Third Meeting, 8th January 1904.

Mr. Charles Tweedie, President, in the Chair.

On the Fractional Infinite Series for
 $\operatorname{cosec} x, \sec x, \cot x$, and $\tan x$.

By D. K. Picken, M.A.

The infinite products for $\sin x$ and $\cos x$ are most conveniently obtained in a rigorous way from the well-known factorial expressions for $\sin n \theta$ and $\cos n \theta$ which, when n is an even integer, take the forms
(i) $\sin n \theta=2^{n-1} \cdot \sin \theta \cos \theta\left(\sin ^{2} \frac{\pi}{n}-\sin ^{2} \theta\right)\left(\sin ^{2} \frac{2 \pi}{n}-\sin ^{2} \theta\right) \ldots\left(\sin ^{2} \frac{\overline{n-2} \cdot \pi}{2 n}-\sin ^{2} \theta\right)$
(ii) $\cos n \theta=2^{n-1} .\left(\sin ^{2} \frac{\pi}{2 n}-\sin ^{2} \theta\right)\left(\sin ^{2} \frac{3 \pi}{2 n}-\sin ^{2} \theta\right) \ldots\left(\sin ^{2} \frac{\overline{n-1} \cdot \pi}{2 n}-\sin ^{2} \theta\right)$;
θ being put equal to $\frac{x}{n}$ and n made infinitely great.*
It is then usual to obtain the fractional infinite series for cotx and $\tan x$ by logarithmic differentiation-a process in which the treatment of the remainder is somewhat involved-and to deduce those for $\operatorname{cosec} x$ and $\sec x$ by the use of certain elementary trigonometrical identities.

It seems, however, a more fundamental process to obtain from (i) and (ii) expressions for $\cos \theta \operatorname{cosec} n \theta, \sec \theta \theta, \sec \theta \cot n \theta$, and $\sec \theta \tan n \theta$ in partial fractions; the degree in $\sin \theta$ of the denominator in each of these functions being higher than that of the numerator ; and then to proceed to the limit as in the case of the products.

[^0]
I. When \boldsymbol{n} is even

$$
\frac{\cos \theta}{\sin \theta \sin n \theta} \operatorname{can} \text { be written in the form } \sum_{0}^{\frac{n}{2}-1} \frac{A_{r}}{\sin ^{2} \frac{r \pi}{n}-\sin ^{2} \theta}
$$

where $\quad A_{0}=\left[-\frac{\sin \theta \cos \theta}{\sin n \theta}\right]_{\theta=0}=-\frac{1}{n}$

$$
\text { and } \left.\begin{array}{rl}
A_{r} & =\left[\frac{\left(\sin ^{2} \frac{r \pi}{n}-\sin ^{2} \theta\right) \cos \theta}{\sin \theta \cdot \sin n \theta}\right]_{\theta=\frac{r \pi}{n}} \\
& =\left[\frac{\left(\sin \frac{r \pi}{n}+\sin \theta\right) \cos \theta}{\sin \theta} \cdot \frac{r \pi}{n}-\sin \theta\right. \\
\sin n \theta
\end{array}\right]_{\theta=\frac{r \pi}{n}} \quad \begin{aligned}
& =\frac{-2 \cos ^{2} \frac{r \pi}{n}}{n \cos r \pi}=\frac{(-)^{r-1}}{n} \cdot 2 \cos ^{2} \frac{r \pi}{n},\left(r=1,2, \ldots \frac{n}{2}-1\right) ;
\end{aligned}
$$

$$
\therefore \cos \theta \operatorname{cosec} n \theta=\frac{1}{n \sin \theta}+\frac{2 \sin \theta}{n} \sum_{1}^{\frac{n}{2}-1}(-)^{n-1} \frac{\cos ^{2} \frac{2 \pi}{n}}{\sin ^{2} \frac{\gamma \pi}{n}-\sin ^{2} \theta} .
$$

[When n is odd,

$$
\left.\operatorname{cosec} n \theta=\frac{1}{n \sin \theta}+\frac{2 \sin \theta}{n} \sum_{1}^{\frac{n-1}{2}}(-)^{n-1} \cdot \frac{\cos \frac{r \pi}{n}}{\sin ^{2} \frac{r \pi}{n}-\sin ^{2} \theta}\right]
$$

Putting $\theta=\frac{x}{n}$, we get

$$
\cos \frac{x}{n} \operatorname{cosec} x=\frac{1}{n \sin \frac{x}{n}}+\frac{2}{n} \sin \frac{x}{n} \sum_{1}^{k}(-)^{n-1} \cdot \frac{\cos ^{2} \frac{r \pi}{n}}{\sin ^{2} \frac{r \pi}{n}-\sin ^{2} \frac{x}{n}}+(-)^{k} . \mathrm{R}
$$

where k is any integer less than $\left(\frac{n}{2}-1\right)$.

It is obvious that R is positive and less than

$$
\frac{2 \sin \frac{x}{n} \cos ^{2} \frac{(k+1) \pi}{n}}{n\left\{\sin ^{2} \frac{(k+1) \pi}{n}-\sin ^{2} \frac{x}{n}\right\}}
$$

provided n is so great that k can be chosen greater than $\frac{x}{\pi}$; for the angles $\frac{r \pi}{n}$ are increasing acute angles and therefore the terms of R are in descending order of numerical magnitude.

$$
\begin{aligned}
\therefore \cos \frac{x}{n} \operatorname{cosec} x= & \frac{1}{n \sin \frac{x}{n}}+2 n \sin \frac{x}{n} \cdot \sum_{1}^{k}(-)^{r-1} \cdot \frac{\cos ^{2} \frac{r \pi}{n}}{n^{2}\left\{\sin ^{2} \frac{r \pi}{n}-\sin ^{2} \frac{x}{n}\right\}} \\
& +(-)^{i} \cdot \frac{2 n \sin \frac{x}{n} \cos ^{2} \frac{(k+1) \pi}{n}}{n^{2}-\left\{\sin ^{2} \frac{(k+1) \pi}{n}-\sin ^{2} \frac{x}{n}\right\}},
\end{aligned}
$$

where ϵ is a positive proper fraction ;
\therefore proceeding to the limit when n becomes infinitely great,

$$
\operatorname{cosec} x=\frac{1}{x}+{\underset{1}{\sum}(-)^{r-1} \cdot \frac{2 x}{r^{2} \pi^{2}-x^{2}}+(-)^{k} \cdot \epsilon_{1} \cdot \frac{2 x}{(k+1)^{2} \pi^{2}-x^{2}}, ~}_{\text {, }}
$$

ϵ_{1} being the limiting positive fractional value of ϵ.
Hence the greater we make the finite number k the more nearly is $\operatorname{cosec} x$ equal to $\frac{1}{x}+\underset{1}{\stackrel{K}{*}}(-)^{r-1} \cdot \frac{2 x}{r^{2} \pi^{2}-x^{2}}$, and the difference vanishes when k becomes infinitely great.
i.e., $\operatorname{cosec} x=\frac{1}{x}+\sum_{1}^{\infty}(-)^{r-1} \cdot \frac{2 x}{r^{2} \pi^{2}-x^{2}}$, an absolutely convergent series;

$$
=\frac{1}{x}+\frac{1}{\pi-x}-\frac{1}{\pi+x}-\frac{1}{2 \pi-x}+\frac{1}{2 \pi+x}+\ldots, \text { a semi-conver- }
$$

gent series ; for all real values of x, except $x= \pm r \pi$.

II. When n is even,

[and when n is odd,

$$
\left.\cos \theta \cdot \sec n \theta=\frac{1}{n} \sum_{1}^{\frac{n-1}{2}}(-)^{r-1} \cdot \frac{\sin \frac{(2 r-1) \pi}{n} \cdot \cos \frac{(2 r-1) \pi}{2 n}}{\sin ^{2} \frac{(2 r-1) \pi}{2 n}-\sin ^{2} \theta}\right] .
$$

Putting $\theta=\frac{x}{n}$, we get

$$
\sec x=\frac{1}{n} \sum_{1}^{k}(-)^{r-1} \cdot \frac{\sin \frac{(2 r-1) \pi}{n}}{\sin ^{2} \frac{(2 r-1) \pi}{2 n}-\sin ^{2} \frac{x}{n}}+(-)^{k} \cdot \mathbf{R}
$$

and, as before, if n is so great that $(2 k-1)$ can be taken greater $\operatorname{than} \frac{2 x}{\pi}$

$$
\mathrm{R}=\frac{\epsilon}{n} \cdot \frac{\sin \frac{(2 k+1) \pi}{n}}{\sin ^{2} \frac{(2 k+1) \pi}{2 n}-\sin ^{2} \frac{x}{n}}, \text { for }
$$

$$
\sin \frac{(2 r-1) \pi}{n}\left\{\sin ^{2} \frac{(2 r+1) \pi}{2 n}-\sin ^{2} \frac{x}{n}\right\}
$$

$$
-\sin \frac{(2 r+1) \pi}{n}\left\{\sin ^{2} \frac{(2 r-1) \pi}{2 n}-\sin ^{2} \frac{x}{n}\right\}
$$

$$
\begin{aligned}
& \sec n \theta=\sum_{1}^{\frac{n}{2}} \frac{A_{r}}{\sin ^{2} \frac{\left(2 r-\frac{1}{1}\right) \pi}{2 n}-\sin ^{2} \theta}, \\
& \text { where } A_{r}=\left[\frac{\sin ^{2} \frac{(2 r-1) \pi}{2 n}-\sin ^{2} \theta}{\cos n \theta}\right]_{\theta=\frac{(2 r-1) \pi}{2 n}} \\
& =\frac{2 \sin \frac{(2 r-1) \pi}{2 n} \cos \frac{(2 r-1) \pi}{2 n}}{n \sin \frac{(2 r-1) \pi}{2}}=\frac{(-)^{r-1}}{n} \cdot \sin \frac{(2 r-1) \pi}{n} ; \\
& \therefore \sec n \theta=\frac{1}{n} \sum_{1}^{\frac{n}{2}}(-)^{r-1} \cdot \frac{\sin \frac{(2 r-1) \pi}{n}}{\sin ^{2} \frac{(2 r-1) \pi}{2 n}-\sin ^{2} \theta} ;
\end{aligned}
$$

$$
\begin{aligned}
= & 2 \sin \frac{\pi}{n}\left\{\sin \frac{(2 r-1) \pi}{2 n} \cdot \sin \frac{(2 r+1) \pi}{2 n}+\sin ^{2} \frac{x}{n} \cdot \cos \frac{2 r \pi}{n}\right\} \\
& >2 \sin \frac{\pi}{n}\left\{\sin ^{2} \frac{(2 r-1) \pi}{2 n}-\sin ^{2} \frac{x}{n}\right\},
\end{aligned}
$$

and \therefore the terms of R are in descending order of magnitude.
Hence, $\sec x$

$$
=\frac{1}{n} \sum_{1}^{k}(-)^{r-1} \cdot \frac{\sin \frac{(2 r-1) \pi}{n}}{\sin ^{2} \frac{(2 r-1) \pi}{2 n}-\sin ^{2} \frac{x}{n}}+(-)^{k} \cdot \frac{\epsilon}{n} \cdot \frac{\sin \frac{(2 k+1) \pi}{n}}{\sin ^{2} \frac{(2 k+1) \pi}{2 n}-\sin ^{2} \frac{x}{n}}
$$

and proceeding to the limit, we get, exactly as in I,

$$
\sec x=4 \pi{\underset{1}{1}}_{\infty}^{\infty}(-)^{r-1} \cdot \frac{2 r-1}{(2 r-1)^{2} \pi^{2}-4 x^{2}}, \text { a semi-convergent series ; }
$$

$$
=2\left\{\frac{1}{\pi-2 x}+\frac{1}{\pi+2 x}-\frac{1}{3 \pi-2 x}-\frac{1}{3 \pi+2 x}+\ldots \ldots\right\} ;
$$

for all real values of x except $x= \pm \frac{(2 r-1) \pi}{2}$.
III. When n is even

$$
\begin{aligned}
& \sec \theta \cdot \cot n \theta=\frac{\frac{n}{\frac{\pi}{3}}\left\{\sin ^{2} \frac{(2 r-1) \pi}{2 n}-\sin ^{2} \theta\right\}}{2^{n-1} \cdot \sin \theta\left(1-\sin ^{2} \theta\right) \prod_{1}^{\frac{n}{2}-1}\left(\sin ^{2} \frac{r \pi}{n}-\sin ^{2} \theta\right)} ; \\
& \therefore \frac{\cos n \theta}{\sin \theta \cos \theta \sin n \theta}=\frac{\sum_{0}^{2}}{{ }_{0}^{2}} \frac{A_{r}}{\sin ^{2} \frac{r \pi}{n}-\sin ^{2} \theta}, \\
& \text { where } \mathbf{A}_{0}=\left[-\frac{\sin \theta \cos n \theta}{\cos \theta \sin n \theta}\right]_{\theta=0}=-\frac{1}{u} \text {, } \\
& \begin{aligned}
A_{r}= & {\left[\frac{\cos n \theta\left(\sin ^{2} \frac{r \pi}{n}-\sin ^{2} \theta\right)}{\sin \theta \cos \theta \cdot \sin n \theta}\right]_{\theta=\frac{r \pi}{n}}=-\frac{2}{n}, } \\
& \text { if } r=1,2, \ldots \ldots, \frac{n}{2}-1,
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } \mathbf{A}_{\frac{n}{2}}=\left[\frac{\cos n \theta \cos \theta}{\sin \theta \sin n \theta}\right]_{\theta=\frac{\pi}{2}}=-\frac{1}{n} ; \\
& \therefore \sec \theta \cot n \theta=\frac{1}{n \sin \theta}-\frac{2 \sin \theta}{n}{\underset{\Sigma}{\Sigma}}_{\sum_{2}^{-1}}^{\sin ^{2} \frac{r \pi}{n}-\sin ^{2} \theta}-\frac{1}{n \cos ^{2} \theta} .
\end{aligned}
$$

[When n is odd,

$$
\left.\sec \theta \cot n \theta=\frac{1}{n \sin \theta}-\frac{2 \sin \theta}{n} \sum_{1}^{n-1} \cdot \frac{1}{\sin ^{2} \frac{r \pi}{n}-\sin ^{2} \theta}\right] .
$$

Putting $\theta=\frac{x}{n}$, we get

$$
\sec \frac{x}{n} \cot x
$$

$$
=\frac{1}{n \sin \frac{x}{n}}-\frac{\sin \frac{x}{n}}{n \cos ^{2} \frac{x}{n}}-2 n \sin \frac{x}{n}{\underset{\Sigma}{1}}_{n^{2}\left\{\sin ^{2} \frac{r \pi}{n}-\sin ^{2} \frac{x}{n}\right\}}^{\frac{1}{n}}-2 n \sin \frac{x}{n} . \mathrm{R},
$$

$$
\text { where } \begin{aligned}
\mathrm{R} & =\sum_{k+1}^{\frac{n}{V^{-1}-1}} \frac{1}{n^{2}\left\{\sin ^{2} \frac{r \pi}{n}-\sin ^{2} \frac{x}{n}\right\}} \\
& <\sum_{k+1}^{\frac{n}{2-1}} \frac{1}{n^{2}\left\{\frac{4 r^{2}}{n^{2}}-\frac{x^{2}}{n^{2}}\right\}}, \text { since } \phi>\sin \phi>\frac{2 \phi}{\pi} \text { if } 0<\phi<\frac{\pi}{2} ;
\end{aligned}
$$

provided that n is so great that $2 k$ can be taken greater than x.
$\therefore \mathrm{R}<\sum_{k+1}^{\frac{n}{2}, 1} \frac{1}{4 r^{2}-x^{2}}<\sum_{k+1}^{\infty} \frac{1}{4 r^{2}-x^{2}}$, the remainder after k terms of a convergent infinite series.

Proceeding to the limit

$$
\cot x=\frac{1}{x}-\sum_{1}^{k} \frac{2 x}{r^{2} \pi^{2}-x^{2}}-2 x . \mathrm{R}_{1} ;
$$

and R_{1}, the limiting value of R, can be made as small as we please by choosing k great enough.
$\therefore \cot x=\frac{1}{x}-\sum_{1}^{\infty} \frac{. x}{r^{2} \pi^{2}-x^{2}}$ an absolutely convergent series;

$$
=\frac{1}{x}-\frac{1}{\pi-x}+\frac{1}{\pi+x}-\frac{1}{2 \pi-x}+\frac{1}{2 \pi+x}-\ldots . ., \text { a semi-conver }-
$$

gent series ; for all real values of x, except $x= \pm r \pi$.
IV. When n is even,

$$
\sec \theta \operatorname{cosec} \theta \cdot \tan n \theta=\sum_{1}^{\frac{n}{2}} \frac{\mathbf{A}_{r}}{\sin ^{2} \frac{(2 r-1) \pi}{2 n}-\sin ^{2} \theta},
$$

$$
\text { where } \begin{gathered}
\mathrm{A}_{r}=\left[\frac{\sin n \theta\left\{\sin ^{2} \frac{(2 r-1) \pi}{2 n}-\sin ^{2} \theta\right\}}{\sin \theta \cos \theta \cos n \theta}\right]_{\theta=\frac{(2 r-1) \pi}{2 n}}^{2 n}=\frac{2}{n} ; \\
\therefore \tan n \theta=\frac{2 \sin \theta \cos \theta}{n} \sum_{1}^{\frac{n}{2}} \frac{1}{\sin ^{2} \frac{(2 r-1) \pi}{2 n}-\sin ^{2} \theta} .
\end{gathered}
$$

[When n is odd,

$$
\left.\tan n \theta=\frac{1}{n} \tan \theta+\frac{2 \sin \theta \cos \theta}{n}{\underset{1}{\frac{n-1}{2}}}_{1}^{\sin \frac{(2 r-1) \pi}{2 n}-\sin ^{2} \theta}\right] .
$$

Hence, exactly as in III.,

$$
\begin{aligned}
\tan x & =\sum_{1}^{\infty} \frac{8 x}{(2 r-1)^{\prime \prime} \pi^{2}-4 x^{2}}, \text { an absolutely convergent series; } \\
& =2\left\{\frac{1}{\pi-2 x}-\frac{1}{\pi+2 x}+\frac{1}{3 \pi-2 x}-\frac{1}{3 \pi+2 x} \cdots\right\} \text {, a semi-con- }
\end{aligned}
$$

vergent series; for all real values of x, except $x= \pm \frac{(2 r-1) \pi}{2}$.
The continuity of the algebraic expressions ensures that these results still hold good when x has complex values.

[^0]: * Cf. Hobson's Trigonometry, Chap. XVII.

