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Abstract

It is shown that no finite group containing a non-abelian nilpotent subgroup is dualizable. This is in
contrast to the known result that every finite abeJian group is dualizable (as part of the Pontryagin duality
for all abelian groups) and to the result of the authors in a companion article that every finite group with
cyclic Sylow subgroups is dualizable.

2000 Mathematics subject classification: primary 20D15; secondary 08A05.

1. Introduction

In [3] and [4] a strong natural duality is proved for groups of the form Zn xZm, where
(n, m) = 1. In this paper we show that a finite nonabelian nilpotent group cannot
admit a natural duality. In fact, for every finite group H having at least one nonabelian
Sylow subgroup (which is then nilpotent of class at least 2), we focus our attention on
a p -subgroup G of H of nilpotence class 2, and use G to prove that the original group
H is not dualizable.

For the benefit of readers not familiar with the theory of natural dualities, we begin
with a brief review of what is meant by 'admitting a {natural) duality'' and refer to the
text of Clark and Davey [1] for a detailed account.

Let A be a finite algebra and let A = (A; F, P, R, r) be a topological structure on
the same underlying set A, where

(a) each/ e F is a homomorphism / : A" - • A for some « e N U ( 0 ) ,
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(b) each/? e P is a homomorphismp : dom(p) —*• A where dom(/?) is a subalgebra
of A" for some n € N,
(c) each r e R is (the universe of) a subalgebra of A" for some n e N,
(d) r is the discrete topology.

Whenever (a), (b) and (c) hold, we say that the operations in F, the partial operations
in P and the relations in R are algebraic over A. These compatibility conditions
between the structure on A and the structure on A guarantee that there is a naturally
defined dual adjunction between the quasivariety s/ :— DSPA generated by A and
the topological quasivariety 3E^ := iSWsf generated by A; if there is no chance of
confusion, we will write S£ for 3£^. For all B € sf the homset D(B) := ^ ( B , A)
of all homomorphisms from B to A is a closed substructure of the direct power AB

and for all X e 3C the homset E(X) := %(!&, s/) is a subalgebra of the direct
power A*. It follows easily that the contravariant hom-functors &/{-, A) : s/ -*• y
and SC{—, &/) : 3C -*• J?', where y is the category of sets, lift to contravariant
functors D : si-> SCand E : 3C - • si'.

For each B € s/ there is a natural embedding eB of B into ED(B) given by
evaluation: for each b e B and each x € D(B) — s/(B, A) define eB(b)(x) := x(b).
Similarly, for each X e 3£ there is an embedding e^ of X into DE(X). A simple
calculation shows that e : id^r —>• EDande : id^r -*• DE are natural transformations.
If eB is an isomorphism for all B G s/, we say that A yields a (natural) duality on s/.
If there is some choice of F, P and R such that A yields a duality on &/, then we say
that A (or s/) admits a natural duality or, briefly, is dualizable.

We wish to prove that for no choice of F, P and R does H yield a duality on Jf,
the quasivariety generated by the finite group H. For this, it is enough to show that
there is no duality when F = P = 0 and R consists of all subgroups of all finite
powers of H, the so-called brute force duality; see [1]. In order to prove that there
is no brute force duality, we need to find a (necessarily infinite) group D e Jt? such
that eD is not onto ED(D). We will use what is known as the ghost element method.
We will choose D to be a proper subgroup of Gz and choose a particular element
j£ = (wj)ieI e Gz — D. We will then construct an element <£> of ED(D) which will
not be an evaluation map for any element of D because it will act as if it were an
evaluation map at the ghost element; that is, for every / 6 2, 4>(7r,) = wt = TTj(w).

More precisely, we will find a sequence {i^} of elements in D such that the sequence
converges to w_. Here convergence is pointwise (that is, componentwise) and in
each component a sequence is convergent if and only if it is eventually constant
and converges to its eventual constant. Then for \x e £>(D) we define 0>((i) to be
lim^oo fJ.(Vj,). We need to prove four things about <t>: (1) O is well defined; (2) 4>
'acts like' evaluation at vr, (3) <E> is structure preserving, and (4) O is continuous.

The first and second will be easy. The third will also be easy since being structure
preserving is a local property. That is, if on every finite subset F of D(D) there is an
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element of ED(D) which agrees with <J> on F, then <J> is structure preserving. But
this will follow from the fact that <J> is a limit of evaluation functions (sequentially, at
the v,,).

The last, continuity, will be difficult. We recall that the topology on D(D) is
boolean (in the vernacular, a zero-dimensional compact Hausdorff space). That is,
D(D) has a basis of clopen sets consisting of sets of the form

{</> \4>{d) = hdforallde F),

where F is a finite subset of D, and hj e H. Thus for every a e D(D), we must
find a finite subset Fa of D such that if 0 e D(D) with a(d) = 0(d) for all d € Fa,
then <t>(a) = <t>(/8). But compactness tells us that finitely many of these clopen sets
cover D(D); taking F to be the union of the finitely many Fa we see that <$> will be
continuous if and only if there is a finite subset F of D such that if /x, v € D(D) and
Hid) = v(d) for all d e F, then <P(/x) = cj>(v).

2. The group D

LEMMA 2.1. For each finite nonabelian p-group P /were is a nonabelian subgroup
G < P and a, b 6 G JMC/I ffort:

(i) G=(a,Z>);
(ii) all proper subgroups ofG are abelian;
(iii) in G, commutators are in the center Z(G), that is, G is ofnilpotence class 2;
(iv) f/ie commutator is an alternating bilinear form;
(v) Z(G) = (ap,bp, [a, b\), and so gp e Z(G)/or every g € G;

(vi) in G, tfie centralizer of g, Cdg), is {g, Z(G)), provided g £ Z(G).

PROOF. Let G be a minimal nonabelian subgroup of P; thus, every pair of noncom-
muting elements generates G. Hence, (i) and (ii) hold. Let c = [a, b]; if c £ Z(G),
then we can replace one of a and b with c in condition (i). As G is nilpotent, iterating
this procedure eventually leads us to [a, b] e Z(G). This implies that for every i
and j , Va' = a'ti [a, b]~iJ. Hence, every commutator in G is a power of [a, b] and
so is in Z(G). Thus, (iii) follows. From (iii), the bilinearity of the commutator is a
standard exercise; thus, (iv) holds. If ap £ Z(G), then replace a with ap\ iteration
yields ap € Z(G), so that (ap, hf, [a, b]) < Z(G). If this inequality were strict, then
for some 0 < i,j < p with i + j > 1 we would have a'V € Z(G). But then this
element and one of a and b would generate G, making G abelian. In turn this implies
that (v) holds. Thus, |G/Z(G)| = p2, and (vi) follows. •

We prove that a finite group H having a subgroup G with the properties in Lemma 2.1
is not dualizable. Of course, every finite group having at least one nonabelian Sylow
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subgroup contains such a group G. Item (iii) implies that [JC\ yj ] = [x, y]'J, a fact
the reader should keep in mind when verifying the computations in this section.

Choose a positive integer, /, whose value will be fixed later in this paper. For
i e 1 let dt e Gz be ( . . . , 1, 1, a, b~\ 1 , . . . , 1, b, a~\ 1, 1,...) with (£),- = b~l

and (dj)i+, = b; thus, there are (t — 1) l's between b~l and b. The identity element
of Gz is denoted JL

DEFINITION 2.2. D :- (df \ i el).

DEFINITION 2.3. Our ghost vector is w := ( . . . , 1,1, c~\ 1 ,1, . . . ) where c :—

[a, b] and where (u/)0 = c~l.

For integers i < j , let VJJ be defined by

c~\ if m = i;

( V i , j ) m = c, ifm=j;

1, otherwise.

Let V := {{vij \ i < j}), and note that w_ = lim^oo uo,n.
We want to show that w e G ' - D . For this we need to describe D', the commutator

subgroup of D. Because of the bilinearity of the commutator, D' is generated by
the set of commutators of any generating set of D. It is clear that [dj, dj] = 1
for 11 — j \ £ [l,t + 1}. Recalling that the commutator is an alternating form,
we have only two computations to perform. They yield [dj, rf,-_i] = Vj-u+t an<l
[d_i, d_i+l+i] = Vj+,ii+l+i. Since for i < j < k we have v_i,jVj,k = Ri,k, then D' = V.

LEMMA 2.4. weG1-D.

PROOF. We need to show that w_ £ D. Suppose that u; € D. Then we can write
w_ = d^' • • • rf*td[ where d[ e D' and I'I < • • • < k. We will prove that p \ j m for
1 < m < k. As to,,_i e (c), we must have ah e (c) < Z(G); hence, p \ j \ . Suppose
thatp |y"nforn < m. Then as ix < ••• < ik and tu,m-i € <c), our inductive assumption
ensures that aJ~m 6 Z(G), so that p |yffl. By induction, p \ j m for 1 < m < k. Thus,w
and each rf|" lie in (Z(G))Z, an abelian group. Notice that each rfj" and each generator
of D' has the property that the product of their components is 1. Hence, so must w_, a
contradiction; hence, w_ ^ D. •

3. Homomorphisms from D to H

Let (i € Hom(D, H). Recall that our ghost element w_ is the limit of the uO

u; = lim uo,n-
n-*oo
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Thus, for every \x we will prove that there is an n such that ix(v_0,i) = ix(vOii+i) for
i > n. We will then define <I>(/i) to be this eventual value of /i.(uo,«):

O(/z) := lim fi(vOin).
n—*-oo

LEMMA 3.1. Z^r /x e Hom(D, H). Then there is an n such that /A(UO,I) = ^(Ro,i+i)
for i > n.

PROOF. Let /Lt(d,,),... , M(d,() generate fi(D) < H, where ^ < ij+l; of course,
we may assume k < \H\. Recalling that [dj,dj] = 1 save for \i — j | € {1, t + 1), let
J :— U * = i { ' y - t - \ , i j -\,ij + \,ij +t + \},an& n o t e t h a t \J\ < 4\H\. S u p p o s e

i £ J; then \dj, q\tj ] = 1 for all j , and so n(dj) e Z(/LI(D)). Using the computations
[dh dj.i] = £,_,,,+, and [diy di+l+l] = vi+u+l+1, we see that

This implies that if n is sufficiently large, then fi(vj)j) = M(^O,/+I) for all i > n. •

Thus, 4> (/i) is well defined, proving the first of the four properties we need to prove
about <t>. Notice that for every i € 2, 4>(7r,) = wh so that 4> acts like evaluation at
w, proving the second property. It is easy to see that $ is structure preserving: for
any finite subset F of Hom(D, H), we can find a large enough n such that $ agrees
with the evaluation map at ^0,n at each member of F\ since all evaluation maps are
structure preserving, so is <t>. This proves the third property. Thus, we are left with
the hard part, showing that <t> is continuous.

Necessarily, the n from Lemma 3.1 depends on /u, (consider the case where H
contains a copy of G2 and for all k > 1, ixk(d) = (do, dk)). Potentially, this can
disrupt the continuity of <J>. We counter this threat by showing that we can choose
a large enough Af (depending on H but not on /x) and choose t large enough (again,
depending on H but not on /x) so that we can determine the eventual value of ix(vOn)
by looking only at ^(v^,) for 1 < i < N.

DEFINITION 3.2. We define an interval / of Z to be a gap if | / | > 6t + 6 and

-i,;) = 1 for all i e / . We permit gaps to be infinite.

Note that we have not yet decided how big t should be. Recall from the proof
of Lemma 3.1 that as /x(rf,) e Z(/x(D)) when i £ J, then we have fi(vj-i,i) = 1
except for at most 4\H\ indices i. Thus, by choosing N > 30\H\(t + 1), the interval
1 < i < N contains a gap. Obviously, there are at most 4\H\ + 1 maximal gaps. We
will then prove that if i < j and each is in a gap, then ix(Vij) = 1. We will do this by
choosing t to be sufficiently large.
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Next, we make what seems to be a strange definition. It sets the stage for proving
a key lemma using a Ramsey-like argument.

DEFINITION 3.3. Define the positive integer M by

w h e r e g t , h t e 7 7 , [ g t , ht] £ 1 , [ g t , g j ] = [ g h hj] = [ h h h j ] = l f o r i ^ j . A s \ H \
is finite and the conditions preclude repetitions among the gt, M is finite.

For instance, if H = G \ then it is easy to find 2k elements satisfying the above
conditions.

LEMMA 3.4. Let I\ and 73 be two gaps such that I\ is to the left of h, with 72 the
non-empty interval between them. Let i e I\ and j e 73. Then (i(v.ij) — 1.

PROOF. Suppose the hypotheses of the lemma hold but that fi(vjj) = e ^ 1.
Notice that e is independent of the choices of i e h and j € 73 due to the defining
property of a gap and that for i < j < k we have v,-,,-v,-,* = v_u-

For a positive integer s, define gj := YYk=odj+Ht+2) and note that

(gj)m =

a~l

a, if m = j — 1;

b~\ ifm =j + k(t+ 2) for 0< k < s;

b i f 2 k 2 f k

\ j + (+ ) ;

b, ifm=j -2 + k(t+ 2)forl <k<s +I;

a~\ ifm = 7 - 1 + (s + l)(f + 2);
1, otherwise.

This means that if [g,, gj] ^ 1, then i — j = ±1 (mod t 4- 2). Thus, [gj, g;_i] =
u/_iJ_2+(j+i)(,+2) so that if ; - 1 € 7, and j - 2 + (s + l)(t + 2) € 73, then
[n(gj), fi(gj-i)] = e. Of course, we can choose j and s so thaty — 1 € 7i and
j — 2 + (s + l)(r + 2) e 73. We can do much better. Choose t to be a multiple
of 8; because each of I\ and 73 has size at least 6t + 6, we can find f/8 + 1 values
°f j Wo. 4(/o + 1). • • •. 4(/o + f /8)) and a value of s such that j — 1 e 7] and
j - 2 + (s + l)(t + 2) e 73.

We are now ready to define gt and ft,. Set g, := MC^OO+O)
 a n d ^' : = M(^4oo+o-i)

for 0 < i < f/8. We have [gh ht] = e for all i. Also, [g,, g;] = 1, since 4(/o +
') — 4(/o + y ) is even modulo / + 2. Similarly, [/i,, hj] — 1. Finally, [g,, hj] = 1
for i ^ y since 4O"o + 0 - 4(/'o + >) + 1 = 4(j - ; ) + 1; as 0 < \i-j\ < f/8, we
cannot have i —j = ±1 (mod r + 2). If we now take t = 8(M + 1), we contradict
the definition of M, and so have proved the lemma. Notice that our choice of t is
independent of fi. •
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COROLLARY 3.5. Let n € Hom(D, H). There is a unique eM G H such that
/z(uOj) = e^ for all but finitely many j > 1. Moreover, II(V.OJ) = M̂ holds for j in
any gap, and for N > 30\H\(t + 1), the interval I <j < N contains a gap. Thus, eM

can £>e determined by examining IA(VQJ ) on I < j < N.

4. The theorem

THEOREM 4.1. Let H be a finite group having at least one nonabelian Sylow sub-
group; then H is not dualizable.

PROOF. Choose G to be a minimal non-abelian p-subgroup of H. Take N and eM as
given in Corollary 3.5. Let <J> : D(D) -*• H be defined by <J>O) := lim,,-^ /x(uo,n).
Notice that &((i) = eM and that if ix(D) is abelian, then eM = 1. By the results
of the last section, we need only prove that 4> is continuous. We choose F to be
{uo,i I 1 < ' < N), and suppose that fi\F = v\F. If v(D) is abelian, then as [1, N]
contains a large interval for fx and /Z(UQ,I) = v(u0,,-) = 1 for 1 < i < N, we must
have <t>(/Li) = 4>(v) = 1; similarly if /i(D) is abelian. If neither image is abelian, then
M(Ho,i) = v(£o,i) for 1 < i < N implies that an interval in [1, TV] is large for v if and
only if it is large for /i , and so again «3>(/u.) = <J>0). Thus, <J> is continuous and the
theorem is proved. •
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