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Abstract

We use the properties of the Matuszewska indices to show asymptotic inequalities for
hazard rates. We discuss the relation between membership in the classes of dominatedly
or extended rapidly varying tail distributions and corresponding hazard rate conditions.
Convolution closure is established for the class of distributions with extended rapidly
varying tails.
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1. Introduction

In this paper we intend to discuss Pitman’s criterion for subexponentiality (see [9, The-
orem 2]). Some extensions of previous results about the characterization of distribution
classes through their hazard rates appeared as byproducts. The motivation was the need for
understanding and calculating the monotonicity condition required in these theorems. The
ultimate goal is to substitute the monotonicity property with some limit relation.

Consider the Lebesgue convolution for densities f1 and f2 on [0, ∞), given by

f1 � f2(x) =
∫ x

0
f1(y)f2(x − y) dy,

and the convolution formula for the corresponding distributions, given by

F1 ∗ F2(x) = F 2(x) +
∫ x

0
F 1(x − y) dF2(y),

where F(u) = 1 − F(u) denotes the right tail of any distribution F .
For u > 1, write

F�(u) := lim inf
x→∞

F(ux)

F (x)
and F

�
(u) := lim sup

x→∞
F(ux)

F (x)
.

We write m(x) ∼ g(x) as x → ∞ for the limit relation limx→∞ m(x)/g(x) = 1 and introduce
the following classes of distributions F .

1. F is said to belong to the class ER of distribution functions with extended rapidly varying
tails if F

�
(u) < 1 for some u > 1.
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2. F is said to belong to the subexponential class S if F 2∗(x) ∼ 2F(x).

3. F is said to belong to the class L of long-tailed distributions if F(x − y) ∼ F(x) for
y ∈ (−∞, ∞).

4. F is said to belong to the class D of distribution functions with dominatedly varying tails
if F�(u) > 0 for all (or, equivalently, for some) u > 1 or, equivalently, F

�
(u) < ∞ for

all (or, equivalently, for some) 0 < u < 1.

Recall that, for a positve function g on (0, ∞), the upper Matuszewska index γg is defined as
the infimum of those values α for which there exists a constant C such that, for each U > 1, as
x → ∞,

g(ux)

g(x)
≤ C(1 + o(1))uα uniformly in u ∈ [1, U ],

and the lower Matuszewska index δg is defined as the supremum of those values β for which,
for some D > 0 and all U > 1, as x → ∞,

g(ux)

g(x)
≥ D(1 + o(1))uβ uniformly in u ∈ [1, U ].

The classes D and ER are linked to the Matuszewska indices of the tails F (see [3]). For any
distribution F on (0, ∞) with infinite support, F ∈ D if and only if γF < ∞, and F ∈ ER
if and only if δF > 0. In what follows, we always assume that F has a positive Lebesgue
density f . Then it holds (see [1, Theorem 2.1.5]) that

γf = inf

{
− log f�(u)

log u
: u > 1

}
= − lim

u→∞
log f�(u)

log u
,

where f�(u) = lim infx→∞ f (ux)/f (x), and

δf = sup

{
− log f �(u)

log u
: u > 1

}
= − lim

u→∞
log f �(u)

log u
,

where f �(u) = lim supx→∞ f (ux)/f (x). Using the Matuszewska indices, we can establish
Potter-type inequalities for f ; see [1, Proposition 2.2.1]. For example, if γf < ∞ then, for
every γ > γf , there exist constants C′(γ ) and x′

0 = x′
0(γ ) such that

f (y)

f (x)
≥ C′(γ )

(
y

x

)−γ

, y ≥ x ≥ x′
0. (1.1)

If δf > −∞ then, for every δ < δf , there exist constants C(δ) and x0 = x0(δ) such that

f (y)

f (x)
≤ C(δ)

(
y

x

)−δ

, y ≥ x ≥ x0. (1.2)

In what follows, we say that the distributions F1 and F2 are max-sum equivalent if

lim
x→∞

F1 ∗ F2(x)

F 1(x) + F 2(x)
= 1.
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2. The class of distributions with extended rapidly varying tails

We say that the distribution F on (0, ∞) is heavy tailed if
∫ ∞

0 esx dF(x) = ∞ for all s > 0
and light tailed otherwise. The class ER contains both light- and heavy-tailed distributions. For
example, the exponential and Pareto distributions are members of ER. Moreover, the class ER
is not closed under max-sum equivalence. For example, for exponential Fi = F , exponential
with parameter λ, we have limx→∞ F ∗ F(x)/(2F(x)) = ∞.

In what follows, we will need the hazard rate h(x) = f (x)/F (x) for any distribution F on
(0, ∞) with positive density f . We also write

M1 = lim inf
x→∞ xh(x) and M2 = lim sup

x→∞
xh(x).

Whenever we consider a sequence Fi, i = 1, 2, . . . , of such distributions, we will use the
corresponding symbols hi , Mi

1, and Mi
2.

We say that a density has bounded increase if δf > −∞; see [1, p. 71]. Most of the densities
of interest in statistics and probability theory satisfy this condition, e.g. the gamma and Weibull
densities.

Under the assumption of an eventually nonincreasing density (such that f (y) ≤ f (x) for
all x ≥ y ≥ x0), the following equivalences were established.

1. F ∈ ER if and only if M1 > 0; see [8, Proposition 6].

2. F ∈ D if and only if F ∈ D ∩ L if and only if M2 < ∞; see [7, Corollary 3.4].

We generalize these results by substituting the condition of an eventually nonincreasing
density f by the assumption that f has bounded increase. This allows us to avoid the verification
of the monotonicity property of f , and restricts the calculation to that of δf through f �(u).

Theorem 2.1. Assume that F is a distribution supported on (0, ∞) with positive Lebesgue
density f such that f has bounded increase. Then F ∈ ER if and only if M1 > 0.

Proof. By assumption, we have δf > −∞ and, therefore, inequality (1.2) holds for δ < δf .
Let us start with the converse assertion, i.e. we assume that M1 > 0. We write, for any u > 1,

F(ux)

F (x)
= F(ux)

/ (∫ ux

x

f (t) dt + F(ux)

)
. (2.1)

Now relation (1.2) implies that

f (ux)

f (t)
≤ C(δ)

(
ux

t

)−δ

, ux ≥ t > x ≥ x0.

Then integration yields
∫ ux

x

f (t) dt ≥ f (ux)

C(δ)
(ux)δ

∫ ux

x

t−δ dt =: K(δ, u)xf (ux). (2.2)

We substitute this lower bound into (2.1) to obtain

F(ux)

F (x)
≤ F(ux)

K(δ, u)xf (ux) + F(ux)
= 1

K(δ, u)xh(ux) + 1
.

Since M1 > 0, the latter relation implies that F ∈ ER.
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Now we show the direct implication. From (2.1) we obtain

F(ux)

F (x)
= 1 −

∫ ux

x

f (t)

F (x)
dt, (2.3)

and from (1.2) we have

f (t)

f (x)
≤ C(δ)

(
t

x

)−δ

, t ≥ x ≥ x0.

An approach similar to that used in inequality (2.2) yields, for some constant K ′(δ, u),

∫ ux

x

f (t) dt ≤ C(δ)f (x)xδ

∫ ux

x

t−δ dt =: K ′(δ, u)xf (x). (2.4)

Hence, from (2.3) and (2.4), it follows that

F(ux)

F (x)
≥ 1 − K ′(δ, u)xh(x).

Since F ∈ ER, there exists a u > 1 such that

M1 = lim inf
x→∞ xh(x) ≥ (K ′(δ, u))−1 lim inf

x→∞

(
1 − F(ux)

F (x)

)
> 0.

This completes the proof.

We say that a positive Lebesgue density f is extended rapidly varying if δf > 1. In the
following result we prove that this property and the bounded increase of f imply that F ∈ ER.
We find an asymptotic lower bound for the hazard rate using the lower Matuszewska index.

Proposition 2.1. If f has bounded increase with δf > 1 then F ∈ ER and, for any δ ∈ (1, δf ),
there exist positive constants x0 and C(δ), defined in (1.2), such that, for all x ≥ x0,

xh(x) ≥ δ − 1

C(δ)
. (2.5)

Proof. Inequality (1.2) is implied by the assumption that δf > 1 for δ < δf . Furthermore,
we integrate (1.2) for δ ∈ (1, δf ):

(h(x))−1 =
∫ ∞

x

f (y)

f (x)
dy ≤ C(δ)xδ

∫ ∞

x

y−δ dy = C(δ)x

δ − 1
.

This proves inequality (2.5). The latter relation immediately implies that M1 > 0 and, therefore,
by Theorem 2.1, F ∈ ER.

We examine the convolution closure of distributions with extended rapidly varying distribu-
tions. We write hF1∗F2 for the hazard rate of F1 ∗ F2 and

M
(1,2)
1 := lim inf

x→∞ xhF1∗F2(x).
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We need the fact that if Fi ∈ ER then, for every 0 < δ < δF i
, there exist constants xi

0 = xi
0(δ)

and Ci(δ) such that the following Potter-type inequality holds (see [3]):

Fi(x)

F i(y)
≤ Ci(δ)

(
x

y

)−δ

, x ≥ y ≥ xi
0, i = 1, 2.

Choosing y = xi
0, the latter relation implies that there exist constants �i(δ) such that

F i(x) ≤ �i(δ)x
−δ, x ≥ xi

0, i = 1, 2. (2.6)

Theorem 2.2. Assume that F1, F2 ∈ ER with positive Lebesgue densities on (0, ∞) and that
the following conditions hold.

1. The density f1 has bounded increase with δf1 > 0.

2. δF 1
< δF 2

and lim infx→∞ xδF 1(x) > 0 for some δ ∈ [δF 1
, δF 2

).

Then F1 ∗ F2 ∈ ER.

Proof. We start by proving that M
(1,2)
1 > 0. We have

xhF1∗F2(x) = xf1(x)

F 1(x)

F 1(x)

F1 ∗ F2(x)

f1 � f2(x)

f1(x)
.

By assumption 1, inequality (1.2) applies for δ0 < δf1 . Therefore, for x ≥ x0,

f1 � f2(x)

f1(x)
=

∫ x

0

f1(y)

f1(x)
f2(x − y) dy

≥
∫ x

x0

1

C(δ0)

(
y

x

)−δ0

f2(x − y) dy

≥ F2(x − x0)

C(δ0)
.

Now, from (2.6), for every δi ∈ (0, δF i
), i = 1, 2, sufficiently large x, and some constant

� > 0,

F1 ∗ F2(x) ≤ F 1

(
x

2

)
+ F 2

(
x

2

)

≤ �1(δ1)

(
x

2

)−δ1

+ �2(δ2)

(
x

2

)−δ2

≤ �(x−δ1 + x−δ2).

We conclude that there exist δ2 ∈ [δF 1
, δF 2

) such that

M
(1,2)
1 ≥ lim inf

x→∞
1

�C(δ0)

xf1(x)

F 1(x)
xδ2F 1(x) ≥ M1

1

�C(δ0)
lim inf
x→∞ xδ2F 1(x) > 0.

In the last step we used Theorem 2.1 for M1
1 > 0 and assumption 2. Another application of

Theorem 2.1 yields the result.
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To verify that the two conditions of Theorem 2.2, mentioned above, do not contradict each
other, we consider two Pareto distributions with tails F i(x) = x−ai , i = 1, 2 and x ≥ 1.
Choose a1 = 2 and a2 = 3. Then it is easy to see that δF i

= ai, i = 1, 2. Therefore, Fi ∈ ER

and f �
i (u) = u−(ai+1). Hence, condition 1 of Theorem 2.2 holds with δf1 = 3 and f1 of

bounded increase, and condition 2 of Theorem 2.2 is satisfied for δ = 2. We conclude that the
conditions of the theorem hold. The tail of the Pareto distribution Fi belongs to the class R−ai

of regularly varying functions with index −ai , i.e. Fi(ux) ∼ u−ai Fi(x) for each u > 0. From
[5, Lemma 1.3.1] we know that if Fi ∈ R−ai

, i = 1, 2, then F1 ∗ F2 ∈ R− min(a1,a2). This fact
and the definition of regular variation immediately imply that F1 ∗ F2 ∈ ER.

3. The case of subexponential distributions

In this section we present some results on the characterization of the classes S and D ∩ L
through hazard rates. In the following result we provide an inequality for the hazard rate which
is useful for characterizing membership in the class D ∩ L.

Proposition 3.1. Assume that F has a positive Lebesgue density on (0, ∞) and that γf < ∞.
Then F ∈ D ∩ L and, for any γ > γf , there exist positive constants x′

0 and C′(γ ), defined in
(1.1), such that, for all x ≥ x′

0 and λ > 1,

xh(x) ≤ C′(γ )V (λ, γ ), (3.1)

where

V (λ, γ ) =

⎧⎪⎨
⎪⎩

λ−γ+1 − 1

−γ + 1
if γ 
= 1,

log λ if γ = 1.

Proof. Since γf < ∞, (1.1) yields

∫ ∞

x

f (y)

f (x)
dy ≥

∫ λx

x

f (y)

f (x)
dy ≥ C′(γ )xγ

∫ λx

x

y−γ dy.

Then (3.1) holds, M2 < ∞, and from [7, Theorem 3.3] we obtain F ∈ D ∩ L.

In the next theorem we generalize the statement from [7, Corollary 3.4] by substituting the
condition of an eventually nonincreasing density f with the assumption that f has bounded
increase. This allows us to avoid the verification of the monotonicity property of f , and restricts
the calculation to that of δf through f �(u).

Theorem 3.1. Assume that F is supported on (0, ∞) with a positive Lebesgue density f which
has bounded increase. Then the following statements are equivalent:

1. F ∈ D ,

2. F ∈ D ∩ L, and

3. M2 < ∞.

Proof. We first prove that statement 1 implies statement 3. Observe that

F(x/2)

F (x)
= 1 +

∫ x

x/2

f (y)

F (x)
dy. (3.2)
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Since f has bounded increase, (1.2) applies for x ≥ y ≥ x/2 and sufficiently large x. Hence,
there exists a constant �(δ) such that, for large x,

∫ x

x/2
f (y) dy ≥ xδf (x)

C(δ)

∫ x

x/2
y−δ dy = xf (x)�(δ). (3.3)

Inequalities (3.2) and (3.3) imply that

xh(x) ≤ [�(δ)]−1
(

F(x/2)

F (x)
− 1

)
.

Now, from the assumption that F ∈ D we obtain M2 < ∞.
That statement 3 implies statement 2 follows from [7, Theorem 3.3], and it is trivial to show

that statement 2 implies statement 1.

In [9, Theorem 2] necessary and sufficient conditions for membership in S were presented.
In [7, Theorem 3.6] a corresponnding result for the important subclass S∗ of S was given;
see also [7, Corollary 3.8]. The previously mentioned results require that the hazard rate be
eventually monotone (such that h(y) ≤ h(x) for all y ≥ x ≥ x0). However, a verification of
this monotonicity condition is in general not straightforward. In the next result we prove the
statement of [9, Theorem 2] under the assumption that δh > 0, which might be checked more
easily.

Recall the notion of a hazard function H(x) := − ln F(x) with the convention that H(∞) =
∞. An application of [1, Proposition 2.2.1] yields a Potter-type inequality for g(x) = (h(x))−1:
if δh > 0 then, for 0 < δ < δh, there exist constants C(δ) and x0 such that

h(y)

h(x)
≤ C(δ)

(
y

x

)−δ

, y ≥ x ≥ x0. (3.4)

If δh > 0, we say that the hazard rate h has positive decrease; see [1, p. 71].

Theorem 3.2. Let F be a distribution on (0, ∞) with positive Lebesgue density f . Assume
that the hazard rate h has positive decrease. Then F ∈ S if and only if

lim
x→∞

∫ x

0
exp{κyh(x) − H(y)}h(y) dy = 1 for every κ > 0. (3.5)

Proof. If F has a positive Lebesgue density, the hazard function H is differentiable and we
obtain

F 2∗(x)

F (x)
− 1 =

∫ x

0
exp{H(x) − H(x − y) − H(y)}h(y) dy

=
∫ x/2

0
exp{H(x) − H(x − y) − H(y)}h(y) dy

+
∫ x/2

0
exp{H(x) − H(x − y) − H(y)}h(x − y) dy

=: I1(x) + I2(x),

We start by showing the converse implication, i.e. (3.5) implies that I1(x) → 1 and I2(x) → 0,
and, hence, F is subexponential. For y ≤ x/2, there exists ξ ∈ (x − y, x) such that yh(ξ) =
H(x) − H(x − y). Then

x > ξ > x − y ≥ 1
2x ≥ y. (3.6)
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An application of (3.4) yields, for large x and δ < δh,

max

(
h(ξ)

h(x/2)
,
h(x)

h(ξ)

)
≤ C(δ). (3.7)

Hence, for any x and y satisfying (3.6),

yh(x)

C(δ)
≤ H(x) − H(x − y) ≤ C(δ)yh

(
x

2

)
. (3.8)

Since H(x)−H(x−y) ≥ 0, we have the trivial bound I1(x) ≥ F(x/2), and from the right-most
inequality in (3.8) we conclude that

F

(
x

2

)
≤ I1(x) ≤

∫ x/2

0
exp

{
C(δ)yh

(
x

2

)
− H(y)

}
h(y) dy. (3.9)

Together with (3.5), this implies the desired relation I1(x) → 1.
It remains to show that I2(x) → 0. From (3.8) we obtain

I2(x) ≤
(∫ x0

0
+

∫ x/2

x0

)
exp

{
C(δ)yh

(
x

2

)
− H(y)

}
h(x − y) dy.

The first integral converges to 0 as x → ∞ since h(x) → 0. By (3.4) and (3.6), there exists
some x0 such that

h(x − y)

h(y)
≤ C(δ), x0 ≤ y ≤ x/2,

and, therefore, up to a constant multiple, the second integral is bounded by the right-hand
expression in (3.9), which converges to 1. Moreover, the integrand on the right-hand side of
(3.9) converges for every y as x → ∞. The integrand in the second integral above converges to
0 for every y. An application of Pratt’s lemma [10, Theorem 1] shows that the second integral
converges to 0 as x → ∞. Hence, I2(x) → 0 and the converse implication of the result is
proved.

For the direct part, assuming that F is subexponential, we obtain, from (3.6) and (3.7),

F 2∗(x)

F (x)
− 1 ≥ I1(x) ≥

∫ x/2

0
exp{−H(y)}h(y) dy =

∫ x/2

0
f (y) dy.

Since the left- and right-hand sides converge to 1 as x → ∞, the proof of (3.5) is complete.

We introduce the class A = S ∩ ER of heavy-tailed distributions on (0, ∞). In what
follows, we will frequently use the relation D ∩A = D ∩L∩ER, which is a consequence of
[6, Theorem 1] and the definition of the class A. Also, note that the inclusion D ∩A ⊂ D ∩L
is strict since the distributions with slowly varying tails are not contained in ER, but belong to
D ∩ L. Next we show that D ∩ A is closed under convolution.

Proposition 3.2. Assume that Fi ∈ D ∩ A, i = 1, 2. Then F1 ∗ F2 ∈ D ∩ A and

F1 ∗ F2(x) ∼ F 1(x) + F 2(x) as x → ∞. (3.10)
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Proof. Relation (3.10) follows from Fi ∈ D ∩A ⊂ D ∩L, i = 1, 2, and [2, Theorem 2.1].
Furthermore, from [4, Proposition 2] (or [2, Theorem 2.1]) we conclude that F1 ∗F2 ∈ D ∩L.
Let us use relation (3.10) to show that F1 ∗ F2 ∈ ER. Then, for some u > 1, we have

lim sup
x→∞

F1 ∗ F2(ux)

F1 ∗ F2(x)
= lim sup

x→∞
F 1(ux) + F 2(ux)

F 1(x) + F 2(x)
≤ max{F�

1(u), F
�

2(u)}.

Taking into account the fact that Fi ∈ ER, i = 1, 2, we obtain the result. This completes the
proof.

In the next statement a characterization of the class D ∩ A with respect to the hazard rate
and the limits F�(u) and F

�
(u) for all u > 1 is presented, and in this way a generalization of

[8, Theorems 3.3 and 3.7] is provided. The generalization is achieved by substituting the
condition of an eventually nonincreasing density f by the assumption that f is of bounded
increase. This allows us to avoid the verification of the monotonicity property of f , and
restricts the calculation to that of δf through f �(u).

Corollary 3.1. Assume that F is a distribution supported on (0, ∞) with positive Lebesgue
density f such that f has bounded increase. Then F ∈ D ∩A if and only if one of the following
statements holds:

1. 0 < M1 ≤ M2 < ∞,

2. 0 < F�(u) ≤ F
�
(u) < 1.

Proof. 1. Let us begin with the direct implication. From the assumption that F ∈ D and
Theorem 3.1, we obtain M2 < ∞. From the assumption that F ∈ ER and Theorem 2.1, we
find that M1 > 0. Next, for the inverse part, we directly apply Theorems 2.1 and 3.1.

2. The condition F ∈ D ∩ A is equivalent to F ∈ D ∩ ER. Because of F ∈ D from
Theorem 3.1, we obtain F ∈ D ∩ L. Hence, F ∈ D ∩ A. This completes the proof.

Corollary 3.2. Let F be a distribution on (0, ∞) with positive Lebesgue density f . Assume
that the hazard rate h has positive decrease. Then F ∈ A if and only if M1 > 0 and

lim
x→∞

∫ x

0
exp{κyh(x) − H(y)}h(y) dy = 1 for every κ > 0.

Proof. From the decreasing property of the tail F we obtain

f (ux)

f (x)
≤ h(ux)

h(x)
for every u > 1.

Hence, δf ≥ δh > 0. From the last inequality and Theorems 2.1 and 3.2, we conclude the
result. This completes the proof.
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