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Abstract

A generalized integral equation formulation and a systematic numerical solution proce-
dure are presented for a class of boundary value problems governed by a general
second-order differential equation of elliptic type. Diverse numerical examples include
problems of plane-wave scattering, three-dimensional fluid flow, and plane heat transfer
for a body with a moving flame boundary. The last example employs certain representa-
tion functions useful to increase solution effectiveness in problems with an isolated
integrable singularity.

1. Introduction

The partial differential equation

d’e 3¢ _ B
A“°ax,3xo+B“6xa+C¢_o’ a,0=1,2,...,n, (1.1)

in which 4,,, B, and C are constants satisfying the ellipticity requirement (cf.

[21]), may be reduced to the canonical form

Vi +xkp=0 (12)
where « is a constant, ¢ = ¢(x, x,,...,X,),

vi=—+—+---+— (1.3)
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and, throughout this paper, summation is implied on repeated indices a« and o
only. This differential equation, especially in the form (1.2), is the governing
equation for a variety of boundary value problems which occur frequently in
mathematical physics and engineering analysis. Specifically, if

k=k?> withk=w/c,n=1,20r3 (1.4)

where w is a (real) frequency and c¢ is a wave speed, then (1.2) is the “reduced”
wave equation (or Helmholtz equation) governing time harmonic scalar wave
propagation in a non-dissipative medium. Alternatively, with the choice

-, n=2or3 (1.5)

(1.2) becomes a so-called “modified” Laplace equation which governs a variety of
phenomena such as flame spread in a burning solid ([3], [7]) or flow of water in a
leaky aquifer ([6], [10]). Also, (1.2) with (1.5) is identical with the Laplace
transform of the classical scalar wave equation or the classical heat conduction
equation under transient conditions, provided A is identified (e.g. [15]) in terms
of the transform parameter and relevant physical parameters. Finally, the choice
x = 0 reduces (1.2) to the ordinary Laplace equation.

Integral equation treatments of specific problems corresponding to particular
choice of k (e.g. [10], [15], [2], [12]) have been popular for some time for reasons
of computational efficiency and accuracy (cf. remarks in [20], [16]). In most cases,
however, formulations are tied closely to the particular problems at issue, and
numerical techniques employed to solve the integral equations are varied, often
elementary, and even crude by current standards. Further, while three-dimen-
sional solutions exist (e.g. [12], {24]), the majority are limited to plane problems
(n=2).

The purpose of the present paper is first to view and formulate a Boundary
Integral Equation (BIE) for all problems governed by (1.2) as a class. This BIE as
obtained is valid for exterior and interior domains and for n = 3 as well as n = 2,
Next, we describe a modern systematic process of numerical solution of the
general BIE based on the use of “isoparametric” boundary elements. These
elements are curvilinear triangles or quadrilaterals for » = 3 and curvilinear line
elements for n = 2, for which the element geometry and the functions defined
over the elements are represented as piecewise-quadratic polynomials. Further,
for n = 2, we introduce certain “singular” shape functions which are useful when
there is a singularity in one of the unknown boundary functions at certain points
on the boundary of the relevant domain. Finally, we illustrate the entire BIE
solution process with three numerical examples drawn from rather diverse physi-
cal situations. Specifically, we solve a plane-wave-scattering problem for n = 2
and a potential-flow problem for » = 3. Both problems involve potentials, one
complex and the other real, defined in regions exterior to a simple, smooth, closed

K

https://doi.org/10.1017/50334270000004239 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000004239

(31 Boundary integral equation method 503

surface. Such problems for exterior domains are particularly well suited to a BIE
treatment, as opposed to field numerical methods, since only the boundaries need
be discretized and conditions at infinity are easily handled analytically. The third
example is a heat-conduction problem for n =2 interior to a wedge-shaped
domain, at one point of which there is an integrable singularity in heat flux. This
problem, of some current practical importance {1], is solved for two values of the
“wedge angle” using the mentioned singular shape functions. The latter provide
for overall solution efficiency and accuracy of representation near the singularity.

2. BIE formulation

In the following, regard (1.2) as the governing differential equation for a
sufficiently smooth function ¢ defined in a region B of two (E?)- or three
(E?)-dimensional space with closed surface S. (While a BIE formulation for
spaces E”, n > 3, presents little difficulty, the numerical process to be described
would be cumbersome, at best, to implement for such spaces, and we confine
attention here to n = 2 and 3.) Next, let K(x, y; «) be the fundamental solution
(cf. [8]) or free-space Green’s function of (1.2), with the property

VIK+ kK=8(x—y) (2.1)
where x = (x,, x,) o1 (X, X5, X3), ¥ = (¥, »2) 01 (¥, 4, y3) are two points in B
and 8(x — y) is the Dirac delta function. Now application of Green’s theorem,

with attention to the properties of the delta function (and an appropriate limit
process as x € B —» x € §), leads (¢f. [16]) to the integral expression

e(x)o(x) = [ [#(1)K(x, 75 6) = 4(K(x, v ] (). (22)

In (2.2) the subscript » indicates the (outward) normal derivative of the function
at y € .5, and the coefficient ¢(x) has the values unity for x € B and zero for x in
the region exterior to B. If x € §, ¢(x) may be obtained from (2.2) by choosing ¢
equal to a known elementary solution of (1.2). When a unique tangent (plane)
exists at x € § it is easily shown that c¢(x) equals one half. If B is the region
exterior to a closed surface S, ¢ and ¢, are assumed to behave, for indefinitely
large y, such that the integrals in (2.2) taken over an indefinitely large sphere
vanish (cf. [13], page 144). In general, S is assumed sufficiently regular (¢f. [9]) to
permit use of Green’s theorem, and for x € S the integrals, though improper
since K is singular for y = x, may be shown to exist.

Equation (2.2) may be regarded as an exact integral restatement of a boundary
value problem governed by (1.2). Indeed, the BIE strategy for the solution of such
problems is as follows. Place x € S, determine ¢(x), and prescribe (well posed)
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parts of the function pair {¢(y), ¢,(y)} on S; solve (2.2) for the unprescribed
parts of that pair; place x € B and evaluate the (now known) integrals (2.2) to
obtain the desired solution ¢(x). Gradients of ¢ at x € B may be obtained by
differentiation of the integrands in (2.2); note that only the known functions K
and K, are affected, since they alone are functions of x on the right side of (2.2).

3. Numerical procedures

Since a strictly analytical process to carry out the described BIE strategy is out
of the question for any practical problem, consider the following numerical
solution procedure. Let S of B, B € E?, be discretized into a number M of
curvilinear surface elements of either quadrilateral or triangular shape, and locate
eight or six nodes, respectively, on each element. Half of the nodes are at the
vertices and the other half are on the curvilinear edges of each element, the latter
usually located midway between vertex nodes. The coordinates y* of each node
are specified, and the coordinates of a non-nodal point of an element are to be
given by

y (&) = M(&)y®, a=1,2,...,60r8; i=1,23, (3.1)

in which M%(§) are second-order shape functions of intrinsic coordinates (§) =
(§,, &,) of the type used in finite element analysis (see e.g. [25] and Appendix).
The geometry of S is thus approximated by a system of piecewise-quadratic
curvilinear elements coincident at the nodes. For B € E2, S is a curve or union of
several curves, so thatin (3.1) a = 1,2, 3; i = 1,2; and £ is a scalar variable. Next,
assume that ¢ or ¢, in (2.2) varies over the elements according to

¥(§) = M*(§)y” (32)
where Y is the nodal value of the variable at issue, so that ¢ and ¢, are thus
approximated by the same piecewise quadratic polynomials over the elements as
those used to represent the geometry of the elements themselves. This is called an
isoparametric representation.

Using this representation, (2.2) for x € S becomes

c(xg)e(xg) = ¢""fyM“(£)K,[xﬁ, y(8); k]Uo(8) at

—¢2° /y M(8)K[xg, y(£); k] J°(£) dt (3.3)

in which 6 = 1,2,...,M and 8 =1,2,...,N, where N is the total number of
nodes. The quantities ¥ *° mean “ the value of ¥ at local node a on surface element
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S,”, and J°(£) is the ratio dS,(y)/d§ for the element S,. Note that (3.1) maps S,
to the standard shape y which is either a square or equilateral triangle in the space
¢,&, for B € E® For B € E?, vy is simply the interval -1 to 1.

The integrals in (3.3) involve only known integrands, and, although certain of
them are improper when xz; € §,, all are integrable either analytically or by
Gaussian quadrature following removal of the singularity via transformation (see
e.g. [16] or [17] for details). Then, adopting a global designation for ¢*° and
letting x5 occupy all of the nodes, (3.3) may be viewed as a square N X N system
of linear algebraic equations of the form

A¢ = Bo,, (3.4)

in which the square matrices A and B contain the known integrals (and the c(xz)
term) in (3.3). The columns ¢ and ¢, contain the globally numbered nodal values
of the original function pair {¢, ¢,}. Thus our solution strategy requires that A
and B be calculated, an appropriate part of the pair {¢, ¢,} be specified, and (3.4)
be solved for the nonspecified part of that pair. Once this is done, an interior
form of (3.3) is used to generate ¢(x) pointwise at selected x € B to complete the
solution process. Often, however, only the boundary solution is of interest, such
that nonspecified ¢ or ¢, or, perhaps, d¢/dS are all that are required. This last
quantity is easily obtainable using the fact that ¢( y) is represented in terms of ¢
and the shape functions.

In some problems, as is the case with the third of our example problems to
follow, there is an integrable singularity in the first derivatives of ¢ (and thus in
¢,) at one or more isolated points on the boundary S§. In such a problem,
representation of ¢, by means of ordinary shape functions (¢f. (3.2) and A.1) may
be insufficient. Special shape functions are introduced in such a case as follows.

2P 2r

Figure 1. Standard boundary element in E2.

Consider a standard element y in E2, with local nodes @ = 1,2, 3 and intrinsic
variable £ as shown in Figure 1. Suppose the function ¢,(¢) has a singularity at
node 1 of known order s such that we may define a special shape function of the
form

M) r)=A4r'+Br’+Cr+D, 2r=1+¢ (3.5)
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with the requirements that for
r-0, MMNr)- oo,
r=1, M(r)=0, (3.6)
1, MNr)=0.

These requirements may be satisfied by choosing

r

A=1, B=4(})’ =2, C=1-4(1), D=0 (3.7)
so that in terms of £, M, has the form
Mi(E) = (1[0 + 8 = (1 - £)] - 360+ 8). (3.8)

Thus if ¢,(£) has a singularity of order s at node 1, then replacing M'(£) in (A.1)
by M/(£) as given by (3.8) will result in a more accurate representation of ¢,(£)
over v. Note that the quantity ¢! in the representation ¢,(£) = M*(£)¢® is no
longer the value of ¢, at node 1 under these circumstances. Rather, ¢! here is a
finite-valued constant expressible in terms of the coefficient of the power of r
representing the singularity (e.g. term in parenthesis in (6.7)).

With the introduction of M)(§), it is clear from (3.3) that it is now necessary to
evaluate integrals of the form

1
I'= [ MUK x5, 2(8); k] I°(8) dt (3.9)
as ingredients in the matrix A of (6.12). The “singular” part of this integral is
1 s Y
L :f,(l + €)' K[ xg, y(£); k] J7(8) dt (3.10)

in which the singularity in K is logarithmic as § —» xg. Four cases of interest
occur: xg occupies none of the nodes on v, and B8 = 1,2, 3, i.e. x4 at each of the
three nodes on y. For the first case, (3.10) may be integrated by parts, and for the
range of s of interest in our third example (cf. (6.7) et seq.) the resulting integrand
in the remaining integral is nonsingular and may be evaluated by Gaussian
quadrature as usual. For x,z occupying the nodal positions, an integration by parts
together with the transformations

£E=1-1¢7%, a=1,
¢=¢ort= - a=2, (3.11)
E=tr~1, a =3,

again produces non-singular integrands. Transformations (3.11) are used accord-
ing as xz occupies the indicated positions (for a = 2, § = ¢ 2 is used for integra-
tion from nodes 1 to 2 and ¢ = -{? for integration from nodes 2 to 3). Again,
ordinary Gaussian quadrature may be used.
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Modifications associated with a singular shape function M>(§) to be used if the
singularity occurs at node 3 are almost identical to the above. By choosing an
element endpoint (node 1 or 3) to coincide with a singularity, one need never be
concerned with a shape function M2(£).

4. A plane-wave-scattering problem

Let a rigid circular cylinder of unit radius be surrounded by a scalar-wave-
propagating medium B, of infinite extent, with wave-propagation speed c. Fur-
ther, let ¢ be the (complex) velocity potential (e.g. [20]) for time-harmonic waves
in B of frequency w, such that

v+ k=0 (4.1)
must hold throughout B, where the wave number k = w/c. Moreover, we assume
that ¢ satisfies the Sommerfeld radiation conditions ([13], page 144). Now let ¢,
be the poiential for a plane harmonic wave incident on the cylinder such that the

cylinder axis is parallel to the plane of the incident wave. We seek the total wave
potential ¢ in B, which is the sum ¢, + ¢, where ¢, is the field scattered from the

cylinder.
X2

—
——

Node |
—

Xy

e
—
\ Rigid Cylinder

Incident Wave

b0 ikx,
Figure 2. Plane wave scattering problem.

All variables in this problem, as posed, are independent of x,, the direction of
the cylinder axis, so that the problem becomes one in E2. The circular boundary
S, the coordinate system, and the incident wave are as shown in Figure 2. The
necessary function K (¢f. (2.1)) for (4.1) in E?is

K(x,y; k) = §[Hy(kr)], i=y-1 (4.2)
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with r =|y — x|, and H, is the Hankel function of the first kind of order zero.
Therefore, including the effects of ¢, directly (cf. [13]), (2.2) becomes explicitly

e(x)9(x) = 9o(x) + 3 [ [6(2)Ho(x. 33 k) = 4.()Holx, ; k)] dS(»)

(4.3)
where ¢(x) is 1 or 1 according as x € B or x € S, respectively. For the rigid
cylinder, ¢,(y) = 0, so that the second integral in (4.3) vanishes, and we seek
().

Now, as discussed in Section 3, the approximate form of (4.3) is
A = ¢ (4.4)
in which ¢ and ¢, are the nodal values of the unknown surface potential and the
known incident plane-harmonic potential, respectively. The matrix A is as
described in (3.4). Specifically, we first discretize the circle S into M =9
equal-length curvilinear elements and N = 18 nodes, i.e., a node is located on S

16

o

o]
n

Scattered Potential |¢=|
o
®

04

02

0k ] | | 1
o

Wave Number, k

Figure 3. Scattered potential as a function of wave number.
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at equal intervals of 20° beginning with node 1 on the x, axis. This discretization
is used for all chosen values of k up to k = 3.0. For values of k > 3.0, N = 36
nodes is used, i.e. a node every 10° on S. Higher values of k require increased
resolution for accuracy, as might be expected.

Data are obtained for nodes at § = 0° and # = 180°, and the magnitude
[¢,|= (R ¢ + 992)'/? of the scattered potential is plotted in Figure 3 as a
function of k for these two positions. The solid curve represents the analytical
solutions, and the (0) and (+) represent the BIE data. Results as shown are
excellent except for data in the vicinity of k = 2.405 and k = 5.572, which are
wave numbers corresponding to eigenfrequencies of the “associated interior
problem” under the soft (¢ = 0) boundary condition (cf. [5]). Inaccurate BIE
data are expected at or very near these values of k, since any integral formula of
the type (4.3) is known to break down at such wave numbers. It is possible to
reformulate the scattering problem (e.g. [19], [11]) to circumvent the difficulties
with the mentioned eigenfrequencies, but such reformulation is beside the pur-
pose of the present paper. However, we find that with the present procedures,
ordinary accuracy is obtainable at values of k& which are two to three percent
away from the eigenvalue, so that serious difficulty with this “fictitious eigen-
frequency” phenomenon is not, in fact, encountered. Further, the reciprocal of
the condition number of the matrix of coefficients A drops noticeably in size very
near the eigenvalues. This could be used as a guide to the acceptability of
computed data near an eigenvalue in problems where that eigenvalue may be a
priori unknown.

5. A potential flow problem

To illustrate the solution process for a problem in E?, consider the flow of an
ideal fluid past a rigid sphere of radius a. For flow in the positive x, direction the
well known expression (e.g. [18]) for the velocity potential ¢ is

¢=U(l+a*/2R?)Rcos 8 (5.1)

in which R is the distance from the sphere’s centre to an arbitrary field point x, 8
is the angle between R and the x; axis and U is the undisturbed or free-stream
velocity. The potential ¢ satisfies Laplace’s equation

vip=0 (5.2)

in the region B exterior to the spherical surface S, with ¢, = 0 on S itself.
Now we seck a BIE solution for the function ¢* = ¢ — UR cos § where on s,
¢ = U(R/a)cos 8. We choose to work with ¢* explicitly rather than ¢, since ¢*
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satisfies the required conditions at infinity whereas ¢ does not. The necessary
function K (cf. (2.1)) for (5.2) in E* is

K(x, y) = 1/4nr(x, y) (5.3)
such that (2.2) explicitly becomes

. — o*(y
am | r(x, y) T \ r(x y))
where again r =|y — x|, ¢(x) = 1 or 3 according as x € B or x € S, respec-
tively, and in which we specify ¢¥ = U(R/a)cos 6.

Under a discretization of S as discussed in Section 3 the approximate form of
(5.4) may be written as

} i) (54)

Ad* = b* (5.5)

where b* = B¢} is a known vector (¢f (3.4)), and ¢* and ¢} represent nodal
values of the functions ¢* and ¢}, as before. Here we consider two discretizations
of the spherical surface S into curvilinear triangular elements. The first discreti-
zation divides S into octants, so that M = 8 elements with N = 18 nodes. The
second discretization uses a symmetrical subdivision of each octant into three
smaller, congruent, curvilinear triangular elements, such that M = 24 elements
with N = 50 nodes. For each discretization ¢* is obtained as the solution of (5.5).

For the cruder discretization, ¢* departs from the corresponding analytical
values by about 13%. At points x € B at distances from 1.5a to 100a, (5.4) (with
c¢(x) = 1) yields ¢* values averaging 20% error. Using the finer discretization
these errors are reduced to 3% and 4% respectively. Note that M = 24, though
finer than M = 8, is still a somewhat crude discretization of a spherical surface.
We find both sets of accuracy figures surprisingly good (cf. [12], [4] using plane
triangle elements) and suggestive of the computational efficiency of the isopara-
metric representation for curved surfaces in three dimensions.

6. A moving-flame, heat-conduction problem

The following is a basic model for a class of problems in flame-spread analysis
with application to fire control ({7], [1]). Consider an indefinitely long, infinitely
wide slab of combustible solid material of finite thickness which is burning at one
end. A typical plane section of the slab is shown in Figure 4a. The flame is
confined to the inclined faces of the wedge-shaped end, and the burning process
causes the wedge shape to move downward at a uniform speed V. while the wedge
angle a remains constant.
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Flame E

K

Spread Line SL

S WL e

(a) (b) ¢

Figure 4. Burning slab model.

Allowing axes of spatial coordinates 7, (i = 1,2) to move with the flame, the
governing differential equation in non-dimensional form for the thermal field

throughout the slab (e.g. [1]) is

ad 82 9?2
v =P—, vi=—+ — 6.1
om an} (6.1

where 6 is the non-dimensional temperature, and P is the so-called Péclet number.
This number is known in terms of the slab half-thickness 7, ¥, and other thermal
parameters. We need consider only a half-thickness of the slab as shown in Figure
4b, and from symmetry there is zero heat flow across the centre-line EF.

The specific boundary value problem here is to find 4 throughout the finite
plane region EFGH under the boundary conditions

6, =0 onedgesEF,GH,
=1 onedge FG, (6.2)
=0 onedge HE.
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Of particular interest in this problem is the heat flux Q across the spread line
(SL),i.e.,

a0
=| s—dny,=P| 6d 6.3
Q /SL an, m /SL T ( )

where the second integral expression for Q follows from Green’s theorem.
Now (6.1) can be easily put in the form (1.2) through the transformation

0 =exp(pm )y, P=2p (6.4)
such that in terms of the transformation function ¥, (6.1) becomes
vy —py =0 (6.5)
with
Y, =0 on edges EF, GH,
¥ = exp(-pm,) onedges FG, (6.6)
y=20 on edge HE,

as the corresponding boundary conditions.

The boundary value problem in the form (6.5), (6.6) is now ready for a BIE
treatment as in the preceding sections, but it should be noted that a singularity in
the function y, exists at the point G for a >0 (Figure 4). An elementary
eigenvalue analysis (cf. [22], [23]) reveals that for sufficiently small r near G, we
may obtain the order of singularity in y, from

Y(r,6) =r*c;sinAd + c,cos Ad ), (6.7)

where (r, §) are polar coordinates of a point in B or S near G, ¢, and c, are
constants, and A has the value 7/28 with 8 = #/2 + a (Figure 4). Clearly then, ¢
has an unbounded gradient for 7 /2 < 8 < 27 at r = 0. Physically, this implies
that the local heat flux g, which is proportional to y, at any boundary point, is
undefined at G. This singularity, however, is integrable, so that while attention is
required to represent this singularity with special shape functions (¢f. (3.5) et seq.)
with attendant modifications in the numerical process, the analytical BIE state-
ment of the problem may proceed as outlined in Section 2.
The necessary function K (cf. (2.1)) for (6.5)in E? is

K(x,y; k) =2-Ko(x, y; p) (6.8)

where K, is the modified Bessel function of the second kind of order zero. The
BIE formula, i.e. (2.2), now has the explicit form

2a¢(x)¥(x) = [[W()Ko(x, 75 P) = $(2)Ko(x, 7; p)] dS(»)  (69)
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where S is the boundary of the region in Figure 4b, i.e. the union of the line
segments EFGH. Here ¢(x) = 1 for x € B, where B is the region interior to S,
and c¢(x) =1 for x € §, except when x occupies the “corner” points, E, F, G,
and H. At these points ¢(x) equals the interior angle (in radians). However, ¢(x)
for any x € S may be obtained without explicit attention to the corner points,
since the function

y* = exp(pmy) (6.10)

is an elementary solution of (6.5) and thus satisfies (6.9) as well. Substituting ¢*
into (6.9) and solving for c(x) we obtain

e(x) = %fs{%[ﬂ%(% y; P) — Ko(x, y; p)]} ds(y)

(6.11)

which is used for all computations of ¢(x), x € S, including x at the corner
points. This approach for ¢(x) provides more systematic and accurate computa-
tion of improper integrals which arise following discretization of (6.9) than would
separate calculation of interior angles at corners (cf. [15]).

In the present problem, boundary data (see (6.6)) are mixed such that the
unknown functions in (6.9) are Y( y) on edges EF and GH and {,,(y) on edges FG
and HE. Under a discretization of S, (6.9) has the form

Au=vy (6.12)

in which u is the vector of unknown values of § and 4y, at nodes on S, except, of
course, for the value of y, at point G, which is undefined. (See comment following
(3.8).) Also v is the vector of known nodal values obtained from integrals of
prescribed (non-zero) data, and A is the matrix of coefficients of the unknowns,
as before. However, here A includes integrals of special shape functions used to
represent Y, over one element on S, adjacent to point G, at one end of which ¥, is
singular. Using 7 = 1 and locating surface HE 5 units away from the spread line
(Figure 4b) proved sufficient to employ the § = 0 (¢ = 0) boundary conditions
on HE for all calculations.

For a = 0, there is no singularity at point G, and the analytical solution in
terms of 8 with boundary conditions (6.2) is simply 8 = exp( p7,). Using M = 16
elements (N = 32 nodes), BIE data for # on the boundary and at several interior
points compare with analytical values with an error of less than 0.1%. Normalized
flux values, 8, on S, similarly compare with an error of 0.15%.

For 0 < a < /2 the situation is complicated by the fact that 6, is singular at
point G with order of singularity r*~ (see (6.7) et seq.), and an analytical solution
is not available for data verification. The authors [1] were interested in the
solution of this problem prior to the development of the singular shape functions

https://doi.org/10.1017/50334270000004239 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000004239

514 M. Rezayat, F. J. Rizzo and D. J. Shippy (14]

(SSF) as described in Section 3. It was decided to obtain BIE data, using ordinary
shape functions (OSF) (A.1), for « in increments of 10° from a = 0° to a = 90°,
for a variety of Péclet numbers P. Sufficiently fine discretizations (large M with
small elements “bunched” near G') were used to try to obtain meaningful values
of Q (6.3) and # (along edge GH), which were of primary interest in their heat
transfer studies [1]. It was anticipated that the admitted inadequate representation
of the singularity in 8, at G using OSF would be minimized with the fine “mesh”
near G and that the variable of interest away from G would be little affected. By
and large, this proved to be true; Q as a function of a obtained from the BIE
analysis agreed well with asymptotic expressions valid for small a and /or large P.
Further, surface § so obtained agreed well with experimental values for a = 80°
and several values of P as shown in detail in [1]. However, despite the success in
[1] for the intended purpose there, we were dissatisfied with the “brute force”
discretization procedures used and raised the following questions. To what extent
could coarser discretizations be used with SSF and maintain desired accuracy of
all data? Also, how well could we represent 6, along edge GF using SSF and how
bad was the representation using OSF? (The criteria for mesh grading suggested
in [14] would undoubtedly improve the performance of the OSF in representing
the singularity.)

-
a =60° a=60°
< - -4 -
<
E & - - 1»-
M=19 M=13
b o -J» - -
N=38 N=26
p
- - -4( -
< -+ < -
(a) (b)

Figure 5. Two discretizations a = 60°.
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5.
4
—®— {3 elements using SSF
x 13 elements using OSF
3 O 19 elements using OSF

Figure 6. Behavior of §, on edge GF near G.

To answer these questions, SSF were introduced as indicated in Section 3, and
additional BIE solutions were obtained for the & = 60° and a = 80° cases, with
P = 1, using successively coarser meshes and comparing accuracy and CPU times
using OSF and SSF. It was found that a reduction of 20% to 30% in the total
number of elements with no need for bunching of elements near G could be
achieved using SSF, maintaining comparable accuracy of data overall. For
example, Figure 5 depicts two discretizations for a = 60°, the coarser of which
yielded virtually identical Q and surface # using SSF as did the finer one using
OSF. CPU time, mostly dependent on M, was reduced accordingly. Moreover,
when used with OSF the coarser mesh yielded data differing from the accepted
values by as much as 7% away from the singularity (see Table 1).

Near the singularity, the variation of 8, with distance / from G along edge GF is
depicted in Figure 6. The solid curve is the representation using SSF for the
known order of singularity for « = 60°. Clearly the representation using OSF is
different very near G where the SSF representation approaches the exact repre-
sentation. Thus through increased accuracy of local representation the SSF seem
to provide a measure of overall computation efficiency as well.

Numerical data for the problems in this and the preceding sections were
obtained using an IBM 370/165 computer with no advantage taken of any
symmetry in B in programming. Execution times for individual problem solutions
ranged from 2 to 15 seconds.
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TABLE 1. The boundary temperature at 7, <0 and 5, = 0 for @ = 60° and Péclet number of one.

Boundary temperature ¢
m OSF SSF OSF
(n,=0) Mesh Figure Sa Mesh Figure 5b Mesh Figure 5b
~0.5 0.4538 0.4579 0.4845
-1.0 0.2636 0.2663 0.2823
-1.5 0.1565 0.1581 0.1678
-2.0 0.0928 0.0937 0.0996
-25 0.0544 0.0549 0.0584
-3.0 0.0311 0.0314 0.0334
-35 0.0169 0.0171 0.0182
-4.0 0.0084 0.0084 0.0090
-4.5 0.0032 0.0032 0.0034
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Appendix

Ordinary Shape Functions
(a) One-Dimensional (E?)

M) =-4(¢—¢%), MHE=1-¢, M(&=4{(¢+¢). (A1)

(b) Quadrilateral (E?)
Mi(§) = 2(§, + (& + 1)(¢
Mi(§) = 3(§ — 1)(&, + 1)
Ma(§) =31 = )& 1)
Mg(8) =3¢+ 1D)(&— 1)

+£z—1), Mi(¢) =3(¢ + D(1 - &),
§-&+1), MYE)=4(&+ D -8
$+§2+1), M(§) =41(¢, — 1)(& 1),
-6 +1), MME=31-§)(1~¢).

AA/‘\A

(c) Triangular
M7 (€)= &(2¢ — 1), Mp(§) =44,
M7 (§) = £,(2¢, - 1), MP(8) =484, & +&+ =1, (A.3)
M7 (&) = £(28; — 1), MR(§) = 44,¢,.
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