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We study the convective and absolute forms of azimuthal magnetorotational instability
(AMRI) in a cylindrical Taylor–Couette (TC) flow with an imposed azimuthal magnetic
field. We show that the domain of the convective AMRI is wider than that of the absolute
AMRI. Actually, it is the absolute instability which is the most relevant and important for
magnetic TC flow experiments. The absolute AMRI, unlike the convective one, stays in
the device, displaying a sustained growth that can be experimentally detected. We also
study the global AMRI in a TC flow of finite height using direct numerical simulation
and find that its emerging butterfly-type structure – a spatio-temporal variation in the form
of axially upward and downward travelling waves – is in a very good agreement with the
linear analysis, which indicates the presence of two dominant absolute AMRI modes in
the flow giving rise to this global butterfly pattern.
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1. Introduction

Many processes of geophysical and astrophysical interest entail the interaction of magnetic
fields with conducting fluids or plasma. The dynamo effect is responsible for the
self-excitation of magnetic fields in planets, stars and galaxies (Rincon 2019). A key player
in cosmic structure formation is the magnetorotational instability (MRI, Balbus & Hawley
1998), which triggers outward transport of angular momentum in accretion disks and mass
concentration onto central objects. While dynamo action and MRI are usually considered
as separate effects, they are treated as nonlinearly interwoven and mutually reinforcing
processes in the modern concept of MRI dynamos (Rincon 2019; Mamatsashvili et al.
2020).
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Over the last two decades, a great deal of theoretical and numerical work on dynamo
action and MRI has been complemented by a number of pertinent experiments (Stefani,
Gailitis & Gerbeth 2008). The threshold of self-excitation was achieved in the liquid
sodium experiments in Riga (Gailitis et al. 2018), Karlsruhe (Müller et al. 2008) and
Cadarache (Monchaux et al. 2009). The helical (Stefani et al. 2006) and azimuthal
(Seilmayer et al. 2014) variants of MRI were observed in the medium-size PROMISE
experiment, while an unequivocal proof of the standard MRI (with an imposed purely
axial magnetic field) is still missing, despite great efforts and promising initial results
(Sisan et al. 2004; Nornberg et al. 2010).

Interestingly, these experimental efforts brought to the fore the distinction between
convective, absolute and global instabilities, which are well known in the hydrodynamics
and plasma physics communities (e.g. Huerre & Monkewitz 1990; Chomaz 2005) but
are seldom addressed in geophysical and astrophysical magnetohydrodynamics (MHD)
(however, see Tobias, Proctor & Knobloch (1997) for a possible application to the solar
dynamo). It was key for the success of the Riga experiment to transform the convective
instability of the paradigmatic Ponomarenko (1973) dynamo (a conducting rigid rod,
moving in a screw-like manner through an infinitely extended medium with the same
conductivity) into an absolute (and a global) one by adding a concentric outer return
flow to the inner motion of the rod. The corresponding one-dimensional (1D) eigenvalue
problem in the radial direction and the search for saddle points in the complex wavenumber
plane, representing the absolute instability, are described in Gailitis (1996). In this case,
the absolute instability for the finite-length system coincided quite accurately with the
global instability that was later obtained with a two-dimensional code (Stefani, Gerbeth &
Gailitis 1999). A similar distinction between convective, absolute and global instabilities
was discussed for the helical MRI (HMRI) experiment PROMISE (Priede & Gerbeth
2009; Stefani et al. 2009). In contrast to the Riga dynamo, where this distinction obviously
stems from the axial flow through the device, the axial propagation of the unstable HMRI
mode is tied to the direction of the background Poynting flux (Liu et al. 2006).

This paper is concerned with a related MRI problem for which the relevance
of distinguishing among convective, absolute and global instabilities is far less
evident. The azimuthal MRI (AMRI, Hollerbach, Teeluck & Rüdiger 2010) is a
non-axisymmetric instability, with dominant azimuthal wavenumbers m = ±1, arising
in a (hydrodynamically stable) differentially rotating flow in the presence of a purely
azimuthal magnetic field. While any weak additional axial field would naturally result
in a preferred direction and preponderance of either the m = 1 or m = −1 mode, with no
axial field these two modes have the same weight and it might be naively expected that
they add up to a standing wave. Under this assumption, the two interpenetrating upward
and downward travelling waves, as observed experimentally in Seilmayer et al. (2014),
were interpreted in terms of the breaking of the axial homogeneity by the endcaps of the
cylindrical Taylor–Couette (TC) device of PROMISE. However, we will show in this paper
that the tendency of AMRI waves to travel away from the mid-height of the cylinders,
exhibiting a butterfly-like spatio-temporal variation (analogous to the famous ‘butterfly
diagram’ in solar physics), has a deeper rooting, as it occurs already in a TC flow that is
infinitely extended in the axial direction.

2. Mathematical formulation

The set-up is that of an infinitely long TC flow of a conducting fluid in cylindrical
coordinates (r, φ, z) with an imposed purely azimuthal magnetic field, which is usually
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adopted in AMRI studies. The inner and outer cylinders, with radii ri and ro, respectively,
rotate with angular velocities Ωi and Ωo around the z-axis, driving in the gap between
them an azimuthal velocity, u0 = rΩ(r)eφ , with the radial profile of the angular
velocity Ω(r) = C1 + C2/r2, where C1 = (r2

oΩo − r2
i Ωi)/(r2

o − r2
i ) and C2 = (Ωi −

Ωo)r2
i r2

o/(r
2
o − r2

i ). The ratio of the inner to the outer radius is ri/ro = 0.5, as in
PROMISE. The fluid has constant viscosity ν and magnetic diffusivity η characterized by
Reynolds, Re = Ωir2

i /ν, and magnetic Reynolds, Rm = Ωir2
i /η, numbers. The magnetic

Prandtl number Pm = Rm/Re = 1.4 × 10−6 is that of GaInSn used in PROMISE (Stefani
et al. 2009). In the latter experiment, the imposed azimuthal magnetic field is current-free,
B0 = B0(ri/r)eφ , where B0 is constant; here we adopt the same configuration of the field
as well. The effect of the field is quantified by the Hartmann number Ha = B0ri/

√
ρμνη,

where ρ is the constant density and μ is the magnetic permeability. We focus on the
Rayleigh stable regime, Ωo/Ωi > (ri/ro)

2 = 0.25, with the fixed ratio of the cylinders’
rotation rates Ωo/Ωi = 0.26, so that only magnetic instabilities can develop in the flow.

About the above equilibrium TC flow, we consider small perturbations of velocity, u,
total (thermal plus magnetic) pressure, p, and magnetic field, b, which are all functions of
the radius r and depend on time t, azimuthal φ and axial z coordinates as a normal mode
∝ exp(γ t + imφ + ikzz), where γ is the (complex) eigenvalue, while kz and the integer
m are the axial and azimuthal wavenumbers, respectively. The flow is unstable if the real
part (growth rate) of any eigenvalue is positive, i.e. Re(γ ) > 0. Henceforth, we normalize
length by ri, time by Ω−1

i , γ and Ω(r) by Ωi, u by Ωiri, p by ρr2
i Ω

2
i , B0 by B0 and

b by Rm · B0. Substituting these non-dimensional quantities in the basic non-ideal MHD
equations and linearizing them, we get the perturbation equations in non-dimensional form
as well (e.g. Kirillov, Stefani & Fukumoto 2014; Rüdiger et al. 2018):

(γ + imΩ)u + 2Ωez × u + rΩ ′ureφ = −∇p + Ha2

Re
im
r2 b − Ha2

Re
2
r2 bφer + 1

Re
∇2u,

(2.1)

Rm(γ + imΩ)b = im
r2 u + Rm · rΩ ′breφ + 2

r2 ureφ + ∇2b, (2.2)

∇ · u = 0, ∇ · b = 0, (2.3a,b)

where Ω ′ = dΩ/dr. Equations (2.1)–(2.3a,b), together with the adopted no-slip condition
for the velocity and perfect-conductor condition for the magnetic field at the cylinder
surfaces, constitute the eigenvalue problem describing AMRI in the magnetized TC flow
(Hollerbach et al. 2010). Solving this problem yields the corresponding dispersion relation
γ (m, kz) and the radial structure of the AMRI modes. Since AMRI is dominated by
non-axisymmetric m = ±1 modes (Hollerbach et al. 2010; Rüdiger et al. 2018), we focus
on these modes in this paper.

Until now, AMRI has been extensively investigated, both with global 1D and local
Wentzel–Kramers–Brillouin (WKB) approaches, but only as a convective instability (e.g.
Hollerbach et al. 2010; Kirillov et al. 2014; Rüdiger et al. 2018). These studies formed
the basis for understanding the first experimental manifestations of AMRI (Seilmayer
et al. 2014). As mentioned above, however, these experiments revealed a notable feature
of the propagation of AMRI modes – the butterfly diagram – which is not captured by the
conventional treatment of AMRI as a convective instability. Our main goal is therefore to
show, using the concept of absolute instability, that this butterfly-like propagation is in fact
rooted in the dynamics of AMRI itself rather than being induced by the top and bottom
boundaries (endcaps) of the TC device.
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3. Convective and absolute instabilities – a short overview

In flow systems, one can distinguish two types of instabilities – convective and absolute
(Huerre & Monkewitz 1990; Chomaz 2005). An instability is convective if the perturbation
during growth also propagates in the flow as a travelling wave packet, so that it decays at
large times with respect to a fixed point in any reference frame, but continues to grow in
the frame co-moving with the group velocity of this packet. By contrast, an instability is
absolute when the perturbation grows without limit at every point in the flow. In laboratory
experiments, it is usually the absolute instability which is more relevant, and hence of
greater interest, than the convective instability. An experimental device containing the
flow, to which the laboratory frame is attached, has finite size. As a result, the convective
instability may be rapidly carried out of the system before attaining the growth sufficient
for detection, whereas the absolute instability always stays within the system, exhibiting
sustained growth detectable in experiments.

The convective instability is determined by a standard procedure of linear modal
stability analysis, that is, by considering the dispersion relation at real wavenumbers k
and finding the real (growth rate) and imaginary (frequency) parts of γ (e.g. Rüdiger
et al. 2018). In general, this yields some non-zero group velocity for the unstable
modes. Determining the absolute instability is more delicate, as it requires finding
such a combination of convectively unstable modes, which forms growing perturbations
(wave packets) with zero group velocity in the laboratory frame, and hence remains in
the flow. This is achieved mathematically by considering complex wavenumbers k (k is
the wavenumber in the propagation direction of convective instability, which is along the
z-axis in the present case), analytically extending the dispersion relation γ (k) from the real
k-axis to the complex k-plane and finding its saddle points ks (Gailitis & Freibergs 1980;
Huerre & Monkewitz 1990; Chomaz 2005), where the complex derivative satisfies

∂γ (k)
∂k

∣∣∣∣
k=ks

= 0, ks ∈ C. (3.1)

If the real part of the complex γ at k = ks is positive, Re(γ (ks)) > 0, this indicates the
presence of the absolute instability, where Re(γ (ks)) is its growth rate and ω = Im(γ (ks))
its frequency. The real part Re(ks) and imaginary part Im(ks) of ks describe, respectively,
its oscillations and exponential increase/decrease in space. The condition (3.1) implies that
the real group velocity of the absolute instability is zero at ks, i.e. ∂ω/∂Re(k)|k=ks = 0,
although it can still have a non-zero phase velocity.

4. Convective and absolute types of AMRI

The AMRI is essentially the instability of inertial waves (Kirillov et al. 2014), and therefore
it was natural in previous studies to regard it as a convective instability and apply a standard
technique of modal linear stability analysis, where the axial wavenumber kz is real. In this
paper, we instead address AMRI within the absolute instability framework, which has not
been considered before, and apply the methods described above, where the wavenumber
kz in the axial z-direction, along which AMRI waves travel, is now complex.

4.1. WKB analysis
To obtain an initial insight into the absolute AMRI, we start with the local
short-wavelength WKB analysis, in which the radial dependence of the perturbations is
of the form exp(ikrr), with a large (real) radial wavenumber krri � 1. Substituting this in
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(2.1)–(2.3a,b) and using the inductionless limit Pm → 0, we get an analytical dispersion
relation (Kirillov et al. 2014):

γ = −im − k2

Re
− (m2 + 2α2)

Ha2

k2Re

+ 2
[
α2Ha2

k2Re2

(
(α2 + m2)

Ha2

k2 + im(Ro + 2)

)
− (Ro + 1)α2

]1/2

, (4.1)

where α = kz/k, k2 = k2
r + k2

z and Ro = r(2Ω)−1 dΩ/dr is the Rossby number. Using
the conversion formula of Stefani & Kirillov (2015) for Ωo/Ωi = 0.26 in the TC flow, we
obtain Ro = −0.97 in the local case, which is below the lower Liu limit, RoLLL = −0.83,
ensuring the presence of AMRI (Kirillov et al. 2014). Typically, AMRI modes extend over
the gap width between the cylinders (see below), so for the effective radial wavenumber
we take kr = π/(ro − ri) (Ji, Goodman & Kageyama 2001), though this choice is still
somewhat arbitrary.

Figure 1 shows the solution of the dispersion relation (4.1) for complex kz at Re = 1480,
m = 1 and different Ha. (The m = −1 case is similar except that the two growth areas
swap their Im(kz) values in the kz-plane, so we do not show it here; see § 4.2.) At smaller
Ha, there are two separate areas of positive Re(γ ) � 0; however, as yet, neither crosses
the Re(kz)-axis (red dashed lines in figure 1), implying that there is no genuine instability
in the flow. With increasing Ha, the lower area first crosses the Re(kz)-axis, indicating
the onset of the convective AMRI, and then extends into the upper half of the kz-plane,
which is shown at Ha = 20 in figure 1(a). At Ha = 27.407, the boundaries (Re(γ ) = 0)
of these two areas touch each other, forming a saddle point kz,s according to condition
(3.1), which is seen as a cusp in figure 1(b). This saddle point, still being marginally
stable (Re(γ (kz,s)) = 0), represents the emerging absolute AMRI. It further develops by
increasing its growth rate and spreading towards the lower half of the kz-plane, as the two
areas merge more with increasing Ha. For example, at Ha = 110 in figure 1(c), the saddle
point associated with the absolute AMRI mode is at kz,s = (5.08, −1.39) (red cross). It
has the growth rate Re(γ (kz,s)) = 0.07 and frequency Im(γ (kz,s)) = −0.5. At higher Ha,
the saddle point and hence the absolute AMRI disappear, but the convective instability
along the Re(kz)-axis may still remain, as shown in figure 1(d). Eventually, the convective
AMRI also vanishes after some maximum Ha is exceeded, as the growth areas move away
from the Re(kz)-axis; see figure 1(e).

The marginal stability (Re(γ ) = 0) curves for convective (optimized over Re(kz)) and
absolute AMRI are shown in figure 1( f ), with the latter being located inside the former.
This implies that the critical Ha and Re for the excitation of the convective AMRI are
typically lower than those for the absolute AMRI. This can be graphically understood
from figures 1(a)–1(e). One of the two growth areas, approaching from the upper or lower
half of the kz-plane, first overlaps the Re(kz)-axis at certain Ha for a given Re, which lies
on the black dashed curve in figure 1( f ), indicating the onset of the convective AMRI.
These two growth areas then touch each other at some larger Ha that lies on the red curve
in figure 1( f ), indicating the onset of the absolute AMRI. If the saddle point lies on the
Re(kz)-axis, then the marginal stability curves for convective and absolute AMRI coincide.

4.2. 1D analysis
Now we present the solution of the 1D linear eigenvalue problem in the kz-plane. The
eigenvalues γ and the radial structure of the associated eigenmodes are found using a
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Figure 1. (a–e) The areas of growth, Re(γ ) > 0, in the kz-plane, obtained from the WKB dispersion relation
(4.1) for fixed Re = 1480, m = 1, Ro = −0.97 and different Ha. The red cross in (c) denotes the saddle point at
kz,s = (5.08, −1.39) – the wavenumber of the absolute AMRI mode with the growth rate Re(γ (kz,s)) = 0.07.
( f ) The marginal stability curves for the convective (black dashed line) and absolute (red solid line) AMRI in
the (Ha, Re)-plane.

spectral collocation method based on Chebyshev polynomials (up to N = 30–40), whereby
(2.1)–(2.3a,b), supplemented with the boundary conditions as described in § 2, are reduced
to a large (4N × 4N) matrix eigenvalue problem (see code details in Hollerbach et al.
2010).

Figures 2(a)–2(e) show the resulting growth areas in the kz-plane at the same Re =
1480, m = 1 and different Ha; they behave similarly to the WKB case above. Initially, for
lower Ha, there is no AMRI, since both areas are distant from the Re(kz)-axis (red dashed
line); see figure 2(a). When Ha is increased to a critical value of 81.6, the convective
AMRI sets in as the upper area crosses the Re(kz)-axis (figure 2b). This crossing point
has a cusp-like shape and thus appears to be the saddle point at the same time, implying
that the convective and absolute AMRI are nearly equivalent at the onset. The growth
rate of the absolute AMRI further increases with Ha, as these areas merge. For example,
at Ha = 90 in figure 2(c), the saddle point, corresponding to the absolute AMRI mode,
is at kz,s = (3.24, −0.2) (red cross) with the growth rate Re(γ (kz,s)) = 1.9 × 10−3 and
frequency Im(γ (kz,s)) = −0.25. When Ha is further increased, first the absolute AMRI
(figure 2d) and then the convective AMRI (figure 2e) vanish.

In figure 2( f ), we also plot the marginal stability curves for the convective and absolute
AMRI, with the latter being located inside the former, as in the WKB case, but in the 1D
analysis, both are excited at almost identical critical Ha and Re. Furthermore, comparing
figures 1 and 2 shows that the distributions of the growth areas in the kz-plane in the
WKB and 1D analyses are qualitatively similar. However, the uncertainty in matching the
constant Ro in the WKB case and the radially varying Ro in the 1D case for a moderate gap
width (r0 − ri)/ri ∼ 1 (Stefani & Kirillov 2015), as well as some ambiguity in choosing
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Figure 2. Same as figure 1, but for the 1D stability analysis at the same Re = 1480 and m = 1. Now the
saddle point (red cross) in (c), representing the absolute AMRI, is at kz,s = (3.24, −0.2), with the growth rate
Re(γ (kz,s)) = 1.9 × 10−3.

the effective kr in the WKB analysis, makes quantitative differences between the two
results unavoidable.

Figures 3(a,b) show areas with Re(γ ) � 0 in the kz-plane at Ha = 110 for which
the absolute AMRI reaches maximum growth for a given Re = 1480. Since the TC
flow with a purely azimuthal field is invariant to reversing the sign of z, the saddle
points kz,s and hence the absolute AMRI at m = ±1 occur symmetrically with respect
to the Re(kz)-axis: their Re(kz,s) = 3.67 and growth rate Re(γ (kz,s)) = 0.00356 are the
same, while Im(kz,s) = ∓0.42 and frequency Im(γ (kz,s)) = ∓0.2375 differ only in sign.
This implies that although the absolute AMRI modes have zero group velocity, they
have non-zero phase velocities along and opposite the z-axis, respectively, for m =
−1 and m = 1. In figure 3(c), we also plot Re(γ ) for the convective (optimized over
Re(kz)) and absolute AMRI. It is seen that the convective AMRI has a larger growth
rate and occurs for a wider range of Ha than the absolute AMRI. As noted above,
however, the convective and absolute AMRI are nearly identical at the onset for these
parameters.

It is now interesting to look at the spatial structure of the absolute and convective
AMRI modes. Figure 4 shows the normalized eigenfunctions for the axial velocity uz
in (r, z)-slices belonging to the absolute and convective AMRI at m = ±1, Ha = 110
and Re = 1480. It is evident that the eigenfunctions for these two types of AMRI
are characteristically similar, except that due to the complex wavenumber kz,s of the
absolute AMRI, its eigenfunctions increase (for m = 1) and decrease (for m = −1)
along the z-axis. This property is important for the interpretation of the simulation
results in § 5. By contrast, the wavenumber of the convective AMRI is real, and hence
its eigenfunctions retain a periodic structure with spatially constant amplitude along
the z-axis.
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Figure 3. The growth areas with Re(γ ) > 0 in the kz-plane at Ha = 110 and Re = 1480 in the 1D case,
separately for (a) the m = 1 mode and (b) the m = −1 mode. Because of the mirror symmetry of the flow,
these areas flip with respect to the Re(kz)-axis when m changes sign; as a result, the saddle points (red crosses)
for the absolute AMRI are symmetric around this axis: kz,s = (3.67, ∓0.42) for m = ±1. The corresponding
growth rate is Re(γ (kz,s)) = 0.00356, and the frequency is Im(γ (kz,s)) = ∓0.2375 for m = ±1. (c) The growth
rates of the convective (black) and absolute (red) AMRI versus Ha at the same Re.
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Figure 4. Normalized axial velocity uz eigenfunctions in (r, z)-slices at Ha = 110, Re = 1480 pertaining to the
absolute AMRI with (a) m = 1 and (b) m = −1 (represented by red crosses in figure 3) and to the convective
AMRI with (c) m = 1 and (d) m = −1.

5. Simulations

We also conducted a direct numerical simulation (DNS) of AMRI in the same magnetized
TC flow set-up and parameters as described in § 2, except that the cylinders now have a
finite height L = 10ri as in PROMISE. We solved the basic equations of non-ideal MHD
(in the same non-dimensional form) using the open-source code library OpenFOAM©

(https://www.openfoam.com/), complemented by a Poisson solver for the determination
of the induced electric potential. The code used here has already been validated in our
previous works (Weber et al. 2013; Seilmayer et al. 2014). The initial conditions are
the previous TC profile Ω(r) = C1 + C2/r2 with the azimuthal magnetic field B0 =
B0(ri/r)eφ . For the velocity we set u = rΩ(r)eφ (i.e. zero perturbation velocity) at the top
and bottom of the cylinders and no-slip condition at the cylinder walls, while conducting
boundary conditions are applied for the magnetic field, as in the 1D analysis above. Since
the TC flow has a finite height and non-periodic boundary conditions along the z-axis,
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Figure 5. Spatio-temporal variation (butterfly diagram) of the axial velocity uz in the (t, z)-slice at Ha = 110
and Re = 1480 (a) for odd azimuthal modes of the global AMRI in the DNS and (b) constructed from m = ±1
eigenfunctions of the absolute AMRI in the 1D linear analysis, which are shown in figure 4(a,b).

the AMRI developing in this case is in fact a global instability. For the same values of
Ha = 110 and Re = 1480 as used in § 4.2, we analysed the odd-m azimuthal modes of
this global AMRI and compared the results with those of the 1D linear analysis. We note
that although DNS solves full nonlinear equations, it is still in the linear regime, since the
emerging global AMRI increases exponentially in time and has not yet reached nonlinear
saturation (see below).

In figure 5(a), we show the temporal evolution of the z-profile of the axial velocity
uz,o(z, t) at a radius r0 = 1.75 for odd azimuthal modes of the global AMRI obtained
from the DNS. To remove all even-m modes from the flow, we take the difference of
the full axial velocity uz(r, φ, z, t) at φ = 0 and φ = π for r0 = 1.75, i.e. uz,o(z, t) =
uz(r0, 0, z, t) − uz(r0, π, z, t). Since m = ±1 are the most dominant non-axisymmetric
modes in the flow, it is appropriate to compare this velocity profile with that of the absolute
AMRI obtained from the 1D linear analysis. In figure 5(b), we show the normalized axial
velocity profile uz(z, t) for the absolute AMRI constructed from the linear superposition
of its eigenfunctions at m = ±1 (figure 4a,b), taken with equal weights. Figure 5 shows
a remarkable similarity in the butterfly patterns of the axial velocity resulting from the
DNS and 1D analysis. Evidently, it also demonstrates that the m = ±1 modes dominate
the global AMRI in the simulations (which we also checked by directly calculating the
amplitudes of different modes in the azimuthal Fourier transform of the global solution),
with the flow structure similar to that in the 1D analysis. Next, we obtain the frequency,
growth rate and axial wavenumbers of this global AMRI structure.

In figure 6(a), we plot uz,o at z0 = −3 as a function of time and make a fit with the
expressions of the harmonic form A exp(Γ t) cos(ω(t − t0)), obtaining in this way for
the growth rate Γ and frequency ω the values Γ = 0.00337 and ω = 0.252. We also
performed a Hilbert transform (figure 6b) to obtain envelopes of the velocity evolution
and instantaneous frequency, which yields growth rate 0.0034 and frequency 0.251 for the
global AMRI. Both of these results are in good agreement with the 1D linear stability
analysis for the absolute AMRI, which yielded the growth rate 0.00356 and frequency
0.2375 (figure 3a,b).

We also performed proper orthogonal decomposition (POD) of uz,o(z, t) to compute the
real and imaginary components of the axial wavenumbers kz of the global AMRI mode
structure in figure 5(a), using the model reduction library modred (Belson, Tu & Rowley
2014). The amplitude obtained for this dominant global mode as a function of z is plotted
in figure 6(c). As the global AMRI flow actually consists of the two m = ±1 modes,
each prominent on one side of the symmetry (z = 0)-plane, it is reasonable to make two
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Figure 6. (a) Time evolution of uz,o(z0, t) for the global AMRI at z0 = −3 with (b) the corresponding Hilbert
transform. (c) Fits to the axial structure of this dominant global mode (lilac) obtained using POD at r0 = 1.75
with two functions f (z) (green) and g(z) (blue), which correspond to the absolute AMRI modes with m = −1
and m = 1, respectively (see text).

separate fits using the expressions f (z) = A1 exp(−Im(kz,1)(z + 5)) cos(Re(kz,1)(z − z1))
and g(z) = A2 exp(−Im(kz,2)(z − 5)) cos(Re(kz,2)(z − z2)) (also shown in figure 6(c)),
each corresponding to one of the two absolute AMRI modes with m = ±1. Upon
such a fitting, we obtain the values kz,1 = (3.26, 0.29) and kz,2 = (3.49, −0.392), which
agree reasonably well with the results of our 1D analysis, kz,s = (3.67, ∓0.42), from
figure 3(a,b). However, it should be noted that the DNS was done for a finite-length TC
flow, while in the linear stability analysis, the cylinder height was assumed to be infinite.
Hence, the minor quantitative difference between the DNS and the 1D linear analysis
results may be attributable to the assumption of infinite length of the cylinders in the latter
approach.

6. Conclusion

By performing WKB and 1D linear stability analyses, we have shown that the absolute
variant of AMRI corresponds to a saddle point in the complex axial wavenumber plane
which, in physical space, appears as the characteristic solution exponentially increasing
in the (negative or positive) axial direction. This is quite different from, and has more
significance from the experimental point of view than, the often considered convective
AMRI with a real axial wavenumber. The corresponding global instability for the
finite-height TC flow (with non-periodic axial boundary conditions) was obtained by DNS,
which was demonstrated to represent the superposition of two absolute AMRI modes
with m = ±1 from the 1D stability analysis of infinitely long cylinders. In other words,
the butterfly diagram exhibited by the global AMRI mode can be understood as being
composed of the two dominant, absolute AMRI wave modes with zero group velocities
but with corresponding phase velocities of propagation directed upwards and downwards.
These results further refine the interpretation of the butterfly-type structure observed in
the PROMISE experiment (Seilmayer et al. 2014; Seilmayer, Ogbonna & Stefani 2020),
and will be essential for the design of the liquid sodium MRI experiments in the new
DRESDYN project (Stefani et al. 2019). Finally, we note that understanding the dynamics
of AMRI is also important for establishing its relevance for the ‘dead zones’ of accretion
(protoplanetary) discs (Gammie 1996; Lesur, Kunz & Fromang 2014), which are cold,
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dense, very weakly ionized and therefore magnetically less active inner regions of discs,
where high resistivity, resulting in Pm 
 1, leads to the suppression of standard MRI.
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