 0 < 𝛿 < 1. For any sequence (𝑎1, 𝑎2, . . . , 𝑎𝑚) of real
numbers summing up to 𝑠 such that 1 ≤ 𝑎 𝑗 ≤ (1 − 𝛿) 𝑗𝑀 for each 𝑗 ∈ [𝑚] , we have

𝑠 log 𝑠 ≤
𝑚∑︁
𝑗=1
𝑎 𝑗 log 𝑎 𝑗 +𝑂 (𝑀)
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.

Proof Let 𝛿 := 𝛿(𝜀, 𝑃) be given by Corollary 6.2, and choose 𝐾 large depending on
𝜀, 𝛿, |𝑃 |, 𝑘 . Let 𝑛 be sufficiently large.

Fix some 𝐼 ∈ I(G𝑃), we will apply Corollary 6.2 a certain number of times, which we
will denote by𝑚 = 𝑚(𝐼), to construct two sequencesF1, F2, . . . F𝑚+1 and𝑇1, 𝑇2, . . . 𝑇𝑚
of subsets of𝑉 (G𝑃).

First set F1 := B𝑛. Then apply Corollary 6.2 to F1 with 𝜀
2 . This gives us a 𝑇 (𝐼) of size

less than |𝑃 |𝜏(F1, 𝑘) |F1 | and a 𝑓 (𝑇 (𝐼)) of size less than (1 − 𝛿) |F1 | such that 𝐼 ⊆
𝑇 (𝐼) ∪ 𝑓 (𝑇 (𝐼)). Let 𝑇1 = 𝑇 (𝐼) and F2 = 𝑓 (𝑇 (𝐼)) − 𝑇 (𝐼). In general, as long as |F𝑖 | ≥
(𝑘 − 1 + 𝜀

2 )
( 𝑛
𝑛/2

)
, apply Corollary 6.2 to F𝑖 with 𝜀

2 . This gives a 𝑇 (𝐼) and a 𝑓 (𝑇 (𝐼))
such that 𝑇 (𝐼) ⊆ F𝑖 ∩ 𝐼 and F𝑖 ∩ 𝐼 ⊆ 𝑓 (𝑇 (𝐼)) ∪ 𝑇 (𝐼). Let 𝑇𝑖 = 𝑇 (𝐼), and F𝑖+1 =

𝑓 (𝑇 (𝐼)) − 𝑇 (𝐼).

It is easy to see that above construction will inductively maintain the following proper-
ties for all 𝑖:

(i) 𝐼 ⊆ F𝑖+1 ∪ 𝑇1 ∪ 𝑇2 ∪ · · · ∪ 𝑇𝑖 ,
(ii) F𝑖+1, 𝑇1, . . . 𝑇𝑖 are pariwise disjoint,
(iii) F𝑖+1 depends only on F𝑖 and 𝑇𝑖 ,
(iv) |F𝑖+1 | ≤ (1 − 𝛿) |F𝑖 |.

We define our fingerprint (T , 𝑔, 𝐶) of G𝑃 by setting.

𝑔(𝐼) := (𝑇1, 𝑇2, . . . 𝑇𝑚) and𝐶 (𝑔(𝐼)) := F𝑚+1 ∪ 𝑇1 ∪ · · · ∪ 𝑇𝑚,

and letting T := {𝑔(𝐼) : 𝐼 ∈ I(G𝑃)}. Note that property (iii) implies that 𝐶 is well
defined, as the choice of F𝑚+1 does not depend on 𝐼 , while property (i) guarantees that
it is a container function. Similarly (ii) together with how we constructed 𝑇𝑖 guarantees
that 𝑔 is a fingerprint function.

In order to check that the constructed fingerprint satisfies the conditions of the theorem,
we first bound the sizes of the 𝑇𝑖 ’s, and then the number of iterations.

To begin, let 2 ≤ 𝑚0 ≤ 𝑚 be minimum such that |F𝑚0 | ≤ 3𝑘
( 𝑛
𝑛/2

)
and observe that by

property (iv) and definition of 𝜏(F , 𝑘):

𝜏(F𝑖 , 𝑘) |F𝑖 | ≤

𝑛−3 · 2𝑛 if 𝑖 < 𝑚0,

𝑛−1 · (1 − 𝛿)𝑖−𝑚03𝑘
( 𝑛
𝑛/2

)
otherwise.
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Since |F𝑖 | decays at a geometric rate by (iv), we have that𝑚 = 𝑂 𝜀,𝑃 (log 𝑛) and𝑚−𝑚0 =

𝑂 𝜀,𝑃 (1).

We thus have the following

𝑚0−1∑︁
𝑖=1

𝜏(F𝑖 , 𝑘) |F𝑖 | ≤
𝑚2𝑛

𝑛3
≪ 1

𝑛2

(
𝑛

𝑛/2

)
and

𝑚∑︁
𝑖=𝑚0

𝜏(F𝑖 , 𝑘) |F𝑖 | =
𝑂 𝜀,𝑃 (1)

𝑛

(
𝑛

𝑛/2

)
(8)

Thus by Corollary 6.2, |𝑇𝑖 | ≤ |𝑃 |𝜏(F𝑖 , 𝑘) |F𝑖 |, and therefore
𝑚0−1∑︁
𝑖=1

|𝑇𝑖 | ≤
𝑚2𝑛

𝑛3
≪ 1

𝑛2

(
𝑛

𝑛/2

)
and

𝑚∑︁
𝑖=𝑚0

|𝑇𝑖 | =
𝑂 𝜀,𝑃 (1)

𝑛

(
𝑛

𝑛/2

)
(9)

Since |𝑔(𝐼) | = ∑𝑚
𝑖=1 |𝑇𝑖 |, we have the bound in (a).

Similarly, 𝑛 is sufficiently large

|𝐶 (𝑔(𝐼)) = |F𝑚+1 | + |𝑇1 ∪ · · · ∪ 𝑇𝑚 | ≤ (𝑘 − 1 + 𝜀)
(
𝑛

𝑛/2

)
,

proving part (c) of the theorem.

It remains to prove (b). Recall that T is a collection of sequences 𝑇 = (𝑇1, 𝑇2, . . . 𝑇𝑚)
where 𝑚 can be arbitrary. We are looking to count the number 𝑇 ∈ T such that |𝑇 | =∑𝑚
𝑖=1 |𝑇𝑖 | = 𝑠. To do this, we will partition T into subfamilies of form T (𝑚0, t) for all

𝑚0 ∈ N and t = (𝑡1, 𝑡2, . . . , 𝑡𝑚) inN𝑚. We collect inT (𝑚0, t) all𝑇 = (𝑇1, 𝑇2, . . . 𝑇𝑚) ∈
T such that |𝑇𝑖 | = 𝑡𝑖 for all 𝑖 ∈ [𝑚] and 𝑚0 is the minimum integer for which |F𝑚0 | ≤
3𝑘

( 𝑛
𝑛/2

)
. Notice that while F𝑚0 were produced for various 𝐼 , a fixed F𝑚0 depends only

on 𝑇1, 𝑇2, . . . 𝑇𝑚0 by property (iii).

Let 𝑠1 =
∑𝑚
𝑖=𝑚0

𝑡𝑖 , and observe that Lemma 6.5 applied with𝑀 = 3𝑘
𝑛

( 𝑛
𝑛/2

)
, 𝑠 = 𝑠1, and 𝛿

implies

𝑚∑︁
𝑖=𝑚0

𝑡𝑖 log 𝑡𝑖 ≥ 𝑠1 log 𝑠1 +
𝑂 𝜀,𝑃 (1)

𝑛

(
𝑛

𝑛/2

)
=⇒

𝑚∑︁
𝑖=𝑚0

𝑡𝑖 log
1
𝑡𝑖

≤ 𝑠1 log
1
𝑠1

+
𝑂 𝜀,𝑃 (1)

𝑛

(
𝑛

𝑛/2

)
We also observe that by (9) we have that

𝑚0−1∑︁
𝑖=1

𝑡𝑖 ≪
1
𝑛2

(
𝑛

𝑛/2

)
. (10)
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Using all this together with the observation that each𝑇𝑖 is a subset of the corresponding
F𝑖 for all 𝑖, together with |F𝑖 | ≤ 2𝑛 and the definition of 𝑚0, we find that

|T (𝑚0, t) | ≤
𝑚0−1∏
𝑖=1

(
2𝑛

𝑡𝑖

) 𝑚∏
𝑖=𝑚0

(
3𝑘

( 𝑛
𝑛/2

)
𝑡𝑖

)
≤

(
𝑚0−1∏
𝑖=1

2𝑡𝑖𝑛
) ([

3𝑒𝑘
(
𝑛

𝑛/2

)] 𝑠1 𝑚∏
𝑖=𝑚0

(
1
𝑡𝑖

) 𝑡𝑖 )
= exp

(
log(2)𝑛

𝑚0−1∑︁
𝑖=1

𝑡𝑖 + 𝑠1 log
(
3𝑒𝑘

(
𝑛

𝑛/2

))
+

𝑚∑︁
𝑖=𝑚0

𝑡𝑖 log
1
𝑡𝑖

)
≤ exp

(
𝑂 𝜀,𝑃 (1)

𝑛

(
𝑛

𝑛/2

)
+ 𝑠1 log

(
3𝑒𝑘

(
𝑛

𝑛/2

))
+ 𝑠1 log

1
𝑠1

+
𝑂 𝜀,𝑃 (1)

𝑛

(
𝑛

𝑛/2

))
=

(
3𝑒𝑘
𝑠1

(
𝑛

𝑛/2

))𝑠1
exp

(
𝑂 𝜀,𝑃 (1)

𝑛

(
𝑛

𝑛/2

))
.

Since this final expression is a monotone function in 𝑠1 over the interval (0, 1
3𝑒𝑘

( 𝑛
𝑛/2

)
),

we may replace 𝑠1 with the larger value 𝑠 ≤ 𝐾
𝑛

( 𝑛
𝑛/2

)
(with this bound for 𝑠 using (a)).

There are only 2𝑂 (𝑛 log 𝑛) choices for t and𝑂 (log(𝑛)) choices for both𝑚0 and𝑚, so the
claimed bound holds by summing the bound above over all possible T (𝑚0, t). ■

6.2 Applications of Container Lemma

We will now prove Theorem 1.5.

Theorem 6.6 (Restatement of Theorem 1.5). For every 𝜀 > 0 and 𝑃 a tree poset of height
𝑘 , there is an there exists an 𝑛0 such that if 𝑛 ≥ 𝑛0, then the number of induced 𝑃-free sets in
B𝑛 is at most

2(𝑘−1+𝜀) (
𝑛
𝑛/2) .

Proof Recall thatG𝑃 is the hypergraph on vertex setB𝑛 where each edge corresponds
to an induced copy of𝑃, and hence the number of induced𝑃-free subsets ofB𝑛 is exactly
the number of independent sets of G𝑃 .

Now, apply Theorem 6.4 to G𝑃 with 𝜀/2, 𝑃 to find a constant 𝐾 = 𝐾 (𝜀, 𝑃) > 0 and a
fingerprint (T , 𝑔, 𝐶) of G𝑃 such that the following holds if 𝑛 is sufficiently large:

(1) Every 𝑇 ∈ T satisfies |𝑇 | ≤ 𝐾
𝑛

( 𝑛
𝑛/2

)
(2) The number of members of T of size 𝑠 is at most(

𝐾
( 𝑛
𝑛/2

)
𝑠

)𝑠
exp

(
𝐾

𝑛

(
𝑛

𝑛/2

))
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(3) |𝐶 (𝑔(𝐼)) | ≤ (𝑘 − 1 + 𝜀
2 )

( 𝑛
𝑛/2

)
for every 𝐼 ∈ I(G𝑃)

(4) Every 𝐼 ∈ I(G𝑃) satisfies 𝐼 ⊆ 𝐶 (𝑔(𝐼)).

Thus, the number of independent sets 𝐼 ∈ I(G𝑃) at most the sum over all 𝑇 ∈ T the
number of subsets of𝐶 (𝑇), and so we have the following bound:

|I(G𝑃) | ≤

𝐾
𝑛 ( 𝑛𝑛/2)∑︁
𝑠=1

|{𝑇 ∈ T : |𝑇 | = 𝑠}|2(𝑘−1+
𝜀
2 ) ( 𝑛𝑛/2)

≤

𝐾
𝑛 ( 𝑛𝑛/2)∑︁
𝑠=1

(
𝐾

( 𝑛
𝑛/2

)
𝑠

)𝑠
exp

(
𝐾

𝑛

(
𝑛

𝑛/2

))
2(𝑘−1+

𝜀
2 ) ( 𝑛𝑛/2)

≤ 𝐾

𝑛

(
𝑛

𝑛/2

)
𝑛
𝐾
𝑛 ( 𝑛𝑛/2) exp

(
𝐾

𝑛

(
𝑛

𝑛/2

))
2(𝑘−1+

𝜀
2 ) ( 𝑛𝑛/2)

≤ 2(𝑘−1+𝜀) (
𝑛
𝑛/2) ,

as desired. ■

Theorem 6.7 (Restatement of Theorem 1.6). Let 𝑃 be a tree poset of height 𝑘 . Let P(𝑛, 𝑝)
be the uniformly random subset of B𝑛, where each set survives with probability 𝑝 such that
𝑝𝑛 → ∞. Then with high probability, the largest induced 𝑃-free subset of P(𝑛, 𝑝) has size
(𝑘 − 1 + 𝑜(1))𝑝

( 𝑛
𝑛/2

)
.

Proof Let 𝑘 ≥ 2 and 𝜀 > 0 be arbitrary, and let 𝐾 = 𝐾 (𝜀, 𝑃) > 0 and (T , 𝑔, 𝐶) be
the constant and fingerprint given by Theorem 6.4 applied to G𝑃 with 𝜀, 𝑃. Let 𝑛 ∈ N
be sufficiently large, and note that we may assume 𝑝𝑛 ≥ 𝐾𝜀−1 since 𝑝𝑛 → ∞. Let
P(𝑛, 𝑝) be the uniformly random subset ofB𝑛, where each set survives with probability
𝑝 . Suppose 𝐼 ⊆ P(𝑛, 𝑝) is an induced 𝑃-free subset (or equivalently an independent
set of G𝑃 ) of size at least (𝑘 − 1 + 3𝜀)𝑝

( 𝑛
𝑛/2

)
. Then, it follows that 𝑔(𝐼) ⊆ P(𝑛, 𝑝) and

|𝐶 (𝑔(𝐼)) ∩ P(𝑛, 𝑝) | ≥ (𝑘 − 1 + 3𝜀)𝑝
(
𝑛

𝑛/2

)
.

Let 𝑋 be the number of elements of T for which these two properties𝑇 ⊆ P(𝑛, 𝑝) and
|𝐶 (𝑇) ∩ P(𝑛, 𝑝) | ≥ (𝑘 − 1 + 3𝜀)𝑝

( 𝑛
𝑛/2

)
hold. Then,

E(𝑋) ≤
∑︁
𝑇∈T

Prob(𝑇 ⊆ P(𝑛, 𝑝))·Prob
(
|𝐶 (𝑇) ∩ P(𝑛, 𝑝) − 𝑇 | ≥ (𝑘 − 1 + 2𝜀)𝑝

(
𝑛

𝑛/2

))
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where we used that |𝑇 | ≤ 𝐾
𝑛

( 𝑛
𝑛/2

)
≤ 𝜀𝑝

( 𝑛
𝑛/2

)
and 𝑇 ⊆ 𝐶 (𝑇) by the lower bound on 𝑝𝑛

and Theorem 6.4.

Note, by Lemma 2.1, applied with 𝛿 = 𝜀
𝑘−1+𝜀 we obtain the following:

Prob
(
|𝐶 (𝑇) ∩ P(𝑛, 𝑝) − 𝑇 | ≥ (𝑘 − 1 + 2𝜀)𝑝

(
𝑛

𝑛/2

))
≤ 2 exp

(
− 𝜀

2

3𝑘
𝑝

(
𝑛

𝑛/2

))
Hence, by properties of (T , 𝑔, 𝐶) guaranteed by Theorem 6.4 and the above inequality,
we have:

E(𝑋) ≤

𝐾
𝑛 ( 𝑛𝑛/2)∑︁
𝑠=1

(
𝐾

( 𝑛
𝑛/2

)
𝑠

)𝑠
exp

(
𝐾

𝑛

(
𝑛

𝑛/2

))
· 𝑝𝑠 · 2 exp

(
−𝜀

2𝑝

3𝑘

(
𝑛

𝑛/2

))
≤

𝐾
𝑛 ( 𝑛𝑛/2)∑︁
𝑠=1

(
𝐾𝑝

( 𝑛
𝑛/2

)
𝑠

)𝑠
exp

(
𝐾

𝑛

(
𝑛

𝑛/2

))
· 2 exp

(
−𝜀

2𝑝

3𝑘

(
𝑛

𝑛/2

))
≤ 2𝐾

𝑛

(
𝑛

𝑛/2

)
exp

(
𝐾

𝑛

(
𝑛

𝑛/2

)
(log(𝑝𝑛) + 1) − 𝜀2𝑝

3𝑘

(
𝑛

𝑛/2

))
Therefore by Markov’s inequality and 𝑝𝑛 ≫ log(𝑝𝑛) ≫ 1 we have that

Prob
(
𝛼(G𝑃 [P(𝑛, 𝑝)]) ≥ (𝑘 − 1 + 3𝜀)𝑝

(
𝑛

𝑛/2

))
≤ exp

(
−𝜀

2𝑝

6𝑘

(
𝑛

𝑛/2

))
→ 0

as 𝑛→ ∞, as required.

■
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