A Generalisation of a Theorem of Mercer.

By E. T. Copson.

(Received 23rd January 1930. Read 7th February 1930.)
§1. It is well known that, if $n t_{n}=s_{1}+s_{2}+\ldots+s_{n}$, the convergence of s_{n} to a limit implies the convergence of t_{n} to the same limit. The converse theorem, that the convergence of t_{n} implies the convergence of s_{n}, is false. Mercer ${ }^{1}$ proved, however, that if $s_{n}+a t_{n} \rightarrow(1+a) l$ when $a>-1$, then both s_{n} and t_{n} tend to l. This theorem has recently been extended in various directions. ${ }^{2}$ In the present note the case of Abel limits is considered.

We say that s_{n} tends to l in Abel's sense, ${ }^{3}$ or symbolically, that

$$
A-\lim s_{n}=l
$$

if the series $\sum_{1}^{\infty} s_{n} x^{n}$ is convergent for $0<x<1$ and

$$
\lim _{x \rightarrow 1-0}(1-x) \sum_{1}^{\infty} s_{n} x^{n}=l .
$$

It can easily be shown that, if

$$
A-\lim s_{n}=l
$$

then

$$
A-\lim t_{n}=l
$$

That the converse of this is untrue may be seen from the example

$$
\sum_{1}^{\infty} t_{n} x^{n}=\sin \frac{1}{1-x}
$$

for which A-lim $t_{n}=0$. Here

$$
\sum_{1}^{\infty} s_{n} x^{n}=\frac{x}{1-x} \cos \frac{1}{1-x}
$$

so that $A-\lim s_{n}$ does not exist. We shall prove, for limits in Abel's sense, the following analogue of Mercer's Theorem.

[^0]Theorem I. If A-lim $\left(s_{n}+a t_{n}\right)=l(1+a)$ when $a>-1$, then

$$
A-\lim s_{n}=A-\lim t_{n}=l
$$

By considering the sequence $s_{n}-l$, we see that it is sufficient to prove the theorem in the case $l=0$.
§ 2. Proof of Theorem I.
We are given that $\sum_{1}^{\infty}\left(s_{n}+a t_{n}\right) x^{n}$ is convergent for $0<x<1$, and that

$$
\lim _{x \rightarrow 1-0}(1-x) \sum_{1}^{x}\left(s_{n}+a t_{n}\right) x^{n}=0 ;
$$

we have to prove that $\sum_{1}^{\infty} s_{n} x^{n}$ and $\sum_{1}^{\infty} t_{n} x^{n}$ are convergent for $0<x<1$, and that

$$
\begin{aligned}
& \lim _{x \rightarrow 1-0}(1-x) \sum_{1}^{\infty} s_{n} x^{n}=0 \\
& \lim _{x \rightarrow 1-0}(1-x) \sum_{1}^{\infty} t_{n} x^{n}=0
\end{aligned}
$$

provided that $a>-1$.
Now the convergence of $\sum_{1}^{\infty}\left(s_{n}+a t_{n}\right) x^{n}$ for $0<x<1$ implies that, for every positive value of ϵ,

$$
y_{n}=s_{n}+a t_{n}=O(1+\epsilon)^{n} .
$$

But the equation

$$
s_{n}+a t_{n}=y_{n}
$$

may be written

$$
(n+a) t_{n}-(n-1) t_{n-1}=y_{n}
$$

a difference equation whose solution is, for $n>N$,

$$
t_{n}=\frac{\Gamma(n)}{\Gamma(n+a+1)}\left[C+\sum_{N}^{n} \frac{y_{p} \Gamma(p+a)}{\Gamma(p)}\right]
$$

By the use of Stirling's asymptotic formula for the Gamma-function, we obtain, since $a>-1$,

$$
\begin{aligned}
\left|t_{n}\right| & <K_{1} n^{-a-1}+K_{2} n^{-a-1} \sum_{N}^{n}\left|y_{p}\right| p^{a} \\
& <K_{1} n^{-a-1}+K_{3}(1+\epsilon)^{n} n^{-a-1} \sum_{N}^{n} p^{\alpha} \\
& <K(1+\epsilon)^{n},
\end{aligned}
$$

where K, K_{1}, K_{2}, K_{3} denote positive constants. Since this holds
for every positive value of ϵ, it follows that $\Sigma t_{n} x^{n}$ converges for $0<x<1$. Further since $s_{n}=n t_{n}-(n-1) t_{n-1}, \quad \Sigma s_{n} x^{n}$ converges for $0<x<1$.

Write now

$$
s(x)=\sum_{1}^{\infty} s_{n} x^{n}, \quad t(x)=\sum_{1}^{\infty} t_{n} x^{n} .
$$

It can easily be shown that

$$
t(x)=\int_{0}^{x} \frac{s(u)}{u(1-u)} d u=C+\int_{a}^{x} \frac{s(u)}{u(1-u)} d u
$$

where $a>0$. We are given that, as $x \rightarrow 1-0$,

$$
(1-x) s(x)+a(1-x) t(x) \rightarrow 0,
$$

a being greater than -1 ; this may be written

$$
(1-x) s(x)+a(1-x) \int_{a}^{x} \frac{s(u)}{u(1-u)} d u \rightarrow 0
$$

Put now $\quad x=\exp (-1 / t), \quad(1-x) s(x)=g(t)$; then we have

$$
g(t)+a\left(1-e^{1, t}\right) \int_{\beta}^{t} \frac{g(\theta) d \theta}{\left(1-e^{-1 ; \theta}\right)^{2} \cdot \theta^{2}} \rightarrow 0
$$

as $t \rightarrow+\infty$. Lastly, substitute $g(t)=h(t) \cdot t^{2} \cdot\left(1-e^{-1 i t}\right)^{2} ;$ then

$$
h(t)+\frac{a}{t\left(l-e^{-1 \cdot t}\right)} \cdot \frac{1}{t} \int_{\beta}^{t} h(\theta) d \theta \rightarrow 0
$$

as $t \rightarrow+\infty$.
Now $a / t\left(1-e^{-1 t}\right) \rightarrow a>-1$, so that, applying a recently proved theorem, ${ }^{1}$ we have $h(t) \rightarrow 0$, and consequently $g(t) \rightarrow 0$. We have thus shown that

$$
\lim _{x \rightarrow 1-0}(1-x) s(x)=0
$$

which proves the theorem.
§3. The following theorem involving the Cesaro limit of integral order k is of a type similar to that just discussed, but is very easy to prove.

Theorem II. If $C_{k}-\lim \left(s_{n}+a t_{n}\right)=l(1+a)$ when $a>-1$, then $C_{k}-\lim s_{n}=C_{k}-\lim t_{n}=l$.

[^1]
[^0]: ${ }^{1}$ Proc. London Math. Soc., (2), 5, (1907), 206-224
 ${ }^{2}$ Cf. Vijayaraghavan, Journal London Math. Soc., 3, (1928), 130-134, (who gives references to previous work on the subject) ; Copson and Ferrar, ibid., 4, (1929), 258-264; 5 (1930), 21-27.
 ${ }^{3}$ See, for example, Knopp, Infuite Series, (1928), 498 et sef.

[^1]: ${ }^{1}$ Jownal London Math. Soc., 4 (1929), 258-264; Theorem IV.

