
Cite this article: Beernaert, T.F., Etman, L.F.P. (2019) ‘Multi-level Decomposed Systems Design: Converting a 
Requirement Specification into an Optimization Problem’, in Proceedings of the 22nd International Conference on 
Engineering Design (ICED19), Delft, The Netherlands, 5-8 August 2019. DOI:10.1017/dsi.2019.376

ICED19

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED19 
5-8 AUGUST 2019, DELFT, THE NETHERLANDS 

 

ICED19 1 

 

MULTI-LEVEL DECOMPOSED SYSTEMS DESIGN: 
CONVERTING A REQUIREMENT SPECIFICATION INTO AN 
OPTIMIZATION PROBLEM 
 
Beernaert, T. F.; Etman, L. F. P. 
 
Eindhoven University of Technology 
 

ABSTRACT 
Complex technological artefacts are often decomposed into smaller components to keep their design 
manageable. The resulting challenge is to coordinate decisions that involve multiple components and to 
design components such that high-level targets are met. Analytical Target Cascading (ATC) is an 
analytical coordination method for the optimization of decomposed systems, which we aim to 
incorporate in systems engineering design process. To this extent, we relate the domain of engineering 
optimization to the domain of requirements engineering, and propose a method that constructs an ATC 
problem from functional specifications and requirements written in the newly developed Elephant 
Specification Language. The proposed method is demonstrated in the two-level design of an automotive 
powertrain. This contribution is a step towards design automation and is expected to increase the 
usability of decomposed optimization techniques. 

Keywords: Systems Engineering (SE), Integrated product development, Design Automation, 
Requirements, Optimisation 
 
Contact: 
Beernaert, Torben Frans 
Eindhoven University of Technology 
Mechanical Engineering 
The Netherlands 
torbenbeernaert@gmail.com 
 
 

3691

https://doi.org/10.1017/dsi.2019.376 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.376


1 INTRODUCTION
The rising complexity in technological systems poses many challenges for their management and design.
The field of systems engineering is concerned with the life cycle of complex engineered systems and
provides various techniques to manage complexity. A popular principle is decomposition, the process of
splitting a whole system into smaller components. However, the challenge of designing a decomposed
system is that the relation between the complete system and its components can be obscure or even
unknown. This makes it difficult to make decisions that affect multiple components and to predict how
changes in one component relate to other components and to the system as a whole. There exist multiple
subdomains of systems engineering that aim to support the development of decomposed systems.
The requirements engineering subdomain supports the establishment and management of require-
ments. A recently proposed language from this domain, the Elephant Specification Language (ESL),
enables the specification of functions, requirements and dependencies for multi-level decomposed sys-
tems (Wilschut, 2018). ESL can visualize the relations between system components and can provide
mappings between requirements and design variables.
Analytical models are used in every design stage to predict the behaviour and properties of the system.
As the design progresses, separate highly detailed models will be developed that describe different parts
of the system. Considering separate models increases practicality, but it becomes difficult to overview
quantitative trade-offs that involve multiple system components. The engineering optimization sub-
domain supports the analytical design phase with Analytical Target Cascading (ATC), a quantitative
coordination method for the optimal design of decomposed systems. Literature has mainly focused on
numerical properties of ATC, but has never opted how a decomposed optimization problem should be
used in the context of systems engineering design. Considering ATC from a design perspective could
be a step towards its integration in real-world applications.
ESL and ATC show similar perspectives and descriptions, and are expected to be suitable for a joint inte-
gration in systems engineering design. Combining these techniques will relate a multi-level functional
system specification to a decomposed optimization problem, and is expected to support the transition
from requirements to analytical design in both early and late design phases. The hypothesis of this
contribution is that an ATC optimization problem can be constructed from an ESL specification.
We propose a method to convert an ESL specification into an ATC problem, and conclude that a func-
tional system description in ESL can provide most information that is necessary for the definition of an
ATC optimization problem. The multi-level ESL decomposition tree can be converted into an equiv-
alent ATC tree of optimization subproblems, and ESL requirements can be interpreted as engineering
optimization constraints. We expect that the conversion method can derive an optimization problem
from a requirements specification in consecutive stages of multi-level systems design.
In Section 2, we elaborate decomposed systems engineering and the paradigms that are considered
in this work. Sections 3 and 4 elaborate ESL and ATC, respectively, and highlight their similarities. In
Section 5, we propose how to convert an ESL specification into an ATC problem, which is demonstrated
in Section 6 by the two-level design of a vehicle powertrain. We conclude this contribution with final
remarks in Section 7.

2 MULTI-LEVEL SYSTEMS DESIGN
Perhaps the most popular method for the design of complex systems is the systems engineering V-
model, proposed by Forsberg and Mooz (1991). The V-model advocates that the analysis and design of
the system increase in detail as time progresses. However, considering too much detail leads to complex
and unmanageable design tasks. Therefore, the V-model opts to decompose a system into its subsystems
when one system becomes too complex. This principle can be applied on consecutive levels, thereby
generating a hierarchical decomposition tree. This schematic tree is a view of the structure of a system,
involving multiple levels of detail. The system is broken down into its components that are distributed
over decomposition levels, such that a parent component on level i consists of its children on level i+ 1.
Generally, systems engineers aim to decompose the system in such a way that the resulting components
can be analyzed and designed separately. However, there are always trade-offs and decisions that affect
multiple components, which require coordination among them. Design Structure Matrices (DSMs) are
visualizations of the interactions between the components of a decomposed system, and can support the
management of its development (Eppinger and Browning, 2012).

ICED193692

https://doi.org/10.1017/dsi.2019.376 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.376


The requirements engineering domain is concerned with the management of requirements (Hull, Jack-
son and Dick, 2005; Young, 2004). Wilschut (2018) proposed ESL as a language for the specification
of functional requirements. ESL aids the coordination of multi-level systems by generating DSMs at
various levels of decomposition. It specifies the relations between components, functions and variables,
but cannot incorporate analytical models.
The engineering optimization domain does consider analytical system models and aims to find a design
that minimizes a mathematical objective function. ATC is a technique for the optimal design of multi-
level decomposed systems, developed by Kim et al. (2003), and has been demonstrated by several
examples in literature (see Papalambros and Wilde (2017) for references). It is the only optimization
technique that can consider a multi-level problem architecture, and is therefore expected to be suitable
for the analytical design of systems that are decomposed into multiple hierarchical layers. The numerical
properties of ATC have been thoroughly investigated, but we have never seen how an ATC problem
relates to other phases of systems design or how it can be constructed.
Establishing requirements and conducting analyses are steps that should be repeated on every level of
decomposition, but are subject to different domains. Combining these domains is a step towards design
automation and is expected to increase the traceability, efficiency and quality of the development. There-
fore, we aim to convert elements from multi-level requirements engineering into multi-level engineering
optimization. Our proposition is that a combination of ESL and ATC can provide a mathematical frame-
work for the integrated design of decomposed systems. This development will benefit the domains of
requirements engineering and engineering optimization, as well as systems engineering in general.

3 ELEPHANT SPECIFICATION LANGUAGE
ESL is a recently developed language for the specification of the structure, functionality and require-
ments of multi-level decomposed systems (Wilschut, 2018, Chapter 6). This language enables the
definition of components in a hierarchical decomposition tree via explicit parent-child relations. Besides
this vertical coupling, ESL is capable of specifying the interactions between components at the same
level of decomposition. Analysis of an ESL specification can automatically yield several DSMs
(Eppinger and Browning, 2012) that can support the management of the system at hand. Listing 3
shows an example of an ESL specification.

ICED19 3693

https://doi.org/10.1017/dsi.2019.376 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.376


A specification comprises component definitions that contain variables, child component instances,
requirements and relations. Variables that are defined in a parent component may be passed to a child
component via arguments (lines 10, 12 & 14); the same variables have to be defined as parameters in
the corresponding child component (lines 30, 40 & 52). As such, ESL specifies a decomposition tree
where components are linked strictly hierarchically via variables. This multi-level hierarchy is shared
by ATC.
ESL specifies the functionality of a component via goal and transformation functions. Goal functions
relate two components via a variable (lines 19 & 20). This variable is considered an interface, and is
always passed to both connected child components via arguments. Transformation functions describe a
component’s internal working principle by the transition of variables (lines 22, 32, 44 & 56). ESL uses
goal and transformation functions to construct a component DSM.
Design requirements specify conditions by comparing a variable to a numeric constant or to another
variable (lines 16 & 17). The comparison is written in natural language, but can be interpreted as a math-
ematical operator (≤,<,=,> or ≥). Goal and transformation functions can be refined by subclauses
(line 45) in the same textual format as design requirements. Design requirements and subclauses closely
resemble engineering optimization constraints because of the mathematical comparison operator.
Finally, ESL enables the specification of relations between variables (lines 24-25, 35-36, 47-48 &
58-59). A relation implies that arguments depend on each other via a named mathematical function.
For instance, the relation in lines 24-25 specifies that there is a function, called Composition, that
depends on the mass of the powertrain and its children. ESL does not define the actual mathematical
function, but only specifies its existence.

ICED193694

https://doi.org/10.1017/dsi.2019.376 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.376


4 ANALYTICAL TARGET CASCADING
ATC is a coordination method for the optimization of decomposed systems, and was initially developed
as a way to propagate high-level targets to low-level components (Kim et al., 2003). ATC considers
decomposed system design as an optimization problem that is split into subproblems and represented in
a multi-level architecture. Figure 1 displays the architecture of a three-level ATC problem. Subproblem
Pij is located on decomposition level i, where j is an index for subproblems at level i.

P0

t11 r11
t12r12

P11 P12

t21 r21

P21

t22r22

P22

t23r23

P23

i = 0

i = 1

i = 2

Figure 1. An ATC optimization problem comprises subproblems in a multi-level hierarchy.
Subproblems are linked via target and response variables tij and rij, respectively.

Constraints are assigned to single subproblems, but variables may be shared by multiple subproblems
and thereby link them in the hierarchy. Parent subproblems iteratively send target values to their chil-
dren, who send response values back up in an effort to reach their acquired targets. Every subproblem
has a local objective function, fij . The sum of these local objective functions is equal to the objective
function of the original optimization problem. The general formulation of subproblem Pij is given by:

min
x̄ij

fij (x̄ij )+ φ(cij )

subject to gij (x̄ij ) ≤ 0, hij (x̄ij ) = 0

where x̄ij =

[
xT

lij , tT
(i+1)k1

, . . . , tT
(i+1)kncij

,rT
ij

]T

cij =
[
(tij − rij )

T,(t(i+1)k1 − r(i+1)k1)
T, . . . ,(t(i+1)kncij

− r(i+1)kncij
)T
]T

(1)

Every subproblem has a local objective function fij and local inequality and equality constraints gij and
hij , respectively. Subproblem Pij has access to local design variables xlij , targets t(i+1)k1 , . . . , t(i+1)kncij
to set for its ncij children, and responses rij to send to its parent. Consistency constraints cij require that
all corresponding targets and responses are equal to each other, but are relaxed via a penalty function
φ. The state-of-the-art ATC algorithms utilize an Augmented Lagrangian Coordination (ALC) penalty
function (Tosserams et al., 2006; Xu, Fadel and Wiecek, 2017). The linear and quadratic weights of the
ALC penalty function are updated via schemes that drive cij to zero.
ATC is a local optimization technique; for convex problems, the solution converges to a globally optimal
system design (Michelena, Park and Papalambros, 2003). If the posed optimization problem is non-
convex, one cannot guarantee that ATC converges. If it does converge, only local optimality is ensured.
We expect that ATC can provide a framework to couple separate analytical models. We envision that
ATC can be used in subsequent stages of design, where an expanding decomposition tree leads to
a larger and more complex ATC problem. Algorithms such as ALC could then coordinate trade-offs
among these models to arrive at an optimal system design.

5 PROPOSED CONVERSION METHOD
Similarities between ATC and ESL have led to the hypothesis that an ESL specification can be con-
verted into an ATC problem. We aim to exploit these similarities (i.e., the multi-level architecture,
variable coupling and definition of variables and functions) in the proposed conversion method. Our

ICED19 3695

https://doi.org/10.1017/dsi.2019.376 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.376


most fundamental presumption is that every component defined in ESL can be converted into an ATC
subproblem, so the hierarchical structure of the ESL component decomposition tree will be identical to
the ATC problem structure. In this section, we analyse the elements that comprise the ESL specification
of component concept cij and translate them to optimization problem Pij . Figure 2 summarizes the pro-
posed mapping between ESL and ATC, and demonstrates a simple conversion of an ESL specification
into an ATC subproblem. We will refer to this example in the following sections to elicit the concept.

1 define component Cij
2 parameters
3 x1, x2 is a variable
4 variables
5 x3, x4 is a variable
6 components
7 sc1 is a SC with argument
8 x3
9 transformation-requirement

10 tfr-0: must convert x1 into x2
11 with subclause
12 c-0: x3 must be at least 5
13 design-requirement
14 dsr-0: x4 must be equal to 10
15 relation
16 rlt-0: rel with arguments
17 x1, x3, x4

ATC subproblem Pij

min
x̄ij

Fij = fij (x̄ij )+ φ(x̄ij )

s.t. gij (x̄ij ) ≤ 0, hij (x̄ij ) = 0

where x̄ij =

[
xT

lij , tT
(i+1)k1

, . . . , tT
(i+1)kncij

,rT
ij

]T

rij = [x1, x2]T

xij = [x4]

t(i+1)k1 = [x3]

gij = [5− x3]

hij = [x4 − 10, rel(x1,x3,x4)]T

ESL cij : ATC Pij
Parameters : rij
Variables : xij
Subcomponent arguments : t(i+1)k1 , . . . , t(i+1)kncij

Design requirements : gij ,hij
Subclauses : gij ,hij
Relations : hij

Figure 2. Conversion from the ESL specification of component cij into ATC subproblem Pij.

5.1 Variables
Components contain a pool of variables, some of which link them to their children and/or to their
parents, as explained in the previous section. Our interpretation is that all parameters and variables
are actually design variables in the context of ATC. We read the ‘parameters’ section of a component
definition as a ‘variables that are linked to my parent’ section. This structure enables a perfect mapping
to the ATC paradigm; The pool of variables is the vector x̄ij , which consists of local variables xlij ,
target variables t(i+1)k1 , . . . , t(i+1)kncij

and response variables rij . In the given example, child component
sc1 will declare one parameter in its specification, corresponding to x3. Vice versa, component cij has
been instantiated in its parent component, with two arguments corresponding to x1 and x2. From the
perspective of cij , x3 is a target to its child sc1 (t(i+1)k1) and x1 and x2 are responses to its parent (rij ).

5.2 Design requirements and subclauses
Design requirements and subclauses use a comparison operator in written language to compare a vari-
able to a constant or to another variable. Depending on the operator, we translate subclauses and design
requirements into inequality gij (line 12) and equality hij (line 14) constraints according to Table 1.
ESL allows designers to use specific verbs, e.g., must, should or could, in the specification of design
requirements and subclauses to distinguish subtle priority difference. The implied priorities are currently
not recognized by the conversion; All design requirements and subclauses are treated as constraints. The
interpretation of priorities in an engineering optimization problem could be a future development of the
ESL to ATC conversion.

ICED193696

https://doi.org/10.1017/dsi.2019.376 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.376


Table 1. Interpretation of subclauses and design requirements as ATC constraints.

ESL specification Interpreted equation ATC constraint
A ... equal to B A− B = 0 Equality
A ... at most B A− B ≤ 0 Inequality
A ... at least B B− A ≤ 0 Inequality

5.3 Relations
Each ESL relations specifies that there exists a mathematical function that must be considered in the
analysis of the component. We interpret relations as mathematical functions that must be true, which
can be expressed by equality constraints. Considering that any mathematical relation can be rearranged
such that its right-hand side is equal to zero, relations can be formulated as equality constraints. For
instance, Newton’s second law, that relates the arguments force F , mass m and acceleration a, would be
interpreted as the equality constraint h = F − ma = 0. ESL does not define the mathematical function
associated to a relation. Therefore, line 16 only tells us that there is a function relwith three arguments,
x1, x3 and x4, that should satisfy: h = rel(x1,x3,x4) = 0. It is expected that other interpretations can
lead to a reduced optimization problem, i.e. with less variables and constraints, that will be more efficient
to solve. For such principles of optimal design, we refer to Papalambros and Wilde (2017).

5.4 Goal and transformation functions
Goal and transformation functions are not directly interpreted. A goal function describes a relation
between two components, and always has to be accompanied by passing the associated interface vari-
able to both components. Transformation functions specify the internal working of a component by
linking several variables, but have to be further elaborated by a relation. Therefore, analysing compo-
nent arguments and relations is sufficient to capture the effects of goal and transformation functions
from an analytical design perspective. Goal and transformation functions can form a basis to generate
a component DSM (Wilschut, 2018, Chapter 4). According to our conversion concept, the elements in
this component DSM translate to linking variables in ATC.

5.5 Additional input
Considering subproblem Pij in Figure 2, the specification of a local objective function fij is necessary
to form a well-defined optimization problem. The ESL paradigm currently does not provide a way to
specify this function. From an engineering optimization point of view, the incorporation of an objective
element in ESL is an essential recommendation for its development. Furthermore, ESL only specifies
that there exists a relation between variables, but does not define the actual mathematical relation. That
is, the function rel in line 16 has to be defined in order to properly formalize an ATC problem.
An ESL specification can be converted into an ATC subproblem, under the conditions that an objec-
tive function and mathematical definitions of ESL relations are provided. Similarities between the two
enabled a structured overlap of the specification and analysis phases in systems engineering design,
which are essential in the design of complex decomposed systems.

6 DEMONSTRATION
In this section, we demonstrate the proposed conversion method in the two-level design of an automotive
powertrain, specified in Listing 1.

6.1 Analytical target cascading problem
A powertrain subproblem is generated at the top level, while the bottom level consists of the child com-
ponents’ subproblems. The ESL variables are directly translated to ATC variables. Linking variables are
established from child arguments and parameters. We separately add a local objective to the overarching
powertrain subproblem, namely to minimize its total mass m. Design requirements and subclauses trans-
late to explicit constraints (two in the powertrain subproblem and one in the power source subproblem),
while relations lead to implicit equality constraints (one in each subproblem). A single relation may
involve multiple calculations and can therefore impose multiple equality constraints. Figure 3 displays
the resulting ATC problem.

ICED19 3697

https://doi.org/10.1017/dsi.2019.376 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.376


P11: Powersource
min φ(t11,r11)

s.t. Pe − 80 · 103
≤ 0

BatteryModel(Pe,E, t,mp ) = 0
w.r.t. x̄11 =

[
Pe,E, t,mp

]
where r11 =

[
Pe,E, t,mp

]
and t11 is fixed

P12: Coolingsystem
min φ(t12,r12)

s.t. Q− Qout ≤ 0
CoolingModel(Qout,mc) = 0

w.r.t. x̄12 = [Q,mc,Qout]
where r12 = [Q,mc]

and t12 is fixed

P13: Drivetrain
min φ(t13,r13) s.t.:

DrivetrainModel(Pe,Pm,Q,md ,η)
= 0

w.r.t. x̄13 = [Pe,Pm,Q,md]
where r13 = [Pe,Pm,Q,md]

and t13 is fixed

P0: Powertrain

min m+63
i=1φ(t1i,r1i)

s.t. 40 · 103
− Pm ≤ 0

t− 1200 = 0
Composition(m,mp ,mc,md) = 0

w.r.t x̄0 =
[
m,mp ,mc,md,Pe,Pm,Q,E, t

]
where t11 =

[
Pe,E, t,mp

]
, t12 = [Q,mc] ,

t13 = [Pe,Pm,Q,md]
and r11, r12 and r13 are fixed

t11 r11 t12r12 t13r13

Figure 3. Two-level ATC problem, automatically generated from the ESL specification in
Listing 1.

6.2 Dependency structure matrix
The goal function specifications in ESL can be analyzed to establish a DSM, as shown by (Wilschut,
2018, Chapter 4). This DSM contains the decomposition that has been specified in ESL, but can be
analyzed and clustered to identify an improved decomposition. Usually, clustering methods rearrange
components into groups with few interactions, and presume that the coordination effort that is necessary
for their integrated design reduces. Clustering a DSM leads to a different hierarchical system structure
and therefore, following the proposed method, to a different ATC optimization problem. We expect that
the effects of a DSM clustering action can be observed in the coordination effort of the equivalent ATC
algorithm, which can be quantified as the number of iterations to achieve an optimal design.
Figure 4 shows a component DSM that is generated from Listing 1. It shows the interactions between
the child components of the powertrain, specified by goal functions. Goal function gfr-0 links the
Powersource to the Drivetrain, which is represented in the DSM by elements 2-3 and 3-2.
Similarly, gfr-1 links Drivetrain to the Coolingsystem via elements 1-2 and 2-1.
From an analytical perspective, the interface variable in a goal function specification needs to be con-
sidered in the design of both connected components. To this extent, the interface variable is passed to
the connected components via ESL arguments and, according to our conversion concept, converted into
ATC linking variables. This means that all elements in a DSM are interpreted as linking variables and
coordinated by the common parent of both connected components.

Figure 4. A level two component DSM, automatically generated from Listing 1 (left). DSM
interfaces (e.g. electric-power) are coordinated via linking variables (e.g. Pe) to their

common parent (right).

ICED193698

https://doi.org/10.1017/dsi.2019.376 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.376


The detail of the system increases as the design progresses. The strength of ESL lies in its flexibility
towards lower levels of decomposition, as it enables the user to add more layers of components to the
decomposition tree while maintaining high-level specifications. Figure 6.2 shows a DSM in a subse-
quent design stage, where two child components are defined for every component in the level two DSM
in Figure 4. The interface electric-power between the Powersource and the Drivetrain
automatically migrated to their children, Inverter and ElectricMotor respectively.

Figure 5. A level three component DSM that is generated from Listing 1 after adding the
specification of a new decomposition layer.

6.3 Optimization results
The ATC problem in Figure 3 is solved using the alternating direction method of multipliers, as pre-
sented by Tosserams et al. (2008). The termination criterion is set to ε = 1 · 10−2 and the weight update
parameters are set to β = 1 and γ = 0.5. The solution converges in 225 iterations. Table 2 shows the
mapping between ESL and ATC variables, and their initial and optimized values.

Table 2. Analytical results of a two-level ATC optimization.

ESL ATC Initial Optimized Unit
mass m 60 140.44 kg
power-source-mass mp 30 27.68 kg
cooling-mass mc 10 2.19 kg
drive-mass md 20 110.56 kg
mechanical-power Pm 40 40 kW
electrical-power Pe 40 41.43 kW
heat Q 2 1.379 kW
energy E 5 13.84 kWh
time t 1000 1200 s
dissipation Qout 2 1.481 kW
efficiency η 0.90 0.97 -

The ATC algorithm successfully coordinates the value of the specified linking variables among the
related components. For example, the electrical-power is involved in the analysis of both the
Powersource and the Drivetrain, but converges to a value that is optimal for the overall system.

6.4 Discussion
We have shown how an ESL specification can be converted into a DSM and an ATC problem. The
problem is solved and we have acquired quantitative component designs that are system-optimal. As
the decomposition tree expands in later design stages, so will the equivalent ATC problem.
With the presented example, we aim to demonstrate that there is a possibility to integrate mathemati-
cal optimization techniques in the design of complex engineered systems. Because of the preliminary
nature of this method, a rather simple example has been used for the demonstration. The demonstration
features a convex optimization problem and may not be representative for a real-world design prob-
lem. In general, it is difficult to test new systems engineering ideas and methods because, by definition,
the cases should be extensive and complex. Requirements, conditions and goals for systems engineer-
ing methods, based on large-scale design problems, may be extremely valuable for the assessment and
development of new techniques in this domain.

ICED19 3699

https://doi.org/10.1017/dsi.2019.376 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.376


7 CONCLUSIONS
A key challenge in the design of complex engineered systems is the coordination of trade-offs and
changes that involve multiple components of a system. Distributed optimization techniques can use
analytical models of system components to compute design candidates that are mathematically optimal
for the system as a whole. Because it has never been shown how such a distributed optimization problem
can be constructed, we have presented an approach how to extract an ATC problem formulation based
on an ESL specification from the requirements engineering domain.
Every instantiated ESL component is converted into an ATC subproblem, leading to an identical struc-
tural decomposition hierarchy. Component arguments and parameters in ESL translate to target and
response variables in ATC, ESL design requirements and subclauses generate ATC constraints, and ESL
relations are interpreted as ATC equality constraints. However, it seemed that ESL does not facilitate
the specification of an objective function and does not provide analytical models. Both are necessary
to establish a complete optimization problem. After providing these ingredients separately, we have
demonstrated the proposed method by converting a two-level specification of a powertrain and its child
components into a corresponding ATC problem. The resulting ATC problem could then be solved to
find the system optimal design.
We expect that the proposed perspectives on multi-level systems design can lead to an integrated
approach towards the distributed optimization of such systems. In future work, we will investigate
the integration of the conversion method in the V-model design process. This involves considering
the development of ESL specifications and ATC optimization problems through subsequent stages of
design, while the system decomposition tree expands. Finally, we have to take into account that system
design inadvertently involves qualitative concepts like creativity and inventiveness. Given that the opti-
mization paradigm is limited to a quantitative system view, the consequences of the proposed method
for qualitative design aspects have yet to be explored.

REFERENCES

Eppinger, S. D., and Browning, T. R. (2012), “Design Structure Matrix Methods and Applications”, Cambridge,
MA, USA: MIT Press.

Forsberg, K., and Mooz, H. (1991), “The Relationship of System Engineering to the Project Cycle”, Joint
Conference of NCOSE and the American Society for Engineering Management, pp. 57–65.

Hull, E., Jackson, K., and Dick, J. (2005), “Requirements Engineering”, 2nd edn., Springer: London, Berlin
Heidelberg.

Kim, H.-M., Michelena, N. F., Papalambros P. Y., and Jiang, T. (2003), “Target Cascading in Optimal System
Design”, Journal of Mechanical Design, Vol. 125 No. 3, pp. 474–480.

Michelena, N. F., Park, H., and Papalambros, P. Y. (2002), “Convergence properties of Analytical Target
Cascading”, 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta,
Georgia.

Papalambros, P. Y., and Wilde, D. (2017), “Principles of Optimal Design: Modeling and Computation”, 3rd edn.,
Cambridge: Cambridge University Press.

Tosserams, S., Etman, L. F. P., Papalambros, P. Y., and Rooda, J. E. (2006), “An augmented Lagrangian
relaxation for analytical target cascading using the alternating direction method of multipliers”, Structural
and Multidisciplinary Optimization, Vol. 31 No. 3, pp. 176–189.

Tosserams, S., Etman, L. F. P., and Rooda, J. E. (2008), “Augmented Lagrangian coordination for distributed
optimal design in MDO”, International Journal for Numerical Methods in Engineering, Vol. 73, pp.
1885–1910.

Wilschut, T. (2018), “System specification and design structuring methods for a lock product platform”,
Dissertation, Eindhoven University of Technology.

Xu, M., Fadel, G., and Wiecek, M. M. (2017), “Improving the Performance of Augmented Lagrangian
Coordination: Decomposition Variants and Dual Residuals”, Journal of Mechanical Design, Vol. 139 No.
3, pp. 031401.

Young, R. R. (2004), “The Requirements Engineering Handbook”, Boston, MA, USA: Artech House.

ACKNOWLEDGEMENTS

We thank Tim Wilschut and Albert Hofkamp from Eindhoven University of Technology for their input
and support during this research.

ICED193700

https://doi.org/10.1017/dsi.2019.376 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.376

	049_ICED2019_460_CE
	049_ICED2019_460_PE
	203_ICED2019_557_PE
	373_ICED2019_223_CE
	373_ICED2019_223_PE

