ARITHMETIC PROGRESSIONS CONTAINED IN SEQUENCES WITH BOUNDED GAPS

BY
MELVYN B. NATHANSON

Van der Waerden [1, 4, 5] proved that if the nonnegative integers are partitioned into a finite number of sets, then at least one set in the partition contains arbitrarily long finite arithmetic progressions. This is equivalent to the result that a strictly increasing sequence of integers with bounded gaps contains arbitrarily long finite arithmetic progressions. Szemerédi [3] proved the much deeper result that a sequence of integers of positive density contains arbitrarily long finite arithmetic progressions. The purpose of this note is a quantitative comparison of van der Waerden's theorem and sequences with bounded gaps.

Denote by $[a, b)$ (resp. [a,b]) the interval of integers $a \leq n<b$ (resp. $a \leq n \leq b)$. Let $k \geq 3$ and $r \geq 2$.

Let $W(k, r)$ denote the least integer such that, if $w \geq W(k, r)$ and if $[0, w)=$ $\bigcup_{j=0}^{r-1} A_{j}$ is a partition into r pairwise disjoint sets, then at least one of the sets A_{j} contains a k-term arithmetic progression. The theorem of van der Waerden asserts the existence of the numbers $W(k, r)$.

Let $M(k, r)$ denote the least integer such that if $m \geq M(k, r)$ and if $A=$ $\left\{a_{n}\right\}_{n=0}^{m-1}$ is a sequence with $a_{n} \in[n r,(n+1) r)$ for $n \in[0, m)$, then A contains a k-term arithmetic progression.

Let $G(k, r)$ denote the least integer such that, if $g \geq G(k, r)$ and if $A=$ $\left\{a_{n}\right\}_{n=0}^{8-1}$ is a strictly increasing sequence of integers with bounded gaps $a_{n}-$ $a_{n-1} \leq r$ for $n \in[1, g)$, then A contains a k-term arithmetic progression.

The existence of the numbers $M(k, r)$ and $G(k, r)$ follows from van der Waerden's theorem (Rabung [2]) and also from the results below.

Theorem 1. $M(k, r) \leq W(k, r) \leq M((k-1) r+1, r)$.
Proof. Let $w=W(k, r)$ and let $A=\left\{a_{n}\right\}_{n=0}^{w-1}$ satisfy $a_{n} \in[n r,(n+1) r)$ for $n \in[0, w)$. Then $a_{n}=n r+\varepsilon_{n}$, where $\varepsilon_{n} \in[0, r)$. Partition [0,w) into r sets $A_{0}, A_{1}, \ldots, A_{r-1}$ as follows: $n \in A_{j}$ if and only if $\varepsilon_{n}=j$. Since $w=W(k, r)$, it follows that some set in the partition contains a k-term arithmetic progression. Suppose that $n_{i}=c+i d \in A_{t}$ for some $d \geq 1$ and all $i \in[0, k)$. Then $\varepsilon_{n_{i}}=t$ and

$$
a_{n_{i}}=n_{i} r+\varepsilon_{n_{i}}=(c+i d) r+t=(c r+t)+i d r
$$

for $i \in[0, k)$, hence $a_{n_{0}}<a_{n_{1}}<\cdots<a_{n_{k-1}}$ is a k-term arithmetic progression in A. Thus, $M(k, r) \leq W(k, r)$.

Conversely, let $m=M((k-1) r+1, r)$ and let $[0, m)=\bigcup_{j=0}^{r-1} A_{j}$ be a partition into r sets. For $n \in[0, m)$, define $\varepsilon_{n} \in[0, r)$ by $\varepsilon_{n}=j$ if and only if $n \in A_{j}$. Construct the sequence $A=\left\{a_{n}\right\}_{n=0}^{m-1}$ by setting $a_{n}=n r+\varepsilon_{n} \in[n r,(n+1) r)$. Since $m=M((k-1) r+1, r)$, it follows that A contains an arithmetic progression of length $(k-1) r+1$, say, $a_{n_{0}}<a_{n_{1}}<\cdots<a_{n_{(k-1) r}}$, where $a_{n_{i}}-a_{n_{i-1}}=d$ for some $d \geq 1$ and all $i \in[1,(k-1) r]$. Then $a_{n_{0}}<a_{n_{r}}<a_{n_{2 r}}<\cdots<a_{n_{(k-1) r}}$ is a k-term arithmetic progression with difference $d r$, and

$$
d r=a_{n_{i \mathrm{i}}}-a_{n_{(i-1) r} r}=\left(n_{i r}-n_{(i-1) r}\right) r+\varepsilon_{n_{i r}}-\varepsilon_{n_{(i-1) r}}
$$

for all $i \in[1, k)$. This implies that $\varepsilon_{n_{i \mathrm{i}}}=\varepsilon_{n_{i(-1) r}}$ and so $n_{i r}-n_{(i-1) r}=d$ for $i \in$ $[1, k)$. If $\varepsilon_{n_{0}}=t$, then $\varepsilon_{n_{i r}}=t$ for $i \in[0, k)$, and so $n_{0}<n_{r}<n_{2 r}<\cdots<n_{(k-1) r}$ is a k-term arithmetic progression contained in the set A_{t}. Thus, $W(k, r) \leq$ $M((k-1) r+1, r)$.

Theorem 2. $G(k, r) \leqslant r M(k, r)$.
Proof. Let $m=M(k, r)$. Let $B=\left\{b_{i}\right\}_{i=0}^{m r-1}$ be a strictly increasing sequence of $m r$ integers with bounded gaps $b_{i}-b_{i-1} \leq r$ for $i \in[1, m r)$. Replacing each b_{i} by $b_{i}-b_{0}$, we can assume without loss of generality that $b_{0}=0$. Then for each $n \in[0, m)$, the interval [$n r,(n+1) r$) contains at least one element of B. Choose $a_{n} \in B \cap[n r,(n+1) r)$. Since $m=M(k, r)$, the sequence $\left\{a_{n}\right\}_{n=0}^{m-1}$ contains a k term arithmetic progression. Thus, B contains a k-term arithmetic progression, and so $G(k, r) \leq r M(k, r)$.

Theorem 3. $M(k, r) \leq G(k, 2 r-1)$.
Proof. Let $g=G(k, 2 r-1)$ and let $A=\left\{a_{n}\right\}_{n=0}^{\mathrm{g}-1}$ satisfy $a_{n} \in[n r,(n+1) r)$. Then A has bounded gaps $a_{n}-a_{n-1} \leq 2 r-1$. Thus, A contains a k-term arithmetic progression and $M(k, r) \leq G(k, 2 r-1)$.

Theorem 4. $G(k, r) \leq W(k, r) \leq G((k-1) r+1,2 r-1)$.
Proof. Let $w=W(k, r)$ and let $A=\left\{a_{i}\right\}_{i=0}^{w-1}$ be a strictly increasing sequence of integers satisfying $a_{i}-a_{i-1} \leq r$ for $i \in[1, w)$. Replacing each a_{i} by $a_{i}-a_{0}$, we can assume that $a_{0}=0$. Clearly, $a_{w-1} \geq w-1$. Partition the interval [$0, w$) into r pairwise disjoint sets $A_{0}, A_{1}, \ldots, A_{r-1}$ as follows: $n \in A_{j}$ if and only if $j=$ $\min \left\{a_{i}-n \mid a_{i} \geq n\right\}$. If $n \in[0, w)$, then $a_{i}-n \in[0, r)$ for some $a_{i} \in A$. If $n \in A_{t}$, then $t+n=a_{i}$ for some $a_{i} \in A$. Since $w=W(k, r)$, at least one set in the partition $[0, w)=\bigcup_{j=0}^{r-1} A_{j}$ contains a k-term arithmetic progression. If $c+i d \in$ A_{t} for $i \in[0, k)$, then $(t+c)+i d=a_{i} \in A$ is a k-term arithmetic progression in A. Thus, $G(k, r) \leq W(k, r)$.

Finally, by Theorems 1 and 3,

$$
W(k, r) \leq M((k-1) r+1, r) \leq G((k-1) r+1,2 r-1) .
$$

This completes the proof.

References

1. R. L. Graham and B. L. Rothschild, A short proof of van der Waerden's theorem on arithmetic progressions, Proc. Amer. Math. Soc. 42 (1974), 385-386.
2. J. R. Rabung, On applications of van der Waerden's theorem, Math. Mag. 48 (1975), 142-148.
3. E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica 27 (1975), 199-245.
4. B. L. van der Waerden, Beweis einer Baudet'schen Vermutung, Nieuw Arch. Wiskunde 15 (1927), 212-216.
5. B. L. van der Waerden, How the proof of Baudet's conjecture was found, Studies in Pure Mathematics, L. Mirsky, ed., Academic Press, New York, 1971, 251-260.

Department of Mathematics
Southern Illinois University
Carbondale
Illinois 62901

