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Abstract

A meander is a topological configuration of a line and a simple closed curve in the plane (or a
pair of simple closed curves on the 2-sphere) intersecting transversally. Meanders can be traced
back to H. Poincaré and naturally appear in various areas of mathematics, theoretical physics
and computational biology (in particular, they provide a model of polymer folding). Enumeration
of meanders is an important open problem. The number of meanders with 2N crossings grows
exponentially when N grows, but the long-standing problem on the precise asymptotics is still out
of reach.

We show that the situation becomes more tractable if one additionally fixes the topological type
(or the total number of minimal arcs) of a meander. Then we are able to derive simple asymptotic
formulas for the numbers of meanders as N tends to infinity. We also compute the asymptotic
probability of getting a simple closed curve on a sphere by identifying the endpoints of two arc
systems (one on each of the two hemispheres) along the common equator.

The new tools we bring to bear are based on interpretation of meanders as square-tiled surfaces
with one horizontal and one vertical cylinder. The proofs combine recent results on Masur–Veech
volumes of moduli spaces of meromorphic quadratic differentials in genus zero with our new
observation that horizontal and vertical separatrix diagrams of integer quadratic differentials are
asymptotically uncorrelated. The additional combinatorial constraints we impose in this article
yield explicit polynomial asymptotics.
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1. Introduction

In the seminal paper [Mi], Mirzakhani computed the asymptotics for the number
of simple closed geodesics on a hyperbolic surface of constant negative curvature.
In particular, she proved that asymptotically, when the bound for the length of
simple closed geodesics tends to infinity, the probability of getting a separating
or nonseparating geodesic becomes independent of the hyperbolic metric.

We count the asymptotics for the number of pairs of transverse simple
closed curves, or meanders, of a fixed combinatorial type on a sphere when the
number of intersections tends to infinity. Our starting observation is that a pair
of transverse simple closed curves which is seemingly a purely combinatorial
object defines a natural complex structure and an ‘integer’ meromorphic
quadratic differential on the original sphere.

Mirzakhani established a relation between the counting of simple closed
curves and Weil–Petersson volumes of the moduli spaces of bordered hyperbolic
surfaces; see [Mi, Theorem 5.3]. Counting pairs of transverse simple closed
curves leads naturally to Masur–Veech volumes of the moduli spaces of
meromorphic quadratic differentials with at most simple poles. In both situation,
an essential ingredient is the ergodicity of a certain group action. In Mirzakhani’s
case, it is the action of the mapping class group Modg,n on the space of measured
laminations MLg,n . In our setting, it will be the GL2(R)-action on (strata of)
the moduli space of quadratic differentials Q(ξ), where ξ denotes the number
of simple poles, the number of zeros and the degrees of zeros of meromorphic
quadratic differentials in the stratum Q(ξ). Both moduli spaces have integral
piecewise linear structures and both counting problems (count of multicurves
and count of pairs of transverse multicurves) can be formulated in terms of
counting integer points in, respectively, MLg,n and Q(ξ). A simple example is
provided by the set of primitive integer points in Z2

⊂ R2. They have asymptotic
density δ = 6

π2 , meaning that in a ball of radius R centered around the origin,
there are δπR2

+ o(R2) such primitive points. Moreover, the density is uniform
(see Section 4.4 for formal definitions).

The other essential ingredient of our proof that has no equivalent in
Mirzakhani setting is a noncorrelation result that we deduce from the product
structure on the strata of quadratic differentials. More precisely, we prove that
for suitable subsets D1 and D2 of square-tiled surfaces, the density δ(D1 ∩ D2)

of their intersection is equal to the product of densities δ(D1) · δ(D2) (see
Theorem 4.16). This noncorrelation result is visible in our meander count: the
constant cyl1,1(Q(1s,−1s+4)) appearing in Theorem 1.1 has an explicit product
type expression given in (2.9).
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Figure 1. Meander with a maximal arc (‘rainbow’) on the left and without one
on the right. Both meanders have five minimal arcs (‘pimples’).

1.1. Structure of the paper. In the first section, we state our results on
meander enumeration. The link with quadratic differentials and Masur–Veech
volumes is explained in Section 2. Section 3 provides the proof of our results on
meander count; it uses general results from the subsequent Section 4. The last
section of the article proves the equidistribution and noncorrelation results in the
moduli space of quadratic differentials.

The paper is organized in such a way that Section 4 can be omitted by the
readers interested only in meanders. On the other hand, the readers interested
only in square-tiled surfaces and moduli spaces of quadratic differentials can
pass directly to Section 4.

Finally, Appendix A describes the geometry underlying two natural
normalizations of the Masur–Veech volume element on the moduli spaces
of quadratic differentials. This clarification is needed to apply the results from
Section 4 to meander count.

1.2. Counting meanders with given number of minimal arcs. A closed
plane meander is a smooth closed curve in the plane transversally intersecting
the horizontal line as in Figure 1. According to the paper [LdZv] of Lando and
Zvonkine (serving as a reference paper in the literature on meanders), the notion
‘meander’ was suggested by Arnold in [Arn] though meanders were studied
already by Poincaré [Po]. Meanders appear in various contexts, in particular,
in physics; see [DiFGG1]. The number of meanders with 2N crossings is
conjecturally asymptotic to const · R2N

· N α, where R2
≈ 12.26 and α ≈ −3.42

are constants (we refer to [Jen] for the values of the constants). The conjectural
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exact value α = − 29+
√

145
12 is given in [DiFGG2]. They derived this value from a

related conformal field theory.
A meander has a maximal arc (a ‘rainbow’ in terminology of [ACPRS]) if it

has an arc joining the leftmost and the rightmost crossings with the horizontal
line. Otherwise, the meander does not have a maximal arc. The meander on the
left of Figure 1 has a maximal arc, while the one on the right does not.

By minimal arc (‘pimple’ in terminology of [ACPRS] or ‘internal arch’ in
terminology of [DiFGG1]), we call an arc which does not have any crossings
inside. The areas between the horizontal line and the minimal arcs of meanders
are colored in black in Figure 1; each of the two meanders has p = 5 minimal
arcs.

By convention, in this paper, we do not consider the trivial meander
represented by a circle. All other meanders satisfy p > 3 when they have
a maximal arc and p > 4 when they do not.

Let M+

p (N ) and M−

p (N ) be the numbers of meanders, respectively, with
and without maximal arc (‘rainbow’) and having at most 2N crossings with
the horizontal line and exactly p minimal arcs (‘pimples’). We consider p as
a parameter and we study the leading terms of the asymptotics of M+

p (N ) and
M−

p (N ) as N →+∞.

THEOREM 1.1. For any fixed p, the numbers M+

p (N ) and M−

p (N ) of meanders
with p minimal arcs (pimples) and with at most 2N crossings have the following
asymptotics as N →+∞:

M+

p (N ) = 2(p + 1) ·
cyl1,1

(
Q(1p−3,−1p+1)

)
(p + 1)! (p − 3)!

·
N 2p−4

4p − 8
+ o(N 2p−4)

=
2

p! (p − 3)!

(
2
π 2

)p−2

·

(
2p − 2
p − 1

)2

·
N 2p−4

4p − 8
+ o(N 2p−4). (1.1)

M−

p (N ) =
2 cyl1,1

(
Q(1p−4, 0,−1p)

)
p! (p − 4)!

·
N 2p−5

4p − 10
+ o(N 2p−5)

=
4

p! (p − 4)!

(
2
π 2

)p−3

·

(
2p − 4
p − 2

)2

·
N 2p−5

4p − 10
+ o(N 2p−5). (1.2)

The quantities cyl1,1(Q(1p−3,−1p+1)) and cyl1,1(Q(1p−4, 0,−1p)) in the
above formulas are related to Masur–Veech volumes of the moduli space of
meromorphic quadratic differentials. Their definition and role are discussed in
Section 2. Theorem 1.1 is proved in Section 3.5 with the exception of the explicit
expressions for these two quantities evaluated in Corollary 4.30 in Section 4.10.
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Note that the number M+

p (N ) grows as N 2p−4, while M−

p (N ) grows as N 2p−5.
This means that for large N , all but a negligible fraction of meanders having any
given number p of minimal arcs (pimples) do have a maximal arc (rainbow) as
the left one in Figure 1.

Our approach to counting meanders differs from the traditional one: we
fix the combinatorics of the meander and then count the asymptotic number
of meanders of chosen combinatorial type as the number of intersections N
tends to infinity. Our settings can be seen as a zero temperature limit in the
thermodynamical sense, where the complexity of a meander is measured in terms
of the number of minimal arcs. Namely, let us count meanders with the weight
e−βp, where β > 0 is a parameter and p is the number of minimal arcs. Then
β = 0 corresponds to the standard count of meanders. In the ‘zero temperature
limit’ β → +∞ meanders with few minimal arcs, as considered in this paper,
become predominant.

Applying Stirling’s formula, we get the following asymptotics for the
coefficients in formulas (1.1) and (1.2) for large values of parameter p:

2
p! (p − 3)!

(
2
π 2

)p−2

·

(
2p − 2
p − 1

)2

·
1

4p − 8
∼

π 2

256
·

(
32e2

π 2 p2

)p

for p � 1.

4
p! (p − 4)!

(
2
π 2

)p−3

·

(
2p − 4
p − 2

)2

·
1

4p − 10
∼

π 2e2

128p
·

(
32e2

π 2 p2

)p−1

for p � 1

(we again recall that in our setting, we always assume that N � p).
In Section 3.5, we provide an analogous statement, Theorem 3.8, which counts

meanders in the setting where the combinatorial type is specified in a more
detailed way.

1.3. Counting meanders with given reduced arc systems. Extending the
horizontal segment of a plane meander to the infinite line and passing to a
one-point compactification of the plane, we get a meander on the 2-sphere. A
meander on the sphere is a pair of transversally intersecting labeled simple closed
curves. It will be always clear from the context whether we consider meanders
in the plane or on the sphere. Essentially, we adhere to the following dichotomy:
enumerating meanders, as in the previous section, we work with meanders in
the plane, while considering frequencies of pairs of simple closed curves among
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V. Delecroix, É. Goujard, P. Zograf and A. Zorich 6

Figure 2. A meander on the left. The associated pair of arc systems in the middle.
The same arc systems on the discs and the associated dual trees on the right. Both
arch systems on the discs have a tripod as a reduced dual tree.

more complicated pairs of multicurves, as in the current section, we work with
meanders on the sphere.

Each meander defines a pair of arc systems in discs as in Figure 2. Arcs in
each of the two arc systems do not intersect pairwise. An arc system on the disc
(also known as a ‘chord diagram’) can be encoded by the dual tree; see the trees
in dashed lines on the right pictures in Figure 2. Namely, the vertices of the tree
correspond to the faces in which the arc system cuts the disc; two vertices are
joined by an edge if and only if the corresponding faces have a common arc. It
is convenient to simplify the dual tree by forgetting all vertices of valence 2. We
call the resulting tree the reduced dual tree.

It is much easier to count arc systems (for example, arc systems sharing the
same reduced dual tree). However, this does not simplify the meander count
since identifying a pair of arc systems with the same number of arcs by the
common equator, we sometimes get a meander and sometimes a curve with
several connected components; see Figure 3.

We now consider the more specialized setting where we fix a pair of plane
trees and count meanders whose corresponding pair of arc systems have these
given dual trees. Let us mention that everywhere in this paper, we consider only
plane trees, that is, trees embedded into the plane.

Let (Ttop,Tbottom) be a pair of plane trees with no vertices of valence 2. We
consider the arc system with the same number of arcs n 6 N on a labeled pair
of oriented discs having Ttop and Tbottom as reduced dual trees. We draw the arc
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Figure 3. Gluing two hemispheres with arc systems along the common equator,
we may get either a single simple closed curve (as on the left picture) or a
multicurve with several connected components (as on the right picture).

system corresponding to Ttop on the northern hemisphere and the arc system
corresponding to Tbottom on the southern hemisphere. There are 2n ways (up to
isotopy) to identify the boundaries of two hemispheres into the sphere in such a
way that the endpoints of the arcs match. We consider all possible triples

(n-arc system of type Ttop; n-arc system of type Tbottom; identification)

as described above for all n 6 N . Define

Pconnected(Ttop,Tbottom; N ) :=
number of triples giving rise to meanders

total number of different triples
. (1.3)

THEOREM 1.2. For any pair of trivalent plane trees Tbottom,Ttop, having the total
number p of leaves (vertices of valence 1), the following limit exists:

lim
N→+∞

Pconnected(Tbottom,Ttop; N ) = P1(Q(1p−4,−1p))

=
cyl1(Q(1p−4,−1p))

Vol1(Q1(1p−4,−1p))
=

1
2

(
2
π 2

)p−3

·

(
2p − 4
p − 2

)
. (1.4)

The quantity cyl1(Q(1p−4,−1p)) in the above formula is related to Masur–
Veech volume of the moduli space of meromorphic quadratic differentials. Its
definition and role will be discussed in Section 2.

The quantity P1(Q(1p−4,−1p)) can be seen as the asymptotic probability that
a random gluing of a pair of random arc systems with p minimal arcs produces
a meander. To be more accurate, one should rather speak of asymptotic density
of meanders among the resulting multicurves.

Theorem 1.2 is proved at the end of Section 3.4. We will actually state and
prove a more general statement, Theorem 3.7, where not only trivalent trees are
considered.

https://doi.org/10.1017/fmp.2020.2 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.2
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The fact that this asymptotic density is nonzero is already somehow
unexpected. For example, for the pair of trees as on the right side of Figure 2,
each of the reduced trees contains a single vertex of valence 3 and three vertices
of valence 1 (three leaves), so we have six leaves in total. The corresponding
asymptotic density for such a pair of reduced trees is equal to

Pconnected( , ) =
280
π 6
≈ 0.291245,

which is not even close to 0.
Stirling’s formula gives the following asymptotics for P1(Q(1p−4,−1p)) for

large values of parameter p:

P1(Q(1p−4,−1p)) =
1
2

(
2
π 2

)p−3

·

(
2p − 4
p − 2

)
∼

2
√
πp
·

(
8
π 2

)p−3

for p � 1

(we recall that in our setting, we always assume that N � p).
Another unexpected fact that follows from Theorem 1.2 is that the way the

leaves (univalent vertices) are distributed between the two trees is irrelevant:
the answer depends only on the total number p of leaves. This observation
suggests an alternative (and much less restrictive) way to fix combinatorics of
the meanders. Namely, we can fix only the total number p of leaves (vertices of
valence 1) of the two trees together, where p > 4.

THEOREM 1.3. Let p > 4. The density Pconnected(p; N ) of meanders obtained by
all possible identifications of all arc systems with at most N arcs represented
by all possible pairs of (not necessarily trivalent) plane trees having the total
number p of leaves (vertices of valence 1) has the same limit P1(Q(1p−4,

−1p)) as the density Pconnected(Tbottom,Ttop; N ) of meanders represented by any
individual pair of trivalent plane trees with the total number p of leaves:

lim
N→+∞

Pconnected(p; N ) = P1(Q(1p−4,−1p))

=
cyl1(Q(1p−4,−1p))

Vol1 Q1(1p−4,−1p)
=

1
2

(
2
π 2

)p−3

·

(
2p − 4
p − 2

)
. (1.5)

The same statement with the same limit is valid if we consider pairs of plane trees
having at most p leaves for the two trees together instead of exactly p leaves.

Theorem 1.3 is proved at the end of Section 3. The proof is based on the fact
that the contribution of any pair of trees where at least one of the trees has a
vertex of valence 4 or higher is negligible in comparison with the contribution of
any pair of trivalent trees.
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REMARK 1.4. All the results of Section 1 concerning square-tiled surfaces in
strata of quadratic differentials of genus 0 generalize to higher genera and even
to the general situation of arithmetic invariant suborbifolds (see Section 4.1). In
this latter setting, some subtle finiteness issues arise and will be treated elsewhere
to avoid overloading the current paper.

2. Outline of counting technique

2.1. Pairs of transverse multicurves on the sphere as square-tiled surfaces.
A multicurve on the sphere is a collection of pairwise nonintersecting smooth
simple closed curves. Two multicurves are considered equivalent if one is the
image of the other by a homeomorphism. For each positive integer n, the number
of equivalence classes of multicurves made of n components is finite.

DEFINITION 2.1. We say that two multicurves on the sphere form a transverse
connected pair if any intersection between any connected component of the first
curve and any connected component of the second curve is transverse and if in
addition the union of the two multicurves is connected.

Having a transverse connected pair of multicurves, we always assume that
the pair is ordered. By convention, the first multicurve is called ‘horizontal’ and
the second one ‘vertical’. We consider natural equivalence classes of transverse
connected pairs of multicurves up to diffeomorphisms preserving the orientation
of the sphere and respecting horizontal and vertical labeling.

Let G be the graph defined by a transverse connected pair of multicurves. The
vertices of G are intersections of the multicurves, so all vertices of G have valence
4. Hence, all faces of the dual graph G∗ are 4-gons. The edges of G∗ dual to
horizontal edges of G will be called vertical and those dual to the vertical edges
of G will be called horizontal. By construction, any two nonadjacent edges of
any face of G∗ are either both horizontal or both vertical.

Choosing identical metric squares as faces of G∗, we get a square-tiled surface.
We have proved the following statement.

PROPOSITION 2.2. There is a natural one-to-one correspondence between
transverse connected pairs of multicurves on the sphere and square-tiled
surfaces of genus 0, where the square tiling is given by the dual graph of the
graph formed by the union of two multicurves.

A square-tiled surface defines a meromorphic quadratic differential q having
the form (dz)2 in the natural coordinate on each square. Simple poles of q
correspond to bigons of G; zeros of order j ∈ N correspond to (2 j + 4)-gons.
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Figure 4. The dual graph to a transverse connected pair of multicurves on a
sphere defines a square-tiled surface. In this particular example, the horizontal
multicurve has the form 2γ1 + γ2 + γ3 + 2γ4; its primitive components γ1, . . . ,

γ4 represent the four maximal horizontal cylinders; the weights represent the
numbers of horizontal bands of squares in the corresponding cylinders.

REMARK 2.3. Note that speaking of a ‘multicurve’, one usually assumes that
the components of a multicurve are neither contractible nor peripheral (that is,
not freely homotopic to a boundary component). Given a transverse connected
pair of multicurves in the sense of Definition 2.1 make a single puncture at every
bigon, 6-gon, 8-gon and so on (equivalently, puncture every conical singularity
of the associated square-tiled surface). By construction, each component of the
horizontal (respectively vertical) multicurve is neither contractible nor peripheral
on the resulting punctured surface, so we get a multicurve in the usual sense.

Traditionally, one represents a multicurve as a weighted sum γ = h1γ1+· · ·+

hmγm of the primitive components γ1, . . . , γm , which are already not pairwise
freely homotopic on the punctured surface, and where the positive integer weight
hi encodes the number of components of the multicurve γ freely homotopic
to the primitive component γi for i = 1, . . . ,m. In our case the primitive
components γi and the weights hi have particularly transparent interpretation in
terms of geometry of the associated square-tiled surface. Namely, the primitive
components γi of the horizontal (respectively vertical) multicurve are in the
natural correspondence with the maximal horizontal (respectively vertical)
cylinders, while the associated weights hi represent the numbers of horizontal
(respectively vertical) bands of squares in the corresponding cylinders.

The number of components of a multicurve γ = h1γ1 + · · · + hmγm is given
by the sum h1 + · · · + hm of the weights; the number m represents the number
of primitive components. The number of primitive components of the horizontal
multicurve corresponds to the number of maximal horizontal cylinders of the
associated square-tiled surface, while the number of components represents the
total number of horizontal bands of squares. The square-tiled surface in Figure 4
has six horizontal bands of squares organized into four maximal flat cylinders
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filled with parallel horizontal closed regular geodesics. These six horizontal
bands of squares correspond to six components of the associated horizontal
multicurve 2γ1+ γ2+ γ3+ 2γ4. The same square-tiled surface has seven vertical
bands of squares organized into four maximal flat cylinders filled with parallel
vertical closed regular geodesics. The associated vertical multicurve has seven
components.

2.2. Counting square-tiled surfaces. The moduli space of meromorphic
quadratic differentials on CP1 with exactly p simple poles is naturally stratified
by the strata Q(ν,−1|ν|+4) of quadratic differentials with prescribed orders of
zeros (νi zeros of order i) and with p = |ν| + 4 simple poles (see, for example,
[Zor1] for references). Here

|ν| = 1 · ν1 + 2 · ν2 + 3 · ν3 + · · · . (2.1)

Under the above interpretation, transverse connected pairs of multicurves having
fixed number of bigonal faces correspond to square-tiled surfaces with fixed
number of simple poles. The transverse connected pairs of multicurves having
fixed number ν1 of hexagonal faces, fixed number ν2 of octagonal faces and fixed
number ν j of 2( j + 2)-gonal faces for j ∈ N correspond to square-tiled surfaces
in the fixed stratum Q(ν,−1|ν|+4). In particular, the number of bigonal faces
equals |ν| + 4. The number of squares in the square-tiled surface is the total
number of crossings between the two multicurves.

Gluing two hemispheres with arc systems along the common equator as in
Section 3.5, we get a transverse connected pair of multicurves. The horizontal
multicurve has a single connected component, which is a simple closed
curve represented by the equator, whereas the vertical multicurve may have
several connected components. Such transverse connected pairs of multicurves
correspond to square-tiled surfaces having a single horizontal band of squares.

Labeled connected pairs of transverse simple closed curves correspond to
square-tiled surfaces having a single horizontal band of squares and a single
vertical band of squares. Closed meanders in the plane correspond to square-
tiled surfaces as above with a marked vertical side of one of the squares of the
tiling.

Having translated our counting problems into the language of square-tiled
surfaces, we are ready to present our approach in detail.

Square-tiled surfaces of fixed combinatorial type and Masur–Veech
volumes. Any (generalized) partition ν = [0ν0 1ν1 2ν2 . . . ] determines a complex
orbifold Q(ν,−1|ν|+4) called a stratum of meromorphic quadratic differentials.
The points of Q(ν,−1|ν|+4) are the equivalence classes of meromorphic
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quadratic differentials with only simple poles on the sphere having ν0 marked
points, ν1 zeros of order 1, ν2 zeros of order 2, and so on. Each stratum Q(ν,
−1|ν|+4) has an integral linear structure and hence a well-defined measure that
is called the Masur–Veech measure. We denote by Vol1 Q1(ν,−1|ν|+4) the
Masur–Veech volume of the ‘unit hyperboloid’ in the stratum Q(ν,−1|ν|+4). We
refer the reader to Section 4.1 for precise definitions. By [AEZ2], the following
formula holds:

Vol1 Q1(ν,−1|ν|+4) = 2π 2
·
(

f (0)
)ν0
(

f (1)
)ν1
(

f (2)
)ν2
· · · , (2.2)

where |ν| = 1 · ν1 + 2 · ν2 + · · · and

f ( j) =
j !!

( j + 1)!!
· π j
·

{
π if j is odd
2 if j is even

(here we use the notation

j !! :=

{
1 · 3 · 5 · · · · j when j is odd,
2 · 4 · 6 · · · · j when j is even,

and the common convention 0!! := 1). This formula was originally conjectured
by Kontsevich and recently proved in [AEZ2]. In this setting, zeros and poles
of quadratic differentials are labeled, so the Masur–Veech volume of the stratum
with unlabeled zeros and poles is smaller by the factor (|ν| + 4)! ν0! ν1! · · · .
It follows from the definition of the Masur–Veech volume that the number
S labeled
ν (N ) of square-tiled surfaces (that is, the integral points in Q(ν,−1|ν|+4);

see Section 4.3 for the definition) in the stratum Q(ν,−1|ν|+4) tiled with at most
2N squares has asymptotics

S labeled
ν (N ) = Vol1 Q1(ν,−1|ν|+4) ·

N d

2d
+ o(N d) as N →+∞, (2.3)

where
d = dimC Q(ν,−1|ν|+4) = `(ν)+ |ν| + 2 (2.4)

and
`(ν) := ν0 + ν1 + · · · . (2.5)

In Theorems 1.1 and 1.3, the number p of bigons serves as ‘combinatorial type’
of a square-tiled surface. In this setting, formulas (2.3) and (2.4) imply that all
but a negligible proportion of transverse connected pairs of multicurves having
large number N of intersections have only bigons, squares and hexagons as faces
and correspond to square-tiled surfaces in the principal stratum Q(1p−4,−1p).
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As an alternative choice of ‘combinatorial type’ of a square-tiled surface,
one can specify the number of hexagons, octagons and so on separately, thus
fixing the stratum Q(ν,−1|ν|+4). This corresponds to the setting of Theorems 3.7
and 3.8. Under either choice, we have a simple asymptotic formula for the
number of transverse connected pairs of multicurves of fixed combinatorial type
with at most 2N intersections.

REMARK 2.4 (Labeled versus nonlabeled zeros and poles). When we introduced
square-tiled surfaces in Section 2.1 and identified them with transverse
connected pairs of multicurves in Proposition 2.2, we did not label zeros
and poles of the corresponding quadratic differential, which was quite natural in
this setting. Traditionally, one labels zeros and poles of a square-tiled surface in
the context of Masur–Veech volumes, so we usually do label zeros and poles. We
recall the setting every time when there may be any ambiguity. The unlabeled
and labeled count of square-tiled surfaces in the stratum Q(ν,−1|ν|+4) differ by
the integral factor (|ν| + 4)! ν0! ν1! · · · .

Square-tiled surfaces with fixed combinatorics. By Proposition 2.2, a square-
tiled surface has exactly k horizontal (respectively vertical) bands of squares
if and only if the associated horizontal (respectively vertical) multicurve has
exactly k connected components; see Remark 2.3 at the end of Section 2.1.
Counting square-tiled surfaces with exactly k horizontal bands of squares admits
an efficient combinatorial approach. In the case of a single horizontal band
of squares corresponding to k = 1, this count was performed in [DGZZ]. In
Section 4.10, we reproduce the relevant computations that become particularly
explicit in the case of the sphere.

THEOREM 2.5. Let k > 1 and let ν = [0ν0 1ν1 2ν2 . . . ] be a generalized partition.
The number S labeled

k,ν (N ) of square-tiled surfaces in the stratum Q(ν,−1|ν|+4)

with labeled zeros and poles tiled with at most 2N squares organized into k
horizontal bands (that is, having the associated horizontal multicurve composed
of k connected components) has asymptotics

S labeled
k,ν (N ) = cylk

(
Q(ν,−1|ν|+4)

)
·

N d

2d
+ O(N d−1) as N →+∞, (2.6)

where the coefficient cylk(Q(ν,−1|ν|+4)) is a positive rational number. Moreover,
in the case k = 1, one has the following explicit expression:

cyl1

(
Q(ν,−1|ν|+4)

)
= 2·

ν0∑
ι0=0

ν1∑
ι1=0

ν2∑
ι2=0

...∑

...

(
ν0

ι0

)(
ν1

ι1

)(
ν2

ι2

)
· · ·

(
|ν| + 4
|ι| + 2

)
. (2.7)
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Here ι = [0ι0 1ι1 2ι2 . . . ], d = dimC Q(ν,−1|ν|+4) = `(ν) + |ν| + 2 and |ν| and
`(ν) are defined in equations (2.1) and (2.5), respectively.

Theorem 2.5 is proved at the end of Section 4.8 with the exception of the
explicit value (2.7) for cyl1(Q(ν,−1|ν|+4)) which is proved in Section 4.10. For
the case of the principal stratum corresponding to ν = [1k

], the formula becomes
even more explicit; see (4.33).

By a symmetry argument, we get the same asymptotics (2.7) with the same
constant cylk(Q(ν,−1|ν|+4)) for the number of square-tiled surfaces with k
vertical (instead of horizontal) bands of squares.

We have seen that meanders are in bijective correspondence with square-
tiled surfaces whose associated horizontal and vertical multicurves have a single
component. The following result transfers to meanders the explicit asymptotics
from Theorem 2.5.

THEOREM 2.6. The number S labeled
kh ,kv ,ν(N ) of square-tiled surfaces in the stratum

Q(ν,−1|ν|+4) with labeled zeros and poles tiled with at most 2N squares
composed of kh horizontal and kv vertical bands of squares (that is, having the
associated horizontal multicurve consisting of kh components and the associated
vertical multicurve consisting of kv components) has the following asymptotics
as N →+∞:

S labeled
kh ,kv ,ν(N ) = cylkh ,kv

(
Q(ν,−1|ν|+4)

)
·

N d

2d
+ o

(
N d
)

as N →+∞, (2.8)

where the constant cylkh ,kv (Q(ν,−1|ν|+4)) satisfies the following relation:

cylkh ,kv

(
Q(ν,−1|ν|+4)

)
Vol1 Q1(ν,−1|ν|+4)

=
cylkh

(
Q(ν,−1|ν|+4)

)
Vol1 Q1(ν,−1|ν|+4)

·
cylkv

(
Q(ν,−1|ν|+4)

)
Vol1 Q1(ν,−1|ν|+4)

, (2.9)

and the constants cylkh
(Q(ν,−1|ν|+4)), cylkv (Q(ν,−1|ν|+4)) are the ones from

Theorem 2.5.

Theorem 2.6 is proved at the end of Section 4.8. The relation (2.9) can
be viewed as a statement about independence of horizontal and vertical
decompositions of square-tiled surfaces.

Forgetting the labeling of zeros and poles (see Remark 2.4), we get the
asymptotics of the number of connected pairs of transverse simple closed curves
of fixed combinatorial type with at most 2N crossings.

Further remarks. It is worth mentioning that all the above quantities have a
combinatorial nature but were computed by alternative methods. The Masur–
Veech volumes in genus zero Vol1 Q1(ν,−1|ν|+4) are closely related to Hurwitz
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numbers counting covers of the sphere of some very special ramification
type. However, all attempts to compute these volumes by purely combinatorial
methods have (up to now) failed even for covers of the simplest ramification
type; see e.g. [AEZ1]. The proof in [AEZ2] of the formula for the Masur–
Veech volumes implicitly uses the analytic Riemann–Roch theorem in addition
to combinatorics.

Theorem 2.6 about square-tiled surfaces with a fixed horizontal and vertical
combinatorics is proved in Section 4 using ergodicity of the SL2(R)-action with
respect to the Masur–Veech measure and Moore’s ergodicity theorem. The proof
was inspired by the approach of Mirzakhani to counting simple closed geodesics
on hyperbolic surfaces.

Note that the error term in Theorem 2.5 has the form O(N d−1), while the error
term in Theorem 2.6 has a weaker form o(N d). The underlying reason is that the
count in Theorem 2.5 can be expressed in terms of the Ehrhart quasipolynomial
associated with the Euclidean volume of certain rational polytope, see the Proof
of Theorem 4.23 in Section 4.8, while the ergodic technique used in the Proof
of Theorem 2.6 is insufficient to provide an explicit error term and leaves us
with o(N d). It would be very interesting to provide a more precise error term
in (2.8). The recent paper [EMiMo2] might be very useful in this context. The
authors solve a very similar problem, namely they prove a quantitative estimate,
with a power saving error term, for the number of simple closed geodesics
of length at most L on a closed hyperbolic surface of genus g. The relation
between counting of square-tiled surfaces and counting simple closed geodesics
is described in [DGZZ3].

Let us mention that in two more situations that share many similarities
with ours, explicit error terms have been recently carried out: flat geodesics
in translation surfaces in [NRW] and the intersection of stable and unstable
horospheres in the space SLd(R)/SLd(Z) in [EHL].

3. From arc systems and meanders to square-tiled surfaces

In this section, we give precise bijections between meanders and square-tiled
surfaces with a single maximal cylinder in both horizontal and vertical directions.
We consider meanders in the plane in Sections 3.1–3.3 and meanders on the
sphere in Section 3.4. All the proofs of asymptotic results are based on the results
of Section 4.

3.1. Orientation, marking and weight. We have seen in Proposition 2.2
from Section 2.1 that transverse connected pairs of multicurves on the sphere are
in bijection with square-tiled surfaces of genus 0. A square-tiled surface arising
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from a pair of arc systems has a single horizontal band of squares. In particular,
a square-tiled surface arising from a meander has a single horizontal and a single
vertical band of squares.

However, pairs of arc systems and meanders (both in the plane and on the
sphere) carry an extra marking. Namely, a pair of arc systems comes with a
given choice of top and bottom sides. Furthermore, the square-tiled surface
corresponding to a plane meander has a special square corresponding to the
leftmost intersection. Summarizing, we get the following result.

LEMMA 3.1. There is a natural bijection between meanders in the plane and
square-tiled surfaces with a marked oriented vertical side of one of the squares
that have a single horizontal and a single vertical band of squares.

In order to provide the exact count of meanders, we present the conventions
for the count of square-tiled surfaces and see how these quantities are related to
arc systems and meander count. We will consider square-tiled surfaces with a
marked vertex of the square tiling.

CONVENTION 3.2. By convention, the marked vertex is located at the end of
the marked oriented vertical edge on the top boundary component of the single
horizontal cylinder.

Note that the two boundary components of the single horizontal cylinder
do not intersect. Thus, the marked vertex uniquely defines the top boundary
component and, hence, provides us with the canonical orientation of the waist
curve of the single horizontal cylinder.

Let us reconstruct the labeled pair of arc systems in the plane from a square-
tiled surface of genus zero tiled with a single horizontal band of squares and
having a marked vertex. If the marked vertex of the square tiling is a simple pole
of the quadratic differential, there is a single vertical side of the square tiling
incident to it, and the choice of the vertical side is canonical. If the marked vertex
of the square tiling is a regular point of the quadratic differential, there are two
adjacent vertical sides; so there are two ways to choose a distinguished vertical
side which, generally, lead to two different arc systems. We say ‘generally’
because it might happen that the square-tiled surface is particularly symmetric
(like square-tiled surfaces associated with arc systems from Figure 3) and the
resulting two arc systems are isomorphic.

As soon as we are interested only in the asymptotic count, we can simply
neglect this issue: the square-tiled surfaces with extra symmetries occur too
rarely to affect the asymptotics. To perform the exact count, we establish the
following standard convention.
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CONVENTION 3.3. We always count a marked or nonmarked square-tiled
surface with a weight reciprocal to the order |Aut| of its automorphism group.
In the current context, we keep track of which sides of the square-tiled surface
are horizontal and which ones are vertical, but we do not label either the sides or
the vertices of the square-tiled surface. By definition, the automorphism group
Aut acts by flat isometries sending horizontal (respectively vertical) sides of the
tiling to horizontal (respectively vertical) sides and keeping the marked point (if
any) fixed.

In particular, if we have a marked point at a regular vertex of a square-tiled
surface, the automorphism group is either trivial or Z/2Z. If we have a marked
point at a zero of degree j of a square-tiled surface, the automorphism group is
a (usually trivial) subgroup of the cyclic group Z/( j + 2)Z.

3.2. Meanders with a given number of minimal arcs and square-tiled
surfaces. In this section and in the next one, we continue to work with plane
meanders. Under Conventions 3.2 and 3.3, any collection of weighted square-
tiled surfaces on the sphere with a single band of horizontal squares and with a
marked regular point defines twice as many arc systems; the weighted collection
of square-tiled surfaces as above with a marked zero of degree j defines ( j + 2)
times more arc systems for any j ∈ N.

LEMMA 3.4. Let the initial meander in the plane have p minimal arcs, where
p > 3. The associated square-tiled surface has p + 1 simple poles if the initial
meander has a maximal arc and p simple poles if it does not.

Proof. A maximal arc becomes indistinguishable from a minimal arc after
passing to a labeled pair of transverse simple closed curves on the sphere.
Minimal and maximal arcs are in bijective correspondence with bigons in
the partition of the sphere by the union of these transverse simple closed
curves. Bigons, in turn, are in bijective correspondence with simple poles of
the associated square-tiled surface.

Recall that M+

p (N ) and M−

p (N ) denote the number of meanders with p
minimal arcs and with or without a maximal arc, respectively. Denote by Pp(N )
the number of square-tiled surfaces of genus zero tiled with at most 2N identical
squares, having exactly p simple poles and having a single horizontal and a
single vertical band of squares. Denote by Pp, j(N ), where j = 0, 1, 2, . . . , the
number of square-tiled surfaces as above having in addition a marked point at a
regular vertex when j = 0 and at a zero of order j when j > 0.
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Note that a square-tiled surface of genus 0 with p simple poles cannot have
zeros of order greater than p − 4.

LEMMA 3.5. Under Convention 3.3 on the weighted count of square-tiled
surfaces, the following equalities hold:

M+

p (N ) = 2(p + 1) · Pp+1(N ) (3.1)

M−

p (N ) =
p−4∑
j=0

( j + 2) · Pp, j(N ) −
1
2
M+

p−1(N ). (3.2)

Proof. If the meander has 2n intersections, then the associated square-tiled
surface is tiled with 2n identical squares.

To every meander with a maximal arc and with p minimal arcs, we associated
a canonical square-tiled surface of genus zero with p + 1 simple poles, a single
horizontal and a single vertical band of squares; see Proposition 2.2. Conversely,
to every such square-tiled surface, we can associate 2(p+ 1) meanders with one
maximal arc and p minimal arcs. Indeed, choose any of the (p+1) simple poles
and choose independently one of the two possible orientations of the waist curve
of the horizontal cylinder. Cutting this waist curve at the intersection with the
single vertical edge of the square tiling adjacent to the selected pole, we get a
meander in the plane with a maximal arc.

It might happen that some of the resulting 2(p + 1) meanders are pairwise
isomorphic. However, this implies that the automorphism group of the square-
tiled surface is nontrivial, and Convention 3.3 provides the exact count. This
completes the proof of equality (3.1).

Similarly, to every meander without a maximal arc and with p minimal arcs,
we assigned a canonical square-tiled surface of genus zero having p simple
poles, a single horizontal and a single vertical band of squares, and a marked
vertex following Convention 3.2. The assumption that the initial meander does
not have a maximal arc excludes coincidence of the marked point with a simple
pole on the upper side. In order to exclude a maximal arc on the lower side,
one needs to subtract a half of M+

p−1(N ). At the end of Section 3.1, we have
seen that under Convention 3.3 on weights with which we count square-tiled
surfaces with a marked vertex, any collection of weighted genus zero square-
tiled surfaces with a single horizontal and a single vertical band of squares, and
with a marked vertex of the tiling that is regular in the flat metric, defines twice
as much meanders in the plane. A weighted collection of square-tiled surfaces as
above with a marked zero of degree j defines ( j+2) times more meanders in the
plane for any j ∈ N. As before, if some of the resulting meanders are isomorphic,
we do not count them several times since by definition of the automorphism
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group Aut of the corresponding square-tiled surface, the resulting multiplicity
coincides with the order |Aut| of the automorphism group. This completes the
proof of equality (3.2).

3.3. Meanders and square-tiled surfaces in a given stratum. We now
introduce finer count with respect to a fixed stratum of meromorphic quadratic
differentials. For a partition ν = [1ν1 2ν2 . . . ], denote by M+

ν (N ) and M−

ν (N )
the number of meanders (with and without a maximal arc, respectively) giving
rise to square-tiled surfaces in the stratum Qnonlabeled(ν,−1|ν|+4). In the current
setting, we do not label zeros and poles of quadratic differentials. We say that
such meanders are of type ν. Similarly, let Pν(N ) be the number of genus zero
square-tiled surfaces in the stratum Qnonlabeled(ν,−1|ν|+4) tiled with at most 2N
identical squares, with a single horizontal and a single vertical band of squares.
Denote by Pν, j(N ), j = 0, 1, 2, . . . , the number of square-tiled surfaces as
above having, in addition, a marked point at a regular vertex when j = 0 and
at a zero of order j when j > 0. By definition, we let Pν, j(N ) = 0 for any N
when ν j = 0. Recall that by Convention 3.3, we count square-tiled surfaces with
weights reciprocal to the orders of their automorphism groups.

LEMMA 3.6. Under Convention 3.3 on weights with which we count square-
tiled surfaces, the following equalities hold

M+

ν (N ) = 2(|ν| + 4) · Pν(N ) (3.3)

M−

ν (N ) =
|ν|∑
j=0

( j + 2) · Pν, j(N ) −
1
2
M+

ν (N ). (3.4)

Proof. The proof is completely analogous to the Proof of Lemma 3.5.

3.4. Asymptotic density of meanders: general setting. In this section, we
return to meanders on the sphere. Let T be a plane tree. We associate to T
a generalized integer partition ν = ν(T ) = [0ν0 1ν1 2ν2 . . .], where ν j denotes
the number of vertices of valence j + 2 for j = 0, 1, 2 . . . . The number of
leaves, or, equivalently, of vertices of valence 1, is then expressed in terms of the
(generalized) partition ν as |ν| + 4, where |ν| = 1 · ν1 + 2 · ν2 + 3 · ν3 + · · · .

Given two generalized partitions ι = [0ι0 1ι1 2ι2 . . . ] and κ = [0κ0 1κ1 2κ2 . . . ],
we define their sum as ν = ι + κ = [0ι0+κ0 1ι1+κ1 2ι2+κ2 . . . ]. We say that ι is a
subpartition of ν if for all i > 0, we have ιi 6 νi . We use notation ι ⊂ ν to
indicate that ι is a subpartition of ν and define the difference κ = ν − ι in the
natural way.
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We formulate and prove the following generalization of Theorem 1.2 giving a
formula for the limit of the fraction (1.3) of meanders among all gluings which
we get identifying arc systems of types Ttop and Tbottom with the same number of
arcs; see Figure 3.

Though we agreed in Section 1.3 to consider reduced trees, suppressing the
vertices of valence 2, it is often convenient to keep several marked points; so
we state the following theorem in this slightly more general setting. Note that
since f (0) = 2, the number ν0 of zeros in the partition ν affects the value of
the function Vol1 Q1(ν,−1|ν|+4). Adding an extra marked point, we double the
Masur–Veech volume of the corresponding stratum.

THEOREM 3.7. For any pair of plane trees Ttop,Tbottom with associated
generalized partitions νtop and νbottom, we have

lim
N→+∞

Pconnected(Ttop,Tbottom; N ) = P1(Q(ν,−1|ν|+4)) > 0,

where ν = νtop + νbottom and

P1
(
Q(ν,−1|ν|+4)

)
=

cyl1(Q(ν,−1|ν|+4))

Vol1 Q1(ν,−1|ν|+4)
. (3.5)

Here

cyl1(Q(ν,−1|ν|+4)) = 2
∑
µ⊂ν

(
|ν| + 4
|µ| + 2

)(
ν0

µ0

)(
ν1

µ1

)(
ν2

µ2

)
· · · (3.6)

and Vol1 Q1(ν,−1|ν|+4) is given by (2.2).

Proof. Under our correspondence which associates with pairs of transverse
multicurves square-tiled surfaces, the trees Ttop and Tbottom represent the trees
formed by the horizontal saddle connections of the square-tiled surface (see
Section 4.10 for details).

Vertices of valence 1 are in bijective correspondence with simple poles.
Vertices of valence 2 represent marked points (if any). Vertices of valence j + 2
are in bijective correspondence with zeros of degree j for j ∈ N. Recall that the
type ν = [1ν1 2ν2 3ν3 . . . ] of the graph Ttop t Tbottom encodes the total number ν j of
vertices of valence j + 2 in Ttop t Tbottom for j ∈ N. We conclude that a pair of
arc systems having Ttop and Tbottom as dual trees defines a square-tiled surface in
the stratum Qnonlabeled(ν,−1|ν|+4) of meromorphic quadratic differentials.

We are ready to express the numerator and the denominator of the right-hand
side in (1.3) in terms of square-tiled surfaces. First, note that arc systems are
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defined on a pair of labeled oriented discs (called top and bottom, or northern
and southern hemispheres).

Every triple

(n-arc system of type Ttop; n-arc system of type Tbottom; identification)

in the denominator in (1.3) defines a unique isomorphism class of ordered
transverse connected pairs of multicurves in the sense of Definition 2.1 such
that the ‘horizontal’ multicurve is connected and oriented, and the number of
intersections is equal to 2n. We identify triples leading to isomorphic pairs of
labeled multicurves. Pairs of multicurves associated with the triples from the
numerator of (1.3) are distinguished by the property that both ‘horizontal’ and
‘vertical’ multicurves are connected.

The horizontal saddle connections of a square-tiled surface form a graph Γ
embedded in the underlying topological surface, that is, a ribbon graph. The
vertices of Γ coincide with the zeros and poles of the differential. As in the
case of dual graph Ttop t Tbottom, vertices of Γ of valence j + 2 are in bijective
correspondence with zeros of degree j . We call Γ the diagram of horizontal
saddle connections of the square-tiled surface.

Applying Proposition 2.2 and constructions of Section 2.1, we associate
square-tiled surfaces to the resulting transverse connected pairs of multicurves.
We get a surjective map from the triples in the denominator of (1.3) to the
set of square-tiled surfaces in the stratum Qnonlabeled(ν,−1|ν|+4) having a single
horizontal band of squares and having the ribbon graph Γ := Ttop t Tbottom as
the diagram of horizontal saddle connections. We denote the number of such
square-tiled surfaces tiled with at most 2N identical squares by SΓ,1,ν(N ).

Restricting the above map to the triples in the numerator of (1.3), we get a
surjective map to the subset of square-tiled surfaces as above which have a single
horizontal and a single vertical band of squares. We denote the number of such
square-tiled surfaces tiled with at most 2N identical squares by SΓ,1,1,ν(N ).

Note that the waist curve of the horizontal cylinder of the resulting square-tiled
surface is not oriented, while the boundary circle of each arc system in the disc
is oriented. When Ttop and Tbottom are not isomorphic as ribbon graphs, there is a
canonical way to orient the waist curve of the single horizontal cylinder: choose
the orientation of the vertical direction so that Ttop is on top of the cylinder;
the canonical orientation of the cylinder determines the orientation of the waist
curve. In this case, the constructed map is a bijection.

When Ttop and Tbottom are isomorphic, a negligible part of square-tiled surfaces
as above has extra symmetry, namely, an isometry interchanging the two
components of the cylinder. Such isometry changes the orientation of the
horizontal waist curve. When Ttop and Tbottom are isomorphic, we count square-
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tiled surfaces in the image of the above map with weight 1/2 when the square-
tiled surface is symmetric in the above sense and with weight 1 otherwise. In this
case, both the numerator and the denominator in (1.3) give twice the weighted
count of the associated square-tiled surfaces.

Thus, the limit in Theorem 3.7 can be expressed as follows:

lim
N→+∞

Pconnected(Ttop,Tbottom; N ) = lim
N→+∞

SΓ,1,1,ν(N )
SΓ,1,ν(N )

. (3.7)

It will be convenient to pass to the quantities S labeled
Γ,1,1,ν(N ) and S labeled

Γ,1,ν (N )
counting the square-tiled surfaces as above, but with labeled zeros and poles. By
Remark 2.4, they differ from SΓ,1,1,ν(N ) and SΓ,1,ν(N ) by the common constant
factor, and, hence, we get the same ratio as above. By Lemma 4.27 at the end of
Section 4.8, we have

lim
N→+∞

S labeled
Γ,1,1,ν(N )

S labeled
Γ,1,ν (N )

= lim
N→+∞

S labeled
1,ν (N )

S labeled
ν (N )

.

The above formula is just another manifestation of the general principal
according to which ‘horizontal and vertical cylinder decompositions are
asymptotically uncorrelated’: defining the counting functions on the right-
hand side of the above equation, we omit the conditions on the horizontal
decomposition imposed in the definition of the corresponding counting functions
on the left-hand side.

Applying (2.3) and (2.6) for the numerator and the denominator of the latter
fraction, respectively, we prove that the limit in the left-hand side of (3.7) exists
and that its value is given by (3.5). The remaining formula (3.6) is equivalent to
formula (2.7) from Theorem 2.5 which will be proved in Section 4.10.

Proof of Theorem 1.2. Theorem 1.2 is a particular case of the Theorem 3.7 when
the plane trees Ttop,Tbottom are trivalent and have the total number p of leaves
(vertices of valence 1). In this situation, ν = [1p−4

]. By Theorem 3.7, we have

lim
N→+∞

Pconnected(Ttop,Tbottom; N ) = P1(Q(1p−4,−1p)) =
cyl1(Q(1p−4,−1p))

Vol1 Q1(1p−4,−1p)
.

It remains to apply (2.2) and (4.33), respectively, for the denominator and the
numerator of the latter fraction to complete the proof. Formula (4.33) will be
proved in Section 4.10.

3.5. Counting meanders of special combinatorial types. In this section, we
return to plane meanders with exception for the Proof of Theorem 1.3 at the very
end of the section, where we work with meanders on the sphere.
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We state now an analog of Theorem 1.1, where instead of the number of
minimal arcs (pimples), we use the partition ν as a combinatorial passport of
the meander.

THEOREM 3.8. For any partition ν = [1ν1 2ν2 3ν3 . . . ], the number M+

ν (N )
(respectively M−

ν (N )) of plane meanders of type ν, with (respectively without)
a maximal arc and with at most 2N crossings has the following asymptotics as
N →+∞:

M+

ν (N ) = 2(|ν| + 4) ·
cyl1,1

(
Q(ν,−1|ν|+4)

)
(|ν| + 4)! ·

∏
j ν j !

·
N `(ν)+|ν|+2

2`(ν)+ 2|ν| + 4

+ o
(
N `(ν)+|ν|+2), (3.8)

M−

ν (N ) =
2 cyl1,1

(
Q(ν, 0,−1|ν|+4)

)
(|ν| + 4)! ·

∏
j ν j !

·
N `(ν)+|ν|+3

2`(ν)+ 2|ν| + 6

+ o
(
N `(ν)+|ν|+3). (3.9)

Moreover, we have

cyl1,1

(
Q(ν,−1|ν|+4)

)
=

4
Vol1 Q1(ν,−1|ν|+4)

·

(
ν1∑
ι1=0

ν2∑
ι2=0

...∑

...

(
ν1

ι1

)(
ν2

ι2

)
· · ·

(
|ν| + 4
|ι| + 2

))2

(3.10)

and
cyl1,1

(
Q(ν, 0,−1|ν|+4)

)
= 2 · cyl1,1

(
Q(ν,−1|ν|+4)

)
. (3.11)

Note that contrary to the original Theorem 1.1, where the setting is somewhat
misleading, in the setting of Theorem 3.8, we get a more natural formula
M+

ν (N ) = o(M−

ν (N )) as N →+∞.
Up to now, we performed the exact count. The lemma below gives the term

with dominating contribution to the asymptotic count when the bound 2N for the
number of squares in the square-tiled surface tends to infinity.

LEMMA 3.9. We have the following limits:

lim
N→+∞

1
P1p−4(N )

· Pp(N ) = 1, (3.12)

lim
N→+∞

1
2P1p−4,0(N )

·

(
p−4∑
j=0

( j + 2) · Pp, j(N )

)
= 1, (3.13)
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lim
N→+∞

1
2Pν,0(N )

·

(
|ν|∑
j=0

( j + 2) · Pν, j(N )

)
= 1. (3.14)

Proof. Let ν = [1ν1 2ν2 . . . ] be a partition of p − 4. By definition, Pν(N ) and
S1,1,ν(N ) denote the same quantities. Using Remark 2.4 to express S1,1,ν(N ) in
terms of S labeled

1,1,ν (N ) and applying (2.8) with kh = kv = 1, we get

Pν(N ) = S1,1,ν(N ) =
1

p! ·
∏

j ν j !
· S labeled

1,1,ν (N )

=
cyl1,1

(
Q(ν,−1p)

)
p! ·

∏
j ν j !

·
N d

2d
+ o(N d), when N →+∞, (3.15)

where d is defined in (2.4).
For a given number p > 4 of simple poles, the only stratum of the maximal

dimension 2p − 6 is the principal stratum Q(1p−4,−1p), for which all zeros
of the quadratic differentials are simple. Thus, this is the only stratum which
contributes a term of order N 2p−6 to Pp(N ). This proves (3.12).

For j > 1, the quantity Pν, j(N ) counts square-tiled surfaces with a marked
zero of order j in the stratum Qnonlabeled(ν,−1|ν|+4). Hence, it has the asymptotic
growth rate of the same order as the quantity Pν(N ) counting unmarked square-
tiled surfaces in the same stratum, that is, it grows like N d , where d = dimC Q(ν,
−1|ν|+4). The dimensional count as above implies that the contribution of any
term Pν, j(N ) with j > 1 to the sum in the right-hand side of (3.13) has the order
at most N 2p−6.

Let us analyze now the contribution of various strata to Pp,0(N ). In the same
way as we got (3.15), we obtain

Pν,0(N ) =
cyl1,1

(
Q(ν, 0,−1|ν|+4)

)
(|ν| + 4)! ·

∏
j ν j !

·
N `(ν)+|ν|+3

2`(ν)+ 2|ν| + 6

+ o
(
N `(ν)+|ν|+3), when N →+∞, (3.16)

where the constant cyl1,1(Q(ν, 0,−1|ν|+4)) is strictly positive. This implies that
for any partition ν of p − 4 different from 1p−4, its contribution Pν,0 also has
order at most N 2p−6. We conclude that Pp,0(N ) has order N 2p−5 for N large
and that the only stratum which gives a contribution of this order is the principal
stratum with a marked point Q(1p−4, 0,−1p). This proves equality (3.13).

By the same reason, the summand 2Pν,0(N ) dominates in the sum in the right-
hand side of (3.14). It is the only term whose contribution is of order N d+1, where
d = dimC Q(ν,−1|ν|+4). The asymptotics of the other terms in the sum have
lower orders in N as N →+∞. This proves equality (3.14).
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Now we have everything for the proofs of Theorems 1.1 and 3.8.

Proof of Theorem 1.1. The chain of relations starting with (3.1) and continuing
with (3.12) and (3.15) yields

M+

p (N ) = 2(p + 1) · Pp+1(N ) = 2(p + 1) · P1p−3(N )+ o(N 2p−4)

= 2(p + 1) ·
cyl1,1

(
Q(1p−3,−1p+1)

)
(p + 1)! (p − 3)!

·
N 2p−4

4p − 8
+ o(N 2p−4)

when N →+∞.

This proves the first equality in (1.1). The constant cyl1,1(Q(1p−3,−1p+1)) is
expressed by Formula (2.9) in terms of cyl1(Q(1p−3,−1p+1)) computed in
Corollary 4.30 of Section 4.10 and in terms of the Masur–Veech volume of the
stratum Q(1p−3,−1p+1) given by Formula (2.2).

Similarly, the chain of relations including (3.2), (3.13) and (3.16) implies

M−

p (N ) =
p−4∑
j=0

( j + 2) ·Pp, j(N ) −
1
2
M+

p−1(N ) = 2P1p−4,0(N )+ o(N 2p−5)

=
2 cyl1,1

(
Q(1p−4, 0,−1p)

)
p! (p − 4)!

·
N 2p−5

4p − 10
+ o(N 2p−5), when N →+∞.

This proves the first equality in (1.2). The constant cyl1,1(Q(1p−4, 0,−1p))

is expressed by our main formula (2.9) in terms of cyl1(Q(1p−4, 0,−1p))

computed in Corollary 4.30 of Section 4.10 and in terms of the Masur–Veech
volume of the stratum Q(1p−4, 0,−1p) given by formula (2.2).

Thus, the Proof of Theorem 1.1 is conditional subject to the explicit
count of cyl1(Q(1p−3,−1p+1)) and of cyl1(Q(1p−4, 0,−1p)) performed in
Corollary 4.30.

Proof of Theorem 3.8. The Proof of Theorem 3.8 is completely analogous to the
Proof of Theorem 1.1.

Combining (3.3) with relation (3.15), we get

M+

ν (N ) = 2(|ν| + 4) · Pν(N )

= 2(|ν| + 4) ·
cyl1,1

(
Q(ν,−1|ν|+4)

)
(|ν| + 4)! ·

∏
j ν j !

·
N `(ν)+|ν|+2

2`(ν)+ 2|ν| + 4

+ o
(
N `(ν)+|ν|+2), when N →+∞,

where we use Formula (2.4) for the dimension d of the stratum Q(ν,−1|ν|+4).
This proves formula (3.8) in Theorem 3.8.

https://doi.org/10.1017/fmp.2020.2 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.2
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Similarly, combining (3.4) with (3.14) and (3.16), we get

M−

ν (N ) =
|ν|∑
j=0

( j + 2) · Pν, j(N ) −
1
2
M+

ν (N ) = 2Pν,0(N )+ o
(
N 2`(ν)+2|ν|+3)

=
2 cyl1,1

(
Q(ν, 0,−1|ν|+4)

)
(|ν| + 4)! ·

∏
j ν j !

·
N `(ν)+|ν|+3

2`(ν)+ 2|ν| + 6

+ o
(
N `(ν)+|ν|+3), when N →+∞.

This proves formula (3.9) in Theorem 3.8.
We have proved Theorem 3.8 conditional to expressions (3.11) and (3.10) for

the quantities cyl1,1(Q(ν, 0,−1|ν|+4)) and cyl1,1(Q(ν,−1|ν|+4)). We prove them
together with relation (2.7) in Section 4.10.

We conclude this section with the Proof of Theorem 1.3.

Proof of Theorem 1.3. Following the same arguments as in the Proof of
Theorem 3.7, we obtain

lim
N→+∞

Pconnected(p; N ) = lim
N→+∞

∑
|ν|=p−4 S labeled

1,1,ν (N )∑
|ν|=p−4 S labeled

1,ν (N )
,

where S labeled
1,ν (N ) and S labeled

1,1,ν (N ) are as in Theorems 2.5 and 2.6, respectively.
By (2.6) and (2.8), for any partition ν, the latter quantities have order N d , where
d = dimC Q(ν,−1p). Among all partitions ν satisfying |ν| = p − 4, there is
only one partition, namely [1p−4

], which defines the stratum Q(1p−4,−1p) of
maximal dimension 2p−6. Hence, the contributions of other strata to both sums
are negligible with respect to the contributions of the principal stratum. This
implies that

lim
N→+∞

Pconnected(p; N ) = lim
N→+∞

S labeled
1,1,[1p−4]

(N )

S labeled
1,[1p−4]

(N )
.

Using expressions (2.6) and (2.8) for the denominator and the numerator of the
latter fraction, respectively, and applying (2.9), we get

lim
N→+∞

Pconnected(p; N ) =
cyl1(Q(1p−4,−1p))

Vol1 Q1(1p−4,−1p)
.

The latter ratio was denoted by P1(Q(1p−4,−1p)) and computed in Theorem 1.2.
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4. Enumeration of square-tiled surfaces

In the current section, we prove Theorem 2.6 from Section 1 and, in particular,
the key equality (2.9). This result is actually a particular case of the more general
Corollary 4.25 that concerns surfaces of any genera.

In plain terms, we prove that the asymptotic proportion of square-tiled surface
having a single vertical band of squares among square-tiled surface having a
single horizontal band of squares is the same as the asymptotic proportion
of square-tiled surface having a single vertical band of squares among all
square-tiled squares (when the bound for the number of squares in the square
tiling grows). This equality can be seen as a particular case of asymptotic
noncorrelation of horizontal and vertical decompositions of square-tiled surfaces
tiled with large number of squares. Together with the explicit formula (2.2)
for the Masur–Veech volume Vol1 Q1(ν,−1|ν|+4) of any stratum in the moduli
space of quadratic differentials in genus zero, the equality (2.9) is the principal
ingredient of the Proof of Theorem 3.7, providing the asymptotic frequency of
meanders out of general couplings of arc systems on a pair of hemispheres.

Our noncorrelation results are more general in two aspects. On the one
hand, they are applicable to much more general horizontal and vertical cylinder
decompositions of square-tiled surfaces compared to ‘single band of squares’
needed for the count of meanders; see Corollaries 4.24 and 4.25 as well as
Remark 4.26. On the other hand, these noncorrelation results are applicable to
general closed connected GL2(R)-invariant suborbifolds defined over Q in any
genus (and not only to strata of quadratic differentials in genus zero needed for
meanders).

4.1. Invariant arithmetic orbifolds. Given a generalized partition κ

composed of nonnegative integers κ = [0κ0 1κ1 . . .] satisfying
∑

i>0 iκi = 2g− 2,
we denote by H(κ) the moduli space of Abelian differentials with κi zeros of
order i , for i = 0, 1, . . . , on complex curves of genus g. Namely, an element of
H(κ) is a tuple (X, ω, {Pi, j }i>0,16 j6κi ) where X is a smooth complex curve of
genus g endowed with a nonzero holomorphic 1-form ω having zero of order
i at each of the points Pi,1, . . . , Pi,κi of X (for those i for which κi > 0) and
nonvanishing outside of the finite set Σ := {Pi, j }. Here, ‘zero of order zero’ is
interpreted as a marked point. Each stratum of Abelian differential is locally
modeled on the relative cohomology H 1(X,Σ;C).

A translation chart for an Abelian differential ω is a local coordinate z on X
in which ω = dz. A translation chart defines a flat metric with the area form
i
2 dz ∧ dz̄ = dx ∧ dy. The group GL2(R) acts on H(κ) by postcomposition in
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translation charts. By definition,

∀A ∈ GL2(R), Area(A · (X, ω,Σ)) = det(A) · Area((X, ω,Σ)).

In particular, the subgroup SL2(R) preserves the ‘unit hyperboloid’ H1(κ) ⊂

H(κ) that consists of Abelian differentials of area one.

DEFINITION 4.1. A square-tiled surface in a stratum of Abelian differential
H(κ) is an Abelian differential (X, ω,Σ) such that all periods of ω relative
to Σ belong to Z⊕ iZ.

Square-tiled surfaces correspond to integral points H 1(X,Σ;Z ⊕ iZ) in
period coordinates H 1(X,Σ;C). The action of the subgroup SL2(Z) ⊂ SL2(R)
preserves the set of square-tiled surfaces.

Alternatively, a square-tiled surface can be defined as a connected finite
ramified cover over the square torus C/(Z ⊕ iZ) with all ramification points
(if any) located over the same branch point of the torus. Thus, in plain terms, a
square-tiled translation surface is obtained by gluing a finite set of unit squares
endowed with distinguished horizontal and vertical directions by translation
respecting these distinguished directions and identifying sides to sides and
vertices to vertices.

The fundamental result of Eskin, Mirzakhani and Mohammadi generalizes to
closed SL2(R)-invariant subsets all the structures we described for strata.

THEOREM [EMi, EMiMo1]. Let P ⊂ SL2(R) be the subgroup of upper-
triangular matrices. For any S = (X, ω) in any stratum H(κ) of Abelian
differentials, the closures P · S and SL2(R) · S of orbits of S under the actions
of P and of SL2(R) coincide.

The orbit closure L = GL2(R) · S is locally described in period coordinates
as a finite union of complexifications of linear subspaces in H 1(X,Σ;R). Any
such L admits a volume element which is linear in the corresponding linear
subspaces of H 1(X,Σ;R).

Any ergodic P-invariant probability measure on the ‘unit hyperboloid’ H1(κ)

is always SL2(R)-invariant. It is supported on the intersection H1(κ) with
some orbit closure L = GL2(R) · S. It can be induced from an appropriately
normalized linear volume element in period coordinates of L by the natural
restriction to the level hypersurface L1 = L ∩H1(κ) of the area function.

Reciprocally, for any orbit closure L = GL2(R) · S, the measure
corresponding to the volume element on L1 = L ∩ H1(κ) induced from
any linear volume element in period coordinates of L by the natural restriction
to the level hypersurface L1 is ergodic and finite.
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In the current paper, we will only consider the case when all these linear
subspaces are defined by systems of linear equations with rational coefficients
with respect to the natural integral structure on H 1(X,Σ;Z) ⊂ H 1(X,Σ;R).
In such situation, we say that L is defined over Q or, equivalently, that it is
arithmetic (see [Wri1] for the more general notion of the field of definition of a
GL2(R)-invariant suborbifold).

The following weakened version of results of Wright [Wri2, Theorem 1.9]
provides an efficient way to recognize affine invariants suborbifold L by
comparing circumferences of horizontal cylinders of any translation surface in
L having at least one horizontal cylinder.

THEOREM [Wri2]. Suppose that S is a translation surface in a closed connected
GL2(R)-invariant submanifold L and suppose that S has at least one horizontal
cylinder. (S need not be horizontally periodic.) Let w1, . . . , wn be the set of
circumferences of horizontal cylinders on S.

If n = 1, then L is defined over Q. If n > 1 butw j/w1 ∈ Q for all j = 2, . . . , n,
then L is defined over Q.

In particular, any connected GL2(R)-invariant suborbifold containing at least
one square-tiled surface is defined over Q.

DEFINITION 4.2. By an invariant arithmetic orbifold, we call a closed
connected GL2(R)-invariant suborbifold defined over Q in a stratum of Abelian
differentials.

Note that a general invariant arithmetic orbifold might have self-intersections;
see [MiWri, Example 2.8] and [LNW, Section 2.1].

Any connected component of any stratum of Abelian differentials is an
invariant arithmetic orbifold. The GL2(R)-orbit of any square-tiled surface
is also an invariant arithmetic orbifold. Another example, which is of
great importance for us, is provided by connected components of strata of
meromorphic quadratic differentials with at most simple poles; see Section 4.3.

4.2. Masur–Veech volume element. By definition of the invariant arithmetic
orbifold L, the intersection of any linear subspace L representing L in period
coordinates H 1(S,Σ;C) with the lattice H 1(S,Σ;Z ⊕ iZ) defines a lattice
in L . Taking the linear volume element in L normalized in such a way that
a fundamental domain of the resulting lattice in L is equal to one, we get
canonically defined Masur–Veech volume element dVol on L.

A volume element on a manifold canonically defines a volume element
on any level hypersurface of any smooth function. Thus, the Masur–Veech
volume element on an invariant arithmetic orbifold L of a stratum H(κ) of
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Abelian differentials induces the canonical volume element dVol1 on the ‘unit
hyperboloid’ L1 := L ∩H1(κ) of Abelian differentials of area one in L.

Alternatively, the volume element dVol1 (also called the Masur–Veech volume
element) on L1 can be defined as follows. Given any subset U ⊂ L, we define
the cones over U as

CRU := {(X, r · ω) : (X, ω) ∈ U, 0 < r 6 R}, (4.1)
C∞U := {(X, r · ω) : (X, ω) ∈ U, 0 < r}. (4.2)

Note that Area(X, r · ω) = r 2 Area(X, ω) for r > 0: the flat area of (X, r · ω)
changes quadratically in r . In particular, our definition implies that

CRL1 = {(X, ω) ∈ L : Area(X, ω) 6 R2
}. (4.3)

By definition, the Masur–Veech volume Vol1(V1) of a subset V1 ⊂ L1 of the
unit hyperboloid L1 ⊂ L is defined as the Masur–Veech volume of the ‘unit
cone’ over V1 normalized by the dimensional factor 2d:

Vol1 V1 = Vol1(V1) := 2d · Vol(C1V1), where d = dimC L. (4.4)

It is immediate to see that the two definitions of the Masur–Veech volume
element dVol1 on an invariant arithmetic suborbifold L1 are equivalent.

By construction, the Masur–Veech volume element thus defined on the unit
hyperboloid L1 of any invariant arithmetic suborbifold L is SL2(R)-invariant. By
the fundamental result of Eskin, Mirzakhani, Mohammadi [EMi], [EMiMo1]
(see the statement at page 28), for any invariant arithmetic suborbifold L, the
measure on L1 represented by Masur–Veech volume element on L1 is a finite
ergodic measure. In particular, the total Masur–Veech volume Vol1 L1 of any
invariant arithmetic suborbifold L is finite. (Finiteness of Masur–Veech volumes
of the unit hyperboloids of strata of Abelian and quadratic differentials was
proved much earlier by Masur [Mas] and Veech [Vee1].)

Given an invariant arithmetic suborbifold L in the ambient stratum H(κ) of
Abelian differentials, denote by LZ the set of all square-tiled surfaces in L tiled
with unit squares. Equivalently, LZ is the set of points of L represented in period
coordinates of the ambient stratum H(κ) by points of the lattice H 1(S,Σ,Z ⊕
iZ). It follows from the Definition (4.4) of Vol1 L1 that

Vol1 L1 : = 2d · Vol(C1L1) = 2d · lim
R→+∞

Card(CRL1 ∩ LZ)

R2d

= 2d · lim
N→+∞

(
number of square-tiled surfaces in L
tiled with at most N identical squares

)
N d

, (4.5)

where d = dimC L.
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4.3. Strata of quadratic differentials as invariant arithmetic orbifolds. In
this section, we describe strata of meromorphic quadratic differentials and
their Masur–Veech volumes. We then explain how this description fits the
general setting of invariant arithmetic orbifolds and their Masur–Veech volumes
discussed in Sections 4.1–4.2. The details of constructions are deferred to
Appendix A.

Similarly to the case of strata H(κ) in the moduli spaces of Abelian
differentials introduced in Section 4.1, one can define strata Q(ξ) in the
moduli spaces of meromorphic quadratic differentials with at most simple poles.
The strata are parameterized by generalized partitions ξ = [−1ξ−1 0ξ0 1ξ1 . . .]

satisfying the condition
∑

i>−1 i · ξi = 4g − 4. An element in Q(ξ) is an
equivalence class of tuples (X, q, {Pi, j }i>−1,16 j6ξi ), where X is a smooth
complex curve of genus g, q is a meromorphic quadratic differential on X
having simple poles at the points P−1, j of X , marked points at the points P0, j

of X , and zeros of order i at the points Pi, j of X for i > 1 and q is not the
square of an Abelian differential on X . The strata Q(ν,−1|ν|+4) considered in
the Section 1 correspond to the case of genus 0.

By convention, (X, q, {Pi, j }) (which will be sometimes denoted by (X, q) for
brevity) defines an integer point in Q(ξ) if and only if it can be represented by
a square-tiled surface tiled by identical squares of size 1

2 ×
1
2 such that all points

Pi, j are located at the corners of the squares. This convention defines a volume
form on Q(ξ) and an induced volume form on Q1(ξ). The resulting volume
Vol1 Q1(ξ) can be expressed as follows:

Vol1 Q1(ξ) = 2d· lim
N→+∞

(
number of square-tiled surfaces in Q(ξ)
tiled with at most 2N identical squares

)
N d

= 2d · 2d
· lim

N→+∞

(
number of square-tiled surfaces in Q(ξ)

tiled with at most N identical squares

)
N d

, (4.6)

where d = dimC Q(ξ). This convention for the normalization of the volume form
on Q(ξ) follows the one in [AEZ1, AEZ2] and [G1, G2].

Given a quadratic differential q on X that is not the square of an Abelian
differential, there is a unique (possibly ramified) connected double cover p :
X̂ → X such that the pull-back p∗q is the square of an Abelian differential
p∗q = ω2 globally defined on X̂ . The branch points of p are the poles and the
zeros of odd order of q . By convention, throughout Section 4, we always mark
preimages of simple poles of q on X̂ , and an alternative convention is considered
in Appendix A.
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V. Delecroix, É. Goujard, P. Zograf and A. Zorich 32

Note that for any q in the same connected component Q(ξ)comp of any
stratum of meromorphic quadratic differentials with at most simple poles, the
resulting Abelian differential ω belongs to the same connected component
H(κ)comp of the corresponding stratum of Abelian differentials. However, the
correspondence (X, q) → (X̂ , ω) does not define a map from Q(ξ)comp to
H(κ) for there is an ambiguity in labeling zeros of ω as soon as q has zeros
of even order. Considering all possible ways to label the zeros of ω = p∗q
for all (X, q) ∈ Q(ξ)comp, we obtain a suborbifold Q̂(ξ)comp

⊂ H(κ)comp in
appropriate component of appropriate stratum of Abelian differentials together
with a covering map P : Q̂(ξ)comp

→ Q(ξ)comp. By construction, the degree of
the cover P is deg(P) = 2`(ξeven), where `(ξeven) = ξ0 + ξ2 + ξ4 + · · · is the total
number of marked points and of zeros of even degrees.

When Q̂(ξ)comp contains several connected components, all components are
pairwise isomorphic and all components form invariant arithmetic orbifolds.
From now on, we choose any of these invariant arithmetic orbifolds L.

The following result relates geometry of a connected component Q(ξ)comp of
a stratum of meromorphic quadratic differentials with at most simple poles and
geometry of the induced invariant arithmetic orbifold L.

PROPOSITION 4.3. Let Q(ξ)comp be a connected component of a stratum of
meromorphic quadratic differentials with at most simple poles. Let L be the
invariant arithmetic orbifold obtained by the canonical double cover (with
marked preimages of simple poles, if any). Let P : L→ Q(ξ)comp be the natural
cover. Then we have the following:

(1) Any square-tiled surface (X̂ , ω) in L always has an even number of squares.

(2) The natural involution X̂ → X̂ interchanging the sheets of the double cover
p : X̂ → X sends squares of the tiling to squares of the tiling and does not
map any square of the tiling to itself. In particular, the image under the map
P of any square-tiled surface (X̂ , ω) in L tiled with 2N identical squares is
a square-tiled surface (X, q) in Q(ξ)comp tiled with N identical squares of
the same size as the initial ones.

(3) The Masur–Veech volume element dVolQ(ξ) on Q(ξ)comp corresponding to
normalization (4.6) and the Masur–Veech volume element dVolL on L
corresponding to normalization (4.5) are pointwise proportional:

P∗(dVolQ(ξ)) = 4d
· dVolL,

where d = dimC Q(ξ). In particular,

VolL1 (L) =
deg(P)

4d
· VolQ(ξ)1 (Q1(ξ)

comp). (4.7)
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(4) If, furthermore,Q(ξ)=Q(ν,−1|ν|+4) is a stratum in genus 0, then the cover
Q̂(ν,−1|ν|+4) = L is connected and deg(P) = 2`(ξeven), where `(ξeven) =

ξ0 + ξ2 + ξ4 + · · · is the total number of marked points and of zeros of even
degrees.

Proof. We postpone the Proof of Proposition 4.3 to Appendix A with an
exception for the computation of proportionality coefficients which is performed
below.

The factor 4d relating the volume elements P∗(dVolQ(ξ)) and dVolL comes
from the fact that, by convention, square-tiled surfaces in Q(ξ) are tiled
with squares of size 1

2 ×
1
2 , while square-tiled surfaces in L are tiled with unit

squares.
The cover P : Q̂(ξ)comp

→ Q(ξ)comp associates deg(P) = 2`(ξeven) square-
tiled surfaces in Q̂(ξ)comp each tiled with 2N identical squares to every square-
tiled surface tiled with N identical squares in Q(ξ)comp, and, reciprocally, any
square-tiled surface in Q̂(ξ)comp projects to a square-tiled surface in Q(ξ)comp.
Comparing definitions (4.5) and (4.6), we get (4.7).

The proposition above allows us to treat any connected component of a stratum
in the moduli space of meromorphic quadratic differentials with at most simple
poles as a particular case of an invariant arithmetic orbifold.

4.4. Densities and uniform densities. Given an invariant arithmetic orbifold
L, we denote by LZ the set of square-tiled surfaces in L. When the size of the
square is not explicitly specified, we always assume that square-tiled surfaces are
tiled with unit squares. In particular, LZ is the set of ‘unit-square-tiled’ surfaces,
where we impose all standard assumptions on the tiling. Given a subset DZ of
LZ and a subset V of L, define the following counting function:

NDZ(V, N ) := Card{V ∩DZ : Area(S) 6 N } = Card{V ∩DZ∩C√NL1}. (4.8)

Recall from Section 4.1 that the Masur–Veech volume Vol1(L1) is finite and
is defined as the leading term of the asymptotic of NLZ(L, N ) as N → +∞
normalized by a dimensional factor as

NLZ(L, N ) =
1

2d
· Vol1(L1) · N d

+ o(N d) as N →+∞, (4.9)

where d = dimC L (see (4.5)).

DEFINITION 4.4. Let L ⊂ H(κ) be an invariant arithmetic orbifold. We say
that a subset DZ ⊂ LZ has a density or, equivalently, is a density subset, if the
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V. Delecroix, É. Goujard, P. Zograf and A. Zorich 34

following limit exists:

δ(DZ) := lim
N→+∞

NDZ(L, N )
NLZ(L, N )

. (4.10)

The value δ(DZ) of the limit is called the density of the subset DZ.

As two extreme examples, we have δ(LZ) = 1 and δ(∅) = 0. As another
example, one can consider a sublattice of LZ in the period coordinates (see
Section 4.1). The density of such sublattice is 1

K where K is the index in LZ
of the sublattice.

Note that a subset DZ of LZ has a density δ(DZ) if and only if

NDZ(L, N ) ∼ δ(DZ) ·
Vol1(L1)

2d
· N d, (4.11)

where equivalence is understood in the sense of equation (4.9). It is convenient
to introduce the following quantity:

c(DZ) := δ(DZ) · Vol1(L1). (4.12)

We now introduce finer counting functions related to equidistribution. Recall
that a cone in L is a subset of L preserved by dilation S 7→ λS; see (4.2).

DEFINITION 4.5. Let L ⊂ H(κ) be an invariant arithmetic orbifold. We say
that a subset DZ ⊂ LZ has a uniform density if for any open cone C such that
Vol1(∂C ∩ L1) = 0, we have

lim
N→+∞

NDZ(C, N )
NLZ(C, N )

= δ(DZ). (4.13)

Taking C = L, we see that a uniform density is a density. The set LZ
has uniform density. Indeed, it follows from zero measure boundary condition
Vol1(∂C ∩ L1) = 0 that the measure of C ∩ L1 coincides with the leading
coefficient in the integer point count (4.13). See also Remark 4.7.

The proposition below suggests several equivalent definitions of uniform
density. In particular, it shows that uniformity of density of DZ is equivalent
to equidistribution of DZ in L (see property (4)) and that uniformity of density
of DZ in L is equivalent to uniformity of the projection of DZ to L1 (see
property (2)).

PROPOSITION 4.6. Let L ⊂ H(κ) be an invariant arithmetic orbifold in some
stratum of Abelian differentials. Let DZ be a subset of the set LZ of square-tiled
surfaces in L. Then the following assertions are equivalent:
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(1) DZ has uniform density.

(2) For any open set V1 ⊂ L1 with Vol1(∂V1) = 0, one has

lim
ε→0+

ε2d Card{S ∈ DZ : εS ∈ C1V1} =
δ(DZ)

2d
· Vol1(V1).

(3) For any bounded nonnegative continuous function f : L1 → R+, one has

lim
N→+∞

1
N d

∑
S∈DZ

Area(S)6N

f
(

S
√

Area(S)

)
=
δ(DZ)

2d
·

∫
L1

f dVol1 .

(4) For any open relatively compact set V ⊂ L with Vol(∂V ) = 0, one has

lim
ε→0+

ε2d Card{S ∈ DZ : εS ∈ V } = δ(DZ) · Vol(V ).

(5) For any compactly supported nonnegative continuous function f : L →
R+ one has

lim
ε→0+

ε2d
∑
S∈DZ

f (εS) = δ(DZ)

∫
L

f dVol .

REMARK 4.7. One of the equivalent ways to define the Riemann integral
consists in rescaling the mesh of integral points to approximate measure of the
sets or integrals of functions. As a consequence, the above proposition remains
true if one replaces a continuous function by a Riemann integrable function in
assertions (3) and (5). Similarly, open sets with zero measure boundaries can be
replaced by Jordan measurable sets in assertions (2) and (4). Recall that a set
V is called Jordan measurable if it is measurable and Vol(

◦

V ) = Vol(V ). It is
a standard fact in integration that a set is Jordan measurable if and only if the
characteristic function of this set is Riemann integrable.

Proof. Any open cone C ⊂ L can be realized as C = C∞V1 for V1 = C ∩ L1,
see Definition (4.2), and, conversely, any open set V1 ⊂ L1 is the intersection of
the open cone C∞V1 with L1. Thus, similarly to (4.11), a subset DZ of LZ has a
uniform density δ(DZ) if and only if for every open set V1 ⊂ L1, one has

NDZ(C∞V1, N ) ∼ δ(DZ) ·
Vol1(V1)

2d
· N d .

Having a subset V ⊂ L, define the quantity ÑDZ(V, ε) := Card{S ∈ DZ : εS ∈
V }. We can rewrite the left-hand side of the above asymptotic relation as
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Figure 5. Cone based on the ‘unit hyperboloid’ on the left and part of the cone
confined between two ‘hyperboloids’ on the right.

NDZ(C∞V1, N ) = Card{S ∈ DZ ∩ C√N V1}

= Card
{

S ∈
1
√

N
DZ ∩ C1V1

}
= ÑDZ

(
C1V1,

1
√

N

)
.

We conclude that assertion (1) is equivalent to the following assertion:

lim
N→+∞

(
1
√

N

)2d
Card

{
S ∈ DZ :

(
1
√

N

)
· S ∈ C1V1

}
=
δ(DZ)

2d
· Vol1(V1).

It is clear that existence of the above limit for the discrete parameter ε = 1
N with

N ∈ N and for the continuous parameter ε ∈ R+ are equivalent. This proves that
the first two assertions are equivalent, (1)⇔(2).

By Definition (4.4) of the Masur–Veech volume, we have 1
2d Vol1(V1) =

Vol(C1V1). This implies that assertion (2) is a particular case of assertion (4)
when V = C1V1; so (2)⇐(4).

We now prove the converse implication (2) ⇒(4). Assertion (2) implies
assertion (4) when V has the form of a cone V = C1V1 based on an open subset
of the unit hyperboloid L1 (see the left picture in Figure 5). By homogeneity,
this implies assertion (4) for any cone Cr V1 with any r > 0. Hence, it is also
valid for any complement CR V1−Cr V1 for any R > r > 0 (see the right picture
in Figure 5). Now, for any open relatively compact set V in L and any υ > 0,
one can find a finite disjoint collection of trapezoids V (i)

= CRi V
(i)

1 − Cr V (i)
1

contained in V and such that the difference V dif between the union of trapezoids
and V has Masur–Veech measure less than υ. As υ can be chosen arbitrarily
small and as

0 6 lim sup
ε→0+

ε2d Card{S ∈ DZ : εS ∈ V }

6 lim
ε→0+

ε2d Card{S ∈ LZ : εS ∈ V } = Vol(V dif) 6 υ,

we conclude that assertion (2) implies assertion (4). We have proved equivalence
(2)⇔ (4).
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Equivalence of assertions (2) and (3) (respectively of assertions (4) and (5))
follows directly from the duality of measures seen as linear forms on continuous
functions.

4.5. Horocyclic invariance. Consider the following horocyclic subgroups of
the group SL2(Z):

Uh(Z) =
{(

1 n
0 1

)
: n ∈ Z

}
and Uv(Z) =

{(
1 0
n 1

)
: n ∈ Z

}
.

By definition, the SL2(Z) action preserves the set of square-tiled surfaces. The
aim of this section is to prove that for Uh(Z) or Uv(Z)-invariant sets, a density is
always uniform (see Definitions 4.4 and 4.5).

THEOREM 4.8. Let L be an invariant arithmetic orbifold and let DZ be a density
subset of square-tiled surfaces in L. If DZ is invariant under at least one of
Uh(Z) or Uv(Z), then DZ has uniform density.

We start the Proof of Theorem 4.8 with the following preparatory lemma.

LEMMA 4.9. Any finite SL2(R)-invariant ergodic measure ν1 on any unit
hyperboloid of a stratum of Abelian differentials is ergodic with respect to the
actions of the discrete parabolic subgroups Uh(Z) and Uv(Z).

Proof. Let G be a simple Lie group, H be a closed noncompact subgroup of G
and G-action be ergodic with respect to a finite invariant measure. By a particular
case of Moore’s Ergodicity theorem [Zim, Theorem 2.2.15], the H-action is also
ergodic.

In our case, the simple Lie group is SL2(R) and the closed noncompact
subgroup H is Uh(Z).

REMARK 4.10. Note that in the general statement of Moore’s Ergodic Theorem,
the group G is a finite product of simple Lie groups with finite center, and
the ergodic G-action is supposed to be irreducible (see [Zim, Theorem 2.2.15
and Definition 2.2.11]). However, for a simple Lie group G, the requirement of
irreducibility of the action is satisfied automatically; see the remark after [Zim,
Definition 2.2.11].

Proof of Theorem 4.8. Let L1 be the intersection of L with the unit hyperboloid.
The measure corresponding to the Masur–Veech volume element dVol1 on L1 is
ergodic with respect to the SL2(R)-action.
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Now, the subset DZ of LZ defines a sequence of discrete measures µ(N ,DZ)

on L1, where N ∈ N. Namely, we put Dirac masses to all points represented by
square-tiled surfaces tiled with at most N unit squares which belong to DZ. Then
we project these points from L to L1 by the natural projection and normalize the
resulting measure by 2d · N−d , where d = dimC L. We will show that for any
bounded nonnegative continuous function f : L1 → R+, we have

lim
N→∞

∫
L1

f dµ(N ,DZ) = δ(DZ) ·

∫
L1

f dVol1 . (4.14)

Taking all square-tiled surfaces in LZ, and not only those which belong to
the subset DZ, we get a sequence of measures which we denote by µ(N ,LZ) and
which weakly converges to our canonical invariant Masur–Veech measure Vol1

on L1; see (4.4). Recall that L1 is not compact; so by ‘weak convergence’, we
mean that for any bounded nonnegative continuous function f : L1 → R+, we
have

lim
N→∞

∫
L1

f dµ(N ,LZ) =

∫
L1

f dVol1 .

By definition, for any subset DZ, we have

µ(N ,DZ) 6 µ(N ,LZ) (4.15)

for we take only part of square-tiled surfaces of area at most N to define µ(N ,DZ),
while we take all square-tiled surface of area at most N to define µ(N ,LZ). Since
the normalization factor 2d · N−d is the same in both cases, we get the desired
inequality. This implies, in particular, that for any Jordan measurable subset K ⊂
L1 with compact closure, one has

lim sup
N→+∞

µ(N ,DZ)(K ) 6 lim
N→+∞

µ(N ,LZ)(K ) = Vol1(K ).

Therefore, any subsequence of {µ(N ,DZ)}N>0 contains a converging subsequence.
From now on, we fix a measure µJ obtained as the weak limit of some

subsequence {µ(Nk ,DZ)}k>0. Domination (4.15) and the fact thatµ(N ,LZ) converges
to the Masur–Veech measure Vol1 implies that µJ is absolutely continuous with
respect to Vol1. Moreover, the Uh(Z)-invariance of DZ implies that all measures
µ(Nk ,DZ) are Uh(Z)-invariant. Hence, the weak limit µJ is also Uh(Z)-invariant.

By Lemma 4.9, the Masur–Veech measure Vol1 is ergodic with respect to
the action of Uh(Z). Ergodicity of Vol1 with respect to the action of Uh(Z),
invariance of µJ under the action of Uh(Z) and the fact that µJ is absolutely
continuous with respect to Vol1 all together imply that the two measures are
proportional:

µJ = kJ · Vol1 .
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The coefficient of proportionality kJ can be obtained by integrating the constant
function 1. By Definition (4.10) of density δ(DZ), we have

kJ = lim
k→∞

µ(Nk ,DZ)(L1)

µ(Nk ,LZ)(L1)
= lim

k→∞

NDZ(L, Nk)

NLZ(L, Nk)
= δ(DZ)

for any weak limit µJ . This implies (4.14), which correspond to assertion (3)
in the list of equivalent definitions of uniform density of DZ given in
Proposition 4.6. This concludes the Proof of Theorem 4.8.

REMARK 4.11. Our proof is inspired by the Proof of [Mi, Theorem 6.4] where
(in the language of the current paper) Mirzakhani proves that ergodicity of the
action of the mapping class group Modg,n with respect to the Thurston measure
on the space of measured laminations MLg,n implies uniform density of the
Modg,n-orbit of any integral multicurve with respect to the set of all integral
multicurves MLZ

g,n .

REMARK 4.12. Theorem 4.8 can be easily illustrated in the context of the usual
Lebesgue measure on R2. Let us consider the subset DZ,1 of those points of
Z2 which have coprime coordinates. For any R > 0, one can place a ball of
radius R in R2 in such a way that the ball would not contain a single point of
DZ,1. In this aspect, DZ,1 does not resemble a sublattice of Z2. Nevertheless, DZ,1
is SL2(Z)-invariant, which implies that DZ,1 has uniform density δ(DZ,1). The
value of δ(DZ,1) can be evaluated explicitly as δ(DZ,1) =

6
π2 . In particular, one

can compute areas of Jordan measurable sets V in R2 by counting the number of
points of εDZ,1 which get to V and letting the mesh ε of the grid tend to zero:

Area(V ) =
π 2

6
· lim
ε→+0

ε2
· Card{V ∩ εDZ,1}.

For each k ∈ N, consider the analogous subset DZ,k ⊂ Z2 of points with integer
coordinates (x, y) such that gcd(x, y) = k. By definition, DZ,k is obtained from
DZ,1 by homothety with dilatation coefficient k. Thus, any subset DZ,k also has
uniform density, and δ(DZ,k) =

1
k2 · δ(DZ,1). We have

Z2
=

⊔
k∈N

DZ,k,

which leads to

1 = δ(Z2) =

+∞∑
k=1

δ(DZ,k) =

+∞∑
k=1

1
k2
· δ(DZ,1) = ζ(2) · δ(DZ,1).
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4.6. Invariance with respect to Re- and Im-foliations. Given two subsets
DZ and D′Z of square-tiled surfaces that admit (uniform) densities, it is, in
general, false that δ(DZ∩D′Z) = δ(DZ) · δ(D′Z). We introduce in this section Re-
and Im-invariance that provides sufficient conditions for this equality to hold.

A stratum of Abelian differentials of complex dimension d is endowed with
a pair of transverse foliations of real dimension d induced from the canonical
direct sum decomposition in period coordinates

H 1(S,Σ;C) = H 1(S,Σ;R)⊕ H 1(S,Σ; iR). (4.16)

In particular, in a neighborhood of any point (X, ω) of the stratum, one has
canonical direct product structure in period coordinates. Locally, leaves of the
Im-foliation are preimages of points under projection to the first summand,
and leaves of the Re-foliation are projections to the second summand. In other
words, pairs (X, ω) in a leaf of the Im-foliation (respectively of the Re-foliation)
share the cohomology class [Reω] ∈ H 1(S,Σ;R) (respectively [Imω] ∈ H 1(S,
Σ;R)).

By the results of Eskin–Mirzakhani–Mohammadi [EMi], [EMiMo1] (see
the precise statement on page 28), the analogous decomposition holds for any
GL2(R)-invariant suborbifold L. If L is locally represented in period coordinates
as a finite union of several linear subspaces, every such subspace is foliated by Re
and Im-foliations. We formalize this trivial corollary of highly nontrivial results
of Eskin–Mirzakhani–Mohammadi as a separate assertion.

PROPOSITION 4.13. Let L be an invariant arithmetic suborbifold in some
stratum H(κ) of Abelian differentials. Then the Re-leaf in L passing through
a point (X, ω) of L coincides with the connected component of the intersection
of the Re-leaf in the ambient stratum H(κ) passing through (X, ω) with L.

In period coordinates H 1(S,Σ;C) in the neighborhood of (X, ω), the Re-
leaf in L passing through a point (X, ω) is represented by a finite union of linear
subspaces of real dimension d = dimC L.

DEFINITION 4.14. We say that a subset DZ ⊂ LZ of square-tiled surfaces in
an invariant arithmetic suborbifold L is Re-invariant (respectively Im-invariant)
if for any point S in DZ all points of LZ located in the leaf of the Re-foliation
(respectively Im-foliation) in L passing through S also belong to DZ.

REMARK 4.15. In a very similar context in homogeneous dynamics, the
analogous properties are called stable and unstable horocyclic invariance.
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Note that the unipotent subgroups

Uh(R) =
{(

1 t
0 1

)
: t ∈ R

}
and Uv(R) =

{(
1 0
t 1

)
: t ∈ R

}
act along the leaves of the Re-foliation and Im-foliation, respectively. Thus,
any Re-invariant (respectively Im-invariant) subset DZ of square-tiled surface
is automatically Uh(Z)-invariant (respectively Uv(Z)-invariant). The converse is
obviously not true: the Uh(Z)-orbit of any square-tiled surface of genus g > 2 is
Uh(Z)-invariant but usually not Re-invariant.

THEOREM 4.16. Let Dh
Z,Dv

Z be subsets of square-tiled surfaces in an invariant
arithmetic orbifold L that are, respectively, Re-invariant and Im-invariant. Then
Dh

Z, Dv
Z and Dh

Z ∩Dv
Z have uniform densities and the following equality holds:

δ(Dh
Z ∩Dv

Z) = δ(Dh
Z) · δ(Dv

Z).

Proof. The uniformity of the density of Dh
Z and of Dv

Z follows from Theorem 4.8.
Following the Proof of Proposition 4.6, define the following quantity:

ÑDZ(V, ε) = Card{S ∈ DZ : εS ∈ V }.

We prove now assertion (4) from Proposition 4.6 for the set Dh
Z ∩ Dv

Z. By
Proposition 4.6, this assertion is equivalent to uniformity of the density of Dh

Z ∩

Dv
Z. It is sufficient to prove assertion (4) for sets V of the form I × J where I

and J are, respectively, Jordan measurable in the summands (4.16) in the natural
product structure of L provided by Re and Im foliations (see Remark 4.7 for
the definition of Jordan measurable). Indeed, any Jordan measurable set in L
can be approximated from below and above by a finite union of products of
Jordan measurable sets of the form I × J up to an arbitrary small difference in
measures. We also assume that any V is located in a single coordinate chart in
period coordinates so that the products pRe and pIm to the first and the second
terms of (4.16) are well defined, I = pRe(V ); J = pIm(V ) and V = I × J .

Re- and Im-invariance of Dh
Z and Dv

Z, respectively, implies that the sets εDh
Z,

εDv
Z and ε · (Dh

Z ∩Dv
Z) locally have the following product structures:

εDh
Z ∩ V = (I ∩ pRe(εLZ))× (J ∩ pIm(εDh

Z)),

εDv
Z ∩ V = (I ∩ pRe(εDv

Z))× (J ∩ pIm(εLZ)),

ε · (Dh
Z ∩Dv

Z) ∩ V = (I ∩ pRe(εDv
Z))× (J ∩ pIm(εDh

Z)),

where

I ∩ pRe(εLZ) = I ∩ H 1(S,Σ; εZ),
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J ∩ pIm(εLZ) = J ∩ H 1(S,Σ; iεZ).

This implies the following relations for the counting functions:

ÑLZ(V, ε) = Card(I ∩ pRe(εLZ)) · Card(J ∩ pIm(εLZ)),

ÑDh
Z
(V, ε) = Card(I ∩ pRe(εLZ)) · Card(J ∩ pIm(εDh

Z)),

ÑDv
Z
(V, ε) = Card(I ∩ pRe(εDv

Z)) · Card(J ∩ pIm(εLZ)),

ÑDh∩Dv (V, ε) = Card(I ∩ pRe(εDv
Z)) · Card(J ∩ pIm(εDh

Z)).

Thus, for any set V = I × J as above, we have the equality

ÑDh
Z∩D

v
Z
(V, ε)

ÑLZ(V, ε)
=

ÑDh
Z
(V, ε)

ÑLZ(V, ε)
·
ÑDv

Z
(V, ε)

ÑLZ(V, ε)
.

The definition of the Masur–Veech volume and the fact that Dh
Z and Dv

Z have
uniform densities imply the existence of the limits:

lim
ε→+∞

ÑDh
Z
(V, ε)

ÑLZ(V, ε)
= δ(Dh

Z),

lim
ε→+∞

ÑDv
Z
(V, ε)

ÑLZ(V, ε)
= δ(Dv

Z).

Hence,

lim
ε→+∞

ÑDh
Z∩D

v
Z
(V, ε)

ÑLZ(V, ε)
= δ(Dh

Z) · δ(Dv
Z),

which is equivalent to analogous relation written in the form of the assertion (4)
from Proposition 4.6.

4.7. Separatrix diagrams and critical graphs. In this section, we recall
some basic facts concerning combinatorial geometry of Jenkins–Strebel
differentials. Assume that all leaves of the horizontal foliation of an Abelian
or quadratic differential are either closed or connect critical points (a leaf
joining two critical points and having no critical points in its interior is called a
saddle connection or a separatrix). An Abelian or quadratic differential having
this property is called a Jenkins–Strebel differential; see [Str]. For example,
square-tiled surfaces provide particular cases of Jenkins–Strebel differentials.

Following [KoZo], we associate to each Jenkins–Strebel differential a
combinatorial data called a separatrix diagram (or critical graph in terminology
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of [DdHb]). A separatrix diagram Γ encodes the combinatorial geometry of
the completely periodic horizontal foliation. It is a ribbon graph composed of
a tubular neighborhood of the union of all horizontal saddle connections. This
ribbon graph is endowed with the partition of boundary components into pairs,
where two components are paired when they are joined by a cylinder filled with
regular periodic horizontal leaves.

LEMMA 4.17. A separatrix diagram representing a Jenkins–Strebel Abelian
differential in a stratum of complex dimension d has exactly d − 1 edge (that
is, d − 1 horizontal saddle connections).

A separatrix diagram representing a meromorphic Jenkins–Strebel quadratic
differential with at most simple poles in a stratum of complex dimension d has
exactly d edges (that is, d horizontal saddle connections).

Proof. A critical point corresponding to a zero of an Abelian differential of
degree k has k+ 1 incoming and k+ 1 outgoing separatrix rays, where a marked
point is interpreted in this context as a ‘zero of degree 0’. Thus, the total number
n of horizontal saddle connections satisfies

n = sum of degrees of zeros+ (number of zeros and marked points).

Note that
2g − 2 = sum of degrees of zeros

and that
d = 2g + (number of zeros and marked points)− 1,

which implies the equality n = d − 1.
Similarly, a critical point corresponding to a zero (or to a simple pole) of

degree k of a quadratic differential has k + 2 horizontal separatrix rays, where
a simple pole is interpreted in this context as a ‘zero of degree −1’. Thus, the
total number of horizontal saddle connections of a Jenkins–Strebel quadratic
differential equals half the total number of separatrix rays. On the other hand,
the sum of degrees of zeros and simple poles equals 4g − 4 and the dimension
of the stratum equals

d = 2g + (number of zeros, marked points and simple poles)− 2,

which implies the assertion for quadratic differentials.

Removing all horizontal saddle connections of an Abelian Jenkins–Strebel
differential from the associated translation surface, we decompose the surface
into a disjoint union of maximal cylinders filled with closed regular leaves of

https://doi.org/10.1017/fmp.2020.2 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.2


V. Delecroix, É. Goujard, P. Zograf and A. Zorich 44

the horizontal foliation. Denote by m the number of these maximal horizontal
cylinders. The corresponding separatrix diagram viewed as a ribbon graph has
2m boundary components.

We will say that a vector v ∈ Rn is strictly positive if all its components are
strictly positive numbers, that is, if v belongs to Rn

+
= Rn

>0. Any Jenkins–Strebel
differential having a given separatrix diagram Γ is completely determined by the
following additional length data:

• the length of each horizontal saddle connection (`i)i∈{1,...,d−1} ∈ Rd−1
>0 ,

• the height of each maximal horizontal cylinder (h j) j∈{1,...,m} ∈ Rm
>0,

• a twist parameter for each cylinder (t j) j∈{1,...,m} ∈ Rm . The twist parameter t j

is determined by a choice of a saddle connection γ j entirely contained in the
corresponding cylinder and joining the two opposite boundary components of
this cylinder.

For an Abelian Jenkins–Strebel differential ω, the length `i of each horizontal
saddle connection λi coincides with the period

∫
λi
ω under appropriate choice of

orientation of λi . Under appropriate choice of orientation of γ j , the period of ω
along the saddle connection γ j equals t j + i · h j , where i =

√
−1 in the latter

expression.
In the example presented in Figure 6, all horizontal saddle connections of the

separatrix diagram corresponding to the Abelian differential ω have lengths `i =

|λi | = 1 for i = 1, . . . , 8. The height h1 of the single maximal horizontal cylinder
is equal to 1 and the twist parameter corresponding to the saddle connection γ1

(represented by the lateral sides of the parallelogram pattern) is also equal to 1.
The relative period

∫
γ1
ω is equal to 1+i , where i =

√
−1 in the latter expression.

Similarly, for a Jenkins–Strebel quadratic differential q on a complex curve
X , the length parameters (`, t, h) can be interpreted in terms of periods of the
holomorphic form ω on the canonical double cover p : X̂ → X where p∗q = ω2.

The length data is subject to the constraint that the sum of the lengths of
saddle connections on respectively top and bottom boundary components of
each maximal horizontal cylinder should be the same. We denote by wtop

Γ, j(`)

(respectively by wbot
Γ, j(`)) the sum of the lengths `i of those horizontal saddle

connections that appear on the top (respectively bottom) of the j th cylinder.
Note that in the case of quadratic differentials, the same saddle connection might
appear at the same boundary component twice. In this case, the corresponding
parameter `i is counted with weight 2. The linear conditions are then expressed
as

w
top
Γ, j(`) = w

bot
Γ, j(`) for j = 1, . . . ,m. (4.17)
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Figure 6. A Jenkins–Strebel Abelian differential with a single cylinder
represented as a ribbon graph (on top) and as a parallelogram on the bottom.
This Abelian differential belongs to the stratum H(14) of complex dimension
d = 9 and has 9− 1 = 8 horizontal saddle connections.

For an Abelian Jenkins–Strebel differential, there is an obvious linear relation
between these constraints. Namely, since every horizontal saddle connection is
present exactly once on top of some cylinder and exactly once on the bottom
of some cylinder, taking the sum of equations (4.17), we get a tautological
identity

∑m
j=1w

top
Γ, j =

∑m
j=1w

bot
Γ, j having the sum `1 + `2 + · · · + `d−1 (arranged

in a certain order) on each side of the identity. Lemma 4.18 proves that this
is the only relation between equations (4.17) for Abelian differentials and that
equations (4.17) are independent for quadratic differentials.

LEMMA 4.18. Consider the decomposition of a Jenkins–Strebel Abelian
differential or of a Jenkins–Strebel quadratic differential with at most simple
poles into maximal horizontal cylinders obtained by removing from the surface
all horizontal saddle connections. Let m be the number of such cylinders.

The linear system (4.17) has rank m − 1 for Abelian Jenkins–Strebel
differentials and rank m for quadratic Jenkins–Strebel differentials.

Proof. We start with the case of Abelian Jenkins–Strebel differentials. Let r be
the rank of linear system (4.17). We have seen that the length parameters `i , t j

can be interpreted as cocycles in the relative cohomology group H 1(S,Σ,R).
The cylinder twists t j can be chosen arbitrarily, which gives m free parameters
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independent of parameters `i . We can complete them with (d−1)− r additional
free parameters `i . Since dimR H 1(S,Σ,R) = d , we conclude that r > m − 1.
On the other hand, we have already seen that r 6 m − 1 since there is at least
one linear relation between equations (4.17).

The count for quadratic Jenkins–Strebel differentials is analogous. The m
twists t j provide m independent parameters. However, this time by Lemma 4.17,
we have d horizontal saddle connections, and the linear span of all independent
parameters `i , t j can have real dimension at most d , which implies that linear
system (4.17) has to have the full rank r = m.

We will use the following simple lemma in the Proof of Proposition 4.20.

LEMMA 4.19. Let (X, ω) be a Jenkins–Strebel holomorphic 1-form on a
complex curve X. Consider the decomposition of X into union of maximal
cylinders filled with closed horizontal leaves. Consider the collection of all
horizontal saddle connections completed for each cylinder by a nonhorizontal
segment inside the cylinder joining some pair of singularities on the two
boundary components of the cylinder. Viewed as a collection of relative
homology cycles, such a collection of saddle connections spans the entire
relative homology group H1(X,Σ;Z).

Proof. The complement to the union of our segments is a disjoint union of
topological discs. Thus, the collection of segments as above defines a 1-skeleton
of a CW decomposition of the topological surface S underlying the complex
curve X , where all 0-cells belong to the finite set Σ of zeros and marked points
of the differential.

The following simple observation is of crucial importance for us.

PROPOSITION 4.20. Let Γ be the separatrix diagram corresponding to a
Jenkins–Strebel Abelian differential (X, ω). Denote by h the vector of heights
of the associated maximal horizontal cylinders. Let H(κ)comp be the connected
component of the ambient stratum containing (X, ω). Consider the subset
H(κ)comp

Γ,h ⊂ H(κ)comp of all Jenkins–Strebel differentials in H(κ)comp sharing
with (X, ω) the separatrix diagram Γ and the vector of heights h. The subset
H(κ)comp

Γ,h coincides with the Re-leaf through (X, ω).

Proof. The collection of parameters `i , where i = 1, . . . , d − 1, and t j + i · h j ,
where j = 1, . . . ,m, associated with the separatrix diagram Γ represents relative
periods over a generating family of relative cycles; see Lemma 4.19. Thus,
keeping the vector of heights h fixed and deforming the parameters `i , t j , we
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stay inside the Re-leaf through (X, ω). On the other hand, Lemma 4.18 implies
that the space of (`i , t j)-parameters has the same dimension d = dimR H 1(X,
Σ;R) as the Re-leaf. This implies that the connected component of H(κ)comp

Γ,h
containing (X, ω) coincides with the Re-leaf passing through (X, ω).

It remains to note that the set H(κ)comp
Γ,h is connected. Indeed, in (`, t, h)-

coordinates, the coordinate h is fixed; the coordinates t ∈ Rm can be chosen
arbitrarily and the coordinate vector ` can be chosen as an arbitrary vector in the
intersection of Rd−1

+
with the linear subspace defined by equations (4.17). The

latter intersection is, clearly, connected.

Similarly, let Γ be the separatrix diagram corresponding to a Jenkins–Strebel
quadratic differential (X, q). As before, denote by h the vector of heights of
the associated maximal horizontal cylinders. Let Q(ξ)comp be the connected
component of the ambient stratum containing (X, q). Let L be the arithmetic
invariant suborbifold obtained by the canonical double cover construction from
Q(ξ)comp (see Section 4.3); let H(κ) be the stratum of Abelian differentials
ambient for L. Let (X̂ , ω) ∈ L be the Abelian differential representing the
canonical double cover p : X̂ → X such that p∗q = ω2.

Consider the subset Q(ξ)comp
Γ,h ⊂ Q(ξ)comp of all Jenkins–Strebel differentials

in Q(ξ)comp sharing with (X, q) the separatrix diagram Γ and the vector
of heights h. Consider the subset obtained by applying the double cover
construction to Jenkins–Strebel quadratic differentials in Q(ξ)comp

Γ,h . Let LΓ,h ⊂ L
be the connected component of this set containing (X̂ , ω).

PROPOSITION 4.21. The subset LΓ,h(ξ) coincides with the Re-leaf of L passing
through (X̂ , ω).

Proof. The proof is analogous to the Proof of Proposition 4.20.

As it was already implicitly done above, we always assume that the maximal
horizontal cylinders associated with a separatrix diagram are numbered from 1
to m and that the horizontal saddle connections are numbered from 1 to d − 1.
Suppose that a Jenkins–Strebel differential (X, ω) has separatrix diagram Γ and
associated parameters (`, h, t). A collection of parameters (`′, h′, t ′) determine
the same translation surface (X, ω) if and only if ` = `′, h = h′ and

t j − t ′j ≡ 0 (mod w j), for j = 1, 2, . . . ,m,

where w j = wbot
Γ, j(`) = wbot

Γ, j(`
′). For this reason, the parameters t j are only

relevant modulo w j .
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Figure 7. Ribbon graphs Γ1 and Γ2 are realizable as separatrix diagrams while
Γ3 is not.

A square-tiled surface always represents a Jenkins–Strebel differential. In
the coordinate system as above, a Jenkins–Strebel differential corresponds to
a square-tiled surface if and only if the metric data (`, h, t) is integer.

Note that a general ribbon graph Γ does not necessarily represent a separatrix
diagram of some Jenkins–Strebel Abelian differential. The horizontal foliation
of a Jenkins–Strebel Abelian differential is oriented, so the ribbon graph Γ
should be orientable: it should admit orientation of edges in such a way that
at every vertex, the incoming edges and outgoing edges alternate with respect
to the cyclic order induced by the ribbon structure. The pairing of boundary
components should respect orientation of the surface. And finally, the system of
equations (4.17) should admit a strictly positive solution (`1, . . . , `d−1).

EXAMPLE 4.22. Figure 7 represents all oriented ribbon graphs having a single
vertex of valence 6. Thus, any separatrix diagram realized by a Jenkins–Strebel
differential from the stratum H(2) is represented by one of these three ribbon
graphs.

The graph Γ1 has two boundary components, so there is a unique way to glue
a cylinder to this ribbon graph. We have already seen that in the case of a 1-
cylinder separatrix diagram, the system of equations (4.17) degenerates to an
identity, which in the particular case of Γ1 has the form

`1 + `2 + `3 = `1 + `3 + `2.

Thus, Γ1 is realizable as a separatrix diagram, which is the unique 1-cylinder
separatrix diagram in H(2). Any collection of parameters (`, t, h) with ` ∈ R3

+
,

t ∈ R, h ∈ R+ defines a legal Jenkins–Strebel differential in H(2). Restricting
the twist parameter to the subdomain 0 6 t < `1 + `2 + `3 = w1, we get a
polyhedral cone representing a single coordinate chart for all Jenkins–Strebel
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differentials in H(2) corresponding to this separatrix diagram. Any point of the
polyhedral cone defines a unique well-defined Jenkins–Strebel differentials in
H(2). Up to the symmetry of order 3 which cyclically changes the coordinates
(`1, `2, `3), every 1-cylinder Jenkins–Strebel differentials in H(2) is represented
by a unique point (`, t, h) of the resulting polyhedral cone.

The graph Γ2 has four boundary components. However, there is a unique
way to glue two cylinders to this ribbon graph in such a way that the resulting
closed surface would be orientable and that the system of equations (4.17)
admits a strictly positive solution. Namely, we have to glue one of the two
cylinders to the inner boundary component of the loop `1 and to the inner
boundary component of the loop `3, and the other cylinder to the remaining pair
of boundary components. This time, the system of equations (4.17) imposes a
nontrivial constraint `1 = `3. As a coordinate chart in the space of parameters
(`, t, h), we can choose the following polyhedron. Take the intersection of the
strictly positive octant R3

+
with the plane `1 = `3 for the parameters `. Let

0 6 t1 < `1 and 0 6 t2 < `1 + `2. Let h ∈ R2
+

. Any Jenkins–Strebel differential
having this separatrix diagram can be represented by appropriate parameters (`,
t, h) in this polyhedral cone, and distinct points of the polyhedral cone represent
distinct (and well-defined) Jenkins–Strebel differentials.

It is easy to verify that the ribbon graph Γ3 is not realizable as a separatrix
diagram: no matter how we arrange the boundary components into pairs,
system (4.17) does not admit any strictly positive solution.

By Proposition 4.20, every subset H(κ)comp
Γ,h obtained by fixing the collection

h of heights of cylinders of a Jenkins–Strebel differential in H(κ)comp and by
varying the length parameters (`, t) associated with the corresponding separatrix
diagram Γ coincides with a Re-leaf in H(κ)comp. Geometrically, each such
H(κ)comp

Γ,h is a torus bundle. The base of this bundle is the polyhedral cone C+(Γ )
(or possibly its quotient with respect to a finite symmetry group) obtained as the
intersection of Rd−1

+
with the linear subspace (4.17). The fiber over a point ` in

C+(Γ ) is the ‘twist torus’

Tm
= Rm/(w1Z⊕ w2Z⊕ · · · ⊕ wmZ), (4.18)

where w1(`), . . . , wm(`) are the perimeters of the cylinders.
Some of the separatrix diagrams realizable for the ambient stratum H(κ)

might not be necessarily realizable in a given invariant arithmetic suborbifold
L. For example, any Jenkins–Strebel differential in the GL2(R)-orbit L of
the Eierlegende Wollmilchsau represented in Figure 8 has the same separatrix
diagram as the Eierlegende Wollmilchsau. In particular, L does not contain a
single 1-cylinder square-tiled surface.
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Figure 8. Eierlegende Wollmilchsau. As any square-tiled surface, it has a closed
GL2(R)-orbit.

Given an invariant arithmetic suborbifold L, we say that a separatrix diagram
Γ is realizable in L if L contains a Jenkins–Strebel differential having the
separatrix diagram Γ . We call a vector h = (h1, h2, . . . , hm) admissible for a
separatrix diagram Γ in L if there is a Jenkins–Strebel differential in L with
separatrix diagram Γ and with horizontal cylinders of heights h.

4.8. Densities of subsets of square-tiled surfaces with prescribed
horizontal or vertical decompositions. We now apply the results of
Sections 4.5–4.7 to square-tiled surfaces with fixed combinatorics. In particular,
we prove Corollary 4.25 that generalizes Theorem 2.6 from the Section 1.

Though we state the main results only for the connected components of the
strata of Abelian and quadratic differentials, all the results of this section are
valid for any invariant arithmetic suborbifold. However, we postpone these more
general proofs to a separate paper [DGZZ2] to avoid overloading the current
one.

In Section 4.3, we assigned to every connected component Q(ξ)comp of every
stratum of meromorphic quadratic differentials with at most simple poles an
invariant arithmetic orbifold L in an appropriate stratum of Abelian differentials.
By convention, everywhere in Section 4, we mark the preimages of simple
poles on the cover. By Proposition 4.3, the square-tiled surfaces in Q(ξ)comp

and in L are in the natural correspondence. In particular, we have direct relation
between densities of the corresponding subsets of square-tiled surfaces measured
in Q(ξ)comp and in L.

Consider a connected component L of some stratum of Abelian or quadratic
differentials and a separatrix diagram Γ realizable in it. Given an integer height
vector h admissible for Γ , we denote by Lhoriz

Z,Γ,h the set of square-tiled surfaces
in LZ having separatrix diagram Γ and vector h of cylinder heights. We define
Lvert

Z,Γ,h as the set of square-tiled surfaces obtained from square-tiled surfaces in
Lhoriz

Z,Γ,h by rotation by π

2 clockwise.

https://doi.org/10.1017/fmp.2020.2 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.2


Enumeration of meanders and Masur–Veech volumes 51

THEOREM 4.23. Let L be a connected component of a stratum of Abelian
differentials or an invariant arithmetic suborbifold in a stratum of Abelian
differentials obtained by the canonical double cover construction from a
connected component of a stratum of quadratic differentials. Let Γ be a
separatrix diagram realizable in L. Then for any integer height vector h
admissible for Γ , the subset Lhoriz

Z,Γ,h of LZ has a nonzero density. Moreover,
c(Lhoriz

Z,Γ,h) = δ(Lhoriz
Z,Γ,h) ·Vol1(L1) is a rational number, and we have the following

explicit convergence rate as N →∞:

NLhoriz
Z,Γ,h
(L, N ) = c(Lhoriz

Z,Γ,h) ·
N d

2d
+ O(N d−1),

where d = dimC L.

Proof. We start the proof with the case when L is a connected component of a
stratum of Abelian differentials.

Let (`, t, h) be parameters of the horizontal cylinder decomposition of a
surface from Lhoriz

Z,Γ,h . Then ` satisfies (4.17), so the width wΓ, j(`) of the j th
cylinder satisfieswΓ, j(`)= w

top
Γ, j(`)= w

bot
Γ, j(`). Hence, the flat area of the surface

can be expressed in (`, h)-coordinates as

Area(`, h, t) =
m∑

j=1

h j · wΓ, j(`).

Let LΓ be the linear subspace of Rd−1
× Rm consisting of couples (`, t)

satisfying the system of linear equations (4.17).
Let PΓ,h be the polyhedron in LΓ defined by the following inequalities:

(1) ` is strictly positive,

(2) for each j ∈ {1, . . . ,m}, 0 6 t j < w j(`),

(3) Area(`, h, t) 6 1.

It follows from the definition of a separatrix diagram that PΓ,h is a relatively
compact rational polyhedron of full dimension in LΓ . This implies that Vol PΓ,h
is a (finite) strictly positive rational number, where Vol is the Lebesgue measure
in the vector space LΓ normalized in such a way that the fundamental domain of
the lattice LΓ ∩ (Zd−1

× Zm) has volume 1.
Up to a possible symmetry of finite order, square-tiled surfaces tiled with at

most N unit squares in Lhoriz
Z,Γ,h are in the one-to-one correspondence with the

integral points in the inflated polyhedron N · PΓ,h (where the inflation does not
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affect the parameters h and acts on the space Rd−1
×Rm of (`, t)-coordinates by

homothety with coefficient N ). Hence,

N (Lhoriz
Z,Γ,h, N ) =

1
Aut(Γ, h)

· Card
(
N · PΓ,h ∩ (Zd−1

× Zm)
)

=
1

Aut(Γ, h)
· Vol(PΓ,h) · N dim(PΓ ) + O(N dim(PΓ )−1),

where dim(PΓ ) = dim(LΓ ) = dimC L by Proposition 4.20. By equation (4.11),
this implies that Lhoriz

Z,Γ,h has strictly positive density δ(Lhoriz
Z,Γ,h) and that the quantity

c(Lhoriz
Z,Γ,h) = δ(Lhoriz

Z,Γ,h) · Vol1(L1) = dimR L ·
Vol(PΓ,h)
Aut(Γ, h)

is a rational number.
Suppose now that L is an invariant arithmetic suborbifold in an appropriate

stratum H(κ) of Abelian differentials obtained by the canonical double cover
construction from a connected component Q(ξ)comp of a stratum of meromorphic
quadratic differentials with at most simple poles. Any realizable separatrix
diagram Γ̂ in L is induced from a realizable separatrix diagram Γ in the original
connected component of a stratum of quadratic differentials. By convention, we
mark all preimages of simple poles (if any).

It is convenient to denote by (`, t, h) the lengths of horizontal saddle
connections, the twist parameters and the heights of the cylinders of the original
Jenkins–Strebel quadratic differential (X, q) ∈ Q(ξ)comp. Suppose that the
original separatrix diagram Γ contains m cylinders, that γ1, . . . , γm represent
the nonhorizontal saddle connections crossing these cylinders and that λ1, . . . ,

λd denote the horizontal saddle connections. By Lemma 4.17, the number d of
horizontal saddle connections coincides with the dimension d = dimC Q(ξ) of
the ambient stratum of quadratic differentials. By construction, the separatrix
diagram Γ̂ corresponding to the Jenkins–Strebel differential on the double cover
has 2m cylinders.

Every horizontal saddle connection λi on (X, q) has two preimages λ′i
and λ′′i on (X̂ , ω). Every nonhorizontal saddle connection γ j also has two
preimages γ ′j and γ ′′j crossing the two maximal horizontal cylinders on the
cover corresponding to two copies of the horizontal cylinder number j on
the base. The induced collection of parameters (`′, `′′, t ′, t ′′, h′, h′′) serves as
the complete collection of length parameters on the covering Jenkins–Strebel
Abelian differential with the separatrix diagram Γ̂ . By construction, they satisfy
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the obvious relations 
`′i = `

′′

i for i = 1, . . . , d,
t ′j = t ′′j for j = 1, . . . ,m,
h′j = h′′j for j = 1, . . . ,m,

(4.19)

where, by construction, we have `′j = `′′j = ` j for j = 1, . . . , d as well as
t ′j = t ′′j = t j for j = 1, . . . ,m and h′j = h′′j = h j for j = 1, . . . ,m.

Consider the linear subspace LΓ ⊂ Rm−1
× Rm of simultaneous solutions of

the following two systems of linear equations: system (4.17) associated with
the separatrix diagram Γ̂ and system (4.19). Suppose that some collection (`′,
`′′, t ′, t ′′, h′, h′′) with strictly positive `′, `′′, h′, h′′ defines a point of LΓ . Define
` j := `′j = `′′j for j = 1, . . . , d; define t j := t ′j = t ′′j = t j for j = 1, . . . ,m
and define h j := h′j = h′′j for j = 1, . . . ,m. The collection (`, t, h) defines a
Jenkins–Strebel differential in Q(ξ)comp with separatrix diagram Γ and vector
of heights h. Reciprocally, any Jenkins–Strebel differential in Q(ξ)comp with
separatrix diagram Γ and vector of heights h defines a point in LΓ .

The rest of the proof is completely analogous to the case of Abelian
differentials treated above.

Applying the results from Sections 4.5 and 4.6, we obtain the following
corollary.

COROLLARY 4.24. Let L be a connected component of a stratum of Abelian
differentials or an invariant arithmetic suborbifold in a stratum of Abelian
differentials obtained by the canonical double cover construction from a
connected component of a stratum of quadratic differentials. Let Γ and Γ ′

be realizable separatrix diagrams in L and let h and h′ be admissible integer
vectors of heights of cylinders for Γ and Γ ′, respectively. Then all of Lhoriz

Z,Γ,h ,
Lvert

Z,Γ ′,h′ and Lhoriz
Z,Γ,h ∩ Lvert

Z,Γ ′,h′ have strictly positive uniform densities in L and

δ(Lhoriz
Z,Γ,h ∩ Lvert

Z,Γ ′,h′) = δ(Lhoriz
Z,Γ,h) · δ(Lvert

Z,Γ ′,h′),

where δ(Lvert
Z,Γ ′,h′) = δ(Lhoriz

Z,Γ ′,h′).

Proof. Theorem 4.23 shows that the set Lhoriz
Z,Γ,h has a strictly positive density.

By Proposition 4.20 (respectively by Proposition 4.21 in the case of quadratic
differentials), the set Lhoriz

Z,Γ,h is Re-invariant, which allows us to use Theorem 4.16
and conclude that the density is, actually, uniform.

The analogous results hold for the vertically completely periodic surfaces
with separatrix diagram Γ ′, namely, by the same arguments, the set Lvert

Z,Γ ′,h′ has
uniform strictly positive density and is Im-invariant.
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Theorem 4.16 implies that the intersection Lhoriz
Γ,h ∩ Lvert

Γ ′,h′ has uniform strictly
positive density equal to the product of the densities of the two sets.

To complete the proof, note that the set Lvert
Z,Γ ′,h′ is constructed by applying

to each square-tiled surface in the set Lhoriz
Z,Γ ′,h′ clockwise rotation by π

2 . Thus,
NLvert

Z,Γ ′,h′
(L, N ) = NLhoriz

Z,Γ ′,h′
(L, N ). The equality δ(Lvert

Z,Γ ′,h′) = δ(Lhoriz
Z,Γ ′,h′) now

follows directly from Definition (4.10) of the density.

In Section 2.1, we assigned to every square-tiled surfaces on the sphere a
pair of transverse multicurves. Analogously, one can assign to any square-tiled
surface in a stratum of Abelian differential H(κ) a pair of transverse multicurves
composed of all closed regular flat geodesics passing through the centers of the
squares.

Recall that closed regular horizontal geodesics on a square-tiled surface (X, ω,
Σ) are organized into maximal horizontal cylinders having at least one point of
the setΣ on each of the boundary components and no points ofΣ in the interior
of the cylinder. All regular closed horizontal geodesics inside each maximal
horizontal cylinder belong to the same free homotopy class on X\Σ . A similar
property is valid for the vertical cylinder decomposition. This observation allows
us to express the horizontal (respectively vertical) multicurve associated with a
square-tiled surface in terms of the horizontal (respectively vertical) cylinder
decomposition as the weighted sum h1γ1 + h2γ2 + · · · + hmγm , where hi and
γi are, respectively, the height and the core curve of the i th cylinder in this
decomposition. Here by the ‘height’ of a square-tiled cylinder, we mean the
number of circular bands of squares which form the cylinder. In particular,
the number of components of the resulting horizontal (respectively vertical)
multicurve counted with weights is the total height h1 + h2 + · · · + hm of all
maximal horizontal (respectively vertical) cylinders.

Let L be a connected component of a stratum of Abelian differentials or the
invariant arithmetic orbifold obtained by the canonical double cover construction
from a component of a stratum of quadratic differentials. Denote by Lhoriz

Z,k
(respectively by Lvert

Z,k ) the subset of square-tiled surfaces in L whose associated
horizontal (respectively vertical) multicurve has k components. In other words,
Lhoriz

Z,k (respectively Lvert
Z,k ) is the subset of square-tiled surfaces in L tiled with

unit squares arranged into exactly k horizontal (respectively vertical) bands of
squares. In terms of the decomposition into maximal horizontal (respectively
vertical cylinders), we have k = h1+ · · ·+ hm , where h1, . . . , hm are the heights
of the cylinders.

COROLLARY 4.25. Let L be a connected component of a stratum of Abelian
differentials or the invariant arithmetic orbifold obtained by the canonical
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double cover construction from a component of a stratum of quadratic
differentials. Let k, kh, kv ∈ N be positive integers in the case of Abelian
differentials and even positive integers in the case of meromorphic quadratic
differentials with at most simple poles.

For any such L, k, kh, kv, all of Lhoriz
Z,kh

, Lhoriz
Z,kv and Lhoriz

Z,kh
∩ Lhoriz

Z,kv have strictly
positive uniform densities in L and

δ(Lhoriz
Z,kh
∩ Lvert

Z,kv ) = δ(L
horiz
Z,kh
) · δ(Lvert

Z,kv ), (4.20)

where δ(Lhoriz
Z,k ) = δ(Lvert

Z,k).
Moreover, c(LZ,k) = δ(Lhoriz

Z,k ) ·Vol1(L1) is a rational number and we have the
explicit convergence rate

NLhoriz
Z,k
(L, N ) = NLvert

Z,k
(L, N ) = c(LZ,k) ·

N d

2d
+ O(N d−1),

where d = dimC L.

Proof. The proof follows from Corollary 4.24. Note that each stratum has only
a finite number of separatrix diagrams and hence

Lhoriz
Z,k =

⊔
Γ

⊔
h=(h1,...,hm )

Lhoriz
Z,Γ,h. (4.21)

Here the first union is taken with respect to the finite set of separatrix diagrams
realizable in L. For each such separatrix diagram, we denote by m = m(Γ ) the
number of maximal horizontal cylinders associated with Γ . The second (finite)
union is taken with respect to all positive integer heights h1, . . . , hm admissible
for Γ in L and satisfying the relation h1+· · ·+ hm = k. This proves that for any
integer k, the set Lhoriz

Z,k has uniform density satisfying the relation

δ(Lhoriz
Z,k ) =

∑
Γ

∑
h

δ(Lhoriz
Z,Γ,h), (4.22)

where the δ(Lhoriz
Z,Γ,h) are the densities appearing in Corollary 4.24.

To justify that for any k ∈ N, in the case when L is a component of a stratum
of Abelian differentials (respectively, for any k ∈ 2N in the case when L is
an invariant arithmetic orbifold associated with a component of a stratum of
quadratic differentials) δ(Lhoriz

Z,k ) is a strictly positive number, it is sufficient to use
the fact that each component of any stratum of Abelian or quadratic differentials
admits a 1-cylinder square-tiled surface; see [KoZo] and [Zor3]. Considering
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the associated separatrix diagram Γ , we conclude that the term δZ,Γ,k is already
strictly positive.

The proof that Lvert
Z,k has strictly positive uniform density is completely

analogous. The proof that Lhoriz
Z,kh
∩ Lhoriz

Z,kv has uniform density equal to product
of densities now follows from Theorem 4.16 in the same way as was done in
Corollary 4.24.

Finally, the rationality of c(LZ,k) and the explicit convergence rate in the
remaining assertion follow now from Theorem 4.23 applied to each of the terms
in (4.21) and (4.22), respectively.

REMARK 4.26. We have seen that each of the sets Lhoriz
Z,Γ,h and Lhoriz

Z,kh
constructed

above is Re-invariant. Similarly, the sets Lvert
Z,Γ,h , Lvert

Z,kv are Im-invariant. Thus,
by Theorem 4.16, all these sets as well as any intersection of a set from the first
group and a set from the second group has uniform density, and the density of the
intersection is the product of densities of the two corresponding sets. We do not
need to fix combinatorics of the horizontal and vertical cylinder decomposition
in the same way: the statement is valid for any combination like Lhoriz

Z,Γ,h ∩ Lvert
Z,k .

We are ready to prove Theorems 2.5 and 2.6 with exception for the explicit
value (2.7) for cyl1(Q(ν,−1|ν|+4)) which will be proved in Section 4.10.

Proof of Theorems 2.5 and 2.6. By assertions (1) and (2) of Proposition 4.3, the
number S labeled

k,ν (N ) of square-tiled surfaces in the stratum Q(ν,−1|ν|+4) with
labeled zeros and poles tiled with at most 2N squares organized into k horizontal
bands and the number S labeled

kh ,kv ,ν(N ) of square-tiled surfaces in the same stratum
with labeled zeros and poles tiled with at most 2N squares composed of kh

horizontal and kv vertical bands of squares satisfies the following relations:

S labeled
k,ν (N ) =

1
deg(P)

·NLhoriz
Z,k
(L, 4N ), (4.23)

S labeled
kh ,kv ,ν(N ) =

1
deg(P)

·NLhoriz
Z,kh
∩Lvert

Z,kv
(L, 4N ). (4.24)

By Corollary 4.25, we have as N →+∞

NLhoriz
Z,k
(L, 4N ) = δ(Lhoriz

Z,k ) · Vol1(L1) ·
(4N )d

2d
+ O(N d−1)

= δ(Lhoriz
Z,k ) · Vol1(L1) ·

(4N )d

2d
+ o(N d).
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Combining (4.23) with the latter expression and applying (4.7), we obtain

S labeled
k,ν (N ) =

1
deg(P)

·NLhoriz
Z,k
(L, 4N )

= δ(Lhoriz
Z,k ) ·

4d

deg(P)
· Vol1(L1) ·

N d

2d
+ O(N d−1)

= δ(Lhoriz
Z,k ) · Vol1(Q1(ν,−1|ν|+4)) ·

N d

2d
+ O(N d−1) as N →+∞.

Letting
cylk

(
Q(ν,−1|ν|+4)

)
:= δ(Lhoriz

Z,k ) · Vol1(Q(ν,−1|ν|+4)),

we obtain the desired formula (2.6).
The rationality of cylk(Q(ν,−1|ν|+4)) follows from the rationality of c(LZ,k)

proved in Corollary 4.25 combined with the relation

cylk

(
Q(ν,−1|ν|+4)

)
=

deg(P)
4d

· c(LZ,k). (4.25)

This completes the Proof of Theorem 2.5 with exception for the explicit value of
cyl1(Q(ν,−1|ν|+4)) given by (2.7) which we compute in Section 4.10.

The Proof of Theorem 2.6 is analogous. Namely, by property (4.11) of a
density of a subset Lhoriz

Z,kh
∩ Lvert

Z,kv of LZ, we have

NLhoriz
Z,kh
∩Lvert

Z,kv
(L, 4N ) = δ(Lhoriz

Z,kh
∩Lvert

Z,kv ) ·Vol1(L1) ·
(4N )d

2d
+o(N d) as N →+∞.

Combining (4.24) with the latter expression and applying (4.7) as above, we
obtain

S labeled
kh ,kv ,ν(N ) =

1
deg(P)

·NLhoriz
Z,kh
∩Lvert

Z,kv
(L, 4N ),

= δ(Lhoriz
Z,kh
∩ Lvert

Z,kv ) ·
4d

deg(P)
· Vol1(L1) ·

N d

2d
+ o(N d)

= δ(Lhoriz
Z,kh
∩ Lvert

Z,kv ) · Vol1(Q1(ν,−1|ν|+4)) ·
N d

2d
+ o(N d)

as N →+∞.

Letting

cylkh ,kv

(
Q(ν,−1|ν|+4)

)
:= δ(Lhoriz

Z,kh
∩ Lvert

Z,kv ) · Vol1(Q(ν,−1|ν|+4)), (4.26)

we obtain formula (2.8). The remaining equation (2.9) is obtained by
rewriting (4.20) in terms of the quantities cylk(Q(ν,−1|ν|+4)) and cylkh ,kv (Q(ν,
−1|ν|+4)) defined by expressions (4.25) and (4.26), respectively. Theorem 2.6 is
proved.
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We complete this section with the following lemma used in the Proof of
Theorem 3.7. We state it for strata of meromorphic quadratic differentials in
genus zero, which allows us to use notations introduced in Section 3. However,
both the statement and the proof of the lemma are applicable to any connected
component of any stratum of Abelian or quadratic differentials up to adjustment
of notations specific strata in genus zero.

Let Γ be a separatrix diagram realizable in a stratum Q(ν,−1|ν|+4), let h be
an admissible integer vector of heights and let k be a positive integer. We denote
by S labeled

ν (N ) the number of all square-tiled surfaces in Q(ν,−1|ν|+4) tiled with
at most 2N identical squares. We denote by S labeled

Γ,h,ν (N ) the number of square-
tiled surfaces as above with additional restriction that their horizontal cylinder
decomposition is represented by (Γ, h). We denote by S labeled

k,ν (N ) the number
of square-tiled surfaces in Q(ν,−1|ν|+4) tiled with at most 2N identical squares
and having k vertical bands of squares. Finally, we denote by SΓ,h,k,ν(N ) the
number of square-tiled surfaces as above with horizontal cylinder decomposition
represented by (Γ, h) and having k vertical bands of squares.

LEMMA 4.27. For any stratum Q(ν,−1|ν|+4), any separatrix diagram Γ

realizable in this stratum, any admissible integer vector h of heights and any
positive integer k, we have

lim
N→+∞

S labeled
Γ,h,k,ν(N )

S labeled
Γ,h,ν (N )

= lim
N→+∞

S labeled
k,ν (N )

S labeled
ν (N )

. (4.27)

Proof. We follow the Proof of Theorems 2.5 and 2.6. Let L be the affine
arithmetic orbifold associated with the stratum Q(ν,−1|ν|+4). We have

S labeled
Γ,h,ν (N ) =

1
deg(P)

·NLhoriz
Z,Γ,h
(L, 4N ),

S labeled
Γ,h,k,ν(N ) =

1
deg(P)

·NLhoriz
Z,Γ,h∩L

vert
Z,k
(L, 4N ),

where the sets Lhoriz
Z,Γ,h and Lvert

Z,k are as in Corollaries 4.24 and 4.25, respectively.
Thus,

S labeled
Γ,h,k,ν(N )

S labeled
Γ,h,ν (N )

=

NLhoriz
Z,Γ,h∩L

vert
Z,k
(L, 4N )

NLhoriz
Z,Γ,h
(L, 4N )

.

By Remark 4.26, we have

δ(Lhoriz
Z,Γ,h ∩ Lvert

Z,k) = δ(Lhoriz
Z,Γ,h) · δ(Lvert

Z,k),
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which implies that

lim
N→+∞

NLhoriz
Z,Γ,h∩L

vert
Z,k
(L, 4N )

NLhoriz
Z,Γ,h
(L, 4N )

= lim
N→+∞

NLvert
Z,k
(L, 4N )

NLZ(L, 4N )
.

Applying (4.23) and the analogous relation S labeled
ν (N ) = 1

deg(P) ·NLhoriz
Z
(L, 4N )

to the expressions in the right-hand side of the latter equality, we complete the
proof of the lemma.

4.9. Explicit densities for 1-cylinder diagrams on the sphere. In this
section, we consider separatrix diagrams Γ with a single cylinder in a stratum
of quadratic differentials Q(ν,−1|ν|+4) on the sphere. In the lemma below, we
reproduce formula (2.2) from [DGZZ, Proposition 2.3] adapted to the language
of the current paper.

Consider a Jenkins–Strebel meromorphic quadratic differential with simple
poles on CP1. Suppose that it has a single maximal horizontal cylinder. The
union of all horizontal saddle connections of such a Jenkins–Strebel differential
forms two connected components and each of the two components is a tree. In
other words, a 1-cylinder separatrix diagram Γ on the sphere can be encoded by a
pair of plane trees (one for each boundary component of the maximal horizontal
cylinder). There is no ambiguity in such a definition since the corresponding
ribbon graph has only two boundary components, so there is a single way to join
the boundary components by the cylinder.

Let Q(ν,−1|ν|+4) be a stratum of meromorphic quadratic differentials with at
most simple poles on CP1 and let Γ be a 1-cylinder separatrix diagram given by
a pair of plane trees (Tbottom(ι),Ttop(ν− ι)) with profiles ι and ν− ι, respectively;
see Section 3.3. We have seen in Section 1.3 that any such separatrix diagram Γ

is realizable in Q(ν,−1|ν|+4) and that any 1-cylinder separatrix diagram has this
form.

Let Dhoriz
Z,Γ,1 be the set of square-tiled surfaces in Q(ν,−1|ν|+4) having Γ as the

separatrix diagram and having a single horizontal band of squares. Recall that by
convention, all zeros and poles of such square-tiled surfaces are labeled.

LEMMA 4.28. The number NDhoriz
Z,Γ,1
(Q(ν,−1|ν|+4), 2N ) of all square-tiled

surfaces sharing the fixed realizable 1-cylinder separatrix diagram Γ and tiled
with a single band of at most 2N identical squares has the following asymptotics
when N →+∞:

NDhoriz
Z,Γ,1

(
Q(ν,−1|ν|+4), 2N

)
= cyl1(Γ ) ·

N d

2d
+ o(N d), (4.28)
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where d = dimC(Q(ν,−1|ν|+4)) is given by equation (2.4) and

cyl1(Γ ) =
4

|Aut(Γ )|
·

(|ν| + 4)! · ν0! · ν1! · ν2! · · ·(
|ι| + `(ι)

)
! ·
(
|ν − ι| + `(ν − ι)

)
!
. (4.29)

Proof. In this section, we denote by m the number of edges of Tbottom and we
denote by n the number of edges of Ttop. The numbers m and n can be expressed
as

m = |ι| + `(ι)+ 1
n = |ν − ι| + `(ν − ι)+ 1

and the dimension d of the stratum satisfies relation d = m + n.
Consider any square-tiled surface having the diagram Γ as the diagram

of horizontal saddle connections. Cut it open along all horizontal saddle
connections. By definition of Γ , it has m pairs of saddle connections on one
boundary component of the cylinder, n pairs of saddle connections on the other
boundary component of the cylinder and each saddle connection has its twin on
the same boundary component.

The proof now follows line by line the second part of the proof of the
more general [DGZZ, Proposition 2.2]. Note that the parameter l used in
Proposition 2.2 to denote the number of saddle connections which after the
surgery as above appear on both sides of the cylinder is equal to zero in genus
zero. One extra simplification comes from the fact that in the proof of [DGZZ,
Proposition 2.2], we sum over various possible heights of the horizontal cylinder,
while in our context, the height of the cylinder equals to the height of the square:
the single horizontal cylinder of square-tiled surfaces in Dhoriz

Z,Γ,1 is tiled with a
single band of squares. As a result, we do not get the extra factor ζ(d) present
in the original expression (2.2) in [DGZZ, Proposition 2.2]; see equation (4.30)
and the following remark.

REMARK 4.29. In this paper, we denote by cyl1(Γ ) the coefficient of the leading
term in the asymptotics of the number of square-tiled surfaces sharing the fixed
realizable 1-cylinder separatrix diagram Γ and tiled with a single band of at most
2N squares. Clearly, this number does not depend on the size of the identical
squares. We tacitly assumed above that the squares are unit squares, but we could
equally assume that our identical squares have size 1

2 ×
1
2 . The latter choice

corresponds to our normalization for the Masur–Veech volume in Section 4.3.
Thus, cyl1(Γ ) = c(Lhoriz

Z,Γ,1) can be seen as the coefficient of the leading term
in the asymptotics of the number of square-tiled surfaces tiled with at most 2N
squares of size 1

2 ×
1
2 , having a single horizontal cylinder of the minimal possible
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height 1
2 and the separatrix diagram Γ . In the companion paper [DGZZ], we used

a similar notation c1(Γ ) for the coefficient in asymptotics where we made no
restriction on the height of the cylinder. Choosing a different fixed height h/2 of
the cylinder, where h ∈ N, one decreases the asymptotic number of square-tiled
surfaces as above by the factor h−d (see the proof of [DGZZ, Proposition 2.2]
for details). Here d = dimC Q(ν,−1|ν|+4) is given by formula (2.4). Moreover,
the following summation formula holds:

c1(Γ ) = c

(⊔
h∈N

Lhoriz
Z,Γ,h

)
=

+∞∑
h=1

c(Lhoriz
Z,Γ,h) = ζ(d) · cyl1(Γ ). (4.30)

This is a particular case of a general formula that holds for any number
of cylinders in any arithmetic invariant orbifold. Compare also with the
Remark 4.12.

4.10. Explicit count of square-tiled surfaces in genus 0. In this section, we
complete the Proof of Theorem 2.5 proving the remaining relation (2.7). We
also prove Corollaries 4.30 and 4.31 used in the proofs of Theorems 1.1 and 1.2,
respectively.

Consider a (generalized) partition ν = [0ν0 1ν1 2ν2 . . . ] of a natural number |ν|
into the sum of nonnegative integer numbers (in this section, we allow entries 0):

|ν| := 0+ · · · + 0︸ ︷︷ ︸
ν0

+ 1+ · · · + 1︸ ︷︷ ︸
ν1

+ 2+ · · · + 2︸ ︷︷ ︸
ν2

+ · · · .

The common convention on Masur–Veech volumes of the strata of
meromorphic quadratic differentials with at most simple poles suggests to label
all zeros and poles. Following notations of Section 3.3, denote by P labeled

ν (N )
the number of square-tiled surfaces with labeled zeros and poles in the stratum
Q(ν,−1|ν|+4) in genus zero tiled with at most 2N identical squares and having
a single horizontal and a single vertical band of squares. It is easy to see that a
square-tiled surface as above cannot have any symmetries. Convention 3.3 on
weights with which we count square-tiled surfaces with nonlabeled zeros and
poles is designed to assure the following relation between the two counts valid
for any N ∈ N:

P labeled
ν (N ) =

(
∞∏
j=0

ν j !

)
· (|ν| + 4)! · Pν(N ), (4.31)

where the product above contains, actually, only a finite number of factors.
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Recall that a type ι = [0ι0 1ι1 2ι2 . . . ] of a plane tree T records the number ι j of
vertices of valence j + 2 for j = 0, 1, 2, . . . . Note that in Section 4.10, we allow
the tree to have several vertices of valence 2. Recall also that |ν| denotes the sum
of the entries of the partition ν = [0ν0 1ν1 2ν2 . . . ]; by `(ν), we denote the length
of ν, where, this time, we count the entries 0 if any

|ν| := 1 · ν1 + 2 · ν2 + 3 · ν3 + · · ·

`(ν) := ν0 + ν1 + ν2 + ν3 + · · · .

Consider a separatrix diagram Γ given by a pair of trees Tbottom Ttop as in
Section 4.9. Defining the automorphism group Aut(Γ ), we assume that none of
the vertices, edges or boundary components of the ribbon graph Γ is labeled;
however, we assume that the orientation of the ribbons is fixed. Thus,

|Aut(Γ )| = |Aut(Tbottom)| · |Aut(Ttop)| ·

{
2 if Tbottom ' Ttop

1 otherwise.
(4.32)

Here ' stands for an isomorphism of plane (‘ribbon’) trees.
The following counting theorem for plane trees is well known; see, for

example, [Mo, 2, p. 6]. It is the last element needed for the Proof of Theorem 2.5.

THEOREM. For any partition ι = [0ι0 1ι1 2ι2 . . . ], the following expression holds:

∑
T with profile ι

1
|Aut(T )| =

(
|ι| + `(ι)

)
!(

|ι| + 2
)
! · ι0! · ι1! · ι2! · · ·

,

where we sum over all plane trees corresponding to a partition ι and |Aut(T )|
is the order of the automorphism group of the tree T .

Now everything is ready to complete the Proof of Theorem 2.5.

Completion of the Proof of Theorem 2.5. It remains to prove expression (2.7).
Combining equation (4.29) with the above theorem, we conclude that the sum

of cyl1(Γ ) over all realizable 1-cylinder separatrix diagrams Γ in any given
stratum Q(ν,−1|ν|+4) in genus zero can be expressed as follows:

cyl1

(
Q(ν,−1|ν|+4)

)
=

∑
Γ

cyl1(Γ )

=
1
2

∑
ι⊂ν

(
4 · (|ν| + 4)! · ν0! · ν1! · ν2! · · ·(
|ι| + `(ι)

)
! ·
(
|ν − ι| + `(ν − ι)

)
!

)
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·

( (
|ι| + `(ι)

)
!(

|ι| + 2
)
! · ι0! · ι1! · · ·

)
·

( (
|ν − ι| + `(ν − ι)

)
!(

|ν − ι| + 2
)
! · (ν0 − ι0)! · (ν1 − ι1)! · · ·

)

= 2
∑
ι⊂ν

(
|ν| + 4
|ι| + 2

)(
ν0

ι0

)(
ν1

ι1

)(
ν2

ι2

)
· · · .

We complete this section with two corollaries from Theorem 2.5.

COROLLARY 4.30. For the partition ν = [1k
], the number P labeled

[1k ]
(N ) of square-

tiled surfaces with labeled zeros and poles in the stratum Q(1k,−1k+4) tiled with
at most 2N identical squares and having a single horizontal and a single vertical
band of squares, has the following asymptotics as N →+∞:

P labeled
[1k ]

(N ) = cyl1,1

(
Q(1k,−1k+4)

)
·

N 2k+2

4k + 4
+ o

(
N 2k+2) as N →+∞,

where

cyl1,1

(
Q(1k,−1k+4)

)
=

(
cyl1

(
Q(1k,−1k+4)

))2

4

(
π 2

2

)k+1

and

cyl1

(
Q(1k,−1k+4)

)
= 2 ·

(
2k + 4
k + 2

)
. (4.33)

The number P labeled
[0,1k ]

(N ) of square-tiled surfaces as above with a single marked
regular vertex of the tiling has the following asymptotics as N →+∞:

P labeled
[0,1k ]

(N ) = 2 · cyl1,1

(
Q(1k,−1k+4)

)
·

N 2k+3

4k + 6
+ o

(
N 2k+3) as N →+∞.

Proof. By (2.2), we have

Vol1 Q1(1k,−1k+4) = 2π 2
·

(
π 2

2

)k

= 4 ·
(
π 2

2

)k+1

.

To prove (4.33), we apply the following combinatorial identity to simplify
formula (2.7) in the particular case when ν = [1k

]:

ν1∑
ι1=0

(
ν1

ι1

)(
|ν| + 4
|ι| + 2

)
=

k∑
ι1=0

(
k
ι1

)(
k + 4
ι1 + 2

)
=

(
2k + 4
k + 2

)
;

see [Gd, (3.20)].
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It remains to prove that

cyl1,1

(
Q(1k, 0,−1k+4)

)
= 2 · cyl1,1

(
Q(1k,−1k+4)

)
. (4.34)

By (2.9), we have

cyl1,1

(
Q(1k, 0,−1k+4)

)
=

(
cyl1

(
Q(1k, 0,−1k+4)

))2

Vol1 Q1(1k, 0,−1k+4)
.

Equation (2.7) implies that

cyl1

(
Q(1k, 0,−1k+4)

)
= 2 · cyl1

(
Q(1k,−1k+4)

)
.

Finally, by (2.2), we have

Vol1 Q1(1k, 0,−1k+4) = 2 Vol1 Q1(1k,−1k+4)

and (4.34) follows.

We also prove the following elementary technical corollary of Theorem 2.5.

COROLLARY 4.31. Consider a (generalized) partition ν = [0ν0 1ν1 2ν2 . . . ] and
its subpartition ν ′ = [1ν1 2ν2 . . . ] obtained by suppressing all zero entries. The
following formulas are valid:

cyl1

(
ν,−1|ν|+4)

= 2ν0 · cyl1

(
ν ′,−1|ν

′
|+4) (4.35)

P1
(
ν,−1|ν|+4)

= P1
(
ν ′,−1|ν

′
|+4). (4.36)

Proof. Note that |ν ′| = |ν|. Similarly, having any subpartition ι′ ⊂ ι obtained
from a partition ι by suppressing all zero entries, we have |ι′| = |ι|. Thus, we can
rewrite formula (2.7) as

cyl1

(
Q(ν,−1|ν|+4)

)
= 2 ·

ν0∑
ι0=0

ν1∑
ι1=0

ν2∑
ι2=0

...∑

...

(
ν0

ι0

)(
ν1

ι1

)(
ν2

ι2

)
· · ·

(
|ν| + 4
|ι| + 2

)

=

(
ν0∑
ι0=0

(
ν0

ι0

))
·

(
2
ν1∑
ι1=0

ν2∑
ι2=0

...∑

...

(
ν1

ι1

)
· · ·

(
|ν ′| + 4
|ι′| + 2

))
= 2ν0 cyl1

(
Q(ν ′,−1|ν

′
|+4)

)
,

which proves (4.35). To prove (4.36), it suffices to note that by formula (2.2), we
have

Vol1 Q1(ν,−1|ν|+4) = ( f (0))ν0 Vol1 Q1(ν
′,−1|ν

′
|+4) = 2ν0 Vol1 Q1(ν

′,−1|ν
′
|+4).
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Passing to the ratios

P1
(
Q(ν,−1|ν|+4)

)
:=

cyl1

(
Q(ν,−1|ν|+4)

)
Vol1

(
Q1(ν,−1|ν|+4)

)
=

cyl1

(
Q(ν ′,−1|ν′|+4)

)
Vol1

(
Q1(ν ′,−1|ν′|+4)

) =: P1
(
Q(ν ′,−1|ν

′
|+4)

)
,

we get the desired equation (4.35).
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Appendix A. Lattices in strata of meromorphic quadratic differentials
and associated square-tiled surfaces

The definition of the Masur–Veech volume of strata of meromorphic
quadratic differentials with at most simple poles involves several normalization
conventions. The mismatch in the choice of one of the conventions is a constant
source of confusion. We describe in Section A.1 various conventions and specify
the one used in the current paper. We discuss the topological origin of the lattices
giving rise to different normalizations of the volume element and describe the
square-tiled surfaces associated with these lattices.

Throughout this Appendix, by a stratum Q(ν,−1|ν|+4) of meromorphic
quadratic differentials in genus zero, we always mean the stratum in the moduli
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space of meromorphic quadratic differentials (CP1, q) such that q has ν0 marked
points, νi zeros of order i for i = 1, 2, . . . and |ν| + 4 simple poles and no other
poles, where |ν| = ν1 + 2ν2 + · · · . Since we use only strata in genus zero in the
study of meanders, we limit our considerations in this Appendix to genus zero
where certain normalization issues do not manifest. Note that all strata in genus
zero are nonempty and connected.

A.1. Lattices in strata of meromorphic quadratic differentials. By
convention, all zeros and simple poles of Abelian or quadratic differentials are
always numbered (labeled). Thus, expressing Masur–Veech volumes through
the count of square-tiled surfaces, one has to either label conical singularities on
square-tiled surfaces (which is uncommon) or apply necessary normalization by
the product of factorials as in (4.31).

Next, there are two particularly natural ways to define the integer lattice
in period coordinates H 1

−
(X̂ , Σ̂;C) (the period coordinates for the strata of

quadratic differentials were defined at the end of Section 4.1).
One can either choose as the ‘integer lattice’ the following set:

{elements of H 1
−
(X̂ , Σ̂;C) taking values in Z⊕ iZ on H−1 (X̂ , Σ̂;Z)} (A.1)

or, alternatively, one can choose as the ‘integer lattice’ the set defined as follows:

H 1
−
(X̂ , Σ̂;C) ∩ H 1(X̂ , Σ̂;Z⊕ iZ).

The difference between the two choices reveals itself in the linear holonomy
along saddle connections joining two distinct zeros. Under the first convention,
the linear holonomy along such saddle connections belongs to the half-integer
lattice 1

2Z ⊕
i
2Z, while under the second convention, it belongs to the integer

lattice Z⊕ iZ.
Actually, the set Σ̂ admits alternative natural definitions; the choice of one

of them is a matter of another convention. In the construction of the canonical
double cover, the preimages of the simple poles of q on X become regular points
of ω on the canonical double cover X̂ . One can either choose to mark the
resulting regular points and consider them as part of the data of the cover or
not. In other words, one has to make a choice whether to include these points in
Σ̂ or not. We reserve notation Σ̂ for the set where all these marked points are
included, and we use notation Σ̂ ′ for the set which does not contain preimages
of simple poles. In genus zero, when simple poles are always present, Σ̂ ′ is
always a proper subset of Σ̂ . For example, depending on this choice, the stratum
Q(12,−16) is realized as an invariant arithmetic suborbifold either in H(06, 22)

or in H(22).
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Consider now the following lattices:

L := H 1
−
(X̂ , Σ̂;C) ∩ H 1(X̂ , Σ̂;Z⊕ iZ),

L′ := H 1
−
(X̂ , Σ̂ ′;C) ∩ H 1(X̂ , Σ̂ ′;Z⊕ iZ),

1
2L := H 1

−
(X̂ , Σ̂;C) ∩ H 1(X̂ , Σ̂; 1

2Z⊕
i
2Z).

LEMMA A.1. Consider a stratum Q(ν,−1|ν|+4) of meromorphic quadratic
differentials in genus zero. The natural map

H 1
−
(X̂ , Σ̂;C)→ H 1

−
(X̂ , Σ̂ ′;C) (A.2)

induced by the inclusion Σ̂ ′ ⊂ Σ̂ is an isomorphism of vector spaces.

Proof. We start by constructing a convenient set of cycles, which, depending on
interpretation, provides a basis in both H−1 (X̂ , Σ̂;Z) and H−1 (X̂ , Σ̂

′
;Z). This

will prove, in particular, that (A.2) is an isomorphism.
Consider the following oriented non-self-intersecting path ρ on the sphere

X = CP1 at the base of the cover X̂ → X . The path ρ starts at a zero or at
a marked point of Σ , then it passes through all other zeros and marked points
of Σ , and only then ρ passes through all simple poles but one. We consider
ρ as a curvilinear broken line with vertices in Σ . For every oriented segment
γ j = [P, Q] of this broken line (where P, Q are two points of Σ passed by ρ
consecutively), consider the two preimages γ ′j , γ

′′

j of γ on X̂ endowed with the
orientation induced from γ j and consider the cycle [γ̂ j ] := [γ

′

j ]− [γ
′′

j ] ∈ H−1 (X̂ ,
Σ̂;Z). It is easy to see that the resulting collections of cycles forms a basis in
H−1 (X̂ , Σ̂;Z).

By assumption, X has genus zero, and quadratic differential q has only simple
poles, so Σ always contains at least four poles of q . Note that we intentionally
omitted one pole in our construction. Extending the broken line to the remaining
pole and completing our collection of cycles with the resulting extra cycle
γ̂0 = [γ

′

0] − [γ
′′

0 ] in H−1 (X̂ , Σ̂;Z), we would get a collection of cycles
satisfying a linear relation: the sum of the cycles (taken with appropriate signs)
corresponding to all segments of the extended broken line is zero in H−1 (X̂ ,
Σ̂;Z).

We explain now why the constructed collection of paths provides a basis in
H−1 (X̂ , Σ̂

′
;C) as well. Note that all simple poles are branch points of the cover.

Recall that ρ visits first all zeros and marked points of Σ and only then passes
through simple poles. Thus, all cycles [γ̂ j ] := [γ

′

j ]−[γ
′′

j ], for j = 1, . . . , `(ν)−1,
are well-defined cycles in H−1 (X̂ , Σ̂

′
;Z).
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Let γ`(ν) = [P, Q] be the segment joining the last zero (or a marked point)
P ∈ Σ to the first simple pole Q ∈ Σ . Consider that path γ̂`(ν) := γ ′`(ν) − γ

′′

`(ν)

on X̂ which first follows γ ′`(ν) and then, when it arrives at the preimage of the
simple pole Q, it follows γ ′′`(ν) in the opposite direction. We get a connected path
γ̂`(ν) which is closed if P is a zero of odd degree. The path γ̂`(ν) is a segment
with endpoints at two preimages P ′, P ′′ of P when P is a regular point of the
cover p : X̂ → X (zero of even degree of q or a marked point). Note that in the
latter case, both P ′ and P ′′ belong to Σ̂ ′, so in both cases, γ̂`(ν) is a well-defined
cycle in H−1 (X̂ , Σ̂

′
;Z). Similarly, any segment γ = [Q j , Q j+1] of ρ joining

two simple poles defines a closed cycle [γ̂ ] = [γ ′ − γ ′′] in H−1 (X̂ , Σ̂
′
;Z). It is

immediate to see that the resulting cycles also form a basis but, this time, already
in H−1 (X̂ , Σ̂

′
;Z). This proves, in particular, that the natural map (A.2) induced

by the inclusion Σ̂ ′ ⊂ Σ̂ is an isomorphism of vector spaces.

LEMMA A.2. Consider a stratum Q(ν,−1|ν|+4) of meromorphic quadratic
differentials in genus zero. The lattice 1

2L coincides with the lattice defined
by (A.1)

1
2L = {elements of H 1

−
(X̂ , Σ̂;C) taking values in Z⊕ iZ on H−1 (X̂ , Σ̂;Z)}.

Proof. Consider the basis of cocycles α1, . . . , αd in H 1
−
(X̂ , Σ̂;C) dual to the

basis of cycles γ̂i in H−1 (X̂ , Σ̂;Z) constructed in the Proof of Lemma A.1. By
definition of a dual basis, we have αi(γ̂ j) = δi, j . This implies that the collection
α1, . . . , αd, iα1, . . . , iαd serves as a basis of the lattice (A.1). Let us show now
that α1, . . . , αd, iα1, . . . , iαd is also a basis of the lattice 1

2L.
Denote by τ the canonical involution of X̂ associated with the ramified double

cover p : X̂ → X . For any c ∈ H1(X̂ , Σ̂;C) and for any θ ∈ H 1
−
(X̂ , Σ̂;C), we

have
θ(τ∗(c)) = (τ ∗θ)(c) = −θ(c) (A.3)

since, by definition, the subspace H 1
−
(X̂ , Σ̂;C) is anti-invariant with respect to

the involution τ ∗. By construction, γ̂ j = [γ
′

j ] − [γ
′′

j ] = [γ
′

j ] − τ∗[γ
′

j ]. Thus,
by (A.3),

αi([γ̂
′

j ]) = −αi([γ̂
′′

j ]) =
1
2δi, j

for any i, j ∈ {1, . . . , d}. Since
∑d

j=0[γ̂ j ] = 0, we conclude that

αi([γ̂
′

0]) = −αi([γ̂
′′

0 ]) ∈
1
2Z for i = 1, . . . , d.

The relative cycles [γ̂ ′0], [γ̂
′′

0 ], [γ̂
′

1], [γ̂
′′

1 ], . . . , [γ̂
′

d], [γ̂
′′

d ] generate H1(X̂ , Σ̂;Z).
We conclude that all basic cocycles α j and iα j , where j = 1, . . . , d , of the

https://doi.org/10.1017/fmp.2020.2 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.2


Enumeration of meanders and Masur–Veech volumes 69

lattice (A.1) in H 1
−
(X̂ , Σ̂;C) take values in 1

2Z ⊕
i
2Z on H1(X̂ , Σ̂;Z), which

proves the inclusion

1
2L ⊇ {elements of H 1

−
(X̂ , Σ̂;C) taking values in Z⊕ iZ on H−1 (X̂ , Σ̂;Z)}.

A similar consideration proves the inclusion in the other direction.

The following lemma shows that the lattice (A.1) is independent of the choice
of Σ̂ or Σ̂ ′.

LEMMA A.3. Consider a stratum Q(ν,−1|ν|+4) of meromorphic quadratic
differentials in genus zero. The convention on the choice of Σ̂ or Σ̂ ′ does not
affect the lattice (A.1): the discrete subsets of H 1

−
(X̂ , Σ̂;C) and of H 1

−
(X̂ ,

Σ̂ ′;C) defined by (A.1) are in bijective correspondence under the natural map
H 1
−
(X̂ , Σ̂;C)→ H 1

−
(X̂ , Σ̂ ′;C).

Proof. By Lemma A.1, the natural linear map (A.2) induced by the inclusion
Σ̂ ′ ⊂ Σ̂ is an isomorphism of vector spaces. Consider a basis of cocycles in each
of these spaces dual to the basis of integer cycles γ̂ j , j = 1, . . . , d , in H−1 (X̂ ,
Σ̂;Z) and in H−1 (X̂ , Σ̂

′
;Z) respectively, constructed in the Proof of Lemma A.1.

The lattices induced by these bases are exactly the discrete subsets of H 1
−
(X̂ ,

Σ̂;C) and of H 1
−
(X̂ , Σ̂ ′;C) defined by (A.1). Moreover, it follows from the

construction of the two bases that the isomorphism (A.2) sends one to the other.

Now we are ready to prove inclusions (A.4) of lattices defined above and
compute the resulting indices of sublattices.

LEMMA A.4. Consider a stratum Q(ν,−1|ν|+4) of meromorphic quadratic
differentials in genus zero. The isomorphism (A.2) induces the following chain
of inclusions of lattices:

L ⊂ L′ ⊂ 1
2L. (A.4)

The indices of these sublattices satisfy the following relations:

|
1
2L : L

′
| = 4`(ν)−1 (A.5)

|L′ : L| = 4|ν|+3. (A.6)

REMARK A.5. Note that the lattice 1
2L can be obtained from the lattice L by

subdividing the mesh by the factor of 2 or, equivalently, by applying homothety
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with coefficient 1
2 to the lattice L. Thus, the index | 12L : L| equals 22d

= 4d ,
where d = dimC Q(ν,−1|ν|+4) = `(ν)+ |ν| + 2 so that

|
1
2L : L| = 4`(ν)+|ν|+2. (A.7)

The lemma above computes the two remaining indices.

Proof of Lemma A.4. The fact that the map (A.2) is a linear isomorphism of
vector spaces allows us to consider the lattices L and 1

2L as sublattices of H 1
−
(X̂ ,

Σ̂ ′;C) and allows to consider the lattice L′ as a sublattice of H 1
−
(X̂ , Σ̂;C).

Passing from the bases of H−1 (X̂ , Σ̂;Z) and H−1 (X̂ , Σ̂
′
;Z) to the dual

bases in H 1
−
(X̂ , Σ̂;Z) and in H 1

−
(X̂ , Σ̂ ′;Z), respectively, we use the resulting

cohomology classes to construct bases of the corresponding lattices. In this
way, we prove the inclusions (A.4). It remains to compute the indices of these
sublattices in the ambient lattices.

Let γ1, . . . , γd be the consecutive segments of the path ρ constructed in the
Proof of Lemma A.1. Here

d = dimC H 1
−
(X̂ , Σ̂;C) = dimC H 1

−
(X̂ , Σ̂ ′;C) = `(ν)+ |ν| + 2.

By construction, the first `(ν)− 1 segments of ρ have the endpoints at zeros and
at marked points of Σ , while the remaining |ν| + 3 segments have the endpoints
at |ν| + 3 (that is, all but one) simple poles.

Passing from the lattice 1
2L to its sublattice L′, we impose the extra condition

that the value of the cocycles in the sublattice on each individual relative cycle
[γ ′j ], [γ

′′

j ] belongs to Z ⊕ iZ for j = 1, . . . , `(ν) − 1 (that is, for those cycles
which involve points from Σ̂ ′). The cocycles in the sublattice 1

2L take values
in 1

2Z⊕
i
2Z on these cocycles. Note that since these cocycles belong to the

subspace H 1
−
(X̂ , Σ̂;C) anti-invariant with respect to the hyperelliptic involution,

their values on all pairs of symmetric cycles [γ ′j ] and [γ ′′j ] are coherent: both real
and imaginary parts are simultaneously integer or half-integer. This gives the
index | 12L : L

′
| = 22(`(ν)−1) as claimed in (A.5). Extra factor 2 in the exponent of

2 comes from the fact that we have to take into account both real and imaginary
parts.

To prove (A.6), one can either combine (A.7) and (A.5) or notice directly that
passing from the lattice L′ to its sublattice L, we impose the extra condition that
the value of the cocycles in the sublattice L on each individual relative cycle
[γ ′j ], [γ

′′

j ] belongs to Z⊕ iZ for j = `(ν), . . . , `(ν)+|ν|+2, while the cocycles
in the ambient lattice L′ evaluated on these cycles take values in 1

2Z⊕
i
2Z.

Consider the Masur–Veech volume elements on a stratum Q(ν,−1|ν|+4) of
meromorphic quadratic differentials in genus zero corresponding to the above
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lattices. We have proved in Lemma A.1 that we can use any of the two
isomorphic vector spaces

H 1
−
(X̂ , Σ̂;C) ' H 1

−
(X̂ , Σ̂ ′;C) (A.8)

as period coordinates in Q(ν,−1|ν|+4). Recall that there is a natural one-
parameter family of volume elements in any finite-dimensional vector space V ;
any two volume elements in this family differ by a constant factor. Any lattice
of maximal rank in V determines the distinguished normalization of the volume
element by the condition that the volume of the fundamental domain of the lattice
is equal to 1. Considering one of the vector spaces in (A.8) and one of the three
lattices (A.4), we get three different normalizations of the Masur–Veech volume

element on Q(ν,−1|ν|+4). Denote by Vol
1
2 L
1 Q1(ν,−1|ν|+4), VolL

′

1 Q1(ν,−1|ν|+4)

and VolL1 Q1(ν,−1|ν|+4) the volumes of the stratum Q(ν,−1|ν|+4) with respect
to these volume elements.

COROLLARY A.6. The Masur–Veech volumes of a stratum Q(ν,−1|ν|+4) of
meromorphic differentials in genus zero induced by the lattices (A.4) satisfy the
following relations:

Vol
1
2 L
1 Q1(ν,−1|ν|+4) : VolL

′

1 Q1(ν,−1|ν|+4) = 4`(ν)−1,

VolL
′

1 Q1(ν,−1|ν|+4) : VolL1 Q1(ν,−1|ν|+4) = 4|ν|+3.

Proof. The Masur–Veech volume element is defined as linear volume element in
period coordinates normalized by an appropriate lattice. Hence, passing from a
lattice to a sublattice, we change the normalization of the Masur–Veech measure
by the constant factor equal to the index of the sublattice.

A.2. Degrees of correspondences induced by canonical double covers.
The comparison of lattices in the previous section was performed in period
coordinates, that is, locally. This local computation allowed us to keep track of
the change of the Masur–Veech volume Vol1 Q1(ν,−1|ν|+4) when passing from
one lattice normalization to the other. Up to now, we always stayed on Q(ν,
−1|ν|+4).

Recall that the canonical ramified double cover construction associates to
every stratum of meromorphic quadratic differentials with at most simple poles
an invariant arithmetic suborbifold L in the corresponding stratum of Abelian
differentials, where the preimages of all simple poles are marked; see Section 4.3.
The invariant arithmetic suborbifold L is endowed with the natural cover P :
L→ Q(ν,−1|ν|+4).
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Alternatively, we can apply the double cover construction without marking
the preimages of simple poles. In this way, we obtain an alternative invariant
arithmetic orbifold L′ in a different stratum of Abelian differentials. For example,
under the first construction, we associate to the stratum Q(12,−16) an invariant
arithmetic suborbifold L in H(22, 06), while under the second construction, we
associate to the same stratum Q(12,−16) an invariant arithmetic suborbifold L′
in H(22). The resulting invariant arithmetic orbifolds L and L′ are related by the
natural forgetful map F : L→ L′ forgetting the preimages of the simple poles.
The choice between L and L′ corresponds to the choice between the subsets Σ̂
or Σ̂ ′ in the local computations of Section A.1.

Recall that we have a canonical Definition (4.5) of the Masur–Veech volume of
any arithmetic invariant orbifold. In this section, we compare the Masur–Veech
volumes Vol1 Q1(ν,−1|ν|+4), Vol1 L1 and Vol1 L′1.

There is a natural correspondence between Q(ν,−1|ν|+4) and L. Each zero of
odd order of q and each simple pole of q has a single preimage on X̂ . However,
each zero of even order of q and each marked point has two distinct preimages
and both preimages are zeros (respectively marked points) of ω. We denote by

`(νeven) := ν0 + ν2 + ν4 + · · ·

the total number of marked points and of zeros of even orders. Note also that
the triples (X̂ , ω, Σ̂) and (X̂ ,−ω, Σ̂) represent the same point of the stratum of
Abelian differentials with unlabeled zeros. These considerations show that we
have 2`(νeven) ways of labeling the preimages of zeros of even degrees. A priori, the
resulting set Q̂(ν,−1|ν|+4) of labeled Abelian differentials may be not connected.
By definition, L denotes any of the isomorphic connected components of
Q̂(ν,−1|ν|+4).

LEMMA A.7. Consider a stratum Q(ν,−1|ν|+4) of meromorphic quadratic
differentials in genus zero. The subset Q̂(ν,−1|ν|+4) of Abelian differentials
obtained by applying the canonical double cover construction to all (X, q) in
Q(ν,−1|ν|+4) with marked preimages of simple poles is connected.

Proof. The projectivization PQ(ν,−1|ν|+4) = Q(ν,−1|ν|+4)/C∗ of any stratum
Q(ν,−1|ν|+4) in genus zero is isomorphic to the space of configurations of
`(ν) + |ν| + 4 distinct labeled points on CP1 (the locations of the zeros, of
the marked points and of the simple poles of the quadratic differential q). In
particular, given any zero of q of even order (where we consider the marked
points as zeros of q of order zero), one can always construct a closed trajectory
in Q(ν,−1|ν|+4) by moving this zero close to a simple pole, then around this pole
and then backtracking the zero to the initial position following backwards the
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path which we used to move it close to the simple pole. Lifting the resulting loop
in Q(ν,−1|ν|+4) to a path in Q̂(ν,−1|ν|+4), we exchange the labels of the two
preimages of this zero of even order. This construction implies connectedness of
Q̂(ν,−1|ν|+4).

Considering the correspondence between Q(ν,−1|ν|+4) and L′, we observe
the following additional phenomenon. The set Σ̂ can be reconstructed from Σ̂ ′

as an unlabeled set by adding all ramification points of X̂ which are not yet in
Σ̂ ′. However, since the preimages of the simple poles are not marked in Σ̂ ′ and
thus not labeled, the information on the labels of simple poles in (X, q,Σ) is lost
when passing to the canonical double cover (X̂ , ω, Σ̂ ′). Thus, the points of Q(ν,
−1|ν|+4) and the points of L′ are in the natural (|ν|+4)! : 2`(νeven) correspondence,
where |ν| + 4 is the number of simple poles.

Let p : X̂ → X be the canonical ramified double cover such that p∗q = ω2.
Note that the flat area defined by the Abelian differential ω on X̂ is twice the
area defined by the initial quadratic differential q on X . Thus, under the
correspondence of the stratum Q(ν,−1|ν|+4) of quadratic differentials and the
suborbifold in the associated stratum of Abelian differentials, the hypersurface
L1 corresponds to the subset of quadratic differentials (X, q) of flat area 1

2 .
Following the tradition, we denote this locus by Q1(ν,−1|ν|+4), that is,

Q1(ν,−1|ν|+4) :=
{
(X, q) ∈ Q(ν,−1|ν|+4) | Area(X, q) = 1

2

}
. (A.9)

Given a Masur–Veech volume element dVol on Q(ν,−1|ν|+4), we define

Vol1 Q1(ν,−1|ν|+4) := 2d · Vol C1Q1(ν,−1|ν|+4), (A.10)

where the cone C1Q1(ν,−1|ν|+4) is defined as

C1Q1(ν,−1|ν|+4) :=
{
(X, q) ∈ Q(ν,−1|ν|+4)|Area(X, q) 6 1

2

}
.

The numerical values in (2.2) were obtained using this definition and the Masur–
Veech volume element on Q(ν,−1|ν|+4) normalized by the lattice (A.1); by
Lemma A.2, this lattice coincides with the lattice 1

2L.
Consider the locus L′ of Abelian differentials consisting of all canonical

double covers of all (X, q) in Q(ν,−1|ν|+4), where the preimages of simple
poles are not marked. Let P : L → Q(ν,−1|ν|+4) be the natural cover and let
F : L→ L′ be the forgetful map (forgetting the marked points that are preimages
of poles). We complete this section with the following lemma summarizing the
above considerations.

LEMMA A.8. Consider any normalization dVol∗ of the Masur–Veech volume
element on a stratum Q(ν,−1|ν|+4) of meromorphic quadratic differentials in
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genus zero and consider the volume element on L induced by dVol∗ via the cover
P : L→Q(ν,−1|ν|+4). The resulting volume element on L can be induced from
a volume element dVol∗ on L′ by means of the forgetful map F : L→ L′. The
volumes Vol∗1 L1, Vol∗1 L′1 and Vol∗1 Q1(ν,−1|ν|+4) satisfy the following relations:

Vol∗1 L1 := 2`(νeven) · Vol∗1 Q1(ν,−1|ν|+4) (A.11)

Vol∗1 L′1 :=
2`(νeven)

(|ν| + 4)!
· Vol∗1 Q1(ν,−1|ν|+4). (A.12)

Proof. The proof is essentially reduced to the observation that deg(P) = 2`(νeven)

and that deg(F) = (|ν| + 4)!.

A.3. Lattice points as square-tiled surfaces. In this section, we discuss the
square tiling in the flat metric associated with lattice points (X, q,Σ), (X̂ , ω, Σ̂),
(X̂ , ω, Σ̂ ′) for the lattices 1

2L, L and L′, respectively.
We have seen that lattice points in period coordinates of an invariant arithmetic

suborbifold represent square-tiled surfaces. Speaking of a square tiling, we
always assume that all the squares of the tiling are identical and polarized,
that is, we know which pair of opposite sides of each square is horizontal; the
remaining pair of sides is vertical. Gluing the squares, we identify sides to sides
respecting the polarization. Constructing a square-tiled surface representing an
Abelian differential, we impose additional translation structure.

We always consider only those square tilings of (X, q,Σ) (respectively of (X̂ ,
q, Σ̂), (X̂ , q, Σ̂ ′)) for which all the points of the discrete subset Σ (respectively
of Σ̂ , Σ̂ ′) are located at vertices of the squares.

LEMMA A.9. Consider a stratum Q(ν,−1|ν|+4) of meromorphic quadratic
differentials in genus zero.

(1) 1
2L-lattice points in Q(ν,−1|ν|+4) are those triples (X, q,Σ) for which the
induced (polarized) flat metric admits square tiling by 1

2 ×
1
2 squares. The

induced normalization dVol
1
2 L of the Masur–Veech volume element on Q(ν,

−1|ν|+4) combined with definitions (A.9) and (A.10) provides the same value
of the Masur–Veech volume Vol1 Q1(ν,−1|ν|+4) as (4.6).

(2) L-lattice points in Q(ν,−1|ν|+4) are those triples (X, q,Σ) for which the
induced (polarized) flat metric admits square tiling by unit squares. The
induced Masur–Veech volume element dVolL on Q(ν,−1|ν|+4) satisfies

dVolL = 4d
· dVol

1
2 L
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(3) L-lattice points in the arithmetic invariant suborbifold L are those triples
(X̂ , ω, Σ̂) for which the induced (polarized) flat metric admits square tiling
by unit squares. The associated Masur–Veech volume element dVolL on L
coincides with the volume element induced from the volume element dVolL

on Q(ν,−1|ν|+4) by means of the cover P : L→ Q(ν,−1|ν|+4). It provides
the same value of the Masur–Veech volume Vol1 L1 as (4.5).

(4) L′-lattice points in the arithmetic invariant suborbifold L′ are those triples
(X̂ , ω, Σ̂ ′) for which the induced (polarized) flat metric admits square tiling
by unit squares. The induced normalization dVolL

′

of the Masur–Veech
volume element on L′ provides the same value of the Masur–Veech volume
Vol1 L′1 as (4.5).

Proof. By Lemma A.2, the lattices 1
2L and (A.1) coincide. Upon this observation,

the assertion (1) becomes a direct corollary of Lemma B.1 from [AEZ2]
(reproduced as Lemma A.11).

Statement (2) is proved in Remark A.5.
The assertions of the remaining statements (3) and (4) concerning the square

tilings are proved by the following standard argument; see, for example, [Zor2].
We recall the proof for the lattice L; the proof for L′ is completely analogous.

By definition of the lattice L, the relative cohomology class [ω] of any L-
lattice point (X̂ , ω, Σ̂) in L belongs to H 1(X̂ , Σ̂;Z ⊕ iZ). Fix a point P ∈ Σ̂ .
Consider the map pω : X → C/(Z⊕ i Z) defined as

pω : Q 7→
( ∫ Q

P
ω
)

mod Z⊕ i Z.

The condition [ω] ∈ H 1(X̂ , Σ̂;Z ⊕ iZ) implies that the map does not depend
on the path joining the distinguished point P to a point Q of X , so pω is well
defined. It is easy to see that pω is a ramified cover and all ramification points
of pω belong to Σ̂ . Consider the flat torus C/(Z⊕ i Z) as a unit square with the
identified opposite sides. The cover pω endows X with a tiling by unit squares.
By construction, all points from Σ̂ are located in the corners of the resulting
square tiling and, thus, the assertions of statements (3) and (4) concerning the
square tilings are proved.

The coincidence of the volume element dVolL on L with the volume element
obtained by pulling back the volume element dVolL on Q(ν,−1|ν|+4) by means
of the cover P : L→ Q(ν,−1|ν|+4) follows from the fact that both L and Q(ν,
−1|ν|+4) share the same local period coordinates H 1

−
(X̂ , Σ̂,C) in which the two

volume elements are determined by the same lattice L. The cover P acts in these
coordinates as the identity map.
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Finally, the assertions about the values of the resulting Masur–Veech
volumes Vol1 L1 and Vol1 L′1 in (3) and (4), respectively, now follow from
equivalence of Definition (4.4) (where we, respectively, take L1 or L′1 as V1) and
Definition (4.5); this equivalence was proved in Section 4.2.

We are now ready to prove Proposition 4.3. Though, formally speaking, we
provide a Proof of Proposition 4.3 only for strata of meromorphic quadratic
differentials in genus zero, the general case is completely analogous with the
exception for connectedness of Q̂(ξ)comp which is claimed in Proposition 4.3
only for strata in genus zero.

Proof of Proposition 4.3. Let (X̂ , ω, Σ̂) be a square-tiled surface in L. By
construction, the cover pω : X̂ → T constructed in the Proof of Lemma A.9
intertwines the involutions τ : X̂ → X̂ and ι : T → T, where ι is the elliptic
involution on T:

X̂
τ

−−−−→ X̂

pω

y pω

y
T ι
−−−−→ T

This implies that the involution τ maps the squares of the tiling onto squares of
the tiling.

The involution τ maps ω to−ω, that is, τ ∗ω = −ω. Thus, if one of the squares
maps to itself, this is done by the central symmetry, which fixes the center of the
square. Hence, the center of this square would be the preimage of a simple pole
of q on X which contradicts the assumption that the points of Σ̂ are located
only at the corners of the squares. This argument proves assertions (1) and (2) of
Proposition 4.3.

Assertion (3) of Proposition 4.3 follows directly from assertions (2) and (3) of
Lemma A.9.

The remaining assertion (4) of Proposition 4.3 is specific for genus zero. It
was already proved in Lemma A.7.

Throughout Section 4, we have predominantly considered the invariant
arithmetic orbifold L. Corollary A.10 describes the important particular case
when it is natural to consider the invariant arithmetic orbifold L′.

COROLLARY A.10. Consider a stratum Q(k,−1k+4) of those meromorphic
quadratic differentials in genus zero, which have a single zero of order k, where
k ∈ N, and k + 4 simple poles. The associated invariant arithmetic orbifold
L′ in the corresponding stratum of Abelian differentials coincides with the
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hyperelliptic connected component Hhyp(k + 1) when k is odd and with the
hyperelliptic connected component Hhyp(( k

2 )
2) when k is even.

In this particular case, the lattices 1
2L and L′ coincide and thus the Masur–

Veech volumes Vol1 L′1 and Vol1 Q1(k,−1k+4) defined by (4.5) and (4.6),
respectively, are related by (A.12).

Proof. The first assertion is the definition of a hyperelliptic connected
component; see [KoZo].

The coincidence of lattices 1
2L and L′ follows from (A.5). Namely, in our case,

the partition ν contains a single entry, and, thus, 4`(ν)−1
= 1. Hence, choosing in

Lemma A.8 the Masur–Veech volume element dVol
1
2 L on Q(k,−1k+4), we get

as the induced volume element dVol
1
2 L on L′ the Masur–Veech volume element

dVolL
′

. Thus, the corresponding volumes are related by formula (A.12).
It remains to note that by Lemma A.9, the Masur–Veech volume Vol1 L′1

defined by (4.5) corresponds to the normalization of the Masur–Veech volume
element on L′ by the lattice L′ and that the Masur–Veech volume Vol1 Q1(k,
−1k+4) defined by (4.6) corresponds to the normalization of the Masur–Veech
volume element on Q(k,−1k+4) by the lattice 1

2L or, equivalently, by the
lattice (A.1).

Remark 1.2 at the end of [AEZ2, Section 1.1] presents the following two
illustrations of Corollary A.10 (see (2.2) for the definition of f ):

Vol1Q1(1,−15) = 2π 2 f (1) ( f (−1))5

= 2π 2
·
π 2

2
·15
= 5! ·

π 4

120
= 5! · Vol1 H1(2),

Vol1Q1(2,−16) = 2π 2 f (2) ( f (−1))6 = 2π 2
·
4π 2

3
·16

=
6!
2
·
π 4

135
=

6!
2
·Vol1 H1(12).

We complete this Appendix reproducing the statement of the result from
[AEZ2, Appendix B], proving that in genus zero, the 1

2 -square-tiled surfaces
(X, q,Σ) (that is, the points of the stratum corresponding to the lattice 1

2L or,
equivalently, to the same lattice defined as (A.1)) are represented by pillowcase
covers specified below. We warn the reader that the statement of Lemma A.11 is
not valid for genera higher than zero.

LetΛ ⊂ C be a lattice, and let T2
= C/Λ be the associated torus. The quotient

P := T2/±
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by the map z→−z is known as the pillowcase orbifold. It is a sphere with four
(Z/2)-orbifold points (the corners of the pillowcase). The quadratic differential
(dz)2 on T2 descends to a quadratic differential on P . Viewed as a quadratic
differential on the Riemann sphere, (dz)2 has simple poles at corner points.
When the lattice Λ is the standard integer lattice Z ⊕ iZ, the flat torus T2 is
obtained by isometrically identifying the opposite sides of a unit square, and the
pillowcase P is obtained by isometrically identifying two 1

2 ×
1
2 squares along

the perimeter; see the right picture in Figure 4 in Section 2.1.
Consider a connected ramified cover P̂ over P of degree d having ramification

points only over the corners of the pillowcase. Clearly, P̂ is tiled by 2d squares
of the size 1

2 ×
1
2 . Coloring the two squares of the pillowcase P one in black and

the other in white, we get a chessboard coloring of the square tiling of the cover
P̂ : the white squares are always glued to the black ones and vice versa.

LEMMA A.11 [AEZ2]. Let S = (X, q,Σ) be a point in the stratum Q(ν,
−1|ν|+4) of meromorphic quadratic differentials in genus zero. The following
properties are equivalent:

(1) S represents a point of the lattice (A.1) in Q(ν,−1|ν|+4);

(2) S is a cover over P ramified only over the corners of the pillowcase;

(3) S is tiled by black and white 1
2 ×

1
2 squares in the chessboard order.

Lemma A.11 implies that any square-tiled surface in any stratum of
meromorphic quadratic differentials in genus zero is always tiled with even
number of squares and that such tiling always admits chessboard coloring.

Note that in genera one and higher, one finds square-tiled surfaces tiled with
odd number of squares. In genera one and higher, one also finds square-tiled
surfaces tiled with an even number of squares which, nevertheless, do not admit
chessboard coloring. Note also that ‘pillowcase covers’ are defined differently
by different authors; see, for example, [EOk].
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