
Differential Modular Forms on Shimura Curves, I

ALEXANDRU BUIUM
University of New Mexico, Albuquerque, NM 87131, U.S.A. e-mail: buium@math.unm.edu

(Received: 11 February 2002; accepted in final form: 14 August 2002)

Abstract. The quotient of a Shimura curve by the isogeny equivalence relation is not an object
of algebraic geometry. The paper shows how this quotient space becomes a geometric object in
a more general geometry obtained from ‘usual algebraic geometry’, by adjoining a new
operation; this operation looks like a ‘Fermat quotient’ and should be viewed as an arithmetic

analogue of usual derivations.
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1. Main Concepts and Results

1.1. INTRODUCTION

The quotient of an algebraic variety X by a Zariski dense equivalence relation

E � X� X is not, in any reasonable sense, an object of usual algebraic geometry.

Typical examples of Zariski dense equivalence relations that one would like to study

are: (1) the isogeny equivalence relation on various moduli spaces of Abelian vari-

eties equipped with various polarization, level, and endomorphism structures and

(2) the orbit equivalence relation on a variety equipped with an endomorphism,

the latter being the paradigm for algebraic discrete dynamical systems. In a number

of previous papers the author used two extensions of algebraic geometry, which can

be called differential algebraic geometries, in order to study quotients by Zariski

dense equivalence. The two extensions are: (i) the Ritt–Kolchin geometry [4, 21,

28] obtained by adjoining, to usual algebraic geometry, a derivation operator, and

(ii) an arithmetic analogue of the Ritt–Kolchin geometry that was initiated in [5,

6], which is obtained by adjoining, to usual algebraic geometry, the Fermat quotient

operator. We shall be interested here in this arithmetic analogue.

Quotients of modular curves (or more generally of moduli spaces of Abelian vari-

eties) by the isogeny equivalence relation were studied in [1, 2, 7]. One can map these

quotients into projective spaces using what we call isogeny covariant differential mod-

ular forms in a way similar to that in which modular curves are embedded into pro-

jective spaces by means of usual modular forms. In this paper we develop a similar

theory for Shimura curves associated to indefinite, non-split quaternion algebras

D over Q. Although the results for Shimura curves will be similar to the ones for
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modular curves, the methods of proof will be sometimes quite different; cf. the

remarks below. One of our main results (Theorem 1.2) will state that all the spaces

of isogeny covariant differential modular forms of a given weight, for a given

Shimura curve, are finite dimensional; for certain basic weights we will find that this

space has rank one, a situation similar to what happens for modular curves; cf. [7]

and [1]. Another, rather surprising, result (Theorem 1.6) will say that a certain

natural ring of isogeny covariant differential modular forms for a Shimura curve

is isomorphic to the corresponding ring for the modular curves. This can be viewed

as an instance of the analogy between modular curves and Shimura curves.

As explained above quotients of modular curves and Shimura curves by the

isogeny equivalence relation are just examples of a more general theory. Another

example of that theory, namely spaces of orbits of discrete dynamical systems, will

be investigated in [11]. A general formalism that embraces all these examples is

explained in [10]. One should also note that, in different contexts (that include

differentiable dynamical systems), Alain Connes [13] considered a noncommutative

enlargement of usual geometry in order to construct quotients which do not exist in

point set geometry.

Our strategy in the case of modular curves and moduli spaces of Abelian varieties

[1, 2, 7], was based on Fourier expansions, i.e. expansions in the Fourier–Tate

q-parameter at a cusp; cf. [20]. Since Shimura curves don’t have cusps, Fourier expan-

sions are not available for them. As a substitute we shall use Serre–Tate expansions;

these are expansions in the Serre–Tate q-parameters at ordinary points [19] and were

studied, for usual (i.e. nondifferential) modular forms, by A. Mori in a beautiful

series of papers; cf. [25] and the papers cited therein. (We will not need here any of

Mori’s results, but some of our preparatory discussion on Serre–Tate parameters

for Shimura curves overlaps with similar discussion in Mori’s papers. Note, however,

that the normalizations most convenient for our purposes here differ from Mori’s so,

for the convenience of the reader, we shall redo some of the basics on Serre–Tate para-

meters in our context.) Here is a comment which might be useful for the non-expert

reader. The Serre–Tate q-parameter on a modular curve (proved to be equal to

Dwork’s q-parameter by Katz [19]) is a priori unrelated to the Fourier–Tate q-para-

meter; the former tells the story away from the cusps whereas the latter tells the story

at the cusps. It comes, therefore, as a surprise to see, as we shall, that the Fourier and

the Serre–Tate expansions (formally) coincide for a remarkable class of isogeny

covariant differential modular forms on modular curves, or more generally, for a cer-

tain class of isogeny covariant Siegel differential modular forms; cf. Theorem 2.3.

Here is the plan of the paper. We start by quickly reviewing (and setting notations

for) quaternion algebras [3, 12, 30], false elliptic curves [3, 12, 15], and Siegel differ-

ential modular forms [2]. Then we define differential modular forms on indefinite,

non-split quaternion algebras D over Q and state our main results; cf. the end of

the present Section 1. In Section 2 we develop our main tool, the Serre–Tate expan-

sions of (Siegel) differential modular forms, and we establish the link between Serre–

Tate and Fourier expansions of certain such forms. We also prove that there is an
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isomorphism between a certain natural ring of differential modular forms on D and

the corresponding ring for the modular curve. In Section 3 we show that the

Serre–Tate expansions of isogeny covariant differential modular forms on D, of a

given weight, satisfy a certain functional equation. Then we show that the space

of series that satisfy this equation is finite-dimensional. This plus a differential

Serre–Tate q-expansion principle will conclude our proof that the space of isogeny

covariant differential modular forms on D, of a given weight, is finitely generated

and will also conclude the proof of one of our rank one results in Theorem 1.2.

Another rank one result claimed in that Theorem will require considerable extra

effort to prove; this will be done in a sequel to the present paper [9]. By analogy with

[1] we will develop in [9] an analogue of Serre’s differential operators in our context;

however, unlike in [1] (where the explicit structure of the ring of classical modular

forms of level one was used through computations in the ‘coordinates’ E4 and E6)

we will need to adopt in [9] a coordinate free approach.

1.2. QUATERNION ALGEBRAS ([3, 12, 30])

Let D be a quaternion algebra over Q; recall that this means, by definition, that D is

a ring whose center is Q, such that D has dimension 4 as aQ-vector space, and D has

no nontrivial two-sided ideals. Assume D is nonsplit (i.e. D 6’Mat2ðQÞ; equivalently

D is a division ring) and D is indefinite (i.e. D�Q R ’Mat2ðRÞ). Let d ¼ discðDÞ be

the discriminant of D (i.e. d is the product of all the primes l for which

D�Q Ql 6’Mat2ðQlÞ.) Let F be a field of characteristic zero such that we have an

isomorphism

j:D�Q F!Mat2ðFÞ: ð1:1Þ

(For instance, F can be �QQ, R, or Qp for p not dividing the discriminant d.) For any

a 2 D consider the reduced trace and norm: trðaÞ :¼ trðjðaÞÞ 2 F, detðaÞ :¼
detð jðaÞÞ 2 F. It is known that trðaÞ; detðaÞ actually belong to Q and are independent

of the choice of F and K. On the other hand, we have at our disposal the usual trace

and norm of the Q-algebra D: trD=Q;ND=Q:D! Q. The following formulae hold:

trD=QðaÞ ¼ 2 � trðaÞ; ND=QðaÞ ¼ detðaÞ2 ða 2 DÞ:

Consider now the canonical involution

D! D; a 7!
 a0 :¼ detðaÞ � a
1 ða 6¼ 0Þ

So if jðaÞ ¼
� a b

c d

�
, then jða0Þ ¼

� d 
b


c a

�
. There exists a maximal order OD of D (i.e. a

maximal element in the set of all subrings O � D with O ’ Z4 as Z–modules and

O�Z Q ¼ D) which is stable under the canonical involution a 7!
 a0. Since for

a 2 OD we have trD=QðaÞ;ND=QðaÞ 2 Z it follows that

trðaÞ 2
1

2
Z; detðaÞ 2 Z ða 2 ODÞ:
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It is known that there exists an element t 2 OD such that t2 ¼ 
d. Note that

ðt0Þ2 ¼ 
d, hence, since t; t0 commute and D is a division ring, t0 ¼ 
t. Also

t
1 ¼ 
ð1=d Þt. A key role in the theory is played by the involution

D! D; a 7!
 aþ :¼ t
1a0t ¼ ta0t
1;

which is known to induce a nontrivial involution of OD.

Let us fix a prime p5 5 that does not divide d and let F ¼ Qp. Since OD �Z Zp is a

maximal order in D�Q Qp it follows that jðOD �Z ZpÞ is a maximal order in

Mat2ðQpÞ. Since any maximal order of Mat2ðQpÞ is conjugated to Mat2ðZpÞ we

may (and will) assume, by composing j with an inner automorphism of Mat2ðQpÞ,

that jðOD �Z ZpÞ ¼Mat2ðZpÞ. So we have an isomorphism

j:OD �Z Zp!Mat2ðZpÞ: ð1:2Þ

Now we have the following easy lemma:

LEMMA 1.1. If A 2Mat2ðZpÞ is a nonscalar matrix such that A2 ¼ mI with m 2 Z�p
ðand I the identityÞ, then there exists U 2 GL2ðZpÞ such that

UAU
1 ¼
0 1
m 0

� �
:

Proof. Since A2 is scalar while A is not it is easy to check that A cannot be � mod

p to a scalar matrix. Then one easily checks that for v appropriately chosen in the set

1
0

� �
;

0
1

� �
;

1
1

� �� �
;

the set fv;Avg is a basis of Z2
p and we are done. &

So we can (and will) assume that (1.2) is such that

jðtÞ ¼
0 1

d 0

� �
:

Throughout the paper we shall fix the following data:

D;OD; p;F; j; t; ð1:3Þ

where F ¼ Qp.

1.3. ISOGENIES [2]

For any Noetherian ring S we let MgðS Þ denote the set of all triples ðA; y;oÞ where

A=S is an Abelian scheme of relative dimension g, y:A! �AA is a principal polari-

zation, and o ¼ ðo1; . . . ;ogÞ
t is a column vector whose entries are a basis of the

S-module of 1-forms H0ðA;O1
A=SÞ; so the latter is supposed, by our very definition,

to be free. Let

ðA1; y1;o1Þ; ðA2; y2;o2Þ 2MgðS Þ
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and let u:A1 ! A2 be an isogeny (i.e. a finite flat homomorphism; our isogenies are

not assumed to be compatible with the forms or the polarizations). We let

ut :¼ y
11 � �uu � y2:A2 ! �AA2! �AA1! A1

denote its transpose and we let ½u� 2MatgðS Þ be the unique matrix such that

u�o2 ¼ ½u� � o1. Note that utt ¼ u and ½u � v� ¼ ½u�½v�. (If A1 ¼ A2 ¼ A, y1 ¼ y2 ¼ y,
then u 7!
 ut is the Rosati involution of ðA; yÞ.) Let

dðuÞ :¼ detð½u � ut�Þ ¼ detð½u�Þdetð½ut�Þ 2 S:

If g ¼ 1 we have dðuÞ ¼ degðuÞ, the degree of u. More generally, by [2], Lemma 1.1,

degðuÞ2 ¼ dðuÞ2: ð1:4Þ

In particular, if S is a Zp-algebra then degðuÞ is prime to p if and only if u and �uu are

etale; in this case, ½u�; ½ut� 2 GLgðS Þ; also, since degðuÞ is locally constant, so is dðuÞ.

1.4. FALSE ELLIPTIC CURVES ([3, 12, 15])

Let S be a Noetherian (commutative) Zp-algebra. By a false elliptic curve over S we

mean a pair ðA; iÞ where A=S is an Abelian scheme of relative dimension two, and

i:OD ! EndðA=S Þ is an injective ring homomorphism (preserving the unit element).

Since D is a division algebra iðaÞ is automatically finite for all a 6¼ 0. So any such iðaÞ
is finite and flat fiber by fiber. So iðaÞ itself is flat, hence an isogeny, for all a 6¼ 0.

Cf. the argument in [22] p. 77.

For any principal polarization y:A! �AA we have defined a Rosati involution

EndðA=S Þ ! EndðA=S Þ; u 7!
 ut :¼ y
1 � �uu � y: ð1:5Þ

By a polarized false elliptic curve over S we will understand a triple ðA; i; yÞ where

ðA; iÞ is a false elliptic curve and y:A! �AA is a principal polarization such that the

Rosati involution 1.5 on EndðA=S Þ induces the involution a 7!
 aþ on OD. By [12]

if ðA; iÞ is a false elliptic curve then there is a unique principal polarization y on A

such that for any geometric point �ss of S the Rosati involution on EndðA�ssÞ is compa-

tible with the involution a 7!
 aþ on OD. So if ðA; i; y1Þ and ðA; i; y2Þ are polarized

false elliptic curves then y1 ¼ y2. Also, if S is reduced then for any false elliptic curve

ðA; iÞ there is a (unique) y such that ðA; i; yÞ is a polarized false elliptic curve. Let

ðA1; i1; y1Þ, ðA2; i2; y2Þ be polarized false elliptic curves; by an isogeny of false polar-

ized elliptic curves we mean an isogeny u:A1! A2 over S such that

i2ðaÞ � u ¼ u � i1ðaÞ for all a 2 OD. (Note that i1ðaÞ for a 2 OD, a 6¼ 0, is, by definition,

an isogeny of Abelian schemes but it is not an isogeny of polarized false elliptic

curves, unless a is in the center of D!) One knows that

ut :¼ y
11 � �uu � y2:A2 ! A1

is also an isogeny of false polarized elliptic curves and the composition @ðuÞ :¼ ut � u

is (the multiplication by) an integer called the false degree of u. The actual degree

degðuÞ of u is trivially seen to be @ðuÞ2.
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By a false 1-form o on a false polarized elliptic curve ðA; i; yÞ we will understand a

column vector o ¼ ðo1;o2Þ
t where o1;o2 2 H10 :¼ H0ðA;OA=SÞ such that

iðaÞ�o ¼ jðaÞo; a 2 OD:

(So, if one views iðaÞ as an isogeny from ðA; y;oÞ to itself, then ½iðaÞ� ¼ jðaÞ for all

a 2 OD.) We say an o as above is invertible if o1;o2 form a basis of the S-module

H10. It is trivial to check that if o is a false invertible 1-form then o is a basis for

the S-module of false 1-forms. Also, if u:A1! A2 is an isogeny of polarized false

elliptic curves ðA1; i1; y1Þ and ðA2; i2; y2Þ whose degree is not divisible by p and if o
is a false invertible 1-form on ðA2; i2; y2Þ then u�o is a false invertible 1-form on

ðA1; i1; y1Þ.
Note that if ðA; i; yÞ is any polarized false elliptic curve over S then the S-module of

false 1-forms has a useful alternative description as follows. We have a natural ring

homomorphism

Oop
D ! EndSðH

10Þ; a 7!
 iðaÞ�

which induces a ring homomorphism

l:Oop
D �Z S! EndSðH

10Þ: ð1:6Þ

On the other hand, the isomorphism

j:OD �Z Zp!Mat2ðZpÞ ð1:7Þ

induces an isomorphism

j:Oop
D �Z S!Mat2ðS Þ

op: ð1:8Þ

Consider the ring homomorphism

l � j
1:Mat2ðS Þ
op
! Oop

D �Z S! EndSðH
10Þ: ð1:9Þ

Let e11; e12; e21; e22 be the images, via 1.9 of the matrices

1 0
0 0

� �
;

0 1
0 0

� �
;

0 0
1 0

� �
;

0 0
0 1

� �
: ð1:10Þ

Then we have a direct sum decomposition

H10 ¼ e11H
10 � e22H

10

hence e11H
10 is a locally free S-module of rank one. We claim that e11H

10 is

isomorphic to the S-module of false 1-forms. Indeed, if o1 2 e11H
10 it is trivial to

see that o2 :¼ e12o1 2 e22H
10 and the column vector o :¼ ðo1;o2Þ is a false 1-form.

Conversely, if ðo1;o2Þ
t is a false 1-form then o1 2 e11H

10. The two maps, described

above, between e11H
10 and the module of false 1-forms are inverse to each other. (By

the way, if e11H
10 happens to be free, which is the case locally in the Zariski

topology, and o1 is a basis for this module, then it is trivial to check that

o2 :¼ e12o1 is a basis for e22H
10, hence ðo1;o2Þ is an invertible false 1-form. Hence,
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if o is a basis for the module of false 1-forms then o is invertible. We conclude that

invertible false 1- forms always exist locally in the Zariski topology.)

Denote, in what follows, byMDðS Þ the set of all tuples ðA; i; y;oÞ where ðA; i; yÞ is
a polarized false elliptic curve over S and o is a false invertible 1-form on it. (Recall

that MDðS Þ implicitly depends on all the data (1.3) and not merely on D.)

Clearly, using the notations in the previous subsection, we have a ‘forgetful map’:

MDðS Þ !M2ðS Þ; ðA; i; y;oÞ 7!
 ðA; y;oÞ:

Let ðA1; i1; y1;o1Þ, ðA2; i2; y2;o2Þ 2MDðS Þ and let u:A1! A2 be an isogeny of

false elliptic curves. Since u�o2 is a false invertible 1-form the matrix

½u� 2Mat2ðS Þ must be a scalar matrix. Similarly, ½ut� is a scalar matrix. Moreover,

since ut � u ¼ @ðuÞ we have ½ut�½u� ¼ @ðuÞ � I. Hence, dðuÞ ¼ detð@ðuÞ � IÞ ¼ @ðuÞ2 ¼

degðuÞ.

We will also need the following degree computation. Let ðA; i; y;oÞ 2MðS Þ and let

a 2 OD, a 6¼ 0. We claim that

degðiðaÞÞ ¼ detðaÞ2: ð1:11Þ

Indeed we have

dðiðaÞÞ ¼ detð½iðaÞ�Þ � detð½iðaÞt� ¼ detð½iðaÞ�Þ � detð½iðaþÞ�

¼ detðaÞ � detðaþÞ ¼ detðaÞ � detða0Þ ¼ detðaÞ2:

Hence degðiðaÞÞ2 ¼ dðiðaÞÞ2 ¼ detðaÞ4 and our claim is proved.

1.5. PROLONGATIONS [2]

The ^ sign will always denote p-adic completion. A module M over a ring will be

called p-adically complete if M̂M ¼M. Recall from [7] that a p derivation d:A! B

from a ring A into an A-algebra B is a map satisfying

dðxþ yÞ ¼ dxþ dyþ Cpðx; yÞ; ð1:12Þ

dðxyÞ ¼ xpdyþ ypdxþ pdxdy; ð1:13Þ

where CpðX;YÞ :¼ ðXp þ Yp 
 ðXþ YÞpÞ=p 2 Z½X;Y�. If d is a p-derivation then the

map f:A! B defined by fðxÞ :¼ xp þ pdx is a ring homomorphism. By a prolonga-

tion sequence we mean a sequence of rings Sn, n ¼ 0; 1; 2; . . . ; such that each Snþ1 is

an Sn-algebra and such that one is given p-derivations dn:S
n! Snþ1, each dn

prolonging, in the obvious sense, dn
1. By abuse we shall denote all dn’s by the same

letter, d, and we shall denote prolongation sequences as above by S �. A morphism of

prolongation sequences S � ! ~SS � is simply a sequence of ring homomorphisms

pn:S
n ! ~SSn which is compatible with the structure algebra homomorphisms in both

S � and ~SS � and which is also compatible with the p-derivations d in S � and ~SS �. By

abuse we shall denote all pn by the same letter, p. Denote by Prolp the class of all

prolongation sequences S � with Sn Noetherian, p-adically complete, and flat over

Zp. Note that, if S is the p-adic completion of a smooth Zp-algebra then [6] and [5]
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provide a construction of a prolongation sequence J�ðS Þ 2 Prolp with J 0ðS Þ ¼ S,

such that, for each n5 0, JnðS Þ (called the p-jet space of S of order n) is the p-adic

completion of a smooth Zp-algebra. The prolongation sequence J�ðS Þ has the

following universality property: for any prolongation sequence S � with all Sn p-

adically complete, and for any homomorphism S! S 0 there exists a unique morph-

ism of prolongation sequences J�ðS Þ ! S � prolonging S! S 0.

1.6. d-WEIGHTS [2]

Let G and G0 be group schemes over Zp. By a d-homomorphism w:G! G0 of order

4 n we mean a rule that associates to any prolongation sequence S � 2 Prolp a group

homomorphism

w:GðS 0Þ ! G0ðSnÞ;

which is ‘functorial in S �’ in the obvious sense.

Denote by W the ring Z½f� of polynomials with Z-coefficients in an indeterminate

f. (We call W the ring of d-weights.) If w ¼
Pn

i¼0 aif
i with ai 2 Z and an 6¼ 0 then we

set degðwÞ ¼
Pn

i¼0 ai and ordðwÞ ¼ n. There is a natural ring homomorphism

W! fd-homomorphisms Gm! Gmg; w 7!
 ww;

wwðlÞ ¼ lw :¼ la0fðlÞa1 . . .fn
ðlÞan 2 ðSnÞ

�; l 2 ðS 0Þ
�:

(Here fi are the iterates i times of the map f:Sj ! Sjþ1, fðxÞ ¼ xp þ pdx.)

1.7. SIEGEL d-MODULAR FORMS [2]

Recall that one defines the setMn
g;m ofSiegel d-modular functions of genus g, order 4 n,

and size m to be the set of all rules f that associate to any prolongation sequence

S � 2 Prolp and any triple ðA; y;oÞ 2MgðS
0Þ a matrix

f ðA; y;o;S �Þ 2MatmðS
nÞ

satisfying the following properties:

1.7.1. f ðA; y;o;S �Þ depends on S � and the isomorphism class of ðA; y;oÞ only.

1.7.2. The formation of f ðA; y;o;S �Þ is functorial in S �:

Clearly Mn
g;m ¼MatmðM

n
g;1Þ.

For our purposes here we review now two special types of Siegel d-modular forms.

The first type is defined as follows. Let a; b be two distinct nonnegative integers

and set n :¼ maxfa; bg. Then we define the set Igðf
a;fb
Þ of isogeny covariant Siegel

d-modular forms of weight ðfa;fb
Þ as the set of all f 2Mn

g;g satisfying the following

conditions:
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1.7.3. If ðA; y;oÞ 2MgðS
0Þ and l 2 GLgðS

0Þ, then

f ðA; y; lo;S �Þ ¼ fa
ðlÞ � f ðA; y;o;S �Þ � fb

ðlt
Þ:

1.7.4. If S � 2 Prolp, ðA1; y1;o1Þ; ðA2; y2;o2Þ 2MgðS
0Þ, and u:A1! A2 is any

isogeny of degree prime to p, such that u�o2 ¼ o1, then

f ðA2; y2;o2;S
�Þ ¼ f ðA1; y1;o1;S

�Þ � fb
ð½ut�

t
Þ

1:

By combining the above properties one checks that the following also holds: for

any S � 2 Prolp, any ðA1;y1;o1Þ, ðA2;y2;o2Þ 2MgðS
0Þ, and any isogeny u:A1! A2,

of degree prime to p,

fa
ð½ut�Þ � f ðA2; y2;o2;S

�Þ ¼ f ðA1; y1;o1;S
�Þ � fb

ð½u�tÞ: ð1:14Þ

According to [2], Introduction, for each a; b as above Igðf
a;fb
Þ is a Zp-module of

rank one.

The second type of Siegel d-modular forms we are going to review is the following.

Let us fix a d-weight w 2W of even degree degðwÞ and order n ¼ ordðwÞ. Define the

set MgðwÞ of Siegel d-modular forms of weight w as the set of all f 2Mn
g;1 satisfying

the following property:

1.7.5. If l 2 GLgðS
0Þ; then

f ðA; y; lo;S �Þ ¼ wwðdetðlÞÞ

1
� f ðA; y;o;S �Þ:

Define the set IgðwÞ of isogeny covariant Siegel d-modular forms of weight w as the set

of all f 2MgðwÞ satisfying the following property:

1.7.6. If S � 2 Prolp, ðA1; y1;o1Þ; ðA2; y2;o2Þ 2MgðS
0Þ, and u:A1! A2 is any

isogeny of degree prime to p, such that u�o2 ¼ o1, then

f ðA1; y1;o1;S
�Þ ¼ dðuÞ
degðwÞ=2 � f ðA2; y2;o2;S

�Þ: ð1:15Þ

Let

Weven :¼ fw 2W j degðwÞ 2 2Zg;

W
 :¼
X

aif
i
2W j ai 4 0

n o
;

W� :¼W
 \Weven:

Then W� is a f-stable submonoid of Weven having the property that

ordðw0 þ w00Þ ¼ maxfordðw0Þ; ordðw00Þg; ð1:16Þ
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for all w0;w00 2W�. This property allows us to form a ring Ig, graded by W� and

acted by f:

Ig :¼
M
w2W�

IgðwÞ �M1g;1 :¼
[
n

Mn
g;1: ð1:17Þ

The ring Ig should be viewed as governing the geometry of the quotient of the moduli

space Ag of principally polarized Abelian varieties by the equivalence relation �

defined by (prime to p degree) isogeny. Indeed, any system of homogeneous elements

f0; . . . ; fN 2 Ig of the same degree gives rise to a (partially defined) map

AgðRÞ ! PNðRÞ which is constant on (prime to p degree) isogeny equivalence classes;

two points of AgðRÞ are considered �-equivalent if there is an isogeny of degree

prime to p between the corresponding Abelian schemes over R (where we do not

require that the isogeny be compatible with the polarizations). The ‘Proj’ of Ig, in

an appropriate category of ringed spaces, can then be interpreted as a categorical

quotient of Ag by �. Making the latter precise would require, however, introducing

a rather involved formalism; for the sake of clarity and brevity we shall refrain from

pursuing this matter in the present paper. Rather, we will prefer to view Ig as a sub-

stitute for the ‘quotient’ Ag= �.

1.8. d-MODULAR FORMS ON D

Define the set Mn
D of d-modular functions on D to be the set of all rules f that associate

to any S � 2 Prolp and any ðA; i; y;oÞ 2MDðS
0Þ an element f ðA; i; y;o;S �Þ 2 Sn

satisfying the following properties:

1.8.1. f ðA; i; y;o;S �Þ depends on S � and on the isomorphism class of ðA; i; y;oÞ only.

1.8.2. The formation of f ðA; i; y;o;S �Þ is functorial in S �.

Let w 2W be a d-weight with degðwÞ even and n :¼ ordðwÞ. Define the set MDðwÞ of

d-modular forms of weight w on D to be the set of all f 2Mn
D satisfying the following

property:

1.8.3. If l 2 ðS 0Þ
�, then

f ðA; i; y; lo;S �Þ ¼ wwðlÞ

1
� f ðA; i; y;o;S �Þ:

Define the set IDðwÞ of isogeny covariant d-modular forms of weight w on D to be the

set of all f 2MDðwÞ satisfying the following property:
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1.8.4. If S � 2 Prolp, ðA1; i1; y1;o1Þ; ðA2; y2; i2;o2Þ 2MDðS
0Þ, and u:A1! A2 is any

isogeny of polarized false elliptic curves, of degree prime to p, such that u�o2 ¼ o1 then

f ðA1; i1; y1;o1;S
�Þ ¼ @ðuÞ
degðwÞ=2 � f ðA2; i2; y2;o2;S

�Þ ð1:18Þ

Finally define

ID :¼
M
w2W�

IDðwÞ �M1D :¼
[
n

Mn
D ð1:19Þ

As in [2] the ring ID should be viewed as governing the geometry of the quotient of

the Shimura curve (corresponding to D) by the equivalence relation defined by

(prime to p degree) isogeny.

We will prove that for all but finitely many primes p the following holds:

THEOREM 1.2.

ð1Þ The Zp-modules IDðwÞ are finitely generated.

ð2Þ IDðwÞ ¼ 0 for degðwÞ > 0.

ð3Þ IDð0Þ ¼ Zp.

ð4Þ IDð
1
 fÞ has rank one.

ð5Þ IDð
1
 f2
Þ has rank one.

As in the case of modular curves [1, 7], the weights 
1
 f and 
1
 f2 in asser-

tions (4) and (5) of the Theorem are, in a sense that will become clear later, the two

basic weights in this theory. Assertions (1)–(4) of the Theorem will be proved in

the present paper; assertion (5) requires considerably more tools to prove and its

proof will be given in a sequel to this paper [9]. For the modular analogues of (4)

and (5) we refer to [7] and [1] respectively.

1.9. INDUCTION MAPS

The theory in [2] and the theory in the present paper are related via certain induction

maps that we now explain. These maps play a key role in our proofs.

PROPOSITION 1.3. There are natural homomorphisms indD:M
n
2;1!Mn

D inducing

homomorphisms indD: I2ðwÞ ! IDð2wÞ such that if f 2Mn
2;1, S � 2 Prolp,

ðA; i; y;oÞ 2MDðS
0Þ then

ðindDf ÞðA; i; y;o;S �Þ ¼ f ðA; y;o;S �Þ

Proof. Define a rule indD through the equality in the statement of the Proposition;

then it is a trivial exercise to check that if f 2 I2ðwÞ then indD f belongs indeed to

IDð2wÞ. &
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PROPOSITION 1.4. There are natural homomorphisms

indD: I2ðf
a;fb
Þ ! IDð
f

a

 fb
Þ

such that if f 2 I2ðf
a;fb
Þ, S � 2 Prolp, and ðA; i; y;oÞ 2MDðS

0Þ, then

fðA; y;o;S �Þ ¼ ðindD f ÞðA; i; y;o;S �Þ �
1 0
0 d

� �
:

Proof. Let f, S �, and ðA; i; y;oÞ be as above. &

Claim. The matrix F :¼ f ðA; y;o;S �Þ has the form c �
� 1 0

0 d

�
for some unique

c 2 Sn.

Once we have checked the claim one can define a rule indD f by attaching

ðA; i; y;o;S �Þ 7!
 c

and it is trivial to check that this rule belongs indeed to IDð
f
a

 fb
Þ; this will end

the proof.

In order to check the Claim above let us start with any a 2 OD with detðaÞ 6� 0

mod p in Z. Then, by (1.11), iðaÞ:A! A is an isogeny of degree prime to p. Applying

property (1.14) to f, and iðaÞ we get

½iðaÞt� � F ¼ F � ½iðaÞ�t: ð1:20Þ

Now ½iðaÞ� ¼ jðaÞ and

½iðaÞt� ¼ ½iðaþÞ� ¼ jðaþÞ ¼ jðtÞ � jðaÞ � jðtÞ
1:

So if G :¼ jðtÞ
1 � F, (1.20) becomes

jðaÞ � G ¼ G � jðaÞt: ð1:21Þ

The above equality holds for all elements a in the set

OðpÞD :¼ fa 2 ODj det ðaÞ 6� 0 mod pg:

Now OðpÞD spans the Z-module OD. (To see this start with some a 2 OD and let k be

any integer. We have

det ðkþ aÞ ¼ k2 þ trðaÞkþ det ðaÞ;

which we may view as an equality in Zp. Since a quadratic equation with coefficients

in Fp has at most two solutions in F�p and since the latter has at least four elements

one can find k 6� 0 mod p such that detðkþ aÞ 6� 0 mod p. Then we can write
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a ¼ ðkþ aÞ 
 k.) We conclude that the equality (1.21) holds for all a 2 OD. Since

jðODÞ spans the Zp-module Mat2ðZpÞ it follows that

H � G ¼ G �Ht ð1:22Þ

for all H 2Mat2ðZpÞ, in particular for

H ¼
1 0
0 0

� �
and H ¼

0 0
1 0

� �

Plugging in these values of H in 1.22 we get that

G ¼
0 
c
c 0

� �

for some c and our Claim is proved. &

Remark 1:5: Transposition of matrices defines a homomorphism

I2ðf
a;fb
Þ ! I2ðf

b;fa
Þ; f 7!
 f t:

Then it is trivial to check that indD f ¼ indD f t for any f 2 I2ðf
a;fb
Þ.

1.10. THE RINGS Jg, JD

The rings Ig and ID are still quite mysterious; only certain graded pieces of these rings

have been computed (in [2] and in the present paper). On the other hand, certain

natural graded subrings of these rings, that we now introduce, are much better

understood. There is a distinguished basis f n ¼ f n
crys of Igðf

n;f0
Þ constructed with

the help of crystalline cohomology; cf. [2]. For the convenience of the reader let us

recall that if S� 2 Prolp and ðA; y;oÞ 2MgðS
0Þ, o ¼ ðo1; . . . ;ogÞ

t then

f nðA; y;o;S�Þ is the Matrix whose entries are

p
1 � hfnoi;ojiy 2 Sn;

where we view oi as elements of the first deRham module H of A=S0,

f : H� Si ! H� Siþ1 are the crystalline liftings of f : Si ! Siþ1, and h ; iy is the

cup product on H defined by y; we refer to [2] for details. Let f a;b :¼ fbf a
b if

a > b and f a;b :¼ ð f b;aÞ
t if a < b. Let

f a
D :¼ indD f a 2 IDð
1
 fa

Þ; f a;b
D :¼ indD f a;b 2 IDð
f

a

 fb
Þ: ð1:23Þ

So f a;b
D ¼ f b;a

D and f a;b
D ¼ fbf a
b

D if a > b. Let JD � ID be the Zp-subalgebra generated

by all f a;b
D . Clearly JD is a graded subalgebra:

JD ¼
M
w2W�

JDðwÞ;

where JDðwÞ :¼ JD \ IDðwÞ.

Recall from [2] that if a sequence of nonnegative integers a1; . . . ; a2k satisfies

ai 6¼ aiþ1 for all 14 i4 2k
 1 and a2k 6¼ a1 then one can define a Siegel d-modular
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form (called cyclic product):

fa1...a2k
:¼ trff a1;a2 � ð f a3;a2 Þ

�
� f a3;a4 � ð f a5;a4Þ

�
� � � f a2k
1;a2k � ð f a1;a2k Þ

�
g

2 I2ð
f
a1 
 � � � 
 fa2k Þ:

Let Jg � Ig be the subalgebra generated by all cyclic products fa1...a2k
and set

JgðwÞ :¼ Jg \ IgðwÞ; then obviously Jg ¼
L

w2W�
JgðwÞ.

Set

fD
a1...a2k

:¼ indD fa1...a2k
2 I2ð
2f

a1 
 � � � 
 2fa2kÞ:

It is trivial to check that

fD
a1;...;a2k

¼ 2 � dkf a1;a2

D f a2;a3

D f a3;a4

D � � � f a2k
1;a2k

D f a2k;a1

D ð1:24Þ

so all the fD
a1;...;a2k

’s belong to JD. In particular we have an induced map

J2! JD: ð1:25Þ

This map is, of course, far from being injective; note also that JD is integral over the

image of (1.25) because the square of each f a;b
D belongs to this image.

On the other hand we will prove that, for all except finitely many primes p, the

following holds:

THEOREM 1.6. There is a f-equivariant isomorphism JD ’ J1.

This should be viewed as one more instance of the general principle according to

which modular curves and Shimura curves behave in a similar way, in spite of the

fact that they are not directly related.

A natural problem is to understand how close the rings Jg and JD are to Ig and ID

respectively. It is tempting to conjecture that the natural maps

Jg �Zp
Qp! Ig �Zp

Qp; JD �Zp
Qp! ID �Zp

Qp

are isomorphisms (i.e. all of Ig and ID are ‘crystalline’ over Qp). Note on the other

hand that Jg 6¼ Ig and JD 6¼ ID. Indeed, if b1 :¼ f 1;0D f 3;2
D and b2 :¼ f 2;0D f 3;1

D then the form

fb1 � b
p
2 
 fb2 � b

p
1

p

belongs to ID but not to JD; a similar example shows that Jg 6¼ Ig. One can rephrase

the above conjecture as follows. Let Jg : p1 be the subring of Ig consisting of all

elements whose product with a suitable power of p lies in Jg. Define JD : p1 simi-

larly. Then the above conjecture says that

Jg : p1 ¼ Ig; JD : p1 ¼ ID:

Let us explain a weaker form of this conjecture (a special case of which we know how

to check), which we hope to address in a subsequent paper. Note that the ring Jg : p1
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is graded and p is a prime element of this ring. So we may consider the ring

ðJg : p1ÞððpÞÞ of all fractions whose numerator and denominator are homogeneous

elements of Jg : p1, of the same degree, with denominator not divisible by p. The

ring ðJg : p1ÞððpÞÞ and its obvious analogues ðJD : p1ÞððpÞÞ, ðIgÞððpÞÞ, ðIDÞððpÞÞ, turn out

to be discrete valuation rings. Then we conjecture that one has isomorphisms

between the following p-adic completions:

ððJg : p1ÞððpÞÞÞ^ ’ ððIgÞððpÞÞÞ^; ððJD : p1ÞððpÞÞÞ^ ’ ððIDÞððpÞÞÞ^:

(This is of course the same as to have isomorphisms between the residue fields of the

above discrete valuation rings.) So far we were able to prove this latter conjecture for

g ¼ 1.

We conclude this Introduction by stating one more result, Theorem 1.7 below,

that we obtain as a by-product of our methods. Unlike for the previously stated

results we shall only be able, at this point, to state Theorem 1.7 in ‘vague terms’;

for the precise statement we refer the reader to Theorem 2.3 and the definitions

preceding it. What our result below says is that, with a natural definition of Serre–

Tate expansions for Siegel d-modular forms and with our definition in [2] of Fourier

expansions for such forms we have that

THEOREM 1.7. For any form in Jg the Serre–Tate and the Fourier expansions

‘formally coincide’, provided g4 3.

We expect that an appropriate generalization of this result holds for arbitrary g.

2. Serre–Tate and Fourier Expansions

2.1. SERRE–TATE EXPANSION OF SIEGEL d-MODULAR FORMS

Let A0 be an ordinary Abelian variety over k :¼ �FFp. The universal formal deforma-

tion space of A0, [19], p. 149, 159, (parameterizing liftings of A0 to local Artin rings

with residue field k) is canonically isomorphic as a functor to

HomZp
ðTpðA0Þ � Tpð �AA0Þ;G

for
m Þ;

where TpðA0Þ and Tpð �AA0Þ are the ‘physical’ Tate modules of A0 and its dual �AA0 i.e. the

inverse limits of the p-power torsion k-points of A0 and �AA0, respectively. For any

formal Abelian scheme A over a complete local ring S with residue field k which lifts

A0 we denote by

qðA=S;
;
Þ : TpðA0Þ � Tpð �AA0Þ ! Gfor
m ðS Þ ¼ 1þmS

the corresponding bilinear map, where mS is the maximal ideal of S. In particular, if

we are given bases b; �bb of TpðA0Þ and Tpð �AA0Þ then

qij :¼ qðA=S; bi; �bbjÞ 2 1þmS ð2:1Þ
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are called the Serre–Tate parameters of A=S; q ¼ ðqijÞ is called the Serre–Tate matrix.

If R ¼ ẐZur
p is the completion of the maximum unramified extension of Zp then

the universal formal deformation space can be identified, via b; �bb, with Spf R½½tij��;

any A=S as above corresponds to the map

R½½tij�� ! S; tij 7!
 qij 
 1:

Finally let us recall from [19], p. 161, that there is a functorial isomorphism (viewed

sometimes later as an identification)

Tpð �AA0Þ ’ HomSðA
for;Gfor

m Þ; ð2:2Þ

hence any basis �bb of Tpð �AA0Þ induces, by pull-back of the standard invariant 1-form

dT=T on Gfor
m , a basis o ¼ oð �bbÞ of 1-forms on A=S:

o ¼ �bb�
dT

T
; ð2:3Þ

where, as a rule we see o and �bb as column vectors.

It is convenient to make the following definition: by a g-frame we will understand

a tuple

ðA0; y0; b; �bbÞ; ð2:4Þ

where ðA0; y0Þ is a principally polarized ordinary Abelian variety of dimension g over

k and b; �bb are bases of the Tate modules TpðA0Þ and Tpð �AA0Þ which correspond to

each other via y0. Let us fix, in what follows, a g-frame as above.

Let R½½tij��, 14 i; j4 g be the universal formal deformation ring of A0 correspond-

ing to the bases b; �bb. By the symmetry property in [19], p. 149,

Sdef :¼ R½½tij�� = ðtij 
 tjiÞ

is the universal formal deformation ring for ðA0; y0Þ (Spf Sdef parameterizes liftings

of ðA0; yÞ to Artin local algebras with residue field k). The universal formal Abelian

scheme Adef=Sdef has a principal polarization ydef hence it is an Abelian scheme. We

need to review a few basic facts from crystalline theory; cf. [14], 1.4.2., 2.1.3., [19]

p. 175, [16], p. 116. Let H be the first deRham module of Adef=Sdef. Then H comes

equipped with its Hodge filtration and with the Gauss–Manin connection H. More-

over, for any lifting of Frobenius f:R½½tij�� ! R½½tij�� there is a f-linear endomor-

phism (still denoted by) f:H! H induced by the crystalline nature of H. Then

one can canonically complete o ¼ oð �bbÞ to a basis o; u of H, compatible with the

Hodge filtration, such that fu ¼ u for any lifting of Frobenius f:R½½tij�� ! R½½tij��

and such that

Hu ¼ 0; Ho ¼ ðd log qÞ � u; ð2:5Þ

where q ¼ ðqijÞ, qij :¼ 1þ tij. The basis ðo; uÞ is canonically associated to the data

A0; b; �bb (and actually does not depend on y0). Let

odef; udef 2 H� Sdef ð2:6Þ
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be the images of o; u. (We will sometimes denote these images simply by o; u.) Then

ðAdef; ydef;odefÞ 2MgðSdefÞ:

On the other hand, one can consider the prolongation sequence S�def defined by

Sn
def :¼ R½½tij��½t

0
ij; . . . ; t

ðnÞ
ij �^=ðtij 
 tji; t

0
ij 
 t0ji; . . . ; t

ðnÞ
ij 
 t

ðnÞ
ji Þ; ð2:7Þ

where dtðsÞij ¼ t
ðsþ1Þ
ij . Set

S1def :¼
[
n

Sn
def:

We may define, then, the Serre–Tate expansion map:

EA0
: M1g;1 ¼

[
n

Mn
g;1! S1def ð2:8Þ

by the formula

EA0
ð f Þ :¼ f ðAdef; ydef;odef;S

�
defÞ: ð2:9Þ

The map (2.8) is canonically attached to the g-frame (2.4) but, by abuse of notation,

we only indicate its dependence on A0.

It will be useful to consider a certain subring and a certain overing of S1def as

follows. Let m :¼ gðgþ 1Þ=2 and let f�C�� be a collection of variables frCij,

r5 0, 14 i; j4 g, such that frCij ¼ frCji. We may consider the injective ring homo-

morphisms:

Zp½f
�C��� ! S1def!Maps ðð1þ pRÞm;RÞ ð2:10Þ

defined as follows. The first sends

frCij 7!

1

p
fr log

fð1þ tijÞ

ð1þ tijÞ
p ¼

1

p
fr log 1þ p

t0ij þ
1þ t

p
ij 
 ð1þ tijÞ

p
Þ

p

ð1þ tijÞ
p

0
BB@

1
CCA;

where f acts on S1def by

fðtðrÞij Þ :¼ ðt
ðrÞ
ij Þ

p
þ t
ðrþ1Þ
ij :

The second map in (2.10) sends

tðrÞ 7!
 ðq 7!
 dr
ðq
 1ÞÞ;

where q is viewed as a symmetric matrix ðqijÞ with R-coefficients and d:R! R is

given by dx ¼ ðfðxÞ 
 xpÞ=p where f:R! R is the unique lifting of Frobenius. So

the composition (2.10) sends

frCij 7!
 q 7!
 ðfrCijÞðqÞ :¼
1

p
fr log

fðqijÞ

q
p
ij

 !
:

From now on we regard (2.10) as an inclusion.
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The following result is an analogue of the Fourier expansion principle proved in

[2], Theorem 3.1. We shall refer to the Theorem below as the Serre–Tate expansion

principle.

THEOREM 2.1. ð1Þ The restriction of the Serre–Tate expansion map

EA0
:M1g;1! S1def to any space MgðwÞ is injective with torsion free cokernel.

ð2Þ The induced maps MgðwÞ �Zp
R! S1def are injective.

Proof. (sketch) The proof of assertion 1 is entirely similar to the (rather lengthy)

proof of [2], Theorem 3.1, and shall be omitted. We shall give a brief sketch of the

proof of assertion (2). Let us fix a weight w of order n and let us define Siegel modular

d-forms over R of weight w by using exactly the same definition as for Siegel modular

d-forms of weight w except that we are asking now that all prolongation sequences

involved be over R. Denote by Mg;RðwÞ the R-module of all Siegel modular d-forms

over R of weight w. Then the proof of Theorem 3.1 in [2] extends, without modi-

fications, to provide an injective map

Mg;RðwÞ ! S1def

We shall be done if we prove that the natural map

MgðwÞ �Zp
R!Mg;RðwÞ

is injective. This follows from the following Lemma applied to the ring A of global

functions on the nth p-jet space of an affine open set of the moduli space of princi-

pally polarized Abelian schemes with level N5 3 structure over Zp. We leave details

to the reader; what one needs to do is use the setting of the proof of [2], Theorem 3.1,

which links Siegel d-modular forms to p-jet spaces of moduli spaces. &

LEMMA 2.2. Let A be a smooth Zp-algebra and, as usual, R ¼ ẐZur
p . Assume

Spec A=pA is geometrically connected. Then the map

ÂA�Zp
R! ðA�Zp

RÞ̂

is injective.

As usual, the ^ sign denoted p-adic completion.

Proof. Let R1 be a finite extension of Zp contained in R such that if

A1 :¼ A�Zp
R1; k1 :¼ R1=pR1;

then Spec A1=pA1 has a k1-point. This point lifts, by smoothness, to an R1-point

of Spec A1, given, say, by p:A1! R1. One can find an etale map Spec A1!

Spec R1½T � (where T is a tuple of indeterminates) such that p is mapped to the

point T 7!
 0. Let P ¼ KerðpÞ. Then the completion of the local ring of A1 at P is
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isomorphic to R1½½T ��. We have induced ring homomorphisms

R1½T �!
u

ÂA1!
v

R1½½T ��:

We claim that v above is injective. Indeed, since ÂA1 is p-adically separated, it is

enough to show that the induced map

�vv: ÂA1=pÂA1 ¼ A1=pA1! k1½½T ��

is injective. Assume the prime ideal Kerð�vvÞ is not zero and seek a contradiction. Note

that A1=pA1 is an integral domain (by smoothness of A and geometric connectivity

of A=pA). On the other hand, Kerð�vvÞ \ k1½T � ¼ 0 because k1½T � ! k1½½T �� is injec-

tive. It follows that Spec A1=pA1! Spec k1½T � is not quasi-finite, a contradiction.

So our claim that v is injective is proved. Let K1 ¼ R1½1=p�, K ¼ R½1=p�. Since R1

is finite over Zp we have

ÂA�Zp
R ’ ÂA1 �R1

R:

On the other hand, we have a commutative diagram

ÂA1 �R1
R 
! ðA�Zp RÞ^

# #

R1½½T �� �R1
R ðZp½½T �� �Zp RÞ^

# #

K1½½T �� �R1
R R½½T ��

k #

K1½½T �� �K1
K 
! K½½T ��

Since R is flat over R1 the composition of the left vertical arrows is injective. So it is

enough to check that the bottom horizontal arrow is injective. This is, however,

trivial. &

2.2. THE CASE g4 3

Let us say that a g-frame ðA0; y0; b; �bbÞ (cf. (2.9)) is of Jacobian type if ðA0; y0Þ ¼
ðJacðC0Þ; yC0

Þ for some curve C0 of genus g 2 f1; 2; 3g and, in case g ¼ 3, C0 is

nonhyperelliptic. Of course yC0
above denotes the theta polarization on JacðC0Þ.

The ‘Jacobian type’ hypothesis will allow us to compute the Serre–Tate expansion

map more explicitly.

Let Spf R½½s1; . . . ; sm�� be the universal deformation space of C0. By the symmetry

property in [19], p. 149, the map R½½tij�� ! R½½s1; . . . ; sm�� factors through

R½½tij��=ðtij 
 tjiÞ. By [27], p. 167, the reduction mod p of the map

Sdef ¼ R½½tij��=ðtij 
 tjiÞ ! R½½s1; . . . ; sm�� ð2:11Þ
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is surjective, hence an isomorphism. It follows that the map (2.11) itself is an isomor-

phism. (We may, and will, assume that s1; . . . ; sm are the classes of tij for i4 j.) Note

that on H� Sdef we have available the cup product h
;
i coming from the universal

curve. By the compatibility of the cup product with the Gauss–Manin connection we

get Hho; uti ¼ 0 (here o; u are viewed as column vectors and the upper t means

‘transposition’) so the entries of the matrix ho; uti belong to R. On the other hand

one can consider the lifting of Frobenius f on Sdef ¼ R½½tij��=ðtij 
 tjiÞ induced by

fðqijÞ ¼ q
p
ij , where qij ¼ 1þ tij; by [14], 2.1.3., we have, for this f, that fo ¼ po.

Using the equality hfo;futi ¼ p � fho; uti we get that E :¼ 
ho; uti has the property

that fE ¼ E. Hence E 2 GL2ðZpÞ. Let C=R be any curve lifting C0=k; such a curve cor-

responds to a matrix tðC Þ ¼ ðtijðC ÞÞ with entries in pR. We set qðC Þ :¼ 1þ tðC Þ. For

each such C we obtain a basis oðC Þ; uðC Þ of HðC Þ :¼ H1
DRðC=RÞ ¼ H1

DRðJacðC Þ=RÞ.

This basis is compatible with the Hodge filtration. We claim that uðC Þ is fixed by the

crystalline f:HðC Þ ! HðC Þ induced by the unique lifting of Frobenius f:R! R;

i.e. fuðC Þ ¼ uðC Þ: Indeed one can easily construct a lifting of Frobenius f on

R½½tij�� such that the homomorphism

R½½tij�� ! R; t 7!
 tðC Þ

commutes with the action of f on the two rings: just let

ft ¼ tp þ ffðtðC ÞÞ 
 tðC Þpg:

In particular the induced homomorphism H! HðC Þ is f-equivariant. Now one

uses the fact that u is fixed by any lifting of Frobenius, in particular by f:H! H;

it follows that uðC Þ is fixed by f:HðC Þ ! HðC Þ and our claim is proved. By [18],

pp. 190–191, we have huðC Þ; uðC Þti ¼ 0: As in loc. cit. we can consider, for each

C, a column vector bðC Þ of elements of HðC Þ such that

fbðC Þ ¼ p � bðC Þ;

huðC Þ; bðC Þti ¼ I;

hbðC Þ; uðC Þti ¼ 
I;

hbðC Þ; bðC Þti ¼ 0:

Express

oðC Þ ¼ O1ðC Þ � bðC Þ þ O2ðC Þ � uðC Þ;

where OiðC Þ are matrices with entries in R. We get that

O1ðC Þ ¼ E:

Also, by [16], p. 116, we have

O2ðC Þ ¼ logðqðC ÞÞ:
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Finally, from the equality hoðC Þ;oðC Þti ¼ 0 we get

0 ¼ E � logðqðC ÞÞ 
 logðqðC ÞÞ � Et:

Since this is true for any C it follows that E must be a scalar matrix:

E 2 Z�p � I: ð2:12Þ

We conclude that

oðC Þ ¼ E � bðC Þ þ logðqðC ÞÞ � uðC Þ: ð2:13Þ

If g ¼ 1 one can choose E ¼ 1 by [14], Introduction.

The composition of the Serre–Tate expansion map (2.8)

EA0
:M1

g;1 ! S1def

with the embedding

S1def !Mapsðð1þ pRÞm;RÞ

is given by the map

M1g;1!Mapsðð1þ pRÞm;RÞ ð2:14Þ

described as follows. Let f 2Mn
g;1 and let q 2 ð1þ pRÞm. We identify q, as usual, with

a symmetric matrix ðqijÞ with entries in 1þ pR. Let C=R be the unique lifting of C0=k

such that qðC Þ ¼ q. Then

EA0
ð f ÞðqÞ ¼ f ðJacðC Þ; yC;oðC Þ;R�Þ 2 R; ð2:15Þ

where yC is the theta divisor on JacðC Þ and R� is the unique prolongation sequence

all of whose rings are R.

2.3. COMPARISON BETWEEN SERRE–TATE AND FOURIER EXPANSIONS

Recall that we defined in [2] a Fourier expansion map

E1:M
1
g;1! S1can :¼

[
n

Zp½½q���½q

1
� �½q

0
�; . . . ; q

ðnÞ
� �^ ð2:16Þ

where q�; q
0
�; . . . ; q

ðnÞ
� are m-vectors with entries variables. Note that f acts on S1can by
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the formula

fðqði Þ� Þ ¼ ðq
ði Þ
� Þ

p
þ pqðiþ1Þ�

and 2.16 is f-equivariant.

(Here is a parenthetical remark. The q’s in (2.15) and the q�’s in (2.16) are unre-

lated; the former ones are the ‘Serre–Tate parameters’ while the latter are the ‘Four-

ier variables’. In using the same letter q in both cases we are following an established,

though somewhat misleading, convention.)

There is an embedding

Zp½f
�C��� ! S1can; ð2:17Þ

frCij 7!

1

p
fr log

fðqijÞ

q
p
ij

:

By [2]

E1ðJgÞ � Zp½f
�C���:

THEOREM 2.3. Assume the g-frame ðA0; y0; b; �bbÞ is of Jacobian type. Then

EA0
ðJgÞ � Zp½f

�C���

and, for any f 2 JgðwÞ we have

EA0
ð f Þ ¼ E

degðwÞ
2 g � E1ð f Þ

in Zp½f
�C���.

Here E 2 Z�p is the unit introduced in the previous section. Note that the Theorem

should be viewed as somewhat surprising for, as noted before, there is no direct

relation between the Serre–Tate parameters and the Fourier variables.

Proof. We may assume f is a cyclic product. Then the required equality follows

from the Lemma below. &

LEMMA 2.4. Assume the g-frame ðA0; y0; b; �bb Þ is of Jacobian type and let

f n
ij 2Mn

g;1 denote the ði; j Þ-component of the matrix f n ¼ f n
crys 2MatgðM

n
g;1Þ. Then

the equality EA0
ð f n

ijÞ ¼ E � E1ð f n
ijÞ holds in the ring Zp½f

�C���.
Proof. By [2], Section 4, we know that

E1ð f
n
ijÞ ¼ fn
1Cij þ pfn
2Cij þ � � � þ pn
1Cij: ð2:18Þ
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On the other hand, to compute EA0
ð f Þ take any q 2 ð1þ pRÞm and take a curve C=R

lifting C0=k with qðC Þ ¼ q; using the definition of f n
crys in [2], Section 4, and using

formulas (2.13) and (2.15) we get

EA0
ð f nÞðqÞ ¼ f nðJacðC Þ; yC;oðC Þ;R�Þ ¼

1

p
hfnoðC Þ;oðC Þti

¼
1

p
hE � pn � bðC Þ þ ðlog fn

ðqÞÞ � uðC Þ; E � bðC Þt þ uðC Þt � ðlog qÞi

¼
E
p
flog fn

ðqÞ 
 pn � log qg

¼
E
p
f½log fn

ðqÞ 
 p � log fn
1
ðqÞ� þ � � � þ ½ pn
1 � log fðqÞ 
 pn � log qg

¼ Effn
1Cþ � � � þ pn
1CgðqÞ;

which ends the proof. &

2.4. SERRE–TATE EXPANSION OF d-MODULAR FORMS ON D

Our aim in what follows is to define Serre–Tate expansions for elements of Mn
D. (Of

course, there is no reasonable ‘Fourier expansion’ for such forms because Shimura

curves associated to D are proper.) We need to discuss some preliminaries. Let

ðA0; i0; y0Þ be a polarized false elliptic curve over k :¼ �FFp, with A0 ordinary. Let us

denote by Sdef;D ¼ R½½T �� the universal formal deformation ring of ðA0; i0Þ; so

Spf Sdef;D parameterizes liftings of ðA0; i0Þ to false elliptic curves over local Artin

rings with residue field k (cf. [12]). Also let Adef;D=Sdef;D be the corresponding univer-

sal formal Abelian scheme. Note that Adef;D has a natural structure of polarized false

elliptic curve: ðAdef;D; idef;D; ydef;DÞ: Indeed the reductions mod pn of Adef;D have an

OD-action and a unique principal polarization such that the Rosati involution on

EndðA0Þ induces the þ involution on OD. Hence the formal scheme Adef;D has an

OD-action and a principal polarization such that the Rosati involution on

EndðA0Þ induces the þ involution on OD. By Grothendieck’s existence theorem

Adef;D is algebraisable, hence it ‘is’ an Abelian scheme. Since EndðAdef;DÞ !

EndðA0Þ is injective the Rosati involution on EndðAdef;DÞ induces the þ involution

on OD. This proves that Adef;D ‘is’ a polarized false elliptic curve. Note that if one

chooses bases b; �bb of TpðA0Þ, Tpð �AA0Þ that correspond to each other via y0 then one

gets an induced ring homomorphism

r:Sdef ¼ R½½tij��=ðt12 
 t21Þ ! Sdef;D ¼ R½½T ��: ð2:19Þ

The following Lemma will help us choose the bases b; �bb wisely:

LEMMA 2.5. Let ðA0; i0; y0Þ be a polarized false elliptic curve over k ¼ �FFp such that

A0 is ordinary. Then there exist Zp-bases b and �bb of the ‘physical’ Tate modules TpðA0Þ
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and Tpð �AA0Þ respectively, corresponding to each other via y0, such that for any false

elliptic curve ðA; i Þ over R equipped with an isomorphism ðA; i Þ � �FFp ’ ðA0; i0Þ the

Serre–Tate matrix of ðA; i Þ ðwith respect to b; �bbÞ has the form

q 0
0 qd

� �
;

where q 2 1þ pR. In particular, with respect to the bases b; �bb, the homomorphism r in

ð2:19Þ sends

t11 7!
 T; t22 7!
 ðTþ 1Þd 
 1; t12; t21 7!
 0: ð2:20Þ

Furthermore, viewing b as a column vector, we have:

iðaÞb ¼ jðaÞb; a 2 OD: ð2:21Þ

In particular, the above Lemma gives an explicit ‘formal linearization’ of the

corresponding Shimura curve. Of course this is just an instance (made explicit and

more precise, for our purposes) of the general linearization results of Noot [26]

and Moonen [24].

Proof. Let Edef=R½½T �� be the universal formal deformations of E0=k, where E0 is

any ordinary elliptic curve, corresponding to the choice of bases v, �vv of TpðE0Þ and

Tpð �EE0Þ. (We do not assume v; �vv correspond to each other under the canonical

polarization on E0. Also, we do not fix v, �vv yet; we shall fix them later, in the course of

our proof.) By [12] we have an isomorphism of p-divisible groups

Adef;D½ p
1� ’ Edef½ p

1� � Edef½ p
1�

over R½½T �� which is OD-equivariant. Now the lifting ðA; iÞ of ðA0; i0Þ gives rise to a

ring homomorphism

R½½T �� ! R; T 7!
 q
 1: ð2:22Þ

Let E be the pull-back of Edef via (2.22). By Grothendieck’s existence theorem Edef;E

are actually elliptic curves (rather than ‘formal elliptic curves’). Now we have an

induced isomorphism of p-divisible groups

A½ p1� ’ E ½ p1� � E ½ p1� ð2:23Þ

and corresponding isomorphisms between the connected components of (2.23)

reduced mod p:

Afor
0 ’ E for

0 � E for
0 ð2:24Þ
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and the etale quotients of (2.23) reduced mod p:

TpðA0Þ �Zp
ðQp=ZpÞ ’ ðTpðE0Þ �Zp

ðQp=ZpÞÞ � ðTpðE0Þ �Zp
ðQp=ZpÞÞ: ð2:25Þ

Taking Homð
;Gfor
m Þ in 2.24 and taking the functor ‘Tate module’ in (2.25) we get

isomorphisms

Tpð �AA0Þ ’ Tpð �EE0Þ � Tpð �EE0Þ; ð2:26Þ

TpðA0Þ ’ TpðE0Þ � TpðE0Þ: ð2:27Þ

View the elements of the right hand sides of (2.26) and (2.27) as column vectors; then

(2.27) is Mat2ðZpÞ-equivariant whereas (2.26) is Mat2ðZpÞ
op-equivariant with respect

to the action on TpðA0Þ induced by

Oop
D ! Endð �AA0=kÞ

a 7!
 iðaÞ�

and the action

Mat2ðZpÞ
op
� ðTpð �EE0Þ � Tpð �EE0ÞÞ ! Tpð �EE0Þ � Tpð �EE0Þ

given by

X;
�ww1

�ww2

� �� �
7!
 X �

�ww1

�ww2

� �
:¼ Xt �ww1

�ww2

� �
:

Consider the bases b, �bb of TpðA0Þ;Tpð �AA0Þ corresponding to

0
v

� �
;

v

0

� �
¼

0 1
d 0

� �
0
v

� �

and

0
�vv

� �
;

d�vv
0

� �
¼

0 d
1 0

� �
0
�vv

� �
¼

0 1
d 0

� �
�

0
�vv

� �
&

Claim. One can choose v and �vv such that b and �bb correspond to each other via y0.
Assuming the Claim for a moment note that, with respect to these bases, the

Serre-Tate matrix of A has clearly the form
� q 0

0 qd

�
and this will close the proof.

To end the proof, we must check the Claim above. First note that the involution þ

on OD induces an involution þ on Mat2ðZpÞ

X 7!
 Xþ ¼
0 1

d 0

� �
� X 0 �

0 1

d 0

� �
1
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and the matrices below are fixed by this involution:

1 0
0 0

� �þ
¼

1 0
0 0

� �
; ð2:28Þ

0 1
d 0

� �þ
¼

0 1
d 0

� �
: ð2:29Þ

Now note that the basis b is the unique basis (up to multiplication by a unit in Zp)

having the form

x;
0 1
d 0

� �
x

� �
;

with x a basis of

Ker
1 0
0 0

� �
:TpðA0Þ ! TpðA0Þ

� �
:

Similarly �bb is the unique basis (up to multiplication by a unit in Zp) having the form

�xx;
0 1
d 0

� �
�xx

� �
;

with �xx a basis of

Ker
1 0
0 0

� �
:Tpð �AA0Þ ! Tpð �AA0Þ

� �
:

Let y0:TpðA0Þ ! Tpð �AA0Þ be the isomorphism induced by y0. To conclude the proof

of the Claim it is enough to check that

1 0

0 0

" #
y0x ¼ 0;

y0
0 1

d 0

" #
x ¼

0 1

d 0

" #
y0x:

By (2.28), (2.29) it is enough to check that

y0Xþx ¼ Xy0x ðX 2Mat2ðZpÞÞ

on TpðA0Þ. But this is, of course, a consequence of the identity

y0 � iðaþÞ ¼ iðaÞ� � y0:A0 ! �AA0

holding for all a 2 OD. This ends the proof of the Claim and hence of the Lemma.&

It is convenient to introduce one more definition: by a D-frame we will understand

a tuple

ðA0; i0; y0; b; �bbÞ; ð2:30Þ
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where ðA0; i0; y0Þ is an ordinary polarized false elliptic curve over k and b; �bb satisfy

the conclusion of Lemma 2.5.

A D-frame will be called of Jacobian type if ðA0; y0Þ ¼ ðJacðC0Þ; yC0
Þ for some

curve C0. The following Lemma, together with Lemma 2.5, guarantees that, for

all except finitely many p, there exists a D-frame of Jacobian type.

LEMMA 2.6. For all but finitely many primes p one can find a polarized false elliptic

curve ðA0; i0; y0Þ over k ¼ �FFp such that A0 is ordinary and ðA0; y0Þ is isomorphic, as a

polarized Abelian variety, to the Jacobian of a curve C0=k.

We expect that the above is true for all primes p, or at least for all primes except

those belonging to a small explicit list.

Proof. We begin by recalling the following well known fact:

FACT 1. Any principally polarized Abelian surface over C is isomorphic ðas a

polarized Abelian varietyÞ to a Jacobian or to a product of elliptic curves.

Next we need the following:

FACT 2. Let ðA; iÞ be a false elliptic curve over C; if A is isomorphic to a product of

elliptic curves E1 � E2 then both E1 and E2 have complex multiplication.

Indeed, assume E1 is not CM. If E2 is isogenous to E1 then E2 is not CM and

hence EndðE1 � E2Þ �Q ’Mat2ðQÞ. But there is no ring homomorphism D!

Mat2ðQÞ, contradiction. So E2 is not isogenous to E1. But then EndðE1 � E2Þ �Q

is a commutative ring and, again, there cannot be any ring homomorphism from

D to this ring. Fact 2 is proved.

Let us now start the argument for the proof of our Lemma. Let A! X be the

universal family of false elliptic curves (with some level structure) over some

Shimura curve X=Z½1=N �; cf. [12]. Then the geometric generic fiber of A! X
is a Jacobian. (Indeed, if this were not the case, then, by Facts 1 and 2, this geo-

metric generic fiber would be a product of CM elliptic curves. Since CM curves

cannot ‘vary in a family’ we would get that all fibers of A! X over C-points of

X would be isomorphic, a contradiction.) It follows that there exists a finite

covering X 0 of a Zariski open set of X such that A0 :¼ A�X X 0 is isomorphic

(as a polarized Abelian scheme) to the Jacobian of a curve C=X 0. Since the image

of X 0 ! Spec Z contains an open set it follows that for all except finitely many

primes p we have X 0 � Fp 6¼ ;. Hence, for any such p there exists a Zariski open

set Up � X � Fp such that for any �FFp-point x of Up the corresponding principally

polarized Abelian variety Ax is isomorphic to a Jacobian. Since, as well known,

for all but finitely many �FFp-points x of X � Fp, Ax is also ordinary, our Lemma

is proved. &
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Assume we have fixed a D-frame. We associate to it a homomorphism (called

Serre–Tate expansion map),

EA0;D:M
1
D :¼

[
n

Mn
D! S1def;D :¼

[
n

Sn
def;D ð2:31Þ

where

Sn
def;D :¼ R½½T ��½T 0; . . . ;TðnÞ�^;

we define EA0;D through the formula:

EA0;Dð f Þ :¼ f ðAdef;D; idef;D; ydef;D;odef;D;S
�
def;DÞ; ð2:32Þ

where odef;D is the pull back of odef via the map

r: Spf Sdef;D ! Spf Sdef; ð2:33Þ

t11 7!
 T; t22 7!
 ðTþ 1Þd 
 1; t12; t21 7!
 0:

Note that odef;D is an invertible false 1-form, as one can check using Equations (2.3)

and (2.21). We have the following Serre–Tate expansion principle on D whose proof

is entirely similar to the proof of Theorem 2.1 and will therefore be omitted. (The

moduli spaces of Abelian schemes in the proof of the Fourier expansion principle

in [2] need to be replaced, of course, by Shimura curves; a reference for the relevant

facts on Shimura curves that need to be used is, for instance, [12].)

THEOREM 2.7. ð1Þ The restriction of the Serre–Tate expansion map

EA0;D:M
1
D ! S1def;D

to any space MDðwÞ is injective with torsion free cokernel.

ð2Þ The induced maps

MDðwÞ �Zp
R! S1def;D

are injective.

The following two Propositions follow directly from the definitions:

PROPOSITION 2.8. The following diagram is commutative

M12;1 
!
EA0

S1def
indD # # r

M1D 
!
EA0 ;D

S1def;D

where the left vertical arrow is as in Proposition 1:3 and the right vertical arrow is as in

ð2:33Þ.
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PROPOSITION 2.9. For any f 2 I2ðf
a;fb
Þ we have

EA0;DðindD f Þ �
1 0
0 d

� �
¼

rEA0
ð f11Þ rEA0

ð f12Þ
rEA0
ð f21Þ rEA0

ð f22Þ

� �
;

where indD above is as in Proposition 1:4 and EA0
, EA0;D are as in Proposition 2:8.

Let f�C be a collection of variables frC and consider the injective homo-

morphism

Zp½f
�C� ! Sn

def;D :¼ R½½T ��½T 0; . . . ;TðnÞ�^; ð2:34Þ

frC 7!

1

p
fr log

fð1þ TÞ

ð1þ TÞp
:

Then if Cij in (2.10) are viewed as elements of S1def then, clearly,

rðC11Þ ¼ C; rðC22Þ ¼ dC; rðC12Þ ¼ rðC21Þ ¼ 0:

Recall from Remark 1.5 that we defined f a
D :¼ indD f a 2 IDð1þ fa

Þ �M1D ; from

Proposition 2.9 and Lemma 2.4 we get the following:

COROLLARY 2.10. Assume ðA0; i0; y0; b; �bbÞ is a D-frame of Jacobian type. The

following formula holds:

EA0;Dð f
a
DÞ ¼ Eðfa
1Cþ pfa
2Cþ � � � þ pa
1CÞ:

In particular the map EA0;D:M
1
2;1! S1def induces a map

EA0;D: JD! Zp½f
�C�: ð2:35Þ

Let f�L be a family of variables frL, r5 0; then the map (2.35) induces a map

EL
A0;D

: JD! Zp½f
�C;f�L�; ð2:36Þ

X
w

jw 7!

X

EA0;DðjwÞE
degðwÞ=2L
w;

where jw 2 JDðwÞ and, for w ¼
P

aif
i, we set

Lw :¼
Y

i

ðfiLÞai :

In view of the Serre–Tate expansion principle for D (Theorem 2.7) we get that the

map (2.36) is injective.

Similarly the map

E1: J1! Zp½f
�C�
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in 2.16 (C :¼ C11) gives rise to a map

EL
1: J1! Zp½f

�C;f�L�; ð2:37Þ

X
w

fw 7!

X

w

E1ð fwÞL

w

In view of the Fourier expansion principle for g ¼ 1 [7], Proposition 7.21 (or [2],

Theorem 3.1), we get that the map 2.37 is injective.

Proof of Theorem 1:6: By Corollary 2.10 and by Equation (2.18) we have

E1ð f
aÞ ¼ ðfa
1Cþ � � � þ pa
1CÞL1þfa

¼ EA0;Dðj
aÞ:

We conclude that

EL
1ðJ1Þ ¼ EL

A0;D
ðJDÞ:

Due to the injectivity of the maps (2.36) and (2.37) we conclude that JD ’ J1 by a

f-equivariant isomorphism. &

3. Functional Equations

3.1. CONSTRUCTING ISOGENIES VIA SERRE–TATE PARAMETERS

Assume we are given a g-frame:

ðA0; y0; b; �bbÞ;

cf. Equation (2.4). By an additional datum we will understand a tuple

ðu0;A1; y1Þ; ð3:1Þ

where u0 2 EndðA0=kÞ is an endomorphism and ðA1; y1Þ is a principally polarized

Abelian scheme over R, lifting ðA0; y0Þ. In particular the Serre–Tate matrix

qðA1Þ :¼ qðA1=R; b; �bbÞ

is symmetric. Let þ denote the Rosati involution on EndðA0=kÞ (with respect to y0)
and set

u0b ¼ mb; uþ0 b ¼ mþb; ð3:2Þ

where b is viewed, as usual, as a column vector and m; mþ 2MatgðZpÞ. Note that if

�uu0 2 Endð �AA0=kÞ is the dual of u0 then

�uu0
�bb ¼ �uu0y0b ¼ y0uþ0 b ¼ y0ðmþbÞ ¼ mþ �bb: ð3:3Þ
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Let log : 1þ pR! pR be the usual logarithm map. If we assume that m is invertible

ðm 2 GLgðZpÞÞ and the matrix

l :¼ m
1 � log qðA1Þ � ðmþÞ
t

ð3:4Þ

is symmetric, then the lifting A2=R of A0=k for which

log qðA2Þ :¼ log qðA2=R; b; �bbÞ ð3:5Þ

equals l in (3.4) carries a (unique) principal polarization y2 lifting y0. The equality

l ¼ log qðA2Þ, together with formulas (3.2) and (3.3), immediately imply that

log qðA1=R; b; ð �uu0
�bbÞtÞ ¼ log qðA2=R; u0b; �bb

t
Þ:

By [19], p. 149, and the latter formula, we conclude that:

LEMMA 3.1. Assume m is invertible and l is symmetric; then u0 lifts to a ðuniqueÞ

homomorphism u: A1! A2.

Let

�bb0: Afor
0 ! ðG

for
m Þ

g; �bb1: Afor
1 ! ðG

for
m Þ

g; �bb2: Afor
2 ! ðG

for
m Þ

g
ð3:6Þ

be the isomorphisms of formal groups that correspond to �bb via the functorial

isomorphisms (2.2) for A0, A1 and A2 respectively. (Here �bb2 is only defined, of

course, if m is invertible and l is symmetric.) Also consider the naturally induced col-

umn vectors of forms o0, o1 and o2 on A0, A1 and A2 respectively, given on the for-

mal groups by

o0 ¼
�bb�0

dT

T
; o1 ¼

�bb�1
dT

T
; o2 ¼

�bb�2
dT

T
ð3:7Þ

where dT=T is the standard column of 1-forms on the torus. (Again,o2 is only defined

if m is invertible and l is symmetric.) We claim that the following formulae hold:

u�0o0 ¼ mþo0; ðu
þ
0 Þ
�o0 ¼ mo0: ð3:8Þ

In other words,

½u0� ¼ mþ; ½uþ0 � ¼ m:

Moreover, if m is invertible and l is symmetric we claim that the following formulae

hold:

u�o2 ¼ mþo1; ðu
tÞ
�o1 ¼ mo2: ð3:9Þ

In other words,

½u� ¼ mþ; ½ut� ¼ m:
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Note that if we prove the first equality in each of (3.8), (3.9) then the second one will

follow from ‘symmetry’. To check the first equality in (3.8), (3.9) start by considering

the following commutative diagram:

Tpð �AA0Þ 
!
�uu0

Tpð �AA0Þ

! !

HomðAfor
0 ;Gfor

m Þ 
!
u�
0

HomðAfor
0 ;Gfor

m Þ

�bb�0 ! ! �bb�0

HomððGfor
m Þ

g;Gfor
m Þ 
!

b�0
HomððGfor

m Þ
g;Gfor

m Þ;

ð3:10Þ

where the vertical arrow in the upper square are the isomorphisms (2.2), and the

lower square is deduced by applying the functor Homð
;Gfor
m Þ to the commutative

square (over k):

Afor
0  


u0
Afor

0

�bb0 ! ! �bb0

ðGfor
m Þ

g
 

b0

ðGfor
m Þ

g:

ð3:11Þ

Here b0 is simply the unique morphism that makes the last diagram commute. If, in

addition, m is invertible and l is symmetric, the commutativity of the diagram (3.11)

implies the commutativity of a diagram (over R):

Afor
2  


u
Afor

1

�bb1

! ! �bb2

ðGfor
m Þ

g
 

b

ðGfor
m Þ

g;

ð3:12Þ

where b is uniquely determined by b0. Now the basis �bb in (3.10) corresponds, via

the vertical isomorphisms there, to the basis of HomððGfor
m Þ

g;Gfor
m Þ consisting of

the g canonical projections; let P be the vector of these projections. Since

�uu0
�bb ¼ mþ �bb (cf. (3.3)) it follows that b�0P ¼ mþP. It follows that, on the level of

forms b0 acts as

b�0
dT

T
¼ mþ

dT

T
:

We get

u�0o0 ¼ u�0
�bb�0

dT

T
¼ �bb�0b

�
0

dT

T
¼ mþo0;
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which proves (3.8). Assuming, in addition, that m is invertible and l is symmetric, we

get that b acts on forms as

b�
dT

T
¼ mþ

dT

T
;

hence we can compute

u�o2 ¼ u� �bb�2
dT

T
¼ �bb�1b

� dT

T
¼ �bb�1m

þ dT

T
¼ mþo1;

which proves (3.9).

As a consequence of (3.8) and (1.4) note that

deg ðu0Þ
2
¼ ðdetðmmþÞÞ2: ð3:13Þ

In particular we get that degðu0Þ is prime to p if and only if m and mþ are invertible.

Also, if m is invertible and l is symmetric, we get

degðuÞ2 ¼ ðdetðmmþÞÞ2:

3.2. THE CASE u0 ¼ p
 n

Assume again that we are given a g-frame (2.4) and the additional datum (3.1).

Assume A0 is defined over the finite field Fpn of size pn and let p ¼ pn 2 End ðA0=kÞ

be the pn-power k-linear Frobenius endomorphism on A0; so if A0 ¼ A0;Fpn �Fpn k then

pn ¼ ðabsolute pn 
 power FrobeniusÞ �Fpn k:

Recall that ppþ ¼ pþp ¼ pn [23]. Let us assume that

u0 ¼ p
 n; ð3:14Þ

for some n 2 Z. Denote by Z; Zþ 2MatgðZpÞ the matrices with the property that

pb ¼ Zb, pþb ¼ Zþb. Then m ¼ Z
 n and mþ ¼ Zþ 
 n. Note that ZZþ ¼ pn. We claim

that Z is invertible:

Z 2 GLgðZpÞ: ð3:15Þ

Indeed it is enough to check that p is an isomorphism on TpðA0Þ, equivalently that �pp
is an isomorphism on Homð �AAfor

0 ;Gfor
m Þ. But, since A0 is ordinary, �pp is étale, hence it

induces an isomorphism on �AAfor
0 and we are done.

Note that if the g-frame (2.4) comes from a D-frame then u0 ¼ p
 n, being in the

center of EndðA0=kÞ, is an isogeny of false elliptic curves. If, in addition, m is inver-

tible and l is symmetric, we have

@ðuÞ ¼ @ðu0Þ ¼ mmþ: ð3:16Þ

3.3. MULTIPLICATION BY OL

Let L be a simple central Q-algebra of dimension g2 and let OL be an order in L,

stable under a given involution þ on L. Say that ðA0; y0Þ has multiplication by OL
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if there is a þ equivariant injection i0:OL ! EndðA0=kÞ (where þ acts on endo-

morphisms as the Rosati involution). We are especially interested in the following

two situations:

(1) ðA0; i0; y0Þ is a polarized false elliptic curve. In this case L ¼ D is our indefinite

quaternion algebra with its involution þ.

(2) A0 is the g-fold power of an elliptic curve E0 and y0 is the g-fold power of the

canonical polarization on E0. In this case OL ¼MatgðZÞ with the involution þ

given by transposition.

LEMMA 3.2. Fix a g-frame ðA0; y0; b; �bbÞ and assume ðA0; y0Þ has multiplication by

OL. Then Z; Zþ are scalar; so Z 2 Z�p and Zþ 2 pnZp.

Proof. The map i0 composed with the natural representation

EndðA0=kÞ ! EndðTpðA0ÞÞ

and the isomorphism

EndðTpðA0ÞÞ ’MatgðZpÞ
op

induced by the basis b induces an algebra map

L�Q Qp!MatgðQpÞ
op: ð3:17Þ

Since L�Q Qp is simple and central the map (3.17) is an isomorphism. Since p; pþ

are in the center of EndðA0=kÞ, Z; Zþ commute with all elements in the image of

OL in MatgðQpÞ, hence they must commute with all elements of MatgðQpÞ, hence

they are scalar, which ends our proof. &

3.4. FUNCTIONAL EQUATION SATISFIED BY SERRE–TATE EXPANSIONS

Assume we are in the hypotheses of Lemma 3.2 and assume u0 ¼ p
 n as in 3.14

with

n 6� 0; Z mod p: ð3:18Þ

Then m; mþ 2 Z�p , hence, in particular, degðu0Þ is prime to p and l in (3.4) is obviously

symmetric. So A2 and u:A1! A2 are defined, cf. Lemma 3.1. Define

g ¼ gn :¼
mþ

m
¼

Zþ 
 n

Z
 n
2 Z�p : ð3:19Þ

The equality between (3.4) and (3.5) implies that

qijðA2Þ ¼ qijðA1Þ
g: ð3:20Þ

Note that if our g-frame comes from a D-frame and if A1 is the false elliptic curve

with matrix

qðA1Þ ¼
q 0
0 qd

� �
;
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cf. Lemma 2.5, for some q 2 1þ pR; then

qðA2Þ ¼
qg 0
0 ðqdÞ

g

� �
¼

qg 0
0 ðqgÞd

� �
;

so A2 will be naturally a false elliptic curve (call i2 the corresponding structure), by

the same Lemma 2.5.

LEMMA 3.3. Let ðA0; i0; y0; b; �bbÞ be a D-frame, let u0 ¼ p
 n as in ð3:14Þ with

n 6� 0; Z mod p, cf: ð3:18Þ, and let gn be defined by Equation ð3:19Þ. Let f 2 IDðwÞ be a

d-modular form on D of weight w. Then

f ðA2; i2; y2;o2;R
�Þ ¼ g


degðwÞ
2 f ðA1; i1; y1;o1;R

�Þ: ð3:2:1Þ

Proof. Wehave the following computation, using Equations ð1:18Þ, ð3:16Þ, and ð3:9Þ:

f ðA2; i2; y2;o2;R
�Þ ¼ ðmmþÞ

degðwÞ
2 f ðA1; i1; y1; u�o2;R

�Þ

¼ ðmmþÞ
degðwÞ

2 wwðm
þÞ

1f ðA1; i1; y1;o1;R

�Þ

¼ g

degðwÞ

2 f ðA1; i1; y1;o1;R
�Þ: &

LEMMA 3.4. The ring homomorphism

s:R½½T;T 0; . . . ;T ðnÞ�� ! R½½T;T 0; . . . ;T ðnÞ��; F 7!
 ~FF;

~FFðT;T 0; . . . ;T Þ :¼ FðpT; dðpT Þ; . . . ; dn
ðpT ÞÞ

ð3:22Þ

is injective.

Here d:R½½T;T 0; . . . ;TðiÞ�� ! R½½T;T 0; . . . ;T ðiþ1Þ�� are the unique p-derivations

sending T 7!
 T 0, T 7!
 T00, etc.

Proof. Note that s in our Lemma extends to a ring homomorphism

S:K½½T;T 0; . . . ;T ðnÞ�� ! K½½T;T 0; . . . ;T ðnÞ��

defined by the same formula as s. Now one can prove by induction that

dn
ðpT Þ ¼ pT ðnÞ þ PnðT; . . . ;T

ðn
1ÞÞ; Pn 2 Z½T; . . . ;T
ðn
1Þ�:

So S is an isomorphism. Hence, s is injective. &

Note that the map s in Equation (3.22) induces a map

R½½T ��½T 0; . . . ;T ðnÞ�^! R½T;T 0; . . . ;T ðnÞ�^:
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For g 2 Zp, define the series

gðTÞ ¼
ð1þ pTÞg 
 1

p
¼ gTþ gðg
 1Þ

p

2!
T2 þ � � � 2 Zp½T �^: ð3:23Þ

LEMMA 3.5. Let ðA0; i0; y0; b; �bbÞ be a D-frame, let f 2 IDðwÞ be any d-modular form

on D of weight w, with ordðwÞ ¼ n, and let

FðT;T 0; . . . ;T ðnÞÞ ¼ EA0;Dð f Þ 2 R½½T ��½T 0; . . . ;TðnÞ�^

be its Serre–Tate expansion, cf: ð2:31Þ. Then, for any g 2 Zp with g 6� 0; 1 mod p, the

series ~FF satisfies the functional equation:

~FFðgðT Þ; dðgðT ÞÞ; . . . ; dn
ðgðT ÞÞÞ ¼ g


degðwÞ
2 � ~FFðT;T 0; . . . ;T ðnÞÞ ð3:24Þ

in R½T;T 0; . . . ;TðnÞ�^ � R½½T;T 0; . . . ;TðnÞ��.

Proof. Choose an additional datum ðu0;A1; y1Þ, cf. (3.1), where:

(1) u0 ¼ p
 n, cf. (3.14), with n 6� 0; Z mod p, cf. (3.18) and

(2) A1=R is an arbitrary lifting of A0=k to a false elliptic curve.

Let gn be defined by the formula (3.19) and let
� q 0

0 qd

�
be the Serre–Tate matrix of A1.

Note that if q ¼ 1þ px with x 2 R then qg ¼ 1þ p � gðxÞ. So, due to Equation (3.21),

our Equation (3.24) holds for g ¼ gn if we replace T by any x 2 R. By [6], Lemma 2.12,

we conclude that the Equation (3.24) itself holds for any g ¼ gn as long as n 6� 0; Z mod

p. To conclude that the Equation (3.24) holds for any g 6� 0; 1 mod p, fix such a g and

take a sequence of integers ni converging p-adically to the p-adic number

~nn :¼
Zþ 
 gZ
1
 g

;

since ~nn 6� 0; Z mod p one has that ni 6� 0; Z mod p for i" 0. It follows that gn ! g,
p-adically. Passing to the limit in our Equation (3.24) for gn we get that Equation

(3.24) holds for g. &

For g 2 Zp, define the series

GðT Þ ¼ GgðT Þ ¼ ð1þ T Þg 
 1 ¼ gTþ
gðg
 1Þ

2!
T2 þ � � � 2 Zp½½T ��; ð3:25Þ

in other words,

gðT Þ ¼
GðpT Þ

p
:

LEMMA 3.6. Let ðA0; i0; y0; b; �bbÞ be a D-frame, let f 2 IDðwÞ be any d-modular form

on D of weight w, with ordðwÞ ¼ n, and let

FðT;T 0; . . . ;T ðnÞÞ ¼ EA0;Dð f Þ 2 R½½T ��½T 0; . . . ;T ðnÞ�^
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be its Serre–Tate expansion, cf. ð2:31Þ. Then, for any g 2 Zp with g 6� 0; 1 mod p, the

series F satisfies the functional equation:

FðGðT Þ; dðGðT ÞÞ; . . . ; dn
ðGðT ÞÞÞ ¼ g


degðwÞ
2 � FðT;T 0; . . . ;T ðnÞÞ ð3:26Þ

in the ring R½½T;T 0; . . . ;T ðnÞ��.

Proof. Let G be the difference between the left-hand side and the right-hand side

of Equation (3.26). Then, with the notations of Lemma 3.4 it is trivial to see that

sðGÞ coincides with the difference between the left-hand side and the right-hand side

of Equation 3.24. By Lemma 3.6, sðGÞ ¼ 0. By Lemma 3.4, G ¼ 0. &

By the way similar conclusions can be reached if ðA0; y0Þ is an elliptic curve.

LEMMA 3.7. Assume ðA0; y0; b; �bbÞ is a 1-frame where ðA0; y0Þ is an elliptic curve.

Then, for any g 2 Zp, g 6� 0; 1 mod p, and any Siegel d-modular form f 2 I1ðwÞ of

weight w, with ordðwÞ ¼ n, the Serre–Tate expansion

FðT;T 0; . . . ;T ðnÞÞ ¼ EA0
ð f Þ 2 R½½T ��½T 0; . . . ;T ðnÞ�^

satisfies the functional equation

FðGðT Þ; dðGðT ÞÞ; . . . ; dn
ðGðT ÞÞÞ ¼ g


 degðwÞ
2 � FðT;T 0; . . . ;T ðnÞÞ ð3:27Þ

in the ring R½½T;T 0; . . . ;T ðnÞ��.

3.5. SOLVING THE FUNCTIONAL EQUATION

Next we solve the functional equation appearing in Proposition 3.6. A similar

solution can be given to the functional equation in Proposition 3.7.

LEMMA 3.8. Let g 2 Zp and H 2 R½½T;T 0; . . . ;T ðnÞ��^. If H 2 ðT Þ2; then

dn
ðgTþH Þ 
 gT ðnÞ 2 ðT;T 0; . . . ;T ðnÞÞ2:

Proof. Induction on n. &

Recall that we considered the variables fiC identified with the series

fi log
1þ fðT Þ
ð1þ T Þp

2 R½½T ��½T 0�^:

LEMMA 3.9. Let m be an integer, let g 2 Zp be any p-adic number which is not a root

of unity and let V ¼ Vðn;m; gÞ be the K-vector space ðK :¼ R½1=p�Þ of all series

G 2 K½½T; . . . ;TðnÞ�� satisfying the functional equation

GðGðT Þ; dðGðT ÞÞ; . . . ; dn
ðGðT ÞÞÞ ¼ gm � GðT;T 0; . . . ;T ðnÞÞ: ð3:28Þ
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Then V consists of all series of the form

Fðlogð1þ T Þ;C;fC; . . . ;fn
1CÞ; ð3:29Þ

where F 2 K ½x0; . . . ; xn� is a homogeneous polynomial of degree m.

Proof. The space of all series of the form (3.29) is clearly contained in V and has

dimension ðmþ nÞ!=m!n!. So it is enough to show that V has dimension at most

ðmþ nÞ!=m!n!. It is enough to show that the map that attaches to any G 2 V its

homogeneous component of degree m is injective. Let G 2 V, G ¼ Gn þ Gnþ1 þ � � �,

Gi homogeneous of degree i, Gn 6¼ 0. Assume Gm ¼ 0 (in particular n 6¼ m) and seek a

contradiction. By Lemma 3.8 we get

GðgXþH0; gX 0 þH1; . . . ; gX ðnÞ þHnÞ ¼ gm � GðX;X 0; . . . ;X ðnÞÞ;

for some H0; . . . ;Hn 2 ðX; . . . ;X ðnÞÞ2. Picking out the component of degree n in the

above equality we get

gn � Gn ¼ gm � Gn:

We conclude that gn
m ¼ 1 which contradicts the assumption that g is not a root of

unity. &

LEMMA 3.10. Let F 2 K ½x0; . . . ; xn� be a homogeneous polynomial of degree m5 1

such that

Fðlogð1þ T Þ;C;fC; . . . ;fn
1CÞ 2 R½½T ��½T 0; . . . ;T ðnÞ�^;

then @F=@x0 ¼ 0:

Proof. First note that the Lemma is true for m ¼ 1 due to the fact that for any

n 2 Zþ, pn � logð1þ T Þ 62 R½½T ��:

Now we proceed by induction on mþ n. If mþ n ¼ 1 we must have m ¼ 1 and we

are done. Assume now mþ n5 2 and let F be as in the statement of the Lemma. If

m ¼ 1 we are done so we may assume m5 2. Write

F ¼ F0 þ F1xn þ � � � þ Fsx
s
n;

with Fi 2 K ½x0; . . . ; xn
1�. Consider the derivation

Dn ¼ ð1þ fnT Þ �
@

@TðnÞ
: R½½T ��½T 0; . . . ;T ðnÞ�^! R½½T ��½T 0; . . . ;T ðnÞ�^:

Note that Dnðf
n
1CÞ ¼ pn
1. So we get

@F
@xn
ðlogð1þ T Þ;C;fC; . . . ;fn
1CÞ � pn
1 2 R½½T ��½T 0; . . . ;T ðnÞ�^:

Since @F=@xn has degree m
 15 1; we get by induction that

@2F
@x0@xn

¼ 0:
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Since m5 2, we must have n 6¼ 0. We conclude that

@F1

@x0
¼ � � � ¼

@Fs

@x0
¼ 0;

hence

ðF1xn þ � � � þ Fsx
s
nÞðlogð1þ T Þ;C;fC; . . . ;fn
1CÞ 2 R½½T ��½T 0; . . . ;T ðnÞ�^;

hence

F0ðlogð1þ T Þ;C;fC; . . . ;fn
2CÞ 2 R½½T ��½T 0; . . . ;T ðnÞ�^:

By induction, we get

@F0

@x0
¼ 0

and we are done. &

THEOREM 3.11. For any series G 2 R½½T ��½T 0; . . . ;T ðnÞ�^ and any integer m5 0 the

following are equivalent:

ð1Þ G satisfies the functional Equation ð3:28Þ for some g 2 Zp, g not a root of unity.

ð2Þ G satisfies the functional Equation ð3:28Þ for all g 2 Zp.

ð3Þ There exists a homogeneous polynomial F 2 K ½x1; . . . ; xn� of degree m such that

FðC;fC; . . . ;fn
1CÞ;

Proof. Clearly Assertion (3) implies Assertion (2) and Assertion (2) implies

assertion (1). Now if Assertion (1) holds then by Lemma 3.9, there exists a homo-

geneous polynomial F 2 K ½x0; x1; . . . ; xn� of degree m such that

G ¼ Fðlogð1þ T Þ;C;fC; . . . ;fn
1CÞ:

By Lemma 3.10, F does not depend on x0 and we are done. &

THEOREM 3.12. Let w be a weight with degðwÞ ¼ 
2m, ðm 2 ZÞ, ordðwÞ ¼ n.

Assume f is either a form in IDðwÞ or in I1ðwÞ, and let ðA0; . . .Þ be either a D-frame or a

1-frame respectively. Then the Serre–Tate expansion Eð f Þ of f correspoding to this

frame has the form

Eð f Þ ¼ FðC;fC; . . . ;fn
1CÞ;

where F is a homogeneous polynomial of degree m, in n variables, with coefficients in

K ¼ R½1=p�.

Proof. By Lemmas 3.6 and 3.7, respectively, the series Eð f Þ belongs to the space

Vðn;m; 2Þ; cf. the notations in Lemma 3.9. Then we may conclude by Theorem

3.11. &

DIFFERENTIAL MODULAR FORMS ON SHIMURA CURVES, I 235

https://doi.org/10.1023/B:COMP.0000005081.66740.9a Published online by Cambridge University Press

https://doi.org/10.1023/B:COMP.0000005081.66740.9a


Proof ðof Assertions 1–4 in Theorem 1:2Þ Let w be a weight with ordðwÞ ¼ n, let

f 2 IDðwÞ, and let ðA0; i0; y0; b; �bbÞ be a D-frame. By Theorem 2.7 we have an injective

map

IDðwÞ �Zp
R! R½½T ��½T 0; . . . ;TðnÞ�^;

by Theorem 3.12 the image of this map is contained in the R-module V of all series in

R½½T ��½T 0; . . . ;TðnÞ�^ of the form FðC;fC; . . . ;fn
1CÞ where F 2 K ½x1; . . . ; xn� is

homogeneous of degree m ¼ 
 degðwÞ=2. It is easy to see that there exists an integer

n5 0 such that p
nV 0 � V � V 0, where V 0 is the R
module generated by all mono-

mials

Ci0 ðfCÞi1 . . . ðfn
1CÞin
1 ; i0 þ � � � þ in
1 ¼ m:

So V is a finitely generated R-module of rank s :¼ ðmþ n
 1Þ!=m!ðn
 1Þ!. Hence

IDðwÞ �Zp
R is a finitely generated R-module of rank at most s. Since R is faithfully

flat over Zp it follows that IDðwÞ itself is a finitely generated Zp-module of rank at

most s; so Assertion 1 in Theorem 1.2 is proved. Note that V ¼ 0 if degðwÞ > 0

and V has rank one if w 2 f0;
1
 fg. This implies that IDðwÞ ¼ 0 for degðwÞ > 0,

IDð0Þ ¼ Zp, and IDð
1
 fÞ has rank one; so Assertions 2,3,4 in Theorem 1.2 are

proved. &

As already noted, the proof of Assertion (5) in Theorem 1.2 requires additional

tools; these tools and the proof of Assertion (5) will be presented in a sequel to

the present paper [9].
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