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Abstract

A stochastic ordering approach is applied with Stein’s method for approximation by the
equilibrium distribution of a birth–death process. The usual stochastic order and the more
general s-convex orders are discussed. Attention is focused on Poisson and translated
Poisson approximations of a sum of dependent Bernoulli random variables, for example,
k-runs in independent and identically distributed Bernoulli trials. Other applications
include approximation by polynomial birth–death distributions.
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1. Introduction

Stein’s method has proved to be an effective tool in probability approximation, and has the
advantage of being applicable in the presence of dependence. See, for example, Stein (1986),
Barbour and Chen (2005), and Chen et al. (2011) for more recent developments. It is well known
that error bounds obtained via Stein’s method may be simplified under some assumptions on
the dependence present. For example, in the presence of a negative or positive relation, Stein’s
method gives simple error bounds in the Poisson approximation of a sum of indicator random
variables. This is exploited throughout the work of Barbour et al. (1992), and will be returned
to in our Section 4.

In this work we consider the more general situation of approximation by the equilibrium
distribution of a birth–death process, and examine the situations in which Stein’s method leads
to simple, easily calculable error bounds. These error bounds will typically be differences of
moments of our random variables. As we will see, the assumptions under which we can obtain
such error bounds are naturally phrased in terms of stochastic orderings.

Consider a birth–death process on (some subset of) Z+ = {0, 1, . . .} with birth rates αj

and death rates βj for j ≥ 0. Suppose that β0 = 0. Let π be the stationary distribution of
such a process, with πj = P(π = j), j ≥ 0. In this work we combine Stein’s method with a
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stochastic ordering construction to consider the approximation by π of some random variable
W on Z+.

Our random variable π satisfies the identity E[Ag(π)] = 0 for any bounded function
g : Z+ �→ R, where A is the linear operator defined by

Ag(j) = αjg(j + 1) − βjg(j), j ≥ 0; (1)

A is a characterising operator for π , in the sense that a random variable Z
d= π if and only

if E[Ag(Z)] = 0 for all bounded g. The construction of such a characterising operator is
the basis of Stein’s method for probability approximation. See the books by Stein (1986),
Barbour et al. (1992), Barbour and Chen (2005), Chen et al. (2011), and the references therein.
For Stein’s method applied to birth–death processes, see Brown and Xia (2001), Holmes (2004),
and Eichelsbacher and Reinert (2008).

Given some bounded test function h, the so-called Stein equation is defined by

h(j) − E[h(π)] = Af (j), j ≥ 0. (2)

Its solution is denoted by f = fh = Sh. We call S the Stein operator. Bounds on S are an
essential ingredient of Stein’s method.

Note that the solution f of the Stein equation depends on the chosen test function h. However,
for notational convenience, in much of the work that follows we will write f rather than fh or
Sh. We will often choose h(j) = 1{j∈B} for some B ⊆ Z+, in which case the solution f will
depend on the chosen set B.

Some bounds on the solution of the Stein equation in this general framework are given
in the work of Brown and Xia (2001) and Eichelsbacher and Reinert (2008). For example,
Theorem 2.10 of Brown and Xia (2001) gives the following result.

Proposition 1. (Brown and Xia (2001).) Ifβ0 = 0 andαk−αk−1 ≤ βk−βk−1 for k = 1, 2, . . . ,

then, for all h : Z+ �→ [0, 1],

|fh(i + 1) − fh(i)| ≤ min

{
1

αi

,
1

βi

}
.

Section 2 of Eichelsbacher and Reinert (2008) also gives several bounds on |fh(i)| and
|fh(i + 1) − fh(i)|, some of which rely on conditions on the birth and death rates analogous to
those in Proposition 1.

There are several common distributions π covered by this framework. For many of these
examples, the bounds mentioned above may be applied.

• If αj = λ and βj = j , then π ∼ Po(λ), the Poisson distribution with mean λ. See
Barbour et al. (1992) and the references therein.

• If αj = q(r+j) and βj = j , then π ∼ NB(r, 1−q) has a negative binomial distribution.
See Brown and Phillips (1999).

• If αj = (n − j)p and βj = (1 − p)j , then π ∼ Bin(n, p). See Ehm (1991).

• In the geometric case we may, of course, use the negative binomial operator above.
Alternatively, we may choose αj = q and βj = 1{j≥1}, so that π ∼ Geom(1 − q). See
Peköz (1996).
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The present work is organised as follows. In Section 2 we derive abstract error bounds
using Stein’s method combined with some stochastic ordering assumptions in the setting of
approximation by the equilibrium distribution of a birth–death process. In Section 3, a simple
sufficient condition under which these stochastic ordering assumptions hold is considered,
and some applications are given. In Section 4 we discuss Poisson approximations for a sum
of dependent indicators. We will see how concepts of negative and positive relation relate
to our stochastic ordering assumptions, and present generalisations of error bounds derived
in Barbour et al. (1992). Based on this work, in Section 5 we consider translated Poisson
approximations. Applications here will include the approximation of the number of k-runs in
independent and identically distributed (i.i.d.) Bernoulli trials. Finally, in Section 6 we give
another abstract approximation theorem and consider its application to a sum of independent
indicator random variables.

2. An abstract approximation theorem

Consider Stein’s method for approximating the equilibrium distribution of a birth–death
process. Our aim in this section is to derive abstract error bounds under some stochastic
ordering assumptions.

2.1. A first-order bound

Suppose that W is a random variable supported on (some subset of) Z+ with µj = P(W =
j), j ≥ 0. Set µ−1 = 0. We are interested in the approximation of such a variable W

by π , specifically by estimating the difference |E h(W) − E h(π)|, i.e. |E [Af (W)]|. To this
end, a simple representation of this difference will be applied with some stochastic ordering
assumptions to yield bounds using Stein’s method. We may then bound, for example, the total
variation distance between L(W) and L(π), defined by

dTV(L(W), L(π)) = sup
B⊆Z+

|P(W ∈ B) − P(π ∈ B)|.

Although we are primarily interested in the approximation in the total variation distance, the
results we derive may also be used with other probability metrics.

Let � be the forward difference operator. Since, with operator (1), the choice of f (0) is
arbitrary, we follow Brown and Xia (2001) and choose f (0) = 0. Writing f (j) = �f (0) +
· · · + �f (j − 1), we thus obtain the representation

E h(W) − E h(π) =
∞∑

k=0

�f (k)

∞∑
j=k+1

(αj−1µj−1 − βjµj ). (3)

In the next subsection, we will extend (3) to include the lth forward differences of f (·) for all
l ≥ 1.

We now consider how this representation may be applied in conjunction with the usual
stochastic ordering, denoted by ‘
st’. Define two random variables Wα and Wβ by

P(Wα = j) = αj−1µj−1

E αW

and P(Wβ = j) = βjµj

E βW

, j ≥ 1. (4)

If Wα 
st Wβ and E αW ≥ E βW , we have
∑∞

j=i αj−1µj−1 ≥ ∑∞
j=i βjµj for all i ≥ 1. In

this case, (3) may be bounded to obtain

|E h(W) − E h(π)| ≤ ‖�f ‖∞ E[αW(W + 1) − βWW ].
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A similar argument holds if we instead assume that Wβ 
st Wα and E βW ≥ E αW . We thus
obtain the following result.

Proposition 2. Assume that one of the following two conditions holds:

(i) Wα 
st Wβ with E αW ≥ E βW or (ii) Wβ 
st Wα with E βW ≥ E αW . (5)

Then, for bounded h : Z+ �→ R,

|E h(W) − E h(π)| ≤ ‖�Sh‖∞|E[αW(W + 1) − βWW ]|. (6)

2.2. An s-order bound

We will now establish our main abstract result. For that, we will have recourse to the
concept of discrete s-convex stochastic ordering, denoted by ‘
s−cx’, for any integer s ≥ 1.
See, for example, Lefèvre and Utev (1996) for this notion. Briefly, given any two nonnegative
integer-valued random variables X and Y , we say that Y 
s−cx X when

E[f (X)] ≤ E[f (Y )] for all s-convex functions f,

that is, for all functions f satisfying �sf (j) ≥ 0, j ≥ 0. Note that this ordering implies that
E[Xl] ≤ E[Y l] for l = 1, . . . , s − 1.

This is a generalisation of the usual stochastic ordering (corresponding to s = 1). As we
will see, this is a natural generalisation to apply when considering representations analogous
to (3) with higher powers of �. Functions of Wα and Wβ appearing in such representations
that we employ can be seen to be s-convex for some s.

We begin by introducing a Bernoulli random variable vp with

P(vp = 1) = p = 1 − P(vp = 0),

independently of all other entries. We write α = E αW and β = E βW , and, in an analogous
way to (4), we define the random variables Wα and Wβ by

P(Wα ∈ B) = α−1 E[αW 1{W+1∈B}] and P(Wβ ∈ B) = β−1 E[βW 1{W∈B}] (7)

for any Borel set B. For notational convenience, we choose to write Ck
n = (

n
k

)
, and define

Ck
n = 0 for k > n.
We now give the key proposition and an immediate corollary, followed by the proof of the

proposition.

Proposition 3. Assume that there exists a random variable Y on Z+ such that Wβ − Y ≥ 0
almost surely (a.s.) and that

Wα 
s−cx vp(Wβ − Y ). (8)

Then, for bounded h : Z+ �→ R,

|E h(W) − E h(π)| ≤
s−1∑
t=0

|�tSh(0)||E[αWCt
W+1] − E[βWCt

W ]|

+ ‖�sSh‖∞(α E[Cs
Wα

]− 2αp E[Cs
Wβ−Y ] + (αp + |αp − β|) E[Cs

Wβ
]).
(9)
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Corollary 1. Assume that α = β and that one of the following two conditions holds:

(i) Wα 
s−cx Wβ or (ii) Wβ 
s−cx Wα. (10)

Then, for bounded h : Z+ �→ R,

|E h(W) − E h(π)| ≤ ‖�sSh‖∞|E[αWCs
W+1] − E[βWCs

W ]|. (11)

Corollary 1 follows from Proposition 3 by considering the special case of (8) when p = 1
and Y = 0 a.s. When α = β and condition (10) holds, we have

E[αW(W + 1)t ] = E[βWWt ], t = 0, . . . , s − 1,

so that inequality (9) reduces to (11).
We note that Proposition 2 does not follow as a special case of Corollary 1, since this latter

result requires the condition that α = β, which is not needed in Proposition 2.

Proof of Proposition 3. In the first step we derive a representation of E[Af (W)] that gen-
eralises representation (3). Observe that (1) and (7) give

E[Af (W)] = E[αWf (W + 1)] − E[βWf (W)] = α E[f (Wα)] − β E[f (Wβ)].
Expanding the function f by the discrete Taylor formula, we obtain, for any s = 1, 2, . . . ,

f (x) = f (0) +
∞∑

k=0

�f (k) 1{x>k} =
s−1∑
t=0

�tf (0)Ct
x +

∞∑
k=0

�sf (k)Cs−1
x−k−1. (12)

To see this, note that the s = 1 case is clear. Then proceed by induction, using (12) with s = 1
applied to the function �s−1f to write

�s−1f (k) = �s−1f (0) +
∞∑

j=0

�sf (j)C0
k−j−1.

See also Lefèvre and Utev (1996, Section 2.2).
Now, using (12), we find that

E[Af (W)] =
s−1∑
t=0

�tf (0) E[ACt
W ] +

∞∑
k=0

�sf (k) E[ACs−1
W−k−1]

=
s−1∑
t=0

�tf (0)(α E[Ct
Wα

] − β E[Ct
Wβ

])

+
∞∑

k=0

�sf (k)(α E[Cs−1
Wα−k−1] − β E[Cs−1

Wβ−k−1]). (13)

Our next step is to derive an abstract metrics-ordering relationship result, which is stated
below as a separate lemma. Using bound (15) in representation (13) then leads to the announced
bound (11).
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Lemma 1. Let X, Y , and Z be random variables on Z+ such that

Z − Y ≥ 0 a.s. and X 
s−cx vp(Z − Y ). (14)

Then, for all a, b ∈ R+,

∞∑
k=0

|a E[Cs−1
X−k−1]−b E[Cs−1

Z−k−1]| ≤ a E[Cs
X]−2ap E[Cs

Z−Y ]+(ap+|ap−b|) E[Cs
Z]. (15)

Proof. Letting
w

(s)
k (x) = wk(x) = Cs−1

x−k−1,

we obtain

∞∑
k=0

|a E[Cs−1
X−k−1] − b E[Cs−1

Z−k−1]| =
∞∑

k=0

|a E[wk(X)] − b E[wk(Z)]|

≤ a

∞∑
k=0

|E[wk(X)] − E[wk(vp(Z − Y ))]|

+ a

∞∑
k=0

|E[wk(vpZ)] − E[wk(vp(Z − Y ))]|

+
∞∑

k=0

|a E[wk(vpZ)] − b E[wk(Z)]|

= S1 + S2 + S3. (16)

Let us examine the three sums in (16). First, we easily check that

∞∑
k=0

E[wk(Z)] = E[Cs
Z]. (17)

Using (17), we successively find that

S3 = |ap − b|
∞∑

k=0

E[wk(Z)] = |ap − b| E[Cs
Z];

since Z − Y ≥ 0 and Z 
st Z − Y ,

S2 = ap

∞∑
k=0

(E[wk(Z)] − E[wk(Z − Y )]) = ap(E[Cs
Z] − E[Cs

Z−Y ]);

finally, by assumption (14) and a standard property of the order ‘
s−cx’,

S1 = a

∞∑
k=0

[E wk(X) − p E wk(Z − Y )] = a(E[Cs
X] − p E[Cs

Z−Y ]).

Inserting these three terms in (16) yields bound (15).
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Remark 1. For s = p = 1 and a = b = 1, Lemma 1 states that if X 
st Z − Y ≥ 0 then an
upper bound for the Wasserstein distance between L(X) and L(Z) is

dW(L(X), L(Z)) =
∞∑

k=0

|P(X > k) − P(Z > k)| ≤ 2 E Y + E X − E Z. (18)

This bound is of interest in the stochastic ordering context investigated in Kamae et al. (1977),
with random variables on Z+ here. Note that, by choosing the optimal coupling X, Z, and
Y = (Z − X)+, (18) gives the exact bound since

dW(L(X), L(Z)) ≤ 2 E(Z − X)+ + E X − E Z = E |Z − X| = dW(L(X), L(Z)).

It is worth noting that an analogous argument allows us to show that the same bound (18) holds
under the single condition X + Y 
st Z. A priori, this result seems to be preferable, since the
extra condition Z − Y ≥ 0 is not required. One can see, however, that X 
st Z − Y does not
imply that X + Y 
st Z in general. As an example, choose X = U , Y = U , and Z = n a.s.,
where n is any fixed positive integer and U is discrete uniform on the set {0, 1, . . . , n}. Then,
X = U

d= n − U = Z − Y so that X 
st Z − Y , but X + Y �st Z = n.

3. A simple sufficient condition and examples

In practice, it may be difficult to check directly such conditions as stochastic ordering between
Wα and Wβ , as required in (5) and (10). It is thus useful to have available a simple sufficient
condition which we may then apply.

Throughout this subsection, we assume that α = β and Wα and Wβ have equal moments of
order t = 1, . . . , s − 1. That is, we assume that

(A) E[αW(W + 1)t ] = E[βWWt ], t = 0, . . . , s − 1.

A well-known Karlin–Novikoff sufficient condition to guarantee the s-convex ordering in (10)
under (A) is that our sequence {αj−1µj−1 − βjµj } has at most s changes of sign. See, for
example, Denuit and Lefèvre (1997, p. 206).

Note that, with this Karlin–Novikoff cut criterion, if the sequence {αj−1µj−1 − βjµj } is
nonnegative after the final sign change then Wα 
s−cx Wβ . Conversely, if this sequence is
nonpositive after its final sign change, the ordering is reversed.

Proposition 4. Suppose that condition (A) is satisfied and that the sequence {αj−1µj−1−βjµj }
has at most s changes of sign. Then (11) holds.

As a consequence of Proposition 4, we obtain the following corollary, which extends
Proposition A.1 of Barbour and Pugliese (2000) to birth–death processes.

Corollary 2. Suppose that E αW = E βW . If the sequence {αj−1µj−1 − βjµj } is monotone
then Wα and Wβ are stochastically ordered, so inequality (6) may be applied.

We illustrate these results with the following examples.

Example 1. Our first example is motivated by Phillips and Weinberg (2000). Let W have a
Bose–Einstein occupancy distribution. That is, given m, d ≥ 1,

µj = P(W = j) =
(

d + m − j − 2

m − j

)(
d + m − 1

m

)−1

, 0 ≤ j ≤ m.
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We wish to approximate W by π ∼ Geom(p), a geometric distribution on Z+ = {0, 1, . . .},
where p = (d − 1)/(d + m − 1). Let q = 1 − p. To obtain our geometric law, we choose
αj = q and βj = 1{j>0}, j ≥ 0, as the birth and death rates.

We can easily check that in this case E αW = E βW and the sequence {qµj−1 − µj } is
nondecreasing, so Wα 
st Wβ . Using Corollary 2, bound (6) then becomes

|E h(W) − E h(π)| ≤ p‖�Sh‖∞|E W − E π | (19)

for bounded h : Z+ �→ R. Moreover, it is known (see Peköz (1996, Section 2)) that the Stein
operator S admits here the representation

Sh(j) = −
∞∑

i=j

[h(i) − E h(π)]qi−j .

From this, we find that �Sh(k) = −∑∞
i=k �h(i)qi−k , which leads to the bound

‖�Sh‖∞ ≤ p−1‖�h‖∞.

Inserting this bound into (19) yields the following result.

Corollary 3. With W and π as above and h : Z+ �→ R bounded,

|E h(W) − E h(π)| ≤ ‖�h‖∞
m

d(d − 1)
.

In particular, dTV(L(W), L(π)) ≤ m/(d{d − 1}).
Examples 2 and 3 centre around approximations by so-called polynomial birth–death

distributions, defined in Brown and Xia (2001) as the equilibrium distribution of a birth–death
process with birth and death rates αj and βj which are polynomial in j . With such choices, we
will write π ∼ PBD(αj , βj ).

Example 2. Suppose that W satisfies µj = (a + bj−1)µj−1 for some a, b ∈ R. That is, W

belongs to the Katz (or Panjer) family of distributions (see Johnson et al. (1992, Section 2.3.1)).
It is well known that in this case W must have either a binomial, Poisson, or negative binomial
distribution.

We fix some l ≥ 1 and consider the approximation of W by the polynomial birth–death
distribution π ∼ PBD(α, jQl−1(j)). Here we have chosen a constant birth rate α and a death
rate βj = jQl−1(j), where Ql−1(j) is a monic polynomial in j of degree l − 1. This gives
us l parameters needed to specify the distribution of π . We choose these parameters in such a
way that E[αW(W + 1)t ] = E[βWWt ] for t = 0, . . . , l − 1 is satisfied. We assume that we
can do so in such a way that all the coefficients of Ql−1(j) are nonnegative. This is a stronger
condition than we need for the results below to be applicable, but serves to illustrate the type
of bounds we may obtain. In particular, this assumption guarantees that the death rate βj is
nonnegative and nondecreasing.

With our choice of birth and death rates we have

αµj−1 − βjµj = αµj−1 − jQl−1(j)(a + bj−1)µj−1 = µj−1[α − ajQl−1(j) − bQl−1(j)].
Noting that α − ajQl−1(j) − bQl−1(j) is a polynomial of degree l in j , and, therefore, has at
most l real roots, the sequence {αj−1µj−1 −βjµj } has at most l changes of sign, so that either
Wα 
l−cx Wβ or Wβ 
l−cx Wα .
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With the assumption that βj is nondecreasing in j , Theorem 2.10 of Brown and Xia (2001)
gives

sup{‖�Sh‖∞ : h(j) = 1{j∈B}, B ⊆ Z+} ≤ α−1.

Hence, with h(j) = 1{j∈B} for some B ⊆ Z+,

‖�lSh‖∞ ≤ 2l−1‖�Sh‖∞ ≤ 2l−1α−1.

From Corollary 1 we thus obtain Corollary 4.

Corollary 4. With W and π as above, if the coefficients of Ql−1(j) are nonnegative,

dTV(L(W), L(π)) ≤ 2l−1α−1
∣∣∣∣E

[
α

(
W + 1

l

)
− WQl−1(W)

(
W

l

)]∣∣∣∣. (20)

For example, consider the case where W ∼ Bin(n, p) and π ∼ PBD(α, γj + j (j − 1)), so
that l = 2. Choosing our constants α and γ according to the prescription above, straightforward
calculations give

α = n(n − 1)p(1 − p) and γ = (n − 1)(1 − 2p).

Furthermore,
E[W(W + 1)] = np(np + 2 − p),

E[W 2(W − 1)] = n(n − 1)p2(np + 2 − 2p),

and E[W 2(W − 1)2] = n(n − 1)p2(n2p2 + 4np − 5np2 − 8p + 6p2 + 2).

Evaluating bound (20) then gives the following result.

Corollary 5. Assume that W ∼ Bin(n, p) and π ∼ PBD(α, γj + j (j − 1)). Then, if γ ≥ 1,

dTV(L(W), L(π)) ≤ 2p2. (21)

We first note that the condition γ ≥ 1 is stronger than we need for the death rate βj =
γj + j (j − 1) to be nonnegative and nondecreasing, and that bound (21) also applies under
this weaker condition.

We further note that (20) does not necessarily give a bound of the optimal order. In the case
covered by (21), Theorem 3.1 of Brown and Xia (2001) gives a bound on the total variation
distance of order O(p2/

√
λ), where λ = E[W ] = np. This disparity is due to our rather

crude use of the supremum norm in obtaining bounds such as (20). In Sections 5 and 6 we
will consider more refined ways to bound the terms of our Stein equation in some particular
cases when we have two parameters to choose in our approximating distribution π . Despite
this disadvantage, we nevertheless note that (20) gives an explicit bound which may be applied
in many contexts.

Example 3. Our final example of this section focuses on mixture distributions of the polynomial
birth–death type. Suppose that π ∼ PBD(α, βj ) and W ∼ PBD(ξ, βj ) for some constant birth
rate α, polynomial death rate βj , and random variable ξ on R+. In this case we have

µj = E[µ0(ξ)ξ j ]∏j
k=1 βk

, j ≥ 0. (22)
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We choose α such that α = E βW , that is,

α = E
∞∑

j=0

βjµj = E
∞∑

j=0

ξµj−1 = E ξ.

Using (22), we obtain

αµj − βj+1µj+1 = E

[
µ0(ξ)αj+1∏j

k=1 βj

{(
ξ

α

)j

−
(

ξ

α

)j+1}]

= E

[
αµ0(ξ)

µ0(α)

(
1 − ξ

α

)
πj

(
ξ

α

)j]
.

From this, we can see that the sequence {αµj − βj+1µj+1} is monotone. Hence, Corollary 2
gives us the following result.

Corollary 6. With W and π as above and h : Z+ �→ R bounded,

|E h(W) − E h(π)| ≤ ‖�Sh‖∞|E[α(W + 1) − βWW ]|. (23)

For example, if βj = j then W ∼ Po(ξ) and we take π ∼ Po(λ), where λ = E ξ . Using
the well-known bound on the Stein operator S in this case, namely,

‖�Sh‖∞ ≤ λ−1(1 − e−λ)‖h‖∞, (24)

evaluating (23) gives, after some straightforward calculations,

dTV(L(W), Po(λ)) ≤ λ−1(1 − e−λ) var(ξ),

a bound that has also been obtained in Barbour et al. (1992, Theorem 1.C).

4. Poisson approximation for a sum of indicators

Throughout this section, the random variable W of interest is a sum of indicators, i.e.

W = X1 + · · · + Xn,

where the Xi are Bernoulli variables, possibly dependent, with

pi = P(Xi = 1) = 1 − P(Xi = 0), 1 ≤ i ≤ n.

Using Propositions 2 and 3, we are going to investigate the approximation of the sum W by a
Poisson random variable π ∼ Po(λ).

Recall that our Poisson variable is derived from (1) when αj = λ and βj = j , so that, by (7),

Wα = W + 1 and P(Wβ ∈ B) = E[W 1{W∈B}]
E W

(25)

for any Borel set B. Note that Wβ has the W -size-biased distribution. See, for example,
Goldstein and Rinott (1996). This is crucial in the work that follows.

In the analysis, an important role will be played by the variables

Wi = W − Xi, 1 ≤ i ≤ n.
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4.1. Total dependence

First, we consider the case where the indicators Xi are totally negatively dependent (TND)
in the sense of Papadatos and Papathanasiou (2002). Let us recall that n random variables
Xi, 1 ≤ i ≤ n, are TND if

cov[g1(Xi), g2(Wi)] ≤ 0, 1 ≤ i ≤ n, (26)

for all nondecreasing functions g1 and g2 such that the covariance exists.
Papadatos and Papathanasiou (2002, Theorem 3.1) showed that the class of TND indicators

includes the standard class of negatively related indicators. Stein’s method for the Poisson
approximation of a sum of negatively related indicators is discussed in, for example, Barbour et
al. (1992) and Erhardsson (2005). Recall that indicator random variables X1, . . . , Xn are said
to be negatively related if

E[g(X1, . . . , Xi−1, Xi+1, . . . , Xn) | Xi = 1]
≤ E[g(X1, . . . , Xi−1, Xi+1, . . . , Xn)], 1 ≤ i ≤ n, (27)

for all nondecreasing functions g : {0, 1}n−1 �→ {0, 1}.
We wish to bound the total variation distance between L(W) and Po(λ). For that, we will

apply Proposition 2. By (25), we have, for any function g : Z+ �→ R,

E g(Wα) = E g(W + 1) and E g(Wβ) = E[Wg(W)]
E W

.

Thus, to show that Wα 
st Wβ , we must prove that if g is nondecreasing then E W E g(W +1) ≥
E[Wg(W)]. In fact, this was established by Papadatos and Papathanasiou (2002, Lemma 3.1).

Using bound (24) on the Stein operator in the Poisson case, (5) and (6) yield the following
result.

Theorem 1. If the indicators {Xi : 1 ≤ i ≤ n} are TND then Wα 
st Wβ . If, in addition,
E W ≥ λ then

dTV(L(W), Po(λ)) ≤ 1 − e−λ

λ
([λ + 1] E W − E[W 2]).

Further results on, and examples of, TND indicator random variables can be found in
Papadatos and Papathanasiou (2002).

Let us now consider the case where the indicators Xi are positively dependent in a certain
sense. We adapt definition (26) and say that n random variables X1 . . . , Xn are totally positively
dependent (TPD) if

cov[g1(Xi), g2(Wi)] ≥ 0, 1 ≤ i ≤ n,

for all nondecreasing functions g1 and g2 such that the covariance exists.
Association or a positive relation is sufficient for TPD. This can be established analogously

to the proof of Theorem 3.1 of Papadatos and Papathanasiou (2002). Recall that our indicator
random variables are said to be positively related if (27) holds with the inequality reversed for
all nondecreasing functions g : {0, 1}n−1 �→ {0, 1}. This standard property is used with Stein’s
method in, for example, Barbour et al. (1992) and Erhardsson (2005).

In the sequel, it is assumed that E W = λ. To obtain a bound for the total variation distance,
we will apply Proposition 3, using the lemma stated below. To begin with, we introduce a
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random variable XV , a mixing of our n indicators, in which the index V is a random variable
of law

P(V = i) = E Xi

λ
, 1 ≤ i ≤ n. (28)

Lemma 2. If E W = λ and the indicators {Xi : 1 ≤ i ≤ n} are TPD, then

Wβ 
st Wα − XV , (29)

where Wα − XV ≥ 0 a.s.

Proof. As seen in (25), Wα = W + 1 and, thus, Wα − XV ≥ 0 a.s. Moreover, Wβ has the
so-called W -size-biased distribution; see, for example, Goldstein and Rinott (1996). With W

being a sum of indicators, it is then known that Wβ admits the representation

Wβ =
∑
i =V

X̂i + 1, (30)

where V is a random variable of law (28), and, if V = v,

X̂i
d= (Xi | Xv = 1), i = v.

Thus, by (30), ordering (29) is equivalent to
∑

i =V X̂i 
st W − XV . To establish this, it is
enough to prove that ∑

i =v

X̂i 
st W − Xv, 1 ≤ v ≤ n;

see Shaked and Shanthikumar (2007, Theorem 1.A.3(d)). Now, by (30) and the TPD assump-
tion, we obtain, for any real a ≥ 0,

P

(∑
i =v

X̂i > a

)
= P

(∑
i =v

Xi > a

∣∣∣∣ Xv = 1

)
≥ P

(∑
i =v

Xi > a

)
= P(W − Xv > a),

which is the desired result.

Thanks to Lemma 2, we may apply Proposition 3 with s = p = 1. Noting that, by (28),

E XV =
n∑

i=1

pi P(V = i) = 1

λ

n∑
i=1

p2
i ,

we then obtain the following result.

Theorem 2. If E W = λ and the indicators {Xi : 1 ≤ i ≤ n} are TPD, then

dTV(L(W), Po(λ)) ≤ 1 − e−λ

λ

{
E[W 2] + 2

n∑
i=1

p2
i − λ(λ + 1)

}
.

This bound is obtained (and applied) in Barbour et al. (1992, Corollary 2.C.4) under the
condition of positive relation. See also Erhardsson (2005).
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4.2. Approximate local dependence

Approximate local dependence is becoming a rather popular topic in probability. For works
related to this idea, see, for example, Chen (1975), Barbour et al. (1992), and Chatterjee et al.
(2005). We now derive an abstract Poisson approximation theorem by combining stochastic
ordering with such an approach.

We say that the n indicators X1, . . . , Xn are approximately locally negatively dependent
(ALND) if there exist n nonnegative reals δ1, . . . , δn (of sum δ > 0) and n random variables
Y1, . . . , Yn on Z+ such that

E[Xig(Wi − Yi)] ≤ δi E[g(Wi − Yi)], 1 ≤ i ≤ n, (31)

for all nonnegative, nondecreasing functions g. Similarly, X1, . . . , Xn are said to be approxi-
mately locally positively dependent (ALPD) if

E[Xig(Wi − Yi)] ≥ δi E[g(Wi − Yi)], 1 ≤ i ≤ n, (32)

for all nonnegative, nondecreasing functions g.
Define

ε =
n∑

i=1

E[XiYi] and ε∗ = ε +
n∑

i=1

δi E[Xi + Yi],

and let

cλ = (λ + 1)(1 − e−λ)

λ
+ 2dλ with dλ = 1 ∧

√
2

eλ
.

Theorem 3. If E W = λ and the indicators {Xi : 1 ≤ i ≤ n} are ALND, then

dTV(L(W), Po(λ)) ≤ 1 − e−λ

λ
(|var(W) − λ| + 2ε) + cλ|δ − λ|, (33)

while if the indicators {Xi : 1 ≤ i ≤ n} are ALPD then

dTV(L(W), Po(λ)) ≤ 1 − e−λ

λ
(|var(W) − λ| + 2ε∗) + cλ|δ − λ|.

Before proving Theorem 3, we give an example of its application.

Example 4. We examine a variation of the classical birthday problem; see also Barbour et al.
(1992). Suppose that we independently colour N ≥ 2 points with one of m colours, each colour
being chosen equiprobably. Let 
 be the set of all subsets i ⊆ {1, . . . , N} of size 2. For i ∈ 
,
let Zi be the indicator that the points indexed by i have the same colour. Moreover, suppose
that we uniformly choose r of the |
| = (

N
2

)
pairs of points, independently of the colourings

chosen. For i ∈ 
, we let ξi = 0 if the pair of points indexed by i is chosen, and set ξi = 1
otherwise.

Set W = ∑
i∈
 Ziξi . This counts the number of pairs of points with the same colour,

excluding those r pairs of points we have chosen. In the case where r = 0, this corresponds
to the classical birthday problem. A bound in the Poisson approximation of W in this case is
given in Arratia et al. (1989, Example 2).

We observe that, for all i, j ∈ 
, E[Zi] = m−1 and E[ZiZj ] = m−2. Furthermore,

E[ξi] =
(
N
2

) − r(
N
2

) and E[ξiξj ] =
(
N
2

) − r(
N
2

) ((
N
2

) − r − 1(
N
2

) − 1

)
, i = j.
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Straightforward calculations then give

λ = E[W ] =
(
N
2

) − r

m
and λ − var(W) =

(
N
2

) − r

m2 .

Now, we write Wi = W − Ziξi and choose

Yi =
∑
j =i

Zj ξj 1{i∩j =∅} and δi = E[Ziξi].

Condition (31) holds true with these choices. Indeed, Wi − Yi is independent of Zi and the ξi

are negatively related by construction. Thus, for all nondecreasing functions g, we have

E[Ziξig(Wi − Yi)] = E[Ziξi] E[g(Wi − Yi) | ξi = 1] ≤ E[Ziξi] E[g(Wi − Yi)],
as required. We further see that

ε =
∑
i∈


E[ZiξiYi]

=
∑
i∈


∑
j =i

E[ZiZj ] E[ξiξj ] 1{i∩j =∅}

= 2(N − 1){(N
2

) − r}{(N
2

) − r − 1}
m2{(N

2

) − 1} .

Evaluating (33) then gives the bound in Corollary 7 below.

Corollary 7. With W as above,

dTV(L(W), Po(λ)) ≤ 1 − e−λ

m

{
1 + 4(N − 1)

((
N
2

) − r − 1(
N
2

) − 1

)}
.

In the r = 0 case, a bound of the same order was established in Arratia et al. (1989,
Example 2).

4.3. Proof of Theorem 3

The ALND case. The method of proof combines the ideas given in Barbour et al. (1992),
Goldstein and Rinott (1996), Papadatos and Papathanasiou (2002), and Reinert (2005).

We suppose first that f is any nonnegative, nondecreasing function. We thus have

E[Wf (W)] =
n∑

i=1

E[Xif (W)]

=
n∑

i=1

E[Xif (Wi + 1)]

=
n∑

i=1

E[Xif (Wi − Yi + 1)] +
n∑

i=1

E[Xi{f (Wi + 1) − f (Wi − Yi + 1)}],

which we denote by T1 + T2. We bound the sum T2 by noting that

|f (x) − f (y)| ≤ ‖�f ‖∞|x − y|,
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which yields

T2 ≤ ‖�f ‖∞
n∑

i=1

E(XiYi) = ‖�f ‖∞ε.

For the sum T1, by (31) and since f is nondecreasing, we obtain

T1 ≤
n∑

i=1

δi E[f (Wi − Yi + 1)] ≤
n∑

i=1

δi E[f (W + 1)] = δ E[f (W + 1)].

Using these two bounds, we find that

E[Af (W)] = λ E[f (W + 1)] − E[Wf (W)]
≥ −(δ − λ) E[f (W + 1)] − ‖�f ‖∞ε. (34)

To obtain an upper bound, we define a function f̃ on {0, 1, . . . , n − 1} by

f̃ (x) = ‖f ‖∞ + ‖�f ‖∞x − f (x). (35)

Note that f̃ is, as f , a nonnegative, nondecreasing function. By assumption, E W = λ so that
E[A1] = 0; observe also that E[AW ] = λ E[W + 1] − E[W 2] = −[var(W) − λ]. Thus,

E[Af̃ (W)] = ‖g‖∞ E[A1] + ‖�f ‖∞ E[AW ] − E[Af (W)]
= −‖�f ‖∞[var(W) − λ] − E[Af (W)].

On the other hand, (34) is applicable to the function f̃ , so that

E[Af̃ (W)] ≥ −(δ − λ) E[f̃ (W + 1)] − ‖�f̃ ‖∞ε.

From these two formulae, we deduce that

E[Af (W)] ≤ ‖�f̃ ‖∞ε + (δ − λ) E[f̃ (W + 1)] + ‖�f ‖∞|var(W) − λ|. (36)

Now, let f be an arbitrary function. We start with the standard decomposition f = f+ −f−,
where f+ and f− are nonnegative, nondecreasing functions with, of course,

‖�jf+‖∞ ≤ ‖�jf ‖∞ and ‖�jf−‖∞ ≤ ‖�jf ‖∞, j = 0, 1. (37)

By (34) and (36), we obtain the upper bound

E[Af (W)] = E[Af +(W)] − E[Af −(W)]
≤ ‖�f̃+‖∞ε + (δ − λ) E[f̃+(W + 1)] + ‖�f+‖∞|var(W) − λ|

+ (δ − λ) E[f−(W + 1)] + ‖�f−‖∞ε

= ‖�f+‖∞|var(W) − λ| + (‖�f̃+‖∞ + ‖�f−‖∞)ε

+ (δ − λ){‖f+‖∞ + ‖�f+‖∞(λ + 1) − E[f (W + 1)]},
where we have used (35) and the fact that E W = λ for the last equality. By a similar method,
we obtain the lower bound

E[Af (W)] ≥ −(δ − λ) E[f+(W + 1)] − ‖�f+‖∞ε

− ‖�f̃−‖∞ε − (δ − λ) E[f̃−(W + 1)] − ‖�f−‖∞|var(W) − λ|
= −‖�f−‖∞| var(W) − λ| − (‖�f+‖∞ + ‖�f̃−‖∞)ε

− (δ − λ){‖f−‖∞ + ‖�f−‖∞(λ + 1) + E[f (W + 1)]}.
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By (37) and since ‖�f̃ ‖∞ ≤ ‖�f ‖∞, combining the two previous bounds then yields

|E[Af (W)]| ≤ ‖�f ‖∞(|var(W) − λ| + 2ε) + |δ − λ|[2‖f ‖∞ + ‖�f ‖∞(λ + 1)]. (38)

With f = Sh, it now suffices to apply the standard bounds in (38), i.e.

‖�Sh‖∞ ≤ λ−1(1 − e−λ)‖h‖∞ and ‖Sh‖∞ ≤ dλ‖h‖∞,

which gives (33).
The ALPD case. This case is treated analogously to the ALND case. For f nonnegative and

nondecreasing, we first write

E[Wf (W)] =
n∑

i=1

E[Xif (Wi − Yi + 1)] +
n∑

i=1

E[Xi{f (Wi + 1) − f (Wi − Yi + 1)}]

≥
n∑

i=1

E[Xif (Wi − Yi + 1)] − ‖�f ‖∞ε.

By (32), we then obtain

E[Wf (W)] ≥
n∑

i=1

δi E[f (Wi − Yi + 1)] − ‖�f ‖∞ε

= δ E[f (W + 1)] −
n∑

i=1

δi E[f (W + 1) − f (Wi − Yi + 1)] − ‖�f ‖∞ε

≥ δ E[f (W + 1)] − ‖�f ‖∞
n∑

i=1

δi E(Xi + Yi) − ‖�f ‖∞ε

= δ E[f (W + 1)] − ‖�f ‖∞ε∗.

Overall, we find that

E[Af (W)] = λ E[f (W + 1)] − E[Wf (W)] ≥ −(δ − λ) E[f (W + 1)] + ‖�f ‖∞ε∗.

The rest of the proof follows as in the ALND case.

5. Translated Poisson approximation

We assume, as in Section 4, that W = X1 + · · · + Xn is a sum of (possibly dependent)
indicator random variables, with pi = P(Xi = 1). Define

λk =
n∑

i=1

pk
i , λ = λ1 = E[W ], and σ 2 = var(W).

We are going to discuss the approximation of W by a translated Poisson distribution.

5.1. Main results

A random variable Z has a translated Poisson distribution TP(λ, σ 2) if Z is distributed as
Z′ + ρ, where Z′ ∼ Po(σ 2 + γ ) with

ρ = λ − σ 2 − γ and γ = 〈λ − σ 2〉 ∈ [0, 1),

where 〈x〉 = x − �x� denotes the fractional part of x.
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We note that E[Z] = λ and σ 2 ≤ var(Z) = σ 2 + γ < σ 2 + 1, so that our approximating
translated Poisson distribution has a mean equal to, and variance close to, that of W . We would
thus expect a closer approximation than could be obtained by simply using the one-parameter
Poisson distribution. The variances of W and Z cannot necessarily be made to match exactly,
as we must shift our Poisson distribution by an integer. However, the error term arising from
this mismatch does not adversely affect the order of the bounds we obtain, as we will see below.

The following results give us bounds in the translated Poisson approximation for W under
some stochastic ordering assumptions. We defer the proof of Theorem 4 until Section 5.3,
giving first some examples of its application in Section 5.2.

Our bounds demonstrate convergence to a translated Poisson distribution if σ → ∞ as
n → ∞. Bounds on the total variation distance between L(W) and a translated Poisson
random variable may still be found if this is not the case, but require a different analysis of the
error terms. For example, in proving Theorem 4, we write P(W − ρ < 0) ≤ σ−2. This error
term may be reduced, or even omitted altogether, depending on the problem at hand, with a
more careful analysis. This could give us good bounds in the cases where σ → σ∞ < ∞ as
n → ∞.

In the sequel, we let Ws be a random variable having the W -size-biased distribution, and vq

be an indicator random variable, independent of all else, with P(vq = 1) = q. As before, we
write Wi = W − Xi, 1 ≤ i ≤ n, and, for any random index V , we let WV = W − XV .

Theorem 4. Suppose that X1, . . . , Xn are positively related, and that there exist q ∈ [0, 1]
and l ∈ Z+ such that

(W + 1 | Xk = 0) 
st (W − l − vq | Xk = 1), 1 ≤ k ≤ n. (39)

Then

dTV(L(W), TP(λ, σ 2)) ≤ 2

σ 2 + λ2 + (l + q)(λ − λ2)

λσ

+ (l + 1)(l + 2q)(λ − λ2)

σ 2 dTV(L(Ws), L(Ws + 1)). (40)

Suppose instead that X1, . . . , Xn are negatively related, and that there exist q ∈ [0, 1] and
l ∈ Z+ such that

(W + 1 | Xk = 0) �st (W + l + vq | Xk = 1), 1 ≤ k ≤ n. (41)

Then

dTV(L(W), TP(λ, σ 2)) ≤ 2

σ 2 + λ2 + (l + q)(λ − λ2)

λσ

+ l(l + 2q − 1)(λ − λ2)

σ 2 dTV(L(Ws), L(Ws + 1)). (42)

Consider the stochastic ordering assumptions (39) and (41). We note that the choice of the
pair l, q is not unique, in that choosing l = m and q = 1 gives the same assumption as choosing
l = m + 1 and q = 0. It is easily checked, however, that each of these choices gives rise to
the same bounds in (40) and (42). In the examples below, we will verify the validity of such
stochastic orderings by using an appropriate coupling argument.
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5.2. Applications

Example 5. Suppose that X1, . . . , Xn are independent. Thus, they are also negatively related.
Moreover, condition (41) is true for q = l = 0. Therefore, (42) is applicable and yields the
following result.

Corollary 8. With W as above,

dTV(L(W), TP(λ, σ 2)) ≤ λ2

λσ
+ 2

σ 2 .

This bound is of the order we would expect, see also Čekanavičius and Vaı̌tkus (2001).

Example 6. Suppose that m balls are placed into N urns in such a way that no urn contains
more than one ball and all arrangements are equally likely. Let W be the number of balls in the
first n urns. Thus, W has a hypergeometric distribution with

λ = mn

N
and σ 2 = mn(N − m)(N − n)

(N − 1)N2 .

We set Xi to be the indicator that the ith urn contains a ball, so that W = X1 + · · · + Xn.
By construction, these indicators are negatively related. Condition (41) holds for q = 1 and
l = 0. To see this, we construct (W + 1 | Xk = 0) by considering the N urns and excluding
the kth urn. Distribute the m balls in these N − 1 urns, such that all arrangements are equally
likely, and count the number of the first n urns that are occupied. Adding one to this count
gives us our random variable. We then choose (uniformly and independently of what has gone
before) one of the occupied urns. Take the ball from this urn and place it in urn k. This gives
(W + 1 | Xk = 1). If the ball chosen is from one of the first n urns, the number of occupied
urns is the same as before. Otherwise, we have increased the number of occupied urns within
the first n. Evaluating bound (42) then gives Corollary 9 below.

Corollary 9. For W having our hypergeometric distribution,

dTV(L(W), TP(λ, σ 2)) ≤ 1

σ
+ 2

σ 2

=
√

N2(N − 1)

mn(N − m)(N − n)
+ 2N2(N − 1)

mn(N − m)(N − n)
.

Röllin (2007, Section 4.1) considered the translated Poisson approximation for the hyper-
geometric distribution, and showed that if m = O(n) and N = O(n) then one obtains a bound
in the total variation distance of order O(1/

√
n). This order is also reflected in our result.

Example 7. Suppose that ξ1, . . . , ξn are i.i.d. Bernoulli random variables with

p = P(ξi = 1) = 1 − P(ξi = 0), 1 ≤ i ≤ n.

Fix an integer k ≥ 2, and define

Xi = ξiξi+1 · · · ξi+k−1 and W =
n∑

i=1

Xi,

in which, to avoid edge effects, all indices are treated modulo n. Thus, W counts the number
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of k-runs in our Bernoulli trials. Observe that

λ = npk, λ2 = np2k, and σ 2 = npk

1 − p
(1 + p − pk[2 + (2k − 1)(1 − p)]).

The translated Poisson approximation for k-runs was treated in Röllin (2005, Section 3.2), who
gave a bound in the total variation distance of the form K/

√
n for some constant K = K(k, p)

independent of n. Barbour and Xia (1999, Section 5) also gave a bound of this order for 2-runs.
We will use our Theorem 4 to give an explicit bound with this same order.

It is easily seen that the variables X1, . . . , Xn are positively related. Condition (39) holds
by choosing q = 1 and l = 2k − 3. To see this, consider the following construction. Given
the Bernoulli random variables ξ1, . . . , ξn, fix some m ≤ n and set ξm = ξm+1 = · · · =
ξm+k−1 = 1, while the others remain independent Bernoulli random variables with parameter p.
Counting the number of k-runs in these n Bernoulli trials gives (W | Xm = 1). Suppose
now that we resample the random variables ξm, . . . , ξm+k−1, conditional on at least one of
these being 0. Counting the number of k-runs now gives (W | Xm = 0). In this resampling
procedure, we can remove at most 2k − 1 of the k-runs that were originally present. Thus, our
construction implies that

(W | Xm = 0) + 2k − 1 ≥ (W | Xm = 1),

or, equivalently,
(W + 1 | Xm = 0) ≥ (W − 2k + 2 | Xm = 1),

and, hence, the announced values of q and l.
Following the work of Section 4, to construct Ws , we choose an index V uniformly from

{1, . . . , n}, and set ξV = ξV +1 = · · · = ξV +k−1 = 1, while the other ξi remain independent
Bernoulli random variables with parameter p. Lemma 2.1 of Wang and Xia (2008) thus gives

dTV(L(Ws), L(Ws + 1)) ≤ 1 ∧ 2.3√
(n − k − 1)pk(1 − p)3

.

Using this, Theorem 4 yields the following result.

Corollary 10. Let W count the number of k-runs in n independent Bernoulli trials, each with
success probability p. Then,

dTV(L(W), TP(λ, σ 2))

≤ 2

σ 2 + pk + (2k − 2)(1 − pk)

σ

+ (2k − 2)(2k − 1)npk(1 − pk)

σ 2

(
1 ∧ 2.3√

(n − k − 1)pk(1 − p)3

)
. (43)

Our bound (43) has the same order as that of Röllin (2005, Theorem 5) and Barbour and Xia
(1999, Theorem 5.2) (this latter result applying only to the 2-runs case). Numerical comparison
of the bounds shows that ours generally performs well compared to these other bounds, often
giving a better result. In Table 1 we give some illustrations, with values for comparison taken
from Röllin (2005).
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Table 1: Numerical comparisons for 2-runs. Upper bounds on the total variation distance from (a) our
result (43), (b) Röllin (2005), and (c) Barbour and Xia (1999). Missing values are due to restrictions on

the choice of parameters.

p
n Bound

0.10 0.25 0.50 0.75 0.90

106 (a) 0.1553 0.0675 0.0500 0.0814 0.2512
(b) 0.4463 0.2334 0.1747 0.5528 >1
(c) 0.0304 — 0.1251 0.6014 —

108 (a) 0.0155 0.0067 0.0050 0.0081 0.0251
(b) 0.0445 0.0233 0.0175 0.0553 0.2554
(c) 0.0030 — 0.0125 0.0601 —

1010 (a) 0.0016 0.0007 0.0005 0.0008 0.0025
(b) 0.0045 0.0023 0.0017 0.0055 0.0255
(c) 0.0003 — 0.0013 0.0060 —

5.3. Proof of Theorem 4

Our proof is based on that of Propositions 2 and 3, using the characterising operator for the
Poisson distribution. We find representations of our Stein equation in conjunction with which
our dependence and stochastic ordering assumptions may be applied.

Throughout this section, we let f = Sh be the solution to the Stein equation (2) with the
choices αj = σ 2 +γ and βj = j , corresponding to the Poisson distribution with mean σ 2 +γ .
We suppose that the test function h has the form h(j) = 1{j∈B} for some B ⊆ Z+. We write
gB(j) = f (j − ρ). We note that gB depends on the choice of the set B, though for notational
convenience we will often simply write g for gB . We note further that bounds on the supremum
norm of f also apply to g, so that in particular ‖�gB‖∞ ≤ σ−2 for each B ⊆ Z+.

Following Röllin (2007, Section 3), from the Stein equation we obtain

dTV(L(W), TP(λ, σ 2)) ≤ sup
B⊆Z+

|E[(σ 2 + γ )gB(W + 1) − (W − ρ)gB(W)]|

+ P(W − ρ < 0). (44)

Using Chebyshev’s inequality, we can write

P(W −ρ < 0) = P(W −λ < −σ 2 −γ ) ≤ P(|W −λ| > σ 2 +γ ) ≤ P(|W −λ| > σ 2) ≤ σ−2.

So, we now concentrate on the first term on the right-hand side of (44). Throughout our proof,
we will make use of the following equalities in distribution:

(W | XV = 1)
d= Ws and (WV | XV = 0)

d= (W | XV = 0). (45)

Step 1. For this part of the proof, we will establish the following bound, which may be of
some independent interest.

Proposition 5. With the above notation,

dTV(L(W), TP(λ, σ 2)) ≤ (λ − λ2) sup
B⊆Z+

{B} + λ2

λσ
+ 2

σ 2 , (46)
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where

B = E
∞∑

j=0

|�gB(j) − �gB(W)|

× |P(WV + 1 > j | XV = 0) − P(WV + 1 > j | XV = 1)|. (47)

To prove this result, we separately consider the cases where σ 2 ≤ λ and σ 2 ≥ λ. We begin
by assuming that σ 2 ≤ λ, so that ρ ≥ 0. Recall that

E[Wg(W)] = λ E[g(Ws)]. (48)

Using (48), we can then write

E[(σ 2 + γ )g(W + 1) − (W − ρ)g(W)] = λ E[g(W̃ ) − g(Ws)], (49)

where

P(W̃ = j) = λ−1[(σ 2 + γ ) P(W + 1 = j) + ρ P(W = j)], j ≥ 0.

That is, W̃ = W + vr , where vr is a Bernoulli variable with success probability r = λ−1(σ 2 +
γ ). Note that r ≤ 1 by assumption. We rewrite (49) as

λ E[g(W̃ ) − g(Ws)] = λ E[g(W̃ ) − g(W̄ )] + λ E[g(W̄ ) − g(Ws)], (50)

by defining W̄ = WV + 1, where V is a random index chosen according to (28). For the first
term in (50), we note that, by conditioning on vr ,

λ E g(W̃ ) = λ E g(W + vr) = (σ 2 + γ ) E �g(W) + λ E g(W). (51)

Furthermore, by conditioning on XV and using the equalities in (45),

λ E g(W̄ ) = λ E g(WV + 1) = λ2 E g(Ws) + (λ − λ2) E[g(W) | XV = 0], (52)

since P(XV = 1) = λ−1λ2. Again, by considering conditioning on XV and using (45), we
have

(λ − λ2) E[g(W) | XV = 0] = λ E g(W + 1) − λ2 E g(Ws + 1). (53)

Combining (51), (52), and (53), we obtain

λ E[g(W̃ ) − g(W̄ )] = (σ 2 + γ − λ) E �g(W) + λ2 E �g(Ws)

= λ2 E[�g(Ws) − �g(W)] + γ E �g(W)

+ (σ 2 − λ + λ2) E �g(W). (54)

Now consider the second term in (50). Let us combine it with the final term in (54). Since

E[W̄ − Ws] = −λ−1(σ 2 − λ + λ2),

and proceeding as we did in deriving (3), we obtain

λ E[g(W̄ ) − g(Ws)] + (σ 2 − λ + λ2) E �g(W)

= λ E
∞∑

j=0

(�g(j) − �g(W))[P(W̄ > j) − P(Ws > j)]. (55)
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Using the definition of W̄ , conditioning on XV , and employing (45), we have

λ[P(W̄ > j) − P(Ws > j)]
= (λ − λ2)[P(WV + 1 > j | XV = 0) − P(WV + 1 > j | XV = 1)]. (56)

Hence, the right-hand side of (55) becomes

(λ − λ2) E
∞∑

j=0

(�g(j) − �g(W))[P(WV + 1 > j | XV = 0)

− P(WV + 1 > j | XV = 1)]. (57)

Substituting representations (54) and (57) into (49), then substituting in turn in (44) yields

dTV(L(W), TP(λ, σ 2)) ≤ (λ − λ2) sup
B⊆Z+

{B} + λ2 sup
B⊆Z+

|E[�gB(Ws) − �gB(W)]|

+ γ sup
B⊆Z+

|E �gB(W)| + P(W − ρ < 0),

where B is given by (47).
Recalling that P(W − ρ < 0) ≤ σ−2, γ ≤ 1, and ‖�gB‖∞ ≤ σ−2, we have

γ sup
B⊆Z+

|E �gB(W)| + P(W − ρ < 0) ≤ 2σ−2.

Furthermore, the random variable Ws having the W -size-biased distribution satisfies

P(Ws = j) = λ−1j P(W = j), 0 ≤ j ≤ n,

and so

2dTV(L(W), L(Ws)) =
∞∑

j=0

|P(W = j) − P(Ws = j)| = E |1 − λ−1W | ≤ λ−1σ. (58)

We thus have

λ2|E[�gB(Ws) − �gB(W)]| ≤ 2λ2‖�gB‖∞dTV(L(W), L(Ws)) ≤ λ2

λσ
.

Combining the above bounds, we obtain the desired result.
In the second step of the proof, we consider how B can be bounded. Before doing this, we

show that if σ 2 ≥ λ then bound (46) continues to hold.
Consider now the case where σ 2 ≥ λ, so that ρ ≤ 0. We will use an analogous argument to

show that bound (46) continues to hold. In place of (50), we write

E[(σ 2 + γ )g(W + 1) − (W − ρ)g(W)]
= (σ 2 + γ ) E[g(W + 1) − g(Ŵ )] + (σ 2 + γ ) E[g(Ŵ ) − g(W�)], (59)

where Ŵ = W + vt (1 − XV ), W� = vtW
s + (1 − vt )W , and t = λ(σ 2 + γ )−1. Consider

the first term on the right-hand side of (59). For this term, we argue as we did to derive (54).
Conditioning on vt and XV , and employing the equalities in (45), we find, as for (54), that

(σ 2 + γ ) E[g(W + 1) − g(Ŵ )]
= λ2 E[�g(Ws) − �g(W)] + γ E �g(W) + (σ 2 − λ + λ2) E �g(W).
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As we have
E[Ŵ − W�] = −(σ 2 + γ )−1(σ 2 − λ + λ2),

we then write

(σ 2 + γ ) E[g(Ŵ ) − g(W�)] + (σ 2 − λ + λ2) E �g(W)

= (σ 2 + γ ) E
∞∑

j=0

(�g(j) − �g(W))[P(Ŵ > j) − P(W� > j)]. (60)

Using the definitions of Ŵ and W�, and conditioning on vt , we find that

P(Ŵ > j) − P(W� > j) = t[P(W̄ > j) − P(Ws > j)].
Comparing this with (55), recalling the definition of t , and using (56), we find that (57) also
gives us a representation of (60). Continuing the argument as before, bound (46) holds too in
the present case.

Step 2. In this part of the proof we bound B , defined in (47), and, thus, obtain the bounds
of our theorem. In doing so, we will use our stochastic ordering and dependence assumptions.
The cases where X1, . . . , Xn are positively and negatively related will be discussed separately.
In the positively related case, the argument of Lemma 2 shows that

P(WV + 1 > j | XV = 0) − P(WV + 1 > j | XV = 1) ≤ 0, j ≥ 0.

Noting that (WV + 1 | XV = 1)
d= Ws , we fix some l ∈ Z+ and write

P(WV + 1 > j | XV = 1) − P(WV + 1 > j | XV = 0)

= P(WV + 1 > j + l | XV = 1) − P(WV + 1 > j | XV = 0)

+
l∑

i=1

P(Ws = j + i). (61)

Suppose now that there exists some q ∈ [0, 1] such that, for each j ≥ 0,

P(WV + 1 > j + l | XV = 1) − P(WV + 1 > j | XV = 0)

≤ q P(WV = j + l | XV = 1) (62)

= q P(Ws = j + l + 1). (63)

We will show presently that this is implied by the stochastic ordering assumption (39). Using
(61) and (63), we find that

B ≤ q E |�gB(Ws − l − 1) − �gB(W)| +
l∑

i=1

E |�gB(Ws − i) − �gB(W)|

≤ 2q‖�gB‖∞dTV(L(W), L(Ws − l − 1))

+ 2‖�gB‖∞
l∑

i=1

dTV(L(W), L(Ws − i)). (64)
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Using our bound on ‖�gB‖∞ and the triangle inequality for the total variation distance, the
first term in (64) is bounded by

2qσ−2{dTV(L(W), L(Ws)) + (l + 1)dTV(L(Ws), L(Ws + 1))}
≤ 2qσ−2

{
σ

2λ
+ (l + 1)dTV(L(Ws), L(Ws + 1))

}
, (65)

where this last inequality uses (58). Similarly, the second term in (64) can be bounded by

2σ−2
l∑

i=1

{dTV(L(W), L(Ws)) + idTV(L(Ws), L(Ws + 1))}

≤ σ−2
{

lσ

λ
+ l(l + 1)dTV(L(Ws), L(Ws + 1))

}
. (66)

Combining (64), (65), and (66) with bound (46) yields the desired inequality (40).
So, the proof of the first part of Theorem 4 is completed upon showing that the stochastic

ordering condition (39) implies inequality (62). Writing

P(WV = j + l | XV = 1) = P(WV + 1 > j + l | XV = 1) − P(WV > j + l | XV = 1)

for 0 ≤ j ≤ n, it can be seen that (62) is equivalent to

P(WV +1 > j | XV = 0) ≥ (1−q) P(WV +1−l > j | XV = 1)+q P(WV −l > j | XV = 1)

for j ≥ 0. This, in turn, is equivalent to the stochastic ordering

(W + 1 | XV = 0) 
st (1 − vq)(W − l | XV = 1) + vq(W − l − 1 | XV = 1), (67)

which can be seen using (45). Some rearranging shows that the stochastic ordering assump-
tion (39) implies the stochastic ordering (67); hence, we obtain the result of Theorem 4 in the
positively related case.

We now turn our attention to the case of a negative relation, and complete the proof of that
portion of Theorem 4. When X1, . . . , Xn are negatively related, we can use a similar argument
to the above. We have

P(WV + 1 > j | XV = 0) − P(WV + 1 > j | XV = 1) ≥ 0, 0 ≤ j ≤ n.

Analogously to the positively related case, we write, for some fixed l ∈ Z+,

P(WV + 1 > j | XV = 0) − P(WV + 1 > j | XV = 1)

= P(WV + 1 > j | XV = 0) − P(WV + 1 > j − l | XV = 1) +
l−1∑
i=0

P(Ws = j − i).

This time, we suppose that there exists q ∈ [0, 1] such that

P(WV + 1 > j | XV = 0) − P(WV + 1 > j | XV = 1)

≤ q P(WV + 1 + l = j | XV = 1). (68)

Following a similar argument to that used in the case of a positive relation, we find that

B ≤ l + q

λσ
+ l(l + 2q − 1)

σ 2 dTV(L(Ws), L(Ws + 1)).

Combining this with (46) gives us the desired inequality (42). It remains to show that the
stochastic ordering assumption (41) implies inequality (68), which can be achieved as above.
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6. Another abstract approximation theorem

Our aim hereafter is to consider an alternative approximation theorem which can be found
within the present framework. For concreteness, we suppose that the birth rates αj and death
rates βj are such that the random variable π has two parameters. This will be the case in the
application presented later.

Let us return to the basic representation (13). To choose the two parameters of π , it seems
natural, in our context, to consider s = 2 and introduce the two conditions α = β and E Wα =
E Wβ (i.e. E[αW(W + 1)] = E[βWW ]). With these choices, representation (13) becomes

E h(W) − E h(π) = α

∞∑
i=0

�2f (i) E[(Wα − i − 1)+ − (Wβ − i − 1)+]. (69)

Moreover, suppose that we can construct Wα and Wβ on the same probability space in such
a way that Wβ = Wα + Y for some random variable Y which takes values in the set {−1, 0, 1}.
Under this assumption, E[Wα] = E[Wβ ] = E[Wα + Y ], which implies that E[Y ] = 0. It is
easily seen that representation (69) can be rewritten as

E h(W) − E h(π) = −α

∞∑
i=0

�2f (i) E[Y 1{Wα−1≥i+1} +Y+ 1{Wα−1=i}]

= −α E[1{Y=1} �2f (Wα − 1) + Y�f (Wα − 1)]. (70)

Noting that

|E[1{Y=1} �2f (Wα − 1)]| ≤ 2‖�f ‖∞dTV(L(Wα), L(Wα + 1)) sup
w

{P(Y = 1 | Wα = w)}

and
|E[Y�f (Wα − 1)]| ≤ ‖�f ‖∞ E |E[Y | Wα]| ≤ ‖�f ‖∞

√
var(E[Y | Wα]),

we can immediately bound the right-hand side of (70) to obtain the following result.

Proposition 6. Suppose that α = β and E Wα = E Wβ . If Wα and Wβ can be constructed on
the same probability space such that

Wβ = Wα + Y for some random variable Y valued in {−1, 0, 1}, (71)

then, for bounded h : Z+ �→ R,

|E h(W) − E h(π)| ≤ 2α‖�Sh‖∞dTV(L(Wα), L(Wα + 1)) sup
w

{P(Y = 1 | Wα = w)}

+ α‖�Sh‖∞
√

var(E[Y | Wα]). (72)

Clearly, if such a random variable Y takes values on a bounded set other than {−1, 0, 1}, a
representation analogous to (70) may still be found, and a result analogous to Proposition 6 is
available. We now apply Proposition 6 to approximate a sum of independent indicator random
variables.

Example 8. Suppose that W = X1 + · · · + Xn is the sum of independent Bernoulli random
variables with success probabilities pi, 1 ≤ i ≤ n. Brown and Xia (2001, Section 3) showed
that in this case we can improve on a Poisson or binomial approximation for W by using a
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so-called polynomial birth–death distribution, with the choices αj = α and βj = γj +j (j −1)

for some constants α and γ .
We will follow that approach and choose here α and γ such that α = β and E[αW(W +1)] =

E[βWW ]. Straightforward computations then give us expressions for these parameters:

γ = λ2λ−1
2 − 1 − 2λ + 2λ3λ

−1
2 and α = γ λ + λ2 − λ2. (73)

Here λk = ∑n
i=1 pk

i and λ = λ1 = E[W ] (as in Section 5). Note that the parameter choices (73)
are the same as those employed in Brown and Xia (2001), who based their selection on
minimising the error bound obtained in their result.

To begin with, let us prove that condition (71) is satisfied. Since the birth rate is constant (as in
the Poisson case), we again have Wα = W+1. Let us turn our attention to Wβ . We let Wi = W−
Xi and Wi,j = W − Xi − Xj , 0 ≤ i, j ≤ n, and observe that W(W − 1) = ∑

1≤i =j≤n XiXj .
By the definition of Wβ , we obtain

P(Wβ = k) = α−1 E[(γW + W(W − 1)) 1{W=k}]

= α−1
[
γ

n∑
i=1

pi P(Wi + 1 = k) +
∑

1≤i =j≤n

pipj P(Wi,j + 2 = k)

]

for 1 ≤ k ≤ n. In the spirit of the size-biasing construction of Section 4, we now define two
random indices T , U ∈ {1, . . . , n} chosen according to the distribution

P(T = i, U = j) = pipj

λ2 − λ2
, i = j, P(T = U = i) = 0.

Recall also the random index V given in (28). Combining these definitions with the above, we
can write

P(Wβ = k) = α−1γ λ P(W + 1 − XV = k) + α−1(λ2 − λ2) P(W + 2 − XT − XU = k)

for 1 ≤ k ≤ n. Let q = α−1γ λ; note from (73) that 0 ≤ q ≤ 1 whenever γ ≥ 0. In the
sequel we will assume that this is indeed the case. Introduce a Bernoulli random variable vq

with success probability q, independent of all other entries. We can then write

Wβ = vq(W + 1 − XV ) + (1 − vq)(W + 2 − XT − XU) = W + 1 + Y = Wα + Y,

where
Y = (1 − vq)(1 − XT − XU) − vqXV , (74)

Y being valued in {−1, 0, 1} with E[Y ] = 0, as desired.
Now let us evaluate bound (72). First, we need a bound on the solution f of the Stein

equation in this situation. By Theorem 2.10 of Brown and Xia (2001), we know that

sup{‖�Sh‖∞ : h(j) = 1{j∈B}, B ⊆ Z+} ≤ α−1. (75)

Furthermore, W being a sum of independent indicators, we have (from Barbour and Jensen
(1989, Lemma 1))

dTV(L(W), L(W + 1)) ≤ 1

2
√∑n

i=1 pi(1 − pi)

. (76)
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Finally, consider the two conditional terms in (72). Note from (74) that Y = 1 if and only if
vq = XT = XU = 0, so that

P(Y = 1 | W) = (1 − q) P(XT = XU = 0 | W)

= (1 − q) E[(1 − XT )(1 − XU) | W ]
= α−1

∑
1≤i =j≤n

pipj E[(1 − Xi)(1 − Xj) | W ].

This probability takes its greatest value when W = 0, with E[(1 − Xi)(1 − Xj) | W = 0] = 1
for all i and j . Hence,

sup
w

{P(Y = 1 | W = w)} = α−1
∑

1≤i =j≤n

pipj = α−1(λ2 − λ2). (77)

Now, let ‖Z‖ = (E[Z2])1/2 be the L2 norm for any random variable Z. Since T
d= U and

E[Y ] = 0, we write

E[Y | W ] = −q(E[XV | W ] − E[XV ]) − 2(1 − q)(E[XT | W ] − E[XT ]),
and, thus, √

var(E[Y | W ]) = ‖E[Y | W ]‖

≤ q

n∑
j=1

‖E[Xj | W ] − E[Xj ]‖ P(V = j)

+ 2(1 − q)

n∑
j=1

‖E[Xj | W ] − E[Xj ]‖ P(T = j)

≤ (q + 2(1 − q)) max
1≤j≤n

√
var(E[Xj | W ]).

When pj = p for j = 1, . . . , n, E[Xj | W ] = W/n and so the bound becomes the equality

√
var(E[Y | W ]) = (2 − q)

√
var

(
W

n

)
. (78)

Inserting (75), (76), (77), and (78) into (72) then yields the bound

dTV(L(W), L(π)) ≤ p

(1 − p)σ
+ (2 − q)σ

n
= O

(
p√
λ

)
,

where σ 2 = var(W) = np(1 − p).
By exploring the explicit structure of the auxiliary variable Y , it is possible to derive better

bounds. Throughout this part, we let ā = 1 − a for any a ∈ R and σk =
√∑n

i=k+1 ρi , where

ρi is the ith largest number of p1(1 − p1), . . . , pn(1 − pn). From Barbour and Jensen (1989,
Lemma 1) we have, for all i, j = 1, . . . , n and i = j ,

2dTV(L(Wi), L(Wi + 1)) ≤ σ−1
1 and 2dTV(L(Wi,j ), L(Wi,j + 1)) ≤ σ−1

2 .
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Note that, from representation (74),

1{Y=1} = v̄qX̄T X̄U , 1{Y=−1} = vqXV + v̄qXT XU . (79)

The derivations below are based on the conditional independences of XT and WT , given T , XU

and WU , given U , and XV and WV , given V . By substituting (79) into (70), integrating with
respect to vq , separating linear and quadratic terms, and noting that T

d= U , we derive, after
some simple calculations,

I = E h(W) − E h(π)

= −α E[v̄qX̄T X̄U�f (W + 1)] + α E[(vqXV + v̄qXT XU)�f (W)]
= −αq̄ E[XT XU�2f (W)] + 2αq̄ E[XT �2f (W)]

− α(q̄ E[�f (W + 1)] − E[(2q̄XT + qXV )�f (W)])
= I1 + I2 + I3.

Using the conditional independence of WT,U and XT , XU given T and U , the first term I1 is
bounded by

|I1| = αq̄|E E[XT XU | T , U ] E[�2f (WT,U + 2)]|
≤ 2αq̄‖�f ‖∞ E[XT XU ] max

i =j
{dTV(L(Wi,j ), L(Wi,j + 1))}

≤ λ2
2 − λ4

ασ2
.

By conditioning on T ,

|I2| = 2αq̄|E E[XT | T ] E[�2f (WT + 1)]|
≤ 4αq̄‖�f ‖∞ E[XT ] max

i
{dTV(L(Wi), L(Wi + 1))}

≤ 2(λλ2 − λ3)

ασ1
.

To bound I3, we first note that, since E[Y ] = 0,

q̄ = 2q̄ E[XT ] + q E[XV ].
Thus,

|I3| = |2αq̄ E[XT (E[�f (WT + 1) | T ] − E[�f (WT + XT + 1)])]
+ αq E[XV (E[�f (WV + 1) | V ] − E[�f (WV + XV + 1)])]|

≤ 2α{2q̄ E[{E[XT | T ]}2] + q E[{E[XV | V ]}2]}
× ‖�f ‖∞ max

i
{dTV(L(Wi), L(Wi + 1))}

≤ 2(λλ3 − λ4)

ασ1
+ γ λ3

ασ1
.

By combining the bounds on I1, I2, and I3 we derive the following result.

Proposition 7. With W and π as above,

dTV(L(W), L(π)) ≤ λ2
2 − λ4

ασ2
+ 2(λλ2 − λ3)

ασ1
+ 2(λλ3 − λ4)

ασ1
+ γ λ3

ασ1
. (80)
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Let us conclude by comparing our result with that of Brown and Xia (2001, Theorem 3.1),
who obtained

dTV(L(W), L(π)) ≤ γ λ3

ασ1
+ 2λλ2

ασ2
. (81)

When pi = p → 0 for each i and λ → ∞, both the bounds (80) and (81) are asymptotically
equivalent to 3p2/

√
λ.
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