DISTINGUISHED SUBMODULES

VLASTIMIL DLAB

(Received 25 November 1966)

Although there is no need for a 'distinguished' submodule to be given a formal definition in the present paper, we like to indicate the meaning attached to this concept here. Perhaps the shortest way of doing so is to say that a distinguished submodule is a (covariant idempotent) functor from the category of (left) *R*-modules into itself mapping each *R*-module into its *R*-submodule specified by a family of left ideals of *R*. If \mathscr{K} is a family of left ideals of *R*, then all elements of an *R*-module *M* of orders belonging to \mathscr{K} , do not, of course, in general form a submodule of *M*; but, there are certain families $\widetilde{\mathscr{K}} \supseteq \mathscr{K}$ such that all the elements of orders from $\widetilde{\mathscr{K}}$ form a submodule in any *R*-module (distinguished submodules defined by \mathscr{K}). Consequently, no particular structural properties of the *R*-module are involved in the definition of such submodules. In this way we can define radicals (in the sense of Kuroš [4]) of a module. In particular, we feel that an application of this method is an appropriate way in defining the (maximal) torsion submodule of a module.

Thus, the present paper is, in fact, a study of subfamilies of the family \mathscr{L}_R of all left ideals of a ring R. We use this opportunity to deal with a certain duality in the set of subfamilies of \mathscr{L}_R ; this duality relates to problems connected with the problems of dependence over modules and, in particular, with the definition of the rank of a module which will be treated elsewhere (cf. [1]).

1. Basic definitions

Throughout the paper, R stands for an (associative) ring with unity ε . The family of all proper (that is, $\neq R$) left ideals of R is denoted by \mathscr{L}_R , or briefly by \mathscr{L} . For $L \in \mathscr{L}$ and $\rho \in R$, the symbol $L : \rho$ denotes the (right) ideal-quotient of L by ρ , that is, the left ideal of all $\chi \in R$ such that $\chi \rho \in L$.

We shall consider the following three properties of a subfamily $\mathscr{K} \subseteq \mathscr{L}$:

(Q) $K \in \mathscr{K} \land \rho \in R \setminus K \to K : \rho \in \mathscr{K};$

(I) $K_1 \in \mathscr{K} \wedge K_2 \in \mathscr{K} \to K_1 \cap K_2 \in \mathscr{K};$

(E) $K_1 \in \mathscr{K} \land K_2 \in \mathscr{K} \land K_1 \subseteq K_2 \to K_2 \in \mathscr{K}.$

We can see immediately that

1.1. (i) If $\mathscr{K}_{\omega}, \omega \in \Omega$, satisfy (Q), (I), or (E), then $\bigcap_{\omega \in \Omega} \mathscr{K}_{\omega}$ satisfies (Q), (I), or (E), respectively.

(ii) If $\mathscr{K}_{\omega}, \omega \in \Omega$, satisfy (Q) or (E), then $\bigcup_{\omega \in \Omega} \mathscr{K}_{\omega}$ satisfies (Q) or (E), respectively.

In what follows we shall be interested in the Q-families of left ideals of R, i.e. in the subfamilies of \mathscr{L} satisfying (Q) and in the F-families (filters) of left ideals of R, i.e. in the subfamilies of \mathscr{L} satisfying (Q), (I) and (E). Denote the set of all subfamilies of \mathscr{L} by L, the subset of L of all Q-families by Q and that of all F-families by F. Hence, by 1.1,

1.2. The mappings c_Q and c_F defined on L by

and

$$c_{Q}(\mathscr{K}) = \bigcap_{\mathscr{K} \subseteq \mathscr{X} \in Q} \mathscr{X}$$
$$c_{F}(\mathscr{K}) = \bigcap_{\mathscr{K} \subseteq \mathscr{X} \in F} \mathscr{X}$$

are (idempotent) closure operators in \mathscr{L} .

M will always denote a (unital left) R-module. The order of $m \in M$ is denoted by O(m); hence, $O(m) \in \mathscr{L}$ if and only if $m \neq 0$. Moreover, evidently $O(\rho m) = O(m) : \rho$ for any non-zero $m \in M$ and $\rho \in R$. Since R will be fixed throughout the paper, we shall often speak briefly about submodules, homomorphisms etc. instead of R-submodules, R-homomorphisms etc. The R-module of all cosets of R modulo L will be denoted by $R \mod L$. A submodule N of M is said to be essential in M if it meets any non-zero submodule of M non-trivially. Specializing to $M = R \mod \{0\}$ we get the concept of an essential left ideal in R. If \mathscr{K} is a family of left ideals of R, then the subset of all elements of an R-module M whose orders belong to $\mathscr{K}^0 = \mathscr{K} \cup \{R\}$ will be denoted by $M_{\mathscr{K}} \subseteq M$.

2. An order and a Galois connection in Q

Although our next consideration can easily be extended to L, we shall, with regard to our further needs, restrict the definitions to Q.

If $L \in \mathcal{L}$, then

$$\mathfrak{c}_{Q}(\{L\}) = \mathfrak{c}_{Q}(L) = \{L : \rho\}_{\rho \in R \setminus L};$$

let us call a Q-family of this type cyclic. Also, let us point out that, in view of 1.1, any family $\mathscr{K} \subseteq \mathscr{L}$ contains the greatest Q-subfamily: the (set-theoretical) union of all cyclic Q-families contained in \mathscr{K} . In particular, a Q-family is the union of its cyclic Q-subfamilies.

Now, define in Q the following preorder \ll by

$$\mathscr{K}_1 \ll \mathscr{K}_2 \leftrightarrow \forall L (L \in \mathscr{L} \to \mathfrak{c}_Q(L) \notin \mathscr{K}_1 \backslash \mathscr{K}_2).$$

Clearly,

$$\mathscr{K}_1 \subseteq \mathscr{K}_2 \to \mathscr{K}_1 \ll \mathscr{K}_2;$$

moreover, we get immediately

$$\mathcal{K}_1 \ll \mathcal{K}_2 \rightarrow (\mathcal{K}_1 \ll \mathcal{K}_1 \cap \mathcal{K}_2 \wedge \mathcal{K}_1 \cup \mathcal{K}_2 \ll \mathcal{K}_2).$$

The preorder \ll yields an equivalence \approx in Q, namely

$$\mathscr{K}_1 \approx \mathscr{K}_2 \longleftrightarrow (\mathscr{K}_1 \ll \mathscr{K}_2 \land \mathscr{K}_2 \ll \mathscr{K}_1).$$

Again, we can easily prove that, for $\omega \in \Omega$,

$$\mathscr{K} \approx \mathscr{K}_{\omega} \to \mathscr{K} \approx \bigcup_{\omega \in \Omega} \mathscr{K}_{\omega}$$

and, provided Ω is finite, also

$$\mathscr{K} \approx \mathscr{K}_{\omega} \to \mathscr{K} \approx \bigcap_{\omega \in \Omega} \mathscr{K}_{\omega}.$$

Hence,

2.1. There is a greatest (with respect to order by inclusion) element in each equivalence class of Q. If $K \subseteq Q$ is the equivalence class containing \mathscr{K} , then the greatest element $\mathfrak{c}(\mathscr{K})$ of K is given by

$$\mathfrak{c}(\mathscr{K}) = \bigcup_{\mathscr{X} \approx \mathscr{K}} \mathscr{X} = \bigcup_{\mathscr{X} \in K} \mathscr{X}.$$

Also, $\mathscr{K}_1 \cap \mathscr{K}_2 \in K$ for every $\mathscr{K}_1 \in K$, $\mathscr{K}_2 \in K$ and, furthermore, any $\mathscr{X} \in Q$ such that $\mathscr{K} \subseteq \mathscr{X} \subseteq \mathfrak{c}(\mathscr{K})$ belongs to K, as well.

Denote the set of all the greatest elements in the equivalence classes of 2.1, i.e. the set of all $\mathscr{K} \in Q$ such that $\mathfrak{c}(\mathscr{K}) = \mathscr{K}$, by C and, furthermore, put

$$T = C \cap F.$$

Evidently, C can also be characterized as the set of all those families \mathscr{K} which satisfy, for any $\mathscr{X} \in L$, the implication

$$\mathscr{X} \approx \mathscr{K}
ightarrow \mathscr{X} \subseteq \mathscr{K}$$

(or, even the stronger implication $\mathscr{X} \ll \mathscr{K} \to \mathscr{X} \subseteq \mathscr{K}$). Thus, we deduce that \mathfrak{c} is an (idempotent) closure operator; for, if $\mathscr{K}_{\omega} \in \mathcal{C}(\omega \in \Omega)$, then evidently

$$\bigcap_{\omega\in\Omega}\mathscr{K}_{\omega}\in\mathcal{C}$$

Also, the preorder \ll induces an order in the set of all equivalence classes, and thus, it induces an order in C. It turns out that this order in C induced by \ll coincides with the order by inclusion.

Now, define the 'duality' map ∂ in Q as follows: For $\mathscr{K} \in Q$, let $\partial \mathscr{K}$ be given by

	$L \in \partial \mathscr{K} \to \mathfrak{c}_{Q}(L) \cap \mathscr{K} = \emptyset.$
Clearly,	$\partial \mathscr{K} \in \boldsymbol{O} \text{ and } \mathscr{K} \cap \partial \mathscr{K} = \emptyset$
Also	
and	$\mathscr{H}_{1} \subseteq \mathscr{H}_{2} \to \partial \mathscr{H}_{1} \supseteq \partial \mathscr{H}_{2}$
Furthermore	$\partial^2 \mathscr{K} = \partial (\partial \mathscr{K}) \supseteq \mathscr{K}.$
r ur mermore,	$\partial \mathscr{K}_1 = \partial \mathscr{K}_2 {\leftrightarrow} \mathscr{K}_1 \approx \mathscr{K}_2$
and	$\partial^2 \mathscr{K} = \mathfrak{c}(\mathscr{K}).$

Hence,

2.2. The mapping ∂ defines for the elements of Q a Galois connection (cf. Ore [5]). The operator c is the corresponding Galois closure operation and C— the set of all closed elements.

In the introduction, the importance of the mapping ∂ in relation to dependence over modules was mentioned. It stems from the fact that, for any $\mathscr{K} \in Q$, there exist maximal independent subsets consisting of elements whose orders belong to $\mathscr{K} \cup \partial \mathscr{K}$ in an arbitrary *R*-module (cf. [1]).

3. Distinguished submodules

The value of the concepts of an *F*-family and an *T*-family (i.e. a family belonging to $T = C \cap F$) of left ideals will be apparent from the following theorems.

THEOREM 3.1. Let $\mathscr{K} \in \mathbf{L}$. Then, in any R-module M, the subset $M_{\mathscr{K}} \subseteq M$ is an R-submodule of M if and only if \mathscr{K} is an F-family.

PROOF. First, let M be an R-module, $\mathscr{K} \in F$ and m_1, m_2 two non-zero elements of $M_{\mathscr{K}} \subseteq M$. Since $O(\rho m_1) = O(m_1) : \rho$, $\rho m_1 \in M_{\mathscr{K}}$ by (Q). Also, since $O(m_1 + m_2) \supseteq O(m_1) \cap O(m_2)$, $m_1 + m_2 \in M_{\mathscr{K}}$ in view of (I) and (E). Thus, if \mathscr{K} is an F-family, then $M_{\mathscr{K}}$ is a submodule of M.

On the other hand, let \mathscr{K} possess the property that, for any *R*-module $M, M_{\mathscr{K}}$ is always a submodule of M. Consider for a moment the *R*-module

$$M^{\boldsymbol{*}} = R \bmod L_1 \oplus R \bmod L_2$$

with $L_i \in \mathscr{L}$ and denote by $\bar{\varepsilon}_i$ the class $\varepsilon + L_i$ of $R \mod L_i$ (i = 1, 2); thus, the general element of M^* can be written in the form $\rho_1 \bar{\varepsilon}_1 + \rho_2 \bar{\varepsilon}_2$. Clearly, since $O(\bar{\varepsilon}_i) = L_i$,

and

$$O(\rho_1 \bar{\varepsilon}_1) = L_1 : \rho_1$$

$$O(\bar{\varepsilon}_1 + \bar{\varepsilon}_1) = L_1 \cap L_2.$$

Also, $O(\bar{e}_1 + \bar{e}_2) = L_1$ provided that $L_1 \subseteq L_2$. Therefore, if $L_1 \in \mathscr{K}$, then necessarily $L_1 : \rho_1 \in \mathscr{K}^0$ (= $\mathscr{K} \cup \{R\}$) and if, moreover, $L_2 \in \mathscr{K}$, then also $L_1 \cap L_2 \in \mathscr{K}$; hence, \mathscr{K} satisfies (Q) and (I). Furthermore, if $L_1 \in \mathscr{K}$ and $L_1 \subseteq L_2$, then both \bar{e}_1 and $\bar{e}_1 + \bar{e}_2$ belong to $M_{\mathscr{K}}$ and thus

$$L_2 = O(\bar{\varepsilon}_2) = O((\bar{\varepsilon}_1 + \bar{\varepsilon}_2) - \bar{\varepsilon}_1) \in \mathscr{K}.$$

We conclude that \mathscr{K} satisfies (E) and consequently, it is an *F*-family. The assumption in the following theorem is devised to fit the application in § 4.

THEOREM 3.2. If $\mathscr{K} \in \mathbf{Q}$ satisfies (E) and, moreover, contains all proper essential left ideals of R, then $c(\mathscr{K})$ is an F-family, and thus a T-family. In particular, if \mathscr{K} is an F-family containing all proper essential left ideals of R, then $c(\mathscr{K})$ is a T-family.

PROOF. First let us prove that (I) holds for $c(\mathcal{H})$. This follows immediately from the fact that, for any $\mathcal{H} \in Q$, $\partial \mathcal{H}$ always satisfies (I):

Let $L = L_1 \cap L_2$ with $L_i \in \partial \mathscr{K}$ (i = 1, 2) and assume that $\rho \in R \setminus L$ exists such that $L : \rho \in \mathscr{K}$. Since

$$L:\rho=(L_1:\rho)\cap (L_2:\rho),$$

 $(L_2:\rho) \setminus (L_1:\rho)$ is necessarily non-empty; but, for any element σ of this set

$$R \neq L_1 : \sigma \rho = (L_1 : \sigma \rho) \cap (L_2 : \sigma \rho) = L : \sigma \rho \in \mathscr{K},$$

a contradiction of $L_1 \in \partial \mathcal{H}$. Hence, $\partial \mathcal{H}$, as well as, $\mathfrak{c}(\mathcal{H}) = \partial(\partial \mathcal{H})$ satisfies (I).

Now, to complete the proof of the theorem only the validity of (E) for $\mathfrak{c}(\mathscr{H})$ need to be verified. Thus, let $K_1 \subseteq K_2$ with $K_1 \in \mathfrak{c}(\mathscr{H})$. In order to show that $K_2 \in \mathfrak{c}(\mathscr{H})$ it is sufficient to prove that

$$\mathfrak{c}_{Q}(K_{2})\ll\mathfrak{c}(\mathscr{K}).$$

Hence, take an arbitrary element K_2 : ρ of $c_Q(K_2)$; here

$$\rho \in R \setminus K_2 \subseteq R \setminus K_1.$$

Assume that $K_2 : \rho \notin \mathcal{K}$. Then, $K_2 : \rho$ is not essential and thus, there exists $\sigma_1 \in R$ such that

$$(K_2:\rho)\cap R\sigma_1=\{0\}.$$

Furthermore, since

$$\sigma_1 \in R \setminus (K_2 : \rho) \subseteq R \setminus (K_1 : \rho), \text{ i.e. } \sigma_1 \rho \in R \setminus K_1,$$

there is $\sigma_2 \in R$ such that $K_1 : \sigma_2 \sigma_1 \in \mathscr{K}$. Put $\sigma = \sigma_2 \sigma_1$. Hence,

$$(K_2: \rho): \sigma = K_2: \sigma \rho \neq R,$$

and since $K_2 : \sigma \rho \supseteq K_1 : \sigma \rho$, it belongs to \mathscr{K} . The proof is completed.

THEOREM 3.3. Let \mathscr{K} be a T-family. Then, for any R-module M, the quotient module $M/M_{\mathscr{K}}$ has no element of order from \mathscr{K} , i.e.

$$(M/M_{\boldsymbol{x}})_{\boldsymbol{x}} = \{0\}.$$

Moreover, no other F-family equivalent to X possesses this property.¹

PROOF. We present an indirect proof of the first part of the theorem. Suppose that $O(\bar{m}) \in \mathscr{K}$ for a certain $\bar{m} \in M/M_{\mathscr{K}}$ containing $m \in M$. We are going to show that, as a consequence,

$$\mathfrak{c}_Q(O(m)) \ll \mathscr{K},$$

i.e. $O(m) \in \mathcal{K}$, contradicting the assumption of $\overline{m} \neq \overline{0}$. Hence, take $L \in c_Q(O(m))$:

$$L = O(m) : \rho = O(\rho m)$$
 with $\rho m \neq 0$,

and assume

 $O(\rho m) \notin O(\rho \bar{m});$

otherwise $O(\rho m) = O(\rho \bar{m}) \in \mathscr{K}$. Thus, for a $\sigma \in O(\rho \bar{m}) \setminus O(\rho m)$ we get

$$L: \sigma = O(\sigma \rho m) \in \mathscr{K},$$

i.e. $c_Q(O(m)) \ll \mathcal{K}$, as required.

In order to prove the other part of the theorem, assume that there is an *F*-family \mathscr{K}_1 equivalent to \mathscr{K} such that

$$(M/M_{\boldsymbol{x}_1})_{\boldsymbol{x}_1} = \{0\}$$

for any R-module M. Then, there can be no left ideal $L \in \mathscr{K} \setminus \mathscr{K}_1$; for, otherwise the R-module

 $\overline{M} = R \mod L/(R \mod L)_{\mathscr{K}}$

would be a non-zero R-module such that

$$0 \neq \bar{m} \in \bar{M} \rightarrow O(\bar{m}) \in \mathscr{K} \setminus \mathscr{K}_{1},$$

which is, because of $\mathscr{K} \approx \mathscr{K}_1$, impossible. Hence $\mathscr{K} = \mathscr{K}_1$.

The proof of the theorem is completed.

DEFINITION 3.4. Let $\mathscr{K} \in F$. An *R*-module *M* is said to be a \mathscr{K} -module if $M_{\mathscr{K}} = M$; *M* is said to be a \mathscr{K} -free-module if $M_{\mathscr{K}} = \{0\}$.

Notice that $\{0\}$ is the only *R*-module which is simultaneously a \mathscr{K} -module and a \mathscr{K} -free-module and that the orders of non-zero elements of a \mathscr{K} -free-module belong to $\partial \mathscr{K}$. We shall see that the concepts of a \mathscr{K} - and \mathscr{K} -free-modules will be particularly valuable in the case when $\mathscr{K} \in T$. Then, inspired by the radical theory of Kuroš [4] (cf. next Theorems 3.6

¹ The latter statement can be generalized (see [2]).

and 3.7) we can speak about \mathscr{K} -radical and \mathscr{K} -semisimple modules.²

The following three theorems will describe some fundamental properties of \mathscr{K} - and \mathscr{K} -free-modules.

THEOREM 3.5. (a) A submodule of a \mathcal{K} -module, or a \mathcal{K} -free-module, is a \mathcal{K} -module, or a \mathcal{K} -free-module, respectively.

(b) An R-module generated by a family of its \mathcal{K} -submodules, or \mathcal{K} -free-submodules, is a \mathcal{K} -module, or a \mathcal{K} -free-module, respectively.

(c) The direct sum of \mathcal{K} -modules, or \mathcal{K} -free-modules, is a \mathcal{K} -module, or a \mathcal{K} -free-module, respectively.

(d) The direct product of *X*-free-modules is a *X*-free-module.

(e) An extension of a \mathcal{K} -free-module by a \mathcal{K} -free module is a \mathcal{K} -free-module.

PROOF. The statements of (a), (b), (c) and (d) are obvious. In order to prove (e), consider an *R*-module *M* with a submodule $N \subseteq M$ such that both *N* and *M*/*N* are \mathscr{K} -free. Thus, $O(m) \notin \mathscr{K}$ for $m \in N$; also, if $m \in M \setminus N$, then $O(m) \subseteq O(\bar{m}) \neq R$, where $\bar{m} = m + N \in M/N$, and therefore, in view of $O(\bar{m}) \notin \mathscr{K}$, $O(m) \notin \mathscr{K}$, as well.

THEOREM 3.6. (a) In any R-module M, $M_{\mathscr{K}}$ is the (unique) maximal \mathscr{K} -submodule of M (and, thus, contains any other \mathscr{K} -submodule of M).

(b) Let ϕ be a homomorphism of an R-module M into an R-module M'. Then, the restriction of ϕ to $M_{\mathscr{K}}$ is a homomorphism of $M_{\mathscr{K}}$ into $M'_{\mathscr{K}}$. In particular, every homomorphic image of a \mathscr{K} -module is again a \mathscr{K} -module.

(c) For any R-module M, every \mathcal{K} -free homomorphic image of M is a homomorphic image of $M/M_{\mathcal{K}}$.

PROOF. (a) is evident. Taking into account the obvious fact that

 $O(m) \subseteq O(\phi(m))$ for every $m \in M$,

we deduce immediately that a homomorphic image of an element of $M_{\mathscr{K}}$ is either zero of an element or order from \mathscr{K} . Hence, both (b) and (c) follow.

THEOREM 3.7. The following two equivalent statements hold if $\mathscr{K} \in T$:

(a) An extension of a \mathcal{K} -module by a \mathcal{K} -module is a \mathcal{K} -module.

(b) For any R-module M, $M/M_{\mathcal{K}}$ is a \mathcal{K} -free-module.

PROOF. First, let us prove the equivalence of the statements (a) and (b):

(a) \rightarrow (b). Assume that, for a certain *R*-module *M*, $M/M_{\mathscr{K}}$ is not \mathscr{K} -free, i.e.

² Another possibility would be to define, for any $\mathscr{K} \subseteq \mathscr{L}$ and any *R*-module *M* the \mathscr{K} -submodule and the \mathscr{K} -radical of *M* as the $\mathfrak{c}_{F}(\mathscr{K})$ -submodule and the $\mathfrak{c}_{F}(\mathscr{K})$ -submodule (in an obvious meaning) of *M*, respectively.

$$(M/M_{\mathscr{K}})_{\mathscr{K}} = M^*/M_{\mathscr{K}} \neq \{0\}.$$

Thus, by (a), since $M^*/M_{\mathscr{K}}$ is a \mathscr{K} -module, M^* is a \mathscr{K} -module, as well. But, on the other hand, clearly

$$(M^*)_{\mathbf{x}} = M_{\mathbf{x}} \neq M^*,$$

- a contradiction.

(b) \rightarrow (a). Let M be an R-module with a \mathscr{K} -submodule N such that M/N is a \mathscr{K} -module. Here, $N \subseteq M_{\mathscr{K}}$ and thus,

$$M/M_{\mathcal{K}} \simeq (M/N)/(M_{\mathcal{K}}/N);$$

therefore, in view of Theorem 3.6(b), $M/M_{\mathscr{X}}$ is — as a homomorphic image of a \mathscr{K} -module — a \mathscr{K} -module. Also, according to (b), $M/M_{\mathscr{X}}$ is a \mathscr{K} -free-module. Hence, $M = M_{\mathscr{X}}$, as required.

Finally, an application of Theorem 3.3 completes the proof.

Here, before presenting an application of the obtained results, let us point out that a more detailed study of the Q-families, their equivalence classes and properties related to the 'radical' properties of modules can be found in [2].

4. Torsion and torsion-free modules

In the preceding section, a general method of defining a 'torsion' element of a module and thus, torsion and torsion-free modules was described. In what follows, we suggest a particular choice of such a definition which seems to be the most appropriate at present: a torsion element is an element of so-called maxi order. To justify the latter statement let us express our belief that the elements of essential orders should be classified as torsion elements; then, it turns out that the family \mathcal{T} of all maxi ideals belongs to T and is the least family containing all proper essential ideals and satisfying the 'radical' requirements for $M_{\mathcal{F}}$. Moreover, the corresponding concepts of torsion and torsion-free modules enable us to extend some other features of the abelian group theory to modules (cf. [1]). We shall also show that $M_{\mathcal{F}}$ is, in fact, $Z_2(M)$ of Goldie introduced in [3] under some restricting conditions for R and M.

Let us start with the definition of a maxi ideal.

DEFINITION 4.1. An ideal $L \in \mathscr{L}$ is said to be maxi if, for each $\rho \in R \setminus L$, there is $\sigma \in R$ such that $L : \sigma \rho \neq R$ is essential. Also, $L \in \mathscr{L}$ is said to be a mini ideal if no quotient ideal $L : \rho \neq R$ is essential.

Denoting by \mathscr{E} , \mathscr{T} and \mathscr{F} the families of all proper essential ideals, all maxi ideals and all mini ideals, respectively, we can readily see that

$$\partial \mathscr{E} = \mathscr{F} \text{ and } \partial^2 \mathscr{E} = \partial \mathscr{F} = \mathscr{T}.$$

668

Thus, since evidently $\mathscr{E} \in F$, we get by virtue of Theorem 3.2 the following

THEOREM 4.2. The family of all maxi ideals \mathcal{T} belongs to T and thus, for any R-module $M, M_{\mathcal{F}} \subseteq M$ possesses the properties described in Theorems 3.5, 3.6 and 3.7.

It is easy to see that $L \in \mathscr{L}$ is a maxi ideal if and only if the submodule $(R \mod L)_{\mathscr{E}}$ is essential in $R \mod L$. From here and the fact that an ideal $E \supseteq L$ is essential in R if and only if the submodule $E \mod L$ is essential in $R \mod L$, the two statements mentioned in the introduction to this section follow immediately ((a) follows also from Theorem 3.3):

THEOREM 4.3. (a) Every F-family \mathscr{K} containing \mathscr{E} such that $M_{\mathscr{K}} \subseteq M$ satisfies the 'radical' properties of Theorem 3.7 contains \mathscr{T} (and is a T-family). (b) An ideal $L \in \mathscr{L}$ is a maxi ideal if and only if there is an essential

ideal E in R such that $L : \rho$ is essential for every $\rho \in E$.

At the end, we like to include the following two remarks:

Consider briefly the case when R is the ring of all integers, i.e. the case of abelian groups G. Of course, $G_{\mathcal{F}}$ is the maximal torsion subgroup of G. Applying the method of § 3, we can show readily that any \mathscr{K} -submodule satisfying 'radical' properties of Theorem 3.7 is derived from $\mathscr{K} \in T$, and that $G_{\mathcal{F}}$ is the 'greatest radical': Denote by Π^* a subset of the set Π of all primes and by \mathscr{P}^* the family of all (principal) ideals of the form

$$\langle p_1^{k_1} p_2^{k_2} \cdots p_n^{k_n} \rangle$$
 with $k_i > 0$ and $p_i \in \Pi^*$ $(1 \leq i \leq n)$.

Clearly, $\mathscr{P}^* \in F$ and, in fact, $\mathscr{P}^* \in T$. Thus, for any selection Π^* of primes there is a \mathscr{P}^* -radical $G_{\mathscr{P}^*}$ of G:

If $G_{\mathcal{F}} = \sum_{p \in \Pi} G_p$ is the decomposition into the *p*-primary components, then $G_{\mathcal{P}} = \sum_{p \in \Pi^*} G_p$.

It is easy to see that every 'radical' must be of this form. In particular, $G_{\mathfrak{g}} = \{0\}$ for $\Pi^* = \emptyset$ and $G_{\mathfrak{g}} = G_{\mathfrak{f}}$ for $\Pi^* = \Pi$.

The other remark concerns the fact that for some rings R, the families \mathscr{T} and \mathscr{E} of all maxi and all essential left ideals of R, respectively, coincide. As a matter of fact, we can give a simple necessary and sufficient condition for the equality $\mathscr{T} = \mathscr{E}$:

THEOREM 4.4. The equality $\mathcal{T} = \mathcal{E}$ holds if and only if the singular ideal S of R equals to $\{0\}$; here, S is the ideal of all elements of R whose left annihilators are essential in R.

Indeed, the sufficiency (cf. [3]) follows immediately from the fact that, for any non-essential $L \in \mathcal{T}$, there is a non-zero $\rho \in R$ such that

$$L: o = \{0\}: o$$
.

Hence, there exists $\sigma \in R$ such that $L : \sigma \rho \neq R$ is essential in R; thus, $0 \neq \sigma \rho \in S$, i.e. $S \neq \{0\}$.

In order to prove the necessity, assume that $S \neq \{0\}$. Denote by L a maximal left ideal of R such that $L \cap S = \{0\}$. Clearly, the left ideal E generated by L and S is essential in R. Also, for any $\rho \in E$, $\rho = \lambda + \sigma$ with $\lambda \in L$ and $\sigma \in S$,

$$L: \rho \supseteq \{0\}: \sigma$$

is essential in R. Hence, in view of Theorem 4.3(b), $L \in \mathcal{T}$. Since $L \notin \mathcal{E}$, we get $\mathcal{T} \neq \mathcal{E}$.

In conclusion, let us note that the condition $S = \{0\}$ is satisfied in a ring R if 0 is the only nilpotent element of R and the ascending chain condition holds for the annihilator left ideals of single elements of R. For, in any ring R, the assumption that $\rho \in R$ is not nilpotent and $\{0\} : \rho$ is essential in R implies readily that

$$\{0\}$$
: $\rho^{n+1} \neq \{0\}$: ρ^n for every natural n .

References

- V. Dlab, 'The concept of rank and some related questions in the theory of modules', Comment. Math. Univ. Carolinae 8 (1967), 39-47.
- [2] V. Dlab, 'Distinguished families of ideals of a ring', Czechoslovak Math. J. (to appear).
- [3] A. W. Goldie, 'Torsion-free modules and rings', J. of Algebra 1 (1964), 268-287.
- [4] A. G. Kuroš, 'Radicals of rings and algebras', Mat. Sbornik N.S. 33(75)(1953), 13-26.
- [5] O. Ore, 'Galois connections', Trans. Amer. Math. Soc. 55 (1944), 493-513.

Department of Mathematics Institute of Advanced Studies Australian National University Canberra, A.C.T.

670