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Although there is no need for a 'distinguished' submodule to be given
a formal definition in the present paper, we like to indicate the meaning
attached to this concept here. Perhaps the shortest way of doing so is to say
that a distinguished submodule is a (covariant idempotent) functor from
the category of (left) i?-modules into itself mapping each i?-module into
its i?-submodule specified by a family of left ideals of R. If J f is a family
of left ideals of R, then all elements of an ivl-module M of orders belonging
to Jf, do not, of course, in general form a submodule of M; but, there are
certain families Jf 2 JT such that all the elements of orders from Jf form
a submodule in any i?-module (distinguished submodules defined by Jf).
Consequently, no particular structural properties of the i?-module are
involved in the definition of such submodules. In this way we can define
radicals (in the sense of Kuros [4]) of a module. In particular, we feel that
an application of this method is an appropriate way in defining the
(maximal) torsion submodule of a module.

Thus, the present paper is, in fact, a study of subfamilies of the family
SCR of all left ideals of a ring R. We use this opportunity to deal with a
certain duality in the set of subfamilies of ££R; this duality relates to
problems connected with the problems of dependence over modules and,
in particular, with the definition of the rank of a module which will be
treated elsewhere (cf. [1]).

1. Basic definitions

Throughout the paper, R stands for an (associative) ring with unity e.
The family of all proper (that is, ^ R) left ideals of R is denoted by Jj?R,
or briefly by J?. For L e i ? and p e R, the symbol L : p denotes the (right)
ideal-quotient of L by p, that is, the left ideal of all % e R such that %p e L.

We shall consider the following three properties of a subfamily Jf Q ^C:

(Q) KeJT APeR\K^K:PeJf;

(I) K1eJfrAKzejr->K1r\K2eX';

(E) K1eJTAKteJrAK
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We can see immediately that

1.1. (i) If Jfa, coeQ, satisfy (Q), (I), or (E), then f)aeOJf*, satisfies
(Q), (I), or (E), respectively.

(ii) If Jfa,coeQ, satisfy (Q) or (E), then L U o - ^ satisfies (Q) or
(E), respectively.

In what follows we shall be interested in the (^-families of left ideals
of R, i.e. in the subfamilies of J? satisfying (Q) and in the jF-families (filters)
of left ideals of R, i.e. in the subfamilies of =§? satisfying (Q), (I) and (E).
Denote the set of all subfamilies of J? by L, the subset of L of all ^-families
by Q and that of all jF-families by F. Hence, by 1.1,

1.2. The mappings cQ and cF defined on L by

C Q P O = n ^
and ar = *.e

= n xJT £

are (idempotent) closure operators in JSP.
M will always denote a (unital left) .R-module. The order of m e M is

denoted by 0(m); hence, 0(m) e £C if and only iim^O. Moreover, evidently
O(pm) = 0(m) :p for any non-zero meM and p e R. Since R will be fixed
throughout the paper, we shall often speak briefly about submodules,
homomorphisms etc. instead of i?-submodules, .R-homomorphisms etc. The
2?-module of all cosets of R modulo L will be denoted by R mod L. A
submodule N of M is said to be essential in M if it meets any non-zero
submodule of M non-trivially. Specializing to M = R mod {0} we get the
concept of an essential left ideal in R. If Jf is a family of left ideals of R,
then the subset of all elements of an i?-module M whose orders belong to
Jf ° = Of u {R} will be denoted by Mx Q M.

2. An order and a Galois connection in Q

Although our next consideration can easily be extended to L, we shall,
with regard to our further needs, restrict the definitions to Q.

ULe^C, then

let us call a ^-family of this type cyclic. Also, let us point out that, in view
of 1.1, any family Jt" Q Jt? contains the greatest (^-subfamily: the (set-
theoretical) union of all cyclic ^-families contained in Jf. In particular,
a ^-family is the union of its cyclic (^-subfamilies.

Now, define in Q the following preorder <c by
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JTt < JT2<-> VL(L €&-+ cQ(L) $ jfVvafj).
Clearly,

moreover, we get immediately

Jf! < JT2 -> (Jfx < Jf2 n Jf2 A Jf\ u J f 2 < Jf2).

The preorder <c yields an equivalence fm in Q, namely

JT± ^ JT2<^> (Jf\ < Jf2 A Jf 2 «; Jfj).

Again, we can easily prove that, for co e Q,

and, provided £? is finite, also

Hence,

2.1. There is a greatest (with respect to order by inclusion) element
in each equivalence class of Q. If K Q Q is the equivalence class containing
Jf, then the greatest element c(Jf) of AT is given by

c(JT) = U & = U X.

Also, Jfx n JT2 e K for every Jf"x e A", JT2 e A" and, furthermore, any
J e Q such that Jf Q X Q c(Jf) belongs to AT, as well.

Denote the set of all the greatest elements in the equivalence classes of
2.1, i.e. the set of all Jf e Q such that cpf) = Of, by C and, furthermore,
put

T = CnF.

Evidently, C can also be characterized as the set of all those families J f
which satisfy, for any X e L, the implication

(or, even the stronger implication 3E <c JT -> X Q Jf). Thus, we deduce
that C is an (idempotent) closure operator; for, if J f a e C(u> eQ), then
evidently

Also, the preorder <§; induces an order in the set of all equivalence
classes, and thus, it induces an order in C. It turns out that this order in C
induced by <c coincides with the order by inclusion.

Now, define the 'duality' map d in Q as follows: For Jf e Q, let
be given by
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L e dX ->• cQ(L) nJf = 0.
Clearly,

SJf e Q a.nd Jf n dJf = 0.
Also

and

Furthermore,

and

Hence,

2.2. The mapping 8 defines for the elements of Q a Galois connection
(cf. Ore [5]). The operator c is the corresponding Galois closure operation
and C— the set of all closed elements.

In the introduction, the importance of the mapping d in relation to
dependence over modules was mentioned. It stems from the fact that,
for any J f e Q, there exist maximal independent subsets consisting of
elements whose orders belong to Jf" u dX in an arbitrary i?-module (cf. [1]).

3. Distinguished submodules

The value of the concepts of an ^-family and an T-family (i.e. a family
belonging to T = C n F) of left ideals will be apparent from the following
theorems.

THEOREM 3.1. Let J f e L. Then, in any R-module M, the subset Mx Q M
is an R-submodule of M if and only if Jf is an F-family.

PROOF. First, let M be an JR-module, Jf e F and mx, m2 two non-zero
elements of M^QM. Since 0{pm1) = O ^ ) : p, pm-^eM^ by (Q). Also,
since O(m1-{-m2)'2O(m1) n O(m2),m1-\-m2e M^ in view of (I) and (E).
Thus, if J f is an F-family, then Mx is a submodule of M.

On the other hand, let J f possess the property that, for any /^-module
M, Mx is always a submodule of M. Consider for a moment the JR-module

M* = R mod Lx © R mod L2

with L{ e J? and denote by et the class e-\-Li of R mod Lt (i = 1, 2); thus,
the general element of M* can be written in the form p^+p^- Clearly,
since O(ef) = Lit

and
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Also, O(e1-\-e2) = Lx provided that L1*ZL2. Therefore, if LxeJf, then,
necessarily Lx: pxe Jf° (= j f u {R}) and if, moreover, L2 e Jf, then also
Lxr\ L2e JT; hence, J f satisfies (Q) and (I). Furthermore, if Lx e Jf and
Z.x C Lz, then both ex and e^i^ belong to Mx and thus

L2 = 0(e8) = 0((e-1+e-2)-e1) e Jf\

We conclude that J f satisfies (E) and consequently, it is an F-family.
The assumption in the following theorem is devised to fit the application

in § 4.

THEOREM 3.2. / / j f e Q satisfies (E) and, moreover, contains all proper
essential left ideals of R, then c(Jf) is an F-family, and thus a T-family.
In particulai, if 3T is an F-family containing all proper essential left ideals
of R, then c(Jf) is a T-family.

PROOF. First let us prove that (I) holds for c(Jf). This follows immedi-
ately from the fact that, for any JT e Q, dJf always satisfies (I):

Let L = Lx n L2 with Lt e dJ€~ (i = 1, 2) and assume that p e R\L
exists such that L : p e jf. Since

L:p=(L1:P)r\{Li: p),

(L2 : p) \(Lx : p) is necessarily non-empty; but, for any element a of this set

R ^ Z-! : op = (Lj : op) n (L2 : op) = L : op e Jf",

a contradiction of L^BSJT. Hence, dX', as well as, c(jT) =
satisfies (I).

Now, to complete the proof of the theorem only the validity of (E) for
c(JT) need to be verified. Thus, let KXQK2 with Kx e c(Jf). In order to
show that K2 e c(Jf) it is sufficient to prove that

CQ(K2) < C(JT).

Hence, take an arbitrary element K2 : p of CQ(K2); here

Assume that K2: p<£Jf. Then, K2 : p is not essential and thus, there exists
ox e R such that

(Kz : P) n Rox = {0}.
Furthermore, since

at e R\{K2 : P) Q R\(KX : P), i.e. olP e R\K1,

there is o2 e R such that i^x : o2oxe Jf. Put a = o2ox. Hence,

(K2:P):o = K2:op^ R,

and since K2 : op^Kt: op, it belongs to Jf. The proof is completed.
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THEOREM 3.3. Let 3F be a T-family. Then, for any R-module M, the
quotient module M\MX has no element of order from Jf, i.e.

{MIMX)X = {0}.

Moreover, no other F-family equivalent to J f possesses this property.1

PROOF. We present an indirect proof of the first part of the theorem.
Suppose that O(m) e J f for a certain m eM/Mx containing m e M. We are
going to show that, as a consequence,

cQ{0(m)) < jf,

i.e. 0(m)eJf, contradicting the assumption of m ^ 0. Hence, take
LecQ(0{m)):

L = O(m) : p = 0(pm) with pm ̂  0,
and assume

0(pm) $ 0(pm);

otherwise 0(pm) = O(pm) e Jf". Thus, for a a e 0(pm)\0(pm) we get

L : a = 0(apm) e Jf,

i.e. cQ(0(w)) <C Jf, as required.
In order to prove the other part of the theorem, assume that there is

an F-family Jf\ equivalent to Jf such that

WMXi)Xi = {0}

for any i?-module M. Then, there can be no left ideal L eX~\$T-L; for,
otherwise the i?-module

fit = R mod L/(R mod L)^

would be a non-zero i?-module such that

0 jz m e M ->• 0(m) e Jf\Jf1,

which is, because of Jf «=< Jf1, impossible. Hence Jf = $fx.
The proof of the theorem is completed.

DEFINITION 3.4. Let J f e F. An i?-module M is. said to be a Jf-module
if M^ = M; M is said to be a Jf-free-module if M^ = {0}.

Notice that {0} is the only i?-module which is simultaneously a X~-
module and a Jf-free-module and that the orders of non-zero elements of a
^T-free-module belong to djf. We shall see that the concepts of a Jf- and
Jf-free-modules will be particularly valuable in the case when Jf" e T.
Then, inspired by the radical theory of Kuros [4] (cf. next Theorems 3.6

1 The latter statement can be generalized (see [2]).
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and 3.7) we can speak about Jf-radical and Jf-semisimple modules.2 ,
The following three theorems will describe some fundamental properties

of Jf- and Jf-free-modules.

THEOREM 3.5. (a) A submodule of a Jf-module, or a ^T-free-module,
is a JfT-module, or a Ctf -free-module, respectively.

(b) An R-module generated by a family of its Ctf'-submodules, or tf-free-
submodules, is a ^-module, or a X-free-module, respectively.

(c) The direct sum of Jf'-modules, or Jf'-free-modules, is a Jf-module,
or a X-free-module, respectively.

(d) The direct product of Jf -free-modules is a Jf -free-module.
(e) An extension of a C%'-free-module by a C^T-free module is a Jf-free-

module.

PROOF. The statements of (a), (b), (c) and (d) are obvious. In order
to prove (e), consider an .R-module M with a submodule N Q M such that
bothN and MjN are jf-free. Thus, O(m)$J?~ for meN; also, if meM\N,
then O(m) Q O[m) ^ R, where m = m-\-N e MjN, and therefore, in view
of 0(m) $ Jf, 0(m) $ Jf, as well.

THEOREM 3.6. (a) In any R-module M, Mx is the {unique) maximal
$T-submodule of M (and, thus, contains any other Jf'-submodule of M).

(b) Let <j> be a homomorphism of an R-module M into an R-module M'.
Then, the restriction of <j> to Mx is a homomorphism of M^ into M'x. In
particular, every homomorphic image of a Jf -module is again a C^-module.

(c) For any R-module M, every ^f-free homomorphic image of M is a
homomorphic image of M\MX.

PROOF, (a) is evident. Taking into account the obvious fact that

O(m) Q 0(<j)(m)) for every m e M,

we deduce immediately that a homomorphic image of an element of M^
is either zero of an element or order from Jf. Hence, both (b) and (c) follow.

THEOREM 3.7. The following two equivalent statements hold if / e T :
(a) An extension of a Jf'-module by a Jf'-module is a Jf-module.
(b) For any R-module M, MjM^ is a Jf -free-module.

PROOF. First, let us prove the equivalence of the statements (a) and
(b):

(a) ->- (b). Assume that, for a certain i?-module M, M\MX is not
Jf-free, i.e.

2 Another possibility would be to define, for any J f c i ? and any .ff-module M the jT-sub-
module and the JT-radical of M as the cr(JT)-submodule and the cF(JT)-submodule (in an
obvious meaning) of M, respectively.
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, = M*\MX ^ {0}.

Thus, by (a), since M*\MX is a Jf-module, M* is a Jf-module, as well.
But, on the other hand, clearly

(M*)x = MxlL M*,
— a contradiction.

(b) ->• (a). Let M be an 7?-module with a Jf-submodule N such that
MjN is a Jf -module. Here, N Q Mx and thus,

MIMX ~ {MIN)/(MJN);

therefore, in view of Theorem 3.6(b), M\MX is — as a homomorphic image
of a JT-module — a Jf-module. Also, according to (b), M\MX is a Jf-free-
module. Hence, M = Mx, as required.

Finally, an application of Theorem 3.3 completes the proof.
Here, before presenting an application of the obtained results, let us

point out that a more detailed study of the ^-families, their equivalence
classes and properties related to the 'radical' properties of modules can be
found in [2].

4. Torsion and torsion-free modules

In the preceding section, a general method of defining a 'torsion'
element of a module and thus, torsion and torsion-free modules was
described. In what follows, we suggest a particular choice of such a definition
which seems to be the most appropriate at present: a torsion element is
an element of so-called maxi order. To justify the latter statement let us
express our belief that the elements of essential orders should be classified
as torsion elements; then, it turns out that the family &~ of all maxi ideals
belongs to T and is the least family containing all proper essential ideals
and satisfying the 'radical' requirements for Mr. Moreover, the corre-
sponding concepts of torsion and torsion-free modules enable us to extend
some other features of the abelian group theory to modules (cf. [1]). We
shall also show that My is, in fact, Z2(M) of Goldie introduced in [3] under
some restricting conditions for R and M.

Let us start with the definition of a maxi ideal.

DEFINITION 4.1. An ideal L e <£ is said to be maxi if, for each p e R\L,
there is a e R such that L : ap ^ R is essential. Also, L e !£ is said to be a
mini ideal if no quotient ideal L : p ^ R is essential.

Denoting by S', 3~ and IF the families of all proper essential ideals,
all maxi ideals and all mini ideals, respectively, we can readily see that

d£ = &r and
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Thus, since evidently $ e F, we get by virtue of Theorem 3.2 the v

following

THEOREM 4.2. The family of all maxi ideals 3~ belongs to T and thus,
for any R-module M, M^- Q M possesses the properties described in Theorems
3.5, 3.6 and 3.7.

It is easy to see that L e £f is a maxi ideal if and only if the submodule
(R mod L)g is essential in R mod L. From here and the fact that an ideal
E 2 L is essential in R if and only if the submodule E mod L is essential in
R mod L, the two statements mentioned in the introduction to this section
follow immediately ((a) follows also from Theorem 3.3):

THEOREM 4.3. (a) Every F-family JT containing $ such that Mx Q M
satisfies the 'radical' properties of Theorem 3.7 contains ^ (and is a T-family).

(b) An ideal L e £t? is a maxi ideal if and only if there is an essential
ideal E in R such that L : p is essential for every p e E.

At the end, we like to include the following two remarks:
Consider briefly the case when R is the ring of all integers, i.e. the case

of abelian groups G. Of course, GT is the maximal torsion subgroup of G.
Applying the method of § 3, we can show readily that any Jf-submodule
satisfying 'radical' properties of Theorem 3.7 is derived from Jf e T, and
that Gg. is the 'greatest radical': Denote by 77* a subset of the set 77 of
all primes and by 0** the family of all (principal) ideals of the form

<Pi1Ptt • • • Pln> w i t h k{> 0 a n d pi e 77* (1 ^ i ^ n ) .

Clearly, ^ * e F and, in fact, 0>* e T. Thus, for any selection 77* of primes
there is a ^*-radical G9, of G:

If Gj- = 2»6/7 £» is the decomposition into the ^-primary components,
then G#. = 2 p e i 7 . Gv.

It is easy to see that every 'radical' must be of this form. In particular,
G9, = {0} for 77* = 0 and G0. = Gr for 77* = 77.

The other remark concerns the fact that for some rings R, the families
&~ and $ of all maxi and all essential left ideals of 7?, respectively, coincide.
As a matter of fact, we can give a simple necessary and sufficient condition
for the equality 3~ = S:

THEOREM 4.4. The equality 3~ = £ holds if and only if the singular
ideal S of R equals to {0}; here, S is the ideal of all elements of R whose left
annihilators are essential in R.

Indeed, the sufficiency (cf. [3]) follows immediately from the fact that,
for any non-essential L e 3~, there is a non-zero p e R such that
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Hence, there exists a e R such that L : op ^ R is essential in R; thus,
0 =/= op e S, i.e. S ^ {0}.

In order to prove the necessity, assume that S ^ {0}. Denote by L
a maximal left ideal of R such that L n S — {0}. Clearly, the left ideal E
generated by L and S is essential in R. Also, for any p e E, p = X-\-a with
X e L and a e S ,

L • P 2 {0} : a

is essential in R. Hence, in view of Theorem 4.3 (b), L e J . Since L $ $,
we get 3~ ^ S.

In conclusion, let us note that the condition S = {0} is satisfied in a
ring R if 0 is the only nilpotent element of R and the ascending chain con-
dition holds for the annihilator left ideals of single elements of R. For, in
any ring R, the assumption that p e R is not nilpotent and {0} : p is essential
in R implies readily that

{0} : pn+1 ^ {0} : pn for every natural n.
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