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Abstract

A random rooted labelled tree on n vertices has asymptotically the same shape as a branching-type
process, in which each generation of a branching process with Poisson family sizes, parameter one, is
supplemented by a single additional member added at random to one of the families in that generation. In
this note we use this probabilistic representation to deduce the asymptotic distribution of the distance
from the root to the nearest end vertex other than itself.
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1. Introduction

There are n"~2 different trees on the labelled vertex set {vlt v2,..., vn}. Let Tn denote a
randomly chosen member of this collection, each member having equal probability
of being chosen. Meir and Moon have explored many properties of Tn when n is
large; their methods are largely enumerative and analytical and make considerable
use of the exponential generating function

of the numbers of labelled trees. It is the purpose of this note to exploit a
probabilistic representation of Tn in terms of branching processes in order to solve a
problem concerning the shortest distance between a specified vertex and the
endvertices of Tn other than this vertex.

A random walk about the vertices of Tn is a sequence Vo, Vlt V2, ••• of vertices,
possibly with repetition, randomly chosen according to the rule that Vk+1\s picked
uniformly at random from the collection of vertices of Tn which are adjacent to Vk\ Vo
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is a specified starting point. Conditional upon Tn being given, {Vt: i = 0,1,...} is a
Markov chain; it is easy to check that it has stationary distribution
{TT; : i — 1,2,..., n} given by

7T,. = d ; (2(n- l ) ) - ' ( i= 1,2,...,/!),

where rf, is the degree of the vertex vt in TB; a similar result holds for random walks
about the vertex set of any finite undirected graph. Meir and Moon have been
concerned with certain first passage times associated with the chain. For example.
Moon (1973) shows that the time vn of the first visit to r2 starting from i^, given
formally by

vn - m i n {m: Vm = v 2 } g i v e n Vo = Vl,

satisfies

(1) E(vn) ~ (^nn'f.

Also, Meir and Moon (1975) show that the time /„ of the earliest visit to an endvertex
of Tn after the commencement of the walk, given by

/.„ = min {m ^ 1: Vm is an endvertex} given Vo = vt,

satisfies

(2) P(An = k ) - > k p 2 q k ~ \ w h e r e p = l - q = e ~ \

a n d

Related work on climbing random trees is described in Moon (1976) and Meir and
Moon (1978a). Result (1) contrasts strongly with an earlier result of Meir and Moon
(1970, 1978b), which asserts that the number yn of edges in the unique path of Tn

joining vertices i\ and v2 has mean value

E(yn) ~~ (inn)*.

Here, we answer the corresponding question to result (2): what is the limiting
distribution as n —• x of the distance between î  and the nearest endvertex of Tn

other than vx ? In Section 2 we describe an enumerative approach to the problem, in
the spirit of Renyi and Szekeres(1967), who used techniques of complex analysis to
answer a similar question. In Section 3 we show that, for large n, Tn has
asymptotically the same stochastic shape as a random process defined in terms of
branching processes. This observation enables us to use easy recursive arguments to
solve the problem in question. Other problems may be susceptible to solution by the
same method.
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Similar combinatorial and probabilistic arguments may be used to find the
asymptotic distribution of the distance from vt to the nearest end vertex, including
i\ if it has degree one.

See Grimmett (1980) for a review of the theory of random trees and other random
graphs.

2. A combinatorial approach

Let T be a labelled n-lree with vertices v,, v2, •••, vn, and let d(T) be the number of
edges in the shortest path from t>, to an endvertex of T, other than vy if it has degree
one. Let T{k, n) = \{T: d\ T)^ k}\ be the number of n-trees with d(T) ^ k, and let

(3) G4(.x) = IB
x

=1T(fc,»)x"/(M-l)!

be the exponential generating function of the T(k, n) for fixed k. It is clear that
T(0. n) = n"'2, and it follows that G0(x) satisfies

G0(x) = xexp(G0(x)).

Furthermore, if n, k ^ 1,

xr(/c-l,a1)T(fe-l,a2)...r(fc-l,ar),

where £ a sums over all sequences {a1,a2,—,ar} with sum n— 1. This holds because
d(T)^ k if and only if each vertex v adjacent to vt is at least distance k — 1 from the
nearest endvertex other than v itself in the subtree of T comprising all vertices
including v whose unique path to v1 passes through v. Multiply (4) by x"/(n— 1)! and
sum over n to obtain

(5) Gk(x)

which is a functional recurrence relation for the Gk subject to the condition

(6) G0(x) = I > " - 2 x 7 ( n - l ) !

It may be possible to use these relations to determine the asymptotic probabilities

that a large random tree Tn has d(Tn) ^ k. Renyi and Szekeres (1967) have been able
to do this in a similar case; however, it seems more natural to proceed by
probabilistic techniques.
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3. A branching-type process

Let {Xt: i ^ 0} be the sizes of the generations in a branching process in which
Xo = 1 and each family size has the Poisson distribution with parameter /.. The total
progeny

is almost surely finite if and only if A ^ 1. The graphical representation of the process
is a tree with JV vertices which is similar in appearance to a random labelled iV-tree in
the following sense. Consider the random tree Tn rooted at vx. The /cth stratum of Tn

is the collection of vertices of Tn which are exactly distance k from u,. Let Z(k, n) be
the size of the fcth stratum.

THEOREM 1 (Kolchin (1977)). The sequence {Z(i,n): 0 •-- / < n\ has the same joint
distribution as the sequence [Xf. 0 ^ i < x } conditional upon the event [N = n).
That is,

(7) P(Z(i, n) = r,., 0 < i < n) = P(Xt = r,, 0 < i < x | N = n).

Kennedy (1956) has studied asymptotic properties of a branching process con-
ditioned upon the value of the total progeny. His results imply that the asymptotic
distribution are independent of A; henceforth we assume that / = 1. Furthermore he
shows the following

THEOREM 2 (Kennedy (1975)). If ^ < i2 < ... < ik then

(8) limn^x P(XU = rjj = 1,2,...,* | N = n) = rkP(Xn = rp j = 1,2,...,*)

These two theorems contain information about the likely shape of a random tree
as n -* X). When suitably corrected, Kennedy's Theorem 3 contains as a special case
a third solution to the problem, independently solved twice already by Renyi and
Szekeres (1967) and Stepanov (1969), of determining the asymptotic distribution of
the height of a random tree.

It is not difficult to deduce that the asymptotic form of /„ is the same as that of a
branching type process T denned as follows. A population is constructed recursively
according to generation number by the stochastic rules:
(a) The zeroth generation contains one member;
(b) For k > 0, the (fc+l)th generation Ak+l is the union of the families of

descendants of the members of the /cth generation Ak, together with one
additional member which is allocated at random to one of these families, each of
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the | Ak | families having equal probability of being chosen. Before the allocation
of this supplementary member, all family sizes are independent of each other and
the past, and are Poisson distributed with parameter one.

Hence, for example, the size Yk of the /cth generation satisfies

(9) Yk+1 = l +

where {F,: ! > 1} is a collection of independent Poisson variables; the process can
never become extinct. Realizations may be represented graphically as trees rooted at
the initial member, with edges joining father-son pairs.

The next theorem concerns the asymptotic shape of Tn for large n. Let A: be a
positive integer. Draw the subtree of Tn comprising the vertices of Tn which are in
one of the first k strata only. Within any family, order the vertices in, say, increasing
lexicographic order, and then delete all labels except that of the root; call the
resulting random tree Tn\

THEOREM 3. As n -* v the characteristics of T* become indistinguishable in
distribution from the corresponding characteristics of the tree representation of the first
k generations of the branching type process Tdescribed above.

Thus the probabilities of events such as {d(Tn) ̂  k}, which are describable in terms
of the first / strata of Tn for some /, approach as n —• oo the probabilities that the
corresponding events occur in T. That is, instead of calculating P(d(Tn) ^ k) and
letting n -> x , we may first let n -* oo and then calculate the limit probability
directly.

The next theorems are corollaries.

THEOREM 4. The number N(k,n) of endvertices of Tn in the kth stratum has
probability generating function

where y0 = 1 — e~ 1 +xe~ ' and fk is the kth iterate of the Poisson generating function

THEOREM 5. P(d(TJ ^ k) -* nk as n -> x where

and the a,- are given recursively by
a0 = 0, ai+1 = e x p ( a i ) - e ~ 1 - l .

It is not difficult to show that a,+ 1 ~ Ae~' for some A > 0.
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PROOF OF THEOREM 3. We show that the joint distribution of the family sizes of
members of the /cth generation of the branching-type process, conditional upon the
past, is the limit as n -> oo of the joint distribution of the corresponding quantities
associated with the vertices in the /cth stratum of Tn, conditional upon the numbers
of vertices in earlier strata.

First consider the process {^: i ^ 0}. List the family sizes Gl,...,Gr of the r
members of the /cth generation in some arbitrary order. Their joint probability mass
function is

(10) p(al,a2,...,ar) = 'E.Ui

rai\...ar\

where u = al + a2 +... + ar.
Now let z = (zl,z2,...,zk) be a sequence of positive integers, and let T(z,n) be the

number of trees with n labelled vertices such that Z(i, n) = z, for i = 1,2,..., k. Then
putting r = zk and s = l+z{+z2 +... + zk,

where £b sums over all sequences (bl,b2, •••,bt.) with sum n + r — s and C(z, n) is the
number of ways of labelling the s vertices in the first k strata.

But consider the number of trees with JV labelled vertices v1, v2, •••, vN in which i\
has degree t. The number of such trees is

since the probability that vi has degree t in TN approaches (e{t — 1)!) ' as N -> x .
Thus

(12) T(z,n) ~ C(z,n)(n + r — s + l)"~s~ ' re" 1 .

The number of trees contributing to T{z, n) which have the property that
(a1,a2,...,ar) is the sequence, arbitrarily ordered, of numbers of pendant vertices
from the r vertices in the fcth stratum is

TI \ r-i \( n ~ s \\r ( n-S~U X

T{z'a'n)=C{z'n\aua2,...,ar,a)^{bl-l hu-

where u = al+a2 + ... + ar and a = n-s — u. From (11).

(13) T(z,a,n) ~ C(z,ri) j , ue~
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Divide (13) by (12) and let n -> oo to obtain

ra,! . . .a r !

which coincides with (10) us required. This proves the theorem.

PROOF OF THEOREM 4. From (7), the number Z(k, n) in the /cth stratum of Tn has the
same distribution as Xk. conditional upon {N = n). Hence, from (8),

P(Z(k, n) = i) -> iP(Xk = i).

Thus, the probability generating function Fk n(y) = £(vz<fl'n)) satisfies

Of course, Yk also has generating function Fk(y). Furthermore, the number Nk of
contributors to Yk which have family size zero is the sum of Yk — 1 Bernoulli
variables, each taking the value 1 with probability e~l; the l^th family is that with
the compulsory supplementary member. Hence

as required.

PROOF OF THEOREM 5. Let i = (i,,^,..., ik) be a sequence of positive integers, and let

Aj = {Nj = 0} and Bj = {Y, = i}} for ; =1,2,. . . , k.

From Theorem 3, P(d(Tn) ̂  k + 1) -> P(/li A2... /l^). But, by elementary consider-
ations about conditional probabilities,

with the convention that the intersection of an empty set of events is the whole
sample space. Using the Markov property

(14)
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where C, (z) is the coefficient of x1 in the generating function Dj(x) of Y} conditional
upon YJ_l = ij_1 and Nj_l = 0. Thus

where P has the Poisson distribution and the F{ are independent variables each with
the Poisson distribution conditioned on being nonzero. Hence

Dj(x) = xex-1((ex-l)/(e-l))ii •""1.

Summing (14) over ik gives

1 — I \ '»

where [il = l—e l. Sum (15) over ik_1 to obtain

(16) P(AX A2...Ak) = X(.-, it_2>nj=i M'"1 Cjttjje"''"2-

where /?2 = e"'(exp(^1)— 1). Continue, to show that

P(A1 A2... Ak) = exp(X^=i(ft— 0) = e x P ( S = i ai) for /c^ 1,

as required, where pQ,pi,... are given by the recursion

j80 = 1, /Jf+1 = e~'(exp (j8j)- 1),

and a, = /?,•— 1. It is easy to check that the /?,- satisfy /^ ~ Ae~' for some X > 0.
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