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We present data from direct numerical simulations of flow through channels containing
large, longitudinal, surface-mounted, rectangular ribs at various spanwise spacings, which
lead to secondary flows. It is shown that appropriate modifications to the classical log-law,
predicated on a greater wetted surface area than in a plane channel, lead to a log-law-like
region in the spanwise-averaged axial mean velocity profiles, even though local profiles
may be very different. The secondary flows resulting from the presence of the ribs
are examined and their effects discussed. Comparing our results with the literature we
conclude that the sense of the secondary flows is largely independent of the particular rib
spacing whether normalised by channel depth or rib width. The strength of the secondary
flows, however, is shown to depend on the ratio of rib spacing to rib width and on Reynolds
number. Topological features of the secondary flow structure are illustrated via a critical
point analysis and shown to be characterised in all cases by a free stagnation point above
the centre of the rib. Finally, we show that if the domain size is chosen as a ‘minimal
channel’ size, rather than a size which allows adequate development of the usual outer
layer flow structures, the secondary flows can be affected and this leads inevitably to
differences in the near-rib flows so that for ribbed channels, unlike plain channels, it is
unwise to use minimal domains to identify details of the near-wall flow.
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Figure 1. (a) Contours of the swirling strength superimposed on flow vectors in the spanwise plane, at a
downstream location (x = 300θin) where the boundary layer height extends approximately to the upper edge of
the domain shown. Here θin is the inlet boundary layer momentum thickness and θin/h ≈ 1.5, with h the rib
height; from Hwang & Lee (2018). (b) Sketch of the computational channel domain. The rib height h is unity
and, in the case shown, W = 2, S = 8 and the spanwise domain width Ly is 16.

1. Introduction

There have been a number of recent papers exploring the nature of the flow in either a
boundary layer or a channel when the wall surface contains longitudinal ribs whose height
h is not a very small fraction of the boundary layer thickness, δ (or, in the case of a channel,
the half-height, H). Typical examples include Vanderwel & Ganapathisubramani (2015),
Hwang & Lee (2018), Vanderwel et al. (2019) and, most recently, Zampiron, Cameron &
Nikora (2020) for an open channel flow. The ribs are much larger (usually O(0.1H), say)
and more widely spaced than the ‘riblets’ classically studied in the context of seeking
to reduce wall drag, and they generate secondary flows which may stretch through a
significant portion of the boundary layer height. The secondary flows are driven by
spanwise Reynolds-stress gradients and are thus secondary flows of Prandtl’s second kind
(Bradshaw 1987; Anderson et al. 2015). An example of the kind of flow produced is shown
in figure 1(a), which is from Hwang & Lee (2018), who used direct numerical simulation
(DNS) to compute a developing boundary layer flow over longitudinal roughness. Note,
incidentally, that in some ways ‘roughness’ is a misnomer for this kind of surface spanwise
heterogeneity: all surfaces are smooth and the ribs continue for the entire fetch so there
is no form drag generated by pressure differences. The latter is what the usual kinds of
surface roughness produce and a fully rough surface is normally defined as one for which
this (pressure drag) component of surface stress completely swamps any contribution there
may be from viscous stresses. For smooth longitudinal ribs on a smooth base, in contrast,
the surface stress is entirely a result of viscous forces. This is an important caveat whenever
such ribs are referred to as ‘longitudinal roughness’.

Note that the particular rib height in figure 1(a) is approximately 0.08δ with
centre-to-centre spacing of S/W = 4 (with W the rib width) and S/δ ≈ 0.8. This leads
to downflow at the centre of the span and upflow above the centre of each rib, a pattern
also noted by Vanderwel et al. (2019). On the other hand, Stroh et al. (2016) used changes
in the flat-surface boundary condition, rather than ribs, and found secondary flows whose
circulations could lead to vertical flows (e.g. over the centre of the ‘quasi-ribs’) of either
sign depending on the value of H/S (for S/W = 2). It has been suggested that different
geometrical arrangements can lead to rather different flow structures (e.g. Medjnoun,
Vanderwel & Ganapathisubramani 2018; Yang & Anderson 2018; Stroh et al. 2020). For
flows with longitudinal ribs, apart from the boundary layer DNS of Hwang & Lee (2018)
and the channel large eddy simulation (LES) of Yang & Anderson (2018), there appears
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Channel flow with large longitudinal ribs

to be only the study containing data from (channel) DNS and a laboratory boundary layer
(Vanderwel et al. 2019) and, even more recently, wind tunnel boundary layer studies by
Medjnoun, Vanderwel & Ganapathisubramani (2020) and a similar set of experiments,
but in a water flume, by Zampiron et al. (2020).

By presenting numerical studies of nominally two-dimensional (2-D) smooth-wall
channel flow with smooth-wall longitudinal ribs, this paper seeks mainly to complement
these earlier works, including comparisons where appropriate and exploring inter alia
the effect of the rib spacing with respect to rib width, S/W and domain (or boundary
layer) height, H/S (see figure 1b), and also Reynolds number. In particular, we consider
the secondary flows by examining the critical points in the cross-stream flow, guided by
the necessary topological constraints. We also make limited comparisons with some of the
studies available in the literature which consider, by contrast, inhomogeneous flat surfaces
(i.e. having no physical ribs).

A feature of all the previously published computational or laboratory studies is that
almost none show spanwise-averaged mean velocity profiles. The exceptions are the recent
works of Medjnoun et al. (2018) and Zampiron et al. (2020). In all cases, including the
present, it turns out that the profiles lie significantly below the usual log-law line expected
in regular smooth-wall channels and, not unnaturally, have a ‘kink’ at the rib height (i.e. at
z = h). This will also be explored here, but it is worth noting immediately that the profiles
obtained at specific spanwise locations in laboratory experiments also lie below the regular
log-law, as shown by Medjnoun et al. (2020) and Zampiron et al. (2020). It is much more
difficult to obtain spanwise-averaged profiles below z = h in such experiments and that
was not attempted in these latter works. Medjnoun et al. (2018, 2020) denote the profile
offset by ΔU+ in viscous units, in common with genuine rough-wall boundary layers;
they call this the ‘roughness function’ but we will avoid this terminology, given that the
boundary layer is not a genuinely rough-wall flow, as noted above. The present paper also
discusses the spanwise-averaged turbulence stresses.

The next section outlines the three quite different DNS codes used and is followed, in
§§ 3.1 and 3.2, by a presentation of the basic flow statistics – the mean axial flow and the
corresponding turbulence field. The influences and the nature of the secondary flows are
discussed next, in §§ 3.3 and 3.4, respectively, with topological considerations in § 3.5 and
final discussion and conclusions in § 4.

2. Methodologies

The first set of computations were undertaken using a modern version of the in-house
DNS code CGLES, originally written and described by Thomas & Williams (1997).
This is a finite-difference, parallel, multiblock Navier–Stokes solver written so that
its efficiency generally increases with mesh count. Cartesian, uniform meshes were
used and second-order central differencing was applied to all spatial derivatives, with
a second-order Adams–Bashforth scheme employed for time advancement using the
pressure projection method. Continuity at the next time step was enforced implicitly by
solving a Poisson equation for pressure using a parallel multigrid method. The initial mesh
had 192 × 512 × 320 nodes in the x, y, z directions, respectively (see figure 1b for the
coordinate system), with a mesh size of h/32. The domain size was thus 6h × 16h × 10h
(i.e. 0.6H × 1.6H × 1.0H) and it contained two ribs symmetrically placed with S/W = 4.
It should be emphasised that the domain was both too short and too narrow, with respect
to its height (H/h = 10), to allow capture of the larger-scale motions common in the outer
layer of channel flows. This was expected to lead, in the outer layer, to a rise in the mean
velocity profile above the log-law, as has been frequently shown in the context of ‘minimal
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Authors Acronym Method S/W H/S W/h H/h Reτ = Huτ /ν

Stroh (present) VS2 DNS (channel) 2 3.45 1.67 11.7 486
Stroh (present) VS4 DNS (channel) 4 1.75 1.67 11.7 490
Vanderwel et al. (2019) VS4lego Lab. (boundary layer) 5.94 1.14 1.7 9.47 4000
Stroh (present) VS7 DNS (channel) 7 1.00 1.67 11.7 494
Stroh (present) VS14 DNS (channel) 14 0.50 1.67 11.7 499
Kim (present) KC4a DNS (channel) 4 1.25 2.0 10.0 550
Kim (present) KC4b DNS (channel) 4 1.6 2.0 12.5 550
Kim (present) KC4c DNS (channel) 4 1.75 1.71 12.0 550
Lim (present) LC4ml DNS (channel) 4 1.25 2.0 10.0 850
Lim (present) LC4ms DNS (channel) 4 1.25 2.0 10.0 850
Lim (present) LC4ls DNS (channel) 4 1.25 2.0 10.0 500
Hwang & Lee (2018) HL4 DNS (boundary layer) 4 1.25 2.0 10.0 292

Table 1. Details of the various data sets used. The Stroh (VS), Kim (KC) and Lim (LC) cases are the present
computations (previously unpublished apart from VS4lego) with the three methodologies described above.
The HL4 is a case from Hwang & Lee (2018) chosen at a specific distance downstream to give the approximate
parameter values shown.

flow channel’ explorations (e.g. Jiménez & Moin 1991; Lozano-Durán & Jiménez 2014;
MacDonald et al. 2017). It was nonetheless sufficient to allow generation of the secondary
motions, since these are driven by processes near the bottom wall. The non-negligible
impact on outer layer profiles and the secondary flows themselves will be discussed in due
course. Using the same mesh size (h/32), a further computation was undertaken using a
much larger domain size, 24h × 32h × 10h (i.e. 2.4H × 3.2H × 1.0H), in order to reduce
domain size effects and clarify the effects of a limited domain on the near-wall flow.
No-slip conditions were applied at the bottom surface and on the ribs, which were captured
naturally by the body-conforming Cartesian mesh. Periodic conditions were applied in the
axial and spanwise directions and the top of the domain was free-slip.

The flow for the above computations was driven by an applied pressure gradient,
chosen to yield a spatially averaged surface stress equivalent to a friction velocity of
approximately uτ = 0.92 ms−1 in the converged flow. With the specified viscosity, this led
to a channel Kármán number, Reτ = Huτ /ν, of around 850, with a normalised mesh size
of Δ+ ≈ 2.7 (in all directions, since the mesh was uniform), sufficiently low to ensure
that the flow was adequately resolved by the DNS whilst high enough to ensure full
turbulence. This was confirmed by estimating the smallest Kolmogorov length scale, η,
in the flow. Assuming that energy production roughly balances dissipation, one can write
for the latter ε = −u′w′ dU/dz, where −u′w′ is the Reynolds shear stress. Around z = 2h
(where the stress was a maximum) this was approximately 0.7u2

τ so that ε ≈ 1.3u3
τ /h.

With the Reynolds number huτ /ν of 85 this leads to η ≈ 0.0056h = 0.18Δ, or Δ ≈ 0.6η.
Near the surface, where the shear stress was close to its maximum value at z = 2h, and
one again expects production to roughly balance dissipation, a similar calculation yields
Δ ≈ 1.0η. Moin & Mahesh (1998) pointed out that the smallest length scale that must
be resolved can be typically significantly larger than the Kolmogorov scale (O(10η), say)
so we are confident that the present simulations capture practically all of the dissipation
spectrum. We identify the two computations with Reτ = 850 as LC4ml and LC4ms, for
the large and small domain cases, respectively. Another case (on the small domain) having
a lower Reynolds number, Reτ = 500, was also computed; this will be termed LC4ls (see
table 1).
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Channel flow with large longitudinal ribs

A second set of computations was undertaken using the same numerical method as that
described in Vanderwel et al. (2019). Only the salient details will thus be summarised
here. The Navier–Stokes solver is based on a spectral method for the velocity–vorticity
equations. Convective and viscous terms are discretised using the third-order Runge–Kutta
and Crank–Nicholson methods, respectively. An immersed boundary-type method (IBM)
was used to enforce the bottom surface morphology. Four cases were simulated, having
S/W = 2, 4, 7 and 14, all with h/H = 0.082 and on a fixed domain of size 8H × 4H × H.
In these cases, therefore, the domain was more than adequate for capturing the outer
layer flow structures. A mesh size of 768 × 384 × 301 nodes in the x, y, z directions,
respectively, was employed yielding a grid size of Δ+

x = Δ+
y = 5.2 and, in the vertical

(for which a Chebyshev polynomial grid distribution was used), a minimum Δ+
z of

approximately 0.014. Again, a constant axial pressure gradient was applied, designed in
these cases to yield a channel Kármán number of approximately 500. We identify the
four cases as VS2, VS4, VS7 and VS14. The VS7 case, having S/W = 7 and four ribs
within the domain span, is similar to the case presented by Vanderwel et al. (2019); in
that paper, however, the ribs used were Lego blocks (to match the experiments) so had
small pimples on the top surface. Again, no-slip conditions were applied on the bottom
surfaces, axial and spanwise periodic conditions were applied at the domain ends and
sides, respectively, but in these cases symmetry (rather than free-slip) was applied at the
upper boundary. In view of some of the results shown later, it should be mentioned that
the ribs were introduced using an IBM, based on the technique proposed by Goldstein,
Handler & Sirovich (1993). This method can make the precise boundary location difficult
to determine, so the boundary is in some sense rather ‘fuzzy’, especially around the rib
corners. The implications will become evident in due course.

A final computation was undertaken using a very different DNS code – CANARD
(compressible aerodynamics and aeroacoustics research code) developed at the University
of Southampton. As indicated by the name, CANARD is a compressible flow solver for
which the Mach number should be specified. For the present work, this was set to 0.25 in
order to keep the compressibility effects minimal and not to cause excessive computational
cost. The solver is based on a fourth-order pentadiagonal compact finite-difference
scheme on a seven-point stencil that has been optimised for the maximum wavenumber
resolution attainable (Kim 2007). Fourth-order Runge–Kutta time stepping was carried out
with a Courant–Friedrichs–Lewy number of 1.0. Numerical stability was maintained by
implementing sixth-order pentadiagonal compact filters for which the cut-off wavenumber
(normalised by the grid spacing) was set to 0.89π (Kim 2010). Characteristics-based wall
boundary conditions (Kim & Lee 2004) were applied. Data for cases of S/W = 4 with
H/S = 1.25, 1.6 and 1.75 were obtained. The cases are denoted by KC4a,b,c, respectively,
in table 1. A domain size of 8H × 4H × H was used and the number of grid cells was
510 × 1000 × 240 where each of the four ribs was resolved by 50 and 40 cells in the
spanwise and vertical directions, respectively. The first wall-normal grid spacing was
maintained at Δ+

y = Δ+
z ≈ 1.1. Boundary conditions identical to those used in the first set

of computations described above were applied (i.e. a slip wall at the domain top). Parallel
computing based on the message passing interface (known as MPI) was implemented, for
which a precise and efficient technique specially designed for the compact finite-difference
schemes and filters was used (Kim 2013).

For all methodologies, a long integration time was used to reach statistical stationarity
and all the results shown herein were then obtained using a sufficiently extensive averaging
time to ensure convergence. Table 1 lists all the various cases considered here and includes
the salient parameter values for each. The formalism used for spatial averaging is well
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Figure 2. (a) Spatially averaged mean velocity profile for KC4a (S/W = 4, Reτ = 550), solid green line. The
green dashed line is the same profile but with intrinsic averaging below z = h. Both lines use d = 0. The black
solid line is the profile with d = 0.34h. The solid and dotted red lines are modified log-laws (see text) and the
black dashed line is the classical log-law. (b) Mean velocity profiles for S/W = 4 and various Reτ . Boundary
layer cases are labelled VS4lego (the laboratory flow of Vanderwel et al. 2019) and HL4 (the DNS of Hwang
& Lee 2018). All other data are from DNS of channel flows. The Reτ values are given in the legend.

known (Raupach & Shaw 1982; Finnigan 2000) and follows from decomposing prognostic
variables, like ui, into three components. Thus, ui = Ui + u′

i + ũi, where Ui = 〈ui〉 is the
time and space averaged velocity (the mean velocity), ũi = ui − Ui is the spatial variation
of the time mean flow and u′

i = ui − Ui − ũi is the turbulent fluctuation; the overbar
denotes a time average and angle brackets denote a spatial average. Applying time and
spatial averaging to the momentum equations then leads to an additional dispersive stress
term (〈ũiũj〉) in addition to the usual Reynolds stress (u′

iu
′
j).

3. Results

3.1. Basic statistics – the axial mean flow field
Before considering the secondary flows, it is of interest to explore some of the mean and
turbulence statistics. In all cases except where indicated, for the region below the rib height
extrinsic averaging is used – i.e. spatial averages taken over the axial direction and the
entire span (including both fluid and solid regions). In every computation, the domain span
covers an integral number of rib wavelengths. To set the scene, we show first, in figure 2(a),
the temporally and spatially averaged profile of mean velocity for the KC4a computation,
having S/W = 4, H/S = 1.25 and Reτ = 550. A number of points should be noted. First,
the (green) profile displays a reasonable region of log-law behaviour (and has a mild wake
region, as expected for a channel flow) but it lies well below the normal smooth-wall
log-law, U+ = (1/κ) ln(z+) + A, with κ = 0.384, A = 4.65. These values of the constants
fit the Hoyas & Jiménez (2008) smooth channel data (at Reτ = 550) but differ somewhat
from those at higher Reynolds numbers, as in the more recent evaluations of (e.g. Marusic
et al. 2010). Although, interestingly, none of the published (computational) works on flows
with spanwise surface heterogeneities actually show U+ profiles, it turns out that all of
them yield significant profile offsets from the regular log-law; some of them are shown in
figure 2(b) (discussed below).

Apart from this offset the most obvious feature of the U+ profile is the kink that occurs
at a z+ around the top of the ribs (z+ = h+ = 55). The velocity on the rib’s top surface is
zero, leading to the relatively rapid fall in velocity as z approaches h from above. This kink
is inevitable and would only disappear as W/S → 0 or W/S → 1. It becomes even more

915 A92-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.110


Channel flow with large longitudinal ribs

obvious if, below z = d, the spanwise averaging is done over the fluid region only, which
is usually termed intrinsic averaging; this gives the dashed green line in the figure. Profiles
at a specific location either between or above the ribs naturally do not show such kinks and
we consider these later. It is of interest to compare the U+ data in figure 2(a) (KC4a) with
those obtained for the other computations including those from other workers (although,
as noted above, these are not presented in their own papers).

Figure 2(b) shows U+ profiles obtained for the S/W = 4 case for different Reτ . The
DNS boundary layer data from Hwang & Lee (2018) are included (HL4), along with the
laboratory boundary layer data of Vanderwel et al. (2019) (VS4lego, but note that these
do not extend below approximately z = 1.5h). Naturally, as Reτ decreases, the kink in
the profile, which is at z+ = h+ = (h/H)Reτ , moves to the left. More interestingly, the
log-law offset also seems to vary from case to case. For the channel computations the
offset increases monotonically with Reτ . It is tempting to label this offset by ΔU+, as
classically done for genuine rough-wall surfaces. Fitting the data to a shifted log-law yields
ΔU+ values of around 1.9, 2.0, 2.3 and 2.7, for the cases having Reτ = 490, 500, 550
and 850, respectively. But as argued in § 1, these flows are not rough-wall flows – there
is no pressure contribution to the surface drag – and the fits (not shown) are at best
rather mediocre, not least because the log–linear slopes are not close to 1/κ . Note that
the small domain LC4 profiles (LC4ms and LC4ls) show U+ eventually rising above the
log-law; this is entirely a result of the limited extent of the domain, and the locations
where the profile peels off from the log-law are largely consistent with the findings of, for
example, Lozano-Durán & Jiménez (2014) and Abe, Antonia & Toh (2018). In contrast,
the LC4ml, VS4 and KC4 simulations all have much larger domains, which (if the channel
surface were flat) should be sufficient to maintain the log-law virtually all the way to
the upper boundary. The computation of Hwang & Lee (2018) also used a sufficiently
large domain but is of a boundary layer so the U+ profile exhibits an outer layer wake
region.

Close inspection of the mean flow profiles in figure 2 shows that, in each case, the
straight-line region is not closely parallel to the regular log-law (so a value for ΔU+ is
anyway somewhat arbitrary). This can be explained at least partly by the way the ribs
influence the effective height of the surface. Vanderwel et al. (2019) suggested an effective
zero plane displacement height equal to the geometric average of the surface height across
the span. For S/W = 4 this is h/4. However, it is arguably more appropriate to use the
height at which the surface drag appears to act – as explained by Jackson (1981). An exact
value of d/h on this basis requires a computation of the moment generated by the surface
frictional forces on the rib’s horizontal and vertical surfaces and the Appendix A shows
how this is done. For the particular cases in figure 2 (all having S/W = 4) the result is
d/h = 0.34, significantly above the geometric average. The U+ profile for KC4a is plotted
against (z − d)+ with this value of d in figure 2(a) and it clearly increases the extent of
the straight-line region which, nonetheless, remains non-parallel to the regular log-law.
No physically reasonable value of d/h (i.e. between zero and unity) would improve things.
This, together with the large offset from the regular log-law, leads one to consider whether
uτ is in fact an appropriate normalising friction velocity for log-laws in ribbed channels.
The following analysis suggests that it is not because, crucially, the wetted area on the
bottom surface of the channel is larger, and the cross-sectional area is smaller, than if it
were a regular channel (i.e. with h = 0).

For an axially straight ribbed channel, the axial force balance is written as

−ΔpAx = τw,ribAw, (3.1)
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where τw,rib = ρu2
τ,rib is the effective wall stress, Ax is the cross-sectional area of the

channel in the axial direction and Aw is the wetted surface area of the wall at the bottom.
These areas are given by

Ax = HS − hW, Aw = (S + 2h)Δx, (3.2a,b)

where Δx is the axial length of the channel and Δp the pressure difference across that
length. Substituting these into the balance equation and rearranging gives

u2
τ,rib = − 1

ρ

dp
dx

H
[

1 − (h/H)(W/S)

1 + 2h/S

]
. (3.3)

For a plain channel (h = 0), the above equation is, as usual,

u2
τ = − 1

ρ

dp
dx

H. (3.4)

So the friction velocity of a plain channel that yields the same pressure gradient to that of
a ribbed channel is

uτ,rib = βuτ with β2 = 1 − (h/H)(W/S)

1 + 2h/S
. (3.5)

The classical log-law for the plane channel is

U
uτ

= U+= 1
κ

ln
uτ z
ν

+ A. (3.6)

If we assume that the same log-law can also be applied to a ribbed channel when
normalised by uτ,rib, i.e.

U
uτ,rib

= 1
κ

ln
uτ,ribz

ν
+ A, (3.7)

the following rearrangement can be made in order to compare it directly with the plain
channel case:

U+= 1
κ

uτ,rib

uτ

ln z+ + uτ,rib

uτ

(
1
κ

ln
uτ,rib

uτ

+ A
)

. (3.8)

This gives an equivalent log-law for a ribbed channel:

U+= 1
κrib

ln z+ + Arib, (3.9)

where

κrib = κ/β and Arib = β

(
1
κ

ln β + A
)

. (3.10a,b)

Note that β is always below unity, so the results indicate that the appropriate log-law
line for a ribbed channel will always have both a lower slope and a significant offset when
compared with the plain channel log-law. The analysis must clearly fail as S/W approaches
unity, for the sidewall contribution to the surface wetted area, the Aw in (3.2a,b), is still
included.

For the specific case shown in figure 2(a), for which h/H = 1/10, W/S = 1/4 and
h/S = 1/8, the above expressions give uτ,rib = 0.883uτ , κrib = 0.435 and Arib = 3.821.
The modified log-law is shown as the dotted red line in the figure. The fit with the data
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Channel flow with large longitudinal ribs

remains imprecise, but it is significantly improved if account is taken of the zero plane
displacement. Assuming that the flow beneath z = d can be ignored for the purpose of
defining the flow’s effective cross-sectional and surface-wetted areas, it is straightforward
to repeat the analysis, which leads to a modified value of β, given by

β2
d =

(
1 − h

H
W
S

)
− d

H

(
1 − W

S

)

1 + 2
h
S

− 2
d
S

. (3.11)

With d/h = 0.34 this changes the values of the parameters to uτ,rib = 0.903uτ , κrib =
0.425 and Arib = 3.958. These are minor adjustments but lead to a noticeably improved fit
to the data, as shown by the solid red line in figure 2(a).

A more extensive test of this modification is provided by the four VS cases, which each
had a different value of S/W ranging from two to 14 (see table 1). Figure 3 shows that
provided S/W is large enough, the data collapse well to the modified log-law. As noted
above, one might anticipate that for small S/W the analysis would be less satisfactory, as
is demonstrated by figure 3(d) (S/W = 2). Even quite large adjustments to the d/h used in
this case do not improve the fit.

The boundary layer data of Hwang & Lee (2018) are included in figure 2(b) and the
profile has an even larger offset then the channel flow cases (as does the boundary layer
data of Vanderwel et al. (2019)). In any case, the analysis clearly needs adjustment for
zero-pressure-gradient boundary layers. Consider the momentum integral equation for a
2-D boundary layer, which can be written as

u2
τ = U2

∞
dθ

dx
− 1

ρ

dp
dx

(2θ + δ∗), (3.12)

in the usual notation. If, at a specific axial location in a zero-pressure gradient flow,
a ‘virtual’ pressure gradient can be considered to model the growth of the momentum
thickness and yield the same wall stress, we can apply the following equation locally:

u2
τ = U2

∞
dθ

dx
= − 1

ρ

dp
dx

∣∣∣∣
virtual

(2θ + δ∗). (3.13)

Comparing this with (3.4), a channel analogy can thus be achieved by replacing H in the
latter by (2θ + δ∗). Using the values of momentum and displacement thickness given in
Hwang & Lee (2018), for this particular flow (at x/θin = 300 for their P12S3 case – i.e.
S/W = 4 in our notation) we find that (2θ + δ∗)/h = 5.4. Taking the same value of d/h
(0.34) as in the corresponding channel case and using κ = 0.41 and A = 5 as appropriate
for this boundary layer having Reτ = 292, and noting also that Avasarkivos et al. (2014)
found that A did not vary within the range 125 < Reτ < 550, we obtain β = uτ,rib/uτ =
0.775, κrib = 0.495 and Arib = 3.393. The resulting modified log-law is shown along with
the data in figure 3(e). Given the uncertainty in the precise value of d/h and the possible
implications of a non-zero d for the momentum and displacement thicknesses derived by
Hwang & Lee (2018), the fit to the data is acceptable – not least in confirming that the
offset is greater for this boundary layer than for the channel case at the same S/W.

We conclude that in a ribbed channel, or indeed in a similarly ribbed boundary layer, a
reasonable fit of the velocity profile to a log-law can be obtained provided one modifies the
normalising friction velocity to account for the fact that the wetted area is larger and the
cross-sectional area is smaller than for the corresponding plane channel. Accounting for
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Figure 3. (a–d) Mean profiles versus (z − d)+ for the four VS cases with (a) VS14 (S/W = 14, d/h = 0),
(b) VS7 (S/W = 7, d/h = 0.1), (c) VS4 (S/W = 4, d/h = 0.34), (d) VS2 (S/W = 2, d/h = 0.6). The dashed
black line is the classical log-law, the solid red line is the modified log-law, (3.9) and the solid black line is the
profile data. Panel (e) is the Hwang & Lee (2018) case P12S3 – S/W = 4, as in figure 2(b).

the zero plane displacement further improves the fit. Nonetheless, we point out that there
is no really convincing reason why such log-laws should appear in spanwise-averaged
profiles when there are significant secondary flows, especially if the strength of these is
large. This is discussed further in § 3.3, when profiles at specific spanwise locations are
presented.

3.2. Basic statistics – the turbulence field
Stress profiles (normalised by u2

τ ) are shown in figures 4 and 5. Recall that extrinsic
averaging (i.e. with solid regions included) is used below z = h. This is the only kind of
averaging that ensures continuity in the momentum fluxes across z = h, as fully explained
by Xie & Fuka (2018), who explored the whole issue in some detail, recognising the
different possible kinds of averaging ( Raupach & Shaw (1982), for example). Note first
that, in figure 4(a) showing shear stress data for KC4a, the dispersive shear stress (caused
by the spanwise inhomogeneity in the mean flow, generated by the secondary motions)
remains non-zero all the way to z/H ≈ 0.6 (z/h = 6). There is thus a noticeable deviation
up to around this height between the Reynolds stress profile and the usual straight-line
total stress for a regular channel (shown by the dashed line). In common with the U+
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Figure 4. Normalised stress profiles for case KC4a (S/W = 4). (a) Reynolds (−u′w′) and dispersive (−〈ũw̃〉)
shear stresses, along with the viscous stress (green line) and the sidewall viscous stress (yellow line). (b) Axial
normal stress (blue line) and the corresponding dispersive stress (red line) for KC4a. Other profiles as in the
legend. The green dashed line (HJ in the legend) is from the smooth-wall channel simulation of Hoyas &
Jiménez (2008) at Reτ = 550.
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1.0LC4ml, 850
KC4a, 550
VS4, 490

Disp. KC4a
HJ, 550
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00 0.5 0.51.0 1.01.5 1.52.0
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v′2+ w′2+

Figure 5. Normalised spanwise (a) and vertical (b) stress profiles for S/W = 4 cases, with the dispersive
stresses for case KC4a. The green dashed lines (HJ in the legends) are the smooth-wall channel simulations of
Hoyas & Jiménez (2008) at Reτ = 550.

profile there are also rapid variations in the stress gradients around the top of the ribs
(z/H = 0.1), with the viscous stress in particular only being significant in this region and
near z = 0, as expected. Below z = h the total stress profile includes the contribution to
the stress at height z from the viscous sidewall stresses (integrated downwards from the top
of the rib and including the viscous stress on top of the rib). If the ratio of the rib volume
to the computational domain volume were zero, the total extrinsic stress would continue
along the expected straight line all the way to z = 0 (Xie & Fuka 2018). However, because
the forcing term applied at every cell in the computation is applied also within the solid
volume of the rib, one expects the total stress at a z below z = h to differ from the expected
straight line by a factor equal to the ratio of the fluid volume (above z) to the total volume
of the domain (above z). At height z the factor is (1 − W(h − z)/S(H − z)) which, in this
case, is 0.975 at z = 0, increasing to 1.0 at z = h, so the data are close to those expected.
Small differences, especially around the top of the rib and the bottom surface, are probably
the result of errors arising in the estimation of the friction at the walls.

Figure 4(b) shows the corresponding axial normal stress component and its dispersive
counterpart for KC4a, along with data from the other S/W = 4 simulations. The large
spike (especially in the dispersive contribution) centred around z = 0.1H arises because
there is a step change in axial velocity across the horizontal plane where the velocity
is very small just above the rib (and zero inside it). The major point to note is that,
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Figure 6. Dispersive stresses for the four VS cases, which have S/W values ranging from two to 14. (a) Shear
stress, with the dotted black line showing the usual total shear stress – see figure 4(a); (b) vertical normal stress.
The legends show the values of S/W for each line.

despite the significantly non-zero dispersive stress up to around z/H = 0.6, the LC4ml,
VS4 and KC4a data are, above the rib, similar to the smooth-wall channel data of Hoyas
& Jiménez (2008); data from the small domain computation, LC4ms, are not. Similar
behaviour is evident in the profiles of the other two normal stress components, shown in
figure 5. For these stresses the LC4ms simulations (not shown) yield values lower than
those from LC4ml, VS4 and KC4a (and also the smooth channel), rather than higher as
in the axial stress case (figure 4b). As anticipated, the limited domain size has a major
influence on the stress components as well as the structure of the secondary motions
(see later). Indeed, the changes in the stress profiles caused by using a minimal domain
closely follow the findings of Abe et al. (2018), who demonstrated that the spanwise and
vertical stresses were lower than for a full domain, whereas the axial stress was higher (as
in figure 4b). This strengthens the earlier, not unexpected, conclusion that minimal flow
channel domains cannot be relied on for flows of this kind, for if the stress profiles above
the ribs are incorrect (as they are) then the spanwise stress gradients which are the essential
cause of the secondary motions will be incorrect. It is also of interest that the dispersive
components of the vertical and spanwise stresses (the lower red lines in figure 5) are very
small; they provide a much smaller contribution to the total stress than is the case for the
axial normal stress and the shear stress (figure 4).

3.3. The influence of the secondary flows
We turn now to consider the influence of the secondary flows. These will obviously affect
the dispersive stresses. Figure 6(a) shows the dispersive shear stress and figure 6(b) the
vertical component of the normal dispersive stress, for the four VS cases. Very similar
plots arise if these stresses are normalised by their corresponding Reynolds stresses and
note that above the rib height (z/H = 0.1) 〈w̃w̃〉+ never exceeds 6 % of w′2+

. As S/W
rises the dispersive stresses become relatively larger in the outer region, although the
strength of the secondary flows is much weaker in this region than nearer the ribs (see
later). That their strength depends on the geometrical parameter S/W is at least suggested
by figure 3(a–d), which show that the mean velocity profiles for the four (VS) data sets
having closely constant Reτ ≈ 500 sink below the standard log-law by an amount which
increases with increasing W/S. The trend must eventually reverse, since when W/S = 1
there are no ribs and the regular smooth-wall log-law must be recovered, as it must also
for W/S = 0.
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Figure 7. (a) Solid black circles are the total modulus of swirl strength across the whole span in the region
below z/H = 0.2, for cases VS2, 4, 7 and 14, Reτ ≈ 500. Values are normalised using H and the mean axial
velocity at z = H. The smooth line is added to indicate possible behaviour. The solid red triangles are values
of the vertical normal dispersive stress at z/H = 0.15, from the data shown in figure 6(b). (b) The parameter
βd , for the modified log-law, as a function of W/S. Symbols are the four VS cases (having h/H = 0.085);
the dashed line through them is derived from (3.11). The solid red line is from the same equation but with
h/H = 0.04.

A quantitative measure of the strength of the secondary motion is found by computing
the total of (the modulus of) the swirl strength (defined in § 3.4) within the region below
z/H = 0.2, i.e. up to approximately twice the rib height and chosen to encapsulate the most
energetic regions of the secondary flows generated by the ribs. Figure 7(a) shows how this
varies with W/S for the VS cases. The data are plotted against W/S because one expects
very small values to emerge near the two limits W/S = 0 and 1. The line in the plot is
pure guesswork, enforcing zero values at W/S = 0 and 1. It would seem probable that the
maximum swirl strength occurs somewhat below W/S = 0.4. These results are consistent
with the findings of Vanderwel & Ganapathisubramani (2015). The figure includes the
values of the dispersive stress shown in figure 6(b) at z/H = 0.15, well within the region
used for the total swirl strength data. The variation with W/S is similar to that shown
by the latter. Care should be exercised in interpreting the data in figure 6(a), however,
since in these VS4-14 calculations, H/S changes significantly for the different cases (see
table 1) because the domain span is fixed, W/h is fixed, and S/W is varied by changing the
number of ribs within the span. The S/W = 4 case has H/S = 1.75 and the case on the
other side of the (speculated) location of the peak has H/S = 3.45, W/S = 0.5. Different
values of H/S for fixed S/W, particularly if it is below H/S = 1, might be expected to
change the secondary flow strength somewhat, as well as changing the proportion of the
channel height over which the secondary flows are particularly noticeable. This will be
the topic of a future study. We show in § 3.5 that the secondary flows are essentially the
same for H/S between 1.25 and 1.75 (with S/W = 4). It is worth emphasising, therefore,
that S/W is clearly more significant than H/S, at least for the current range of the latter.
Yang & Anderson (2018) and Medjnoun et al. (2018) both suggest that the maximum swirl
strength occurs for H/S = O(1) as H/S varies and there is nothing in the present data
which would contradict that; we have not studied cases for which H/S < 0.5. A direct
measure of the size of the log-law shift could conveniently be taken as the value of βd, the
factor by which the friction velocity is reduced in the modified log-law and deduced using
(3.11) as discussed earlier. This is plotted (as 1 − βd) in figure 7(b). We have made the
assumption that d/h varies smoothly through the values used for the four modified plots
in figure 3 and with values of zero and unity at W/S = 0 and 1, respectively. As noted
earlier, we cannot expect the model to be appropriate close to, and certainly at, W/S = 1,
for then the situation reverts to a simple plain-walled channel but of lower depth (H − h,
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Figure 8. (a) Surface axial wall stress across the span for S/W = 4. Here Reτ : VS4, 490; KC4a, 550; LC4ml,
850. Note that in all cases, averaged data over the ‘rib period’ are shown (there were seven periods in the
spanwise domain in VS4 and KC4a, and four in the LC4ml case. Profiles are in each case normalised by
the average value over the span. The grey rectangle shows the location of the rib. (b) Axial velocity profiles
at various spanwise locations for KC4a, with both U+ and z+ scaled using the spanwise-averaged uτ . The
legend gives the y/S locations (with bracketed numbers); these are indicated in panel (a) by vertical lines,
appropriately coloured and numbered to match the various profiles in panels (b–d). The short-dashed and
dotted black lines are the viscous law and the modified log-law (see § 3.1), respectively, and the long-dashed
line is the spanwise-averaged velocity profile shown in figure 2(a), intrinsically averaged below z = h. (c) As
for panel (b), except that scaling uses the local uτ . (d) As for panel (c), except that z-scaling with α = 0.5, see
(3.14), is used for uτ . In panels (b), (c) and (d) no attempt is made to identify separately the closely clustered
profiles.

in fact), even though the expression for the wetted surface area, Aw still contains the 2h
contribution (see § 3.1). Also, βd depends critically on the ratio of rib and channel heights,
h/H. Smaller values of the latter than that used for the VS computations (h/H = 0.085)
will clearly lead to smaller 1 − βd and this is illustrated in figure 7(b) by the solid red line,
for which h/H = 0.04. Very similar plots are obtained if one uses (A − Arib) rather than
(1 − βd) as a measure of the change from the classical log-law.

One might anticipate that the strength of the secondary motions will affect the size of
the variations in the mean axial surface friction across the span. Figure 8(a) shows this
variation for S/W = 4 cases as an example, with wall stress values generally estimated
by taking the local surface stress to be ν(∂U/∂z) calculated at the first grid point above
the surface and normalised so that, in each case, the spanwise average (not including
contributions from the rib’s sidewalls) is unity. In all cases the frictional stress on the top
of the rib is higher than the average and generally not dissimilar to values near the edges
of the span (i.e. at the centre of the gaps between ribs). This could perhaps suggest that the
vertical flow is downwards towards the ribs (and upwards just outboard of the rib), which is
opposite to what was apparently found by, for example, Vanderwel & Ganapathisubramani
(2015) and Vanderwel et al. (2019), whose visualisations suggested upward flow all the
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way from the centre of the rib to the top of the domain (but see later) with, presumably,
consequent spanwise flows near the top surface directed towards the rib centre from its
corners. However, it is not really possible to deduce the direction of near-surface spanwise
flow from the relative strength of the axial flow there and we return to this issue in § 3.5.
Note that the computation at Reτ = 850 yields a rather higher axial friction above the rib
than in the other two cases (figure 8a) with correspondingly smaller friction outboard.
This might suggest a Reynolds number effect and we return to this in § 3.4, where a
possible reason for the differences in axial friction seen in the VS4 and KC4a cases is
also suggested.

The secondary motions lead naturally to differences across the span in the vertical
profiles of mean velocity. Before looking more closely at the secondary motions it is of
interest to inspect the degree of collapse, or otherwise, in the axial mean velocity profiles
at different locations, using a wall-scaling based on the local wall stress, rather than the
spanwise-averaged one (used for the span-averaged velocity profiles in figures 2 and 3).
Figure 8(b) shows that using the latter for local profiles does not yield much collapse
(except at the top of the domain), as would be expected. Note that for profiles above the
rib (labelled (5) and (6) in the legends of figure 8b–d), z is measured from the top surface
so that profiles in the viscous sublayer can be expected to collapse. Note too that intrinsic
averaging (below z = h) is used for the spanwise-averaged profile in figure 8(b), since
only this would be expected to lead to the usual viscous law collapse close to the wall.
The two most obvious outliers are for y/S = 0.3 and 0.35, which (as seen in figure 8a) are
locations close to the rib where the local uτ is much lower than the spanwise average. Very
near the bottom wall one would expect classic viscous scaling to yield collapse if the local
uτ were used and this is confirmed in figure 8(c); below approximately z+ = 3 the profiles
do indeed collapse onto the viscous wall law. It might be tempting to try other forms of
scaling, e.g. using a local uτ satisfying

uτ = uτ ( y) + [〈uτ 〉 − uτ ( y)](z/H)α, (3.14)

where uτ ( y) is the local friction velocity varying with spanwise location and 〈uτ 〉 is the
spanwise average normally represented herein by uτ . This expression is chosen so that near
z = 0 the local uτ dominates whereas with α > 0 the spanwise-averaged uτ dominates, at
least in the upper region, to an extent depending on the value of α. However, figure 8(d)
shows that although one can choose a value for α which leads to reasonable collapse over
all z for most of the profiles (α = 0.5 is about the best), this approach is unlikely ever
to work for the more extreme outliers (e.g. at y/S = 0.35) where the wall stress is far
from the spanwise average. There seems, in any case, no physical reason to expect an
exact overall collapse; it has been known for a long time that secondary motions within
a boundary layer lead to distortion of the mean velocity profile (e.g. Mehta & Bradshaw
1988) and one could argue that even if a spanwise-averaged velocity profile appears to
yield a reasonable (although modified) log-law region, as in fact was shown in § 3.1, this
must be somewhat fortuitous. It seems obvious that for any flow like these, local velocity
profiles – at least those within the gap between ribs but close to them – cannot have
the usual log-law form, so there is no expectation that a spanwise-averaged profile could
display such a log-law. Furthermore, since Mehta & Bradshaw (1988) actually studied
a smooth-wall case in which the secondary motions were generated by upstream vortex
generators, we suspect that this conclusion is independent of the nature of the surface. But,
of course, as the secondary motions become weaker and weaker one expects the classical
log-law to re-emerge.
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Figure 9. Swirling strength contours with velocity vectors in the spanwise plane, for S/W = 4, H/S = 1.75;
(a) KC4c, Reh = 55; (b) VS4, Reh = 41.

3.4. The nature of the secondary flows
Examples of the secondary flows are shown in figure 9, which presents contours of swirling
strengths overlaid on velocity vectors in the spanwise plane, for the two cases KC4c
and VS4, both having S/W = 4, H/S = 1.75 and approximately the same Reh. Swirling
strength is here defined in the usual way as λCiωx/|ωx| (Zhou et al. 1999), as this is
generally recognised to be a more satisfactory way of identifying swirling motions. The
vorticity itself, ωx, is less appropriate as it cannot distinguish between genuine vortex
motions and regions of strong shear. The sign of the vertical velocity just above the
centre of the rib seems to be positive (upwards) for VS4 but negative (downwards) for
KC4c, which was confirmed by close inspection of the velocity field. A closer look at
the secondary velocity fields reveals further features of the flow structure above the rib.
Figure 10 shows two S/W = 4 cases at identical H/S and rather different Reh, but (in their
plotting) more highly resolved around the rib region than the plots in figure 9 (or figure 1a).
The crucial point is that there is an elevated critical point (a saddle) above the centre of the
rib. Its vertical location seems to depend on the Reynolds number. In figure 10(a) it lies
around z/S = 0.23 whereas in figure 10(b) it is significantly above that point. Beneath the
saddle, the flow is downwards towards the rib centre and outwards on the surface either
side of there, but the strength of that flow depends (at least partly) on where the saddle is.
Above the saddle, the flow is always upwards, all the way to the top of the domain. This
elevated saddle point seems not to have been clearly identified previously (but see § 3.5).
Beneath it there are two sets of nodes, whose approximate centres are shown on the figure.
These nodes are in somewhat different positions in the KC4a case (figure 10a, Reh = 55)
and clearly rather weaker than those seen in figure 10(b) (Reh = 85) – one might expect
the secondary flows to become rather ‘tighter’ at higher Reynolds numbers. Likewise, the
outboard recirculating regions are more diffuse and extend higher in the lower Reynolds
number case (figure 10a).

Recall now that the VS4 flow of figure 9(b) seems not to contain the elevated saddle
point. This is almost certainly because the IBM used to model the rib in the VS4 case
gives a rather fuzzy rib boundary, particularly at the rib corners, allowing the cross-flow to
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Figure 10. Swirling strength contours with velocity vectors in the spanwise plane, for S/W = 4, H/S = 1.25;
(a) KC4a, Reh = 55; (b) LC4ml, Reh = 85. The red circles surround the location of the saddle point above the
rib centre and the green-bounded white squares indicate approximate locations of nodes. Only those above the
rib height are shown.

move smoothly over the corners rather than having to separate. For that case, therefore,
the flow on the top surface of the rib is inward towards the centre from the corners,
leading to a half-saddle of separation at the centre and flow upwards from there to the
top of the domain. In fact, a further (VS) computation using a more refined IBM which
reduces the fuzziness of the rib corners, did yield genuine separation at those corners so
that the overall flow is more like that shown in figure 9(a). Incidentally, this rather fuzzy
boundary probably explains the small differences in axial surface friction on the rib seen
in figure 8(a) between the KC4a and VS4 cases; it is not so easy to determine wall friction
when precise boundary locations are uncertain. It is worth emphasising, incidentally, that
the main features of the secondary flows seen in figure 10 are not changed by the increasing
Reh. This was the finding of Vanderwel et al. (2019). In fact, in their paper, despite the lack
of resolution in the flow near the ribs, one can just detect a rise in the critical point location
above the rib centre as Reh rises (compare their figures 2c and 2d).

We comment finally on the effect of using a minimal domain on these secondary
flows. Figure 11 shows two computations having the same Reynolds number, S/W and
H/S, one obtained using a small domain size (LC4ms) and the other using a much
larger domain (LC4ml). The differences are clear. Although the general topology of the
recirculation pattern is the same, the small domain significantly constrains the secondary
flows, making those just above the rib rather more intense, thus forcing the saddle point
to move higher above the centre of the rib and weakening the recirculating velocities
further aloft. This can be seen by comparing the vector lengths at, say, z/S = 0.8 –
vertical velocities are noticeably larger when a large domain is used. Even the flow near
the rib is thus influenced if too small a domain is used, so it cannot be argued that a
minimal channel can be used to obtain adequate near-wall flows – unlike the case for plane
channels.
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Figure 11. Swirling strength contours with velocity vectors in the spanwise plane for LC4, at Red = 85.
Approximate locations of saddle points above the rib centre are indicated by red circles. (a) On the large
domain, LC4ml; (b) on the small domain, LC4ms.

3.5. Topological considerations
Next, we consider the topological constraints on the nature and number of critical points in
the spanwise plane. This is a great help in interpreting the cross-plane visualisations and
reduces the likelihood of incorrect conclusions. Denoting saddle points by S and nodes by
N, with half-saddles and nodes (on boundaries) as S′ and N′, it is known (e.g. Hunt et al.
1978) that for a singly connected domain like this,

(∑
N + 1

2

∑
N′

)
−

(∑
S + 1

2

∑
S′

)
= 0. (3.15)

A good way of clarifying the presence and location of critical points is to inspect the
cross-plane velocity field – in particular to consider (V2 + W2). This quantity will ideally
be zero at all critical points. Figure 12(a) shows a contour plot of γ = log10(V

2 + W2)
from the KC4a computation at Reh = 55. Critical points show up as concentrated regions
of white or near-white, where γ → −∞. As noted earlier, there is a surface half-saddle at
the centre of the top of the rib, below the saddle just above, and a pair of half-saddles on
each of the two side surfaces of the rib (including ones at the rib corners). The critical point
structure is sketched in figure 12(b). Note that on the central y = 0 line there are matching
half-saddles at the top and the bottom of the domain, with downward flow beneath them.
A half-saddle also exists at the top of the domain (z = H) on y/S = 0.5, matching the
saddle below. Features close to the bottom surface in the gap between ribs are rather less
easy to identify, but close inspection of the vector field (not shown here) indicated that
there are half-saddles near y/S = 0.17 and 0.83, with two nodes between these and the
two rib sidewalls. In total, there are six nodes, one saddle and 10 half-saddles, satisfying
the topological requirement given above. From the visualisations shown in the various
published papers on this topic it is difficult, if not impossible, to identify all these various
critical points, although there has been one previous attempt (Stroh et al. 2016) for a
related flow (having no ribs but spanwise changes in surface conditions). Indeed, often the
resolution in the published plots shown is insufficient to clarify, for example, the structure
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Figure 12. (a) Contours of log10(V
2 + W2) for the KC4a case; the colour scale ranges from −6 (black) to −9

(white), so that critical points (i.e. where V = W = 0) show up as nearly white. (b) Sketch of the (approximate)
critical point locations. Note that in both figures the vertical scale has been compressed and that in panel
(b) the domain shown is a little off-centre, to clarify the critical points on the vertical line on y = 0, the centre
of the gap.

near the rib’s top surface or along the bottom surface between the ribs. This is sometimes
because (in a laboratory study) the particle image velocimetry (PIV) field is not sufficiently
resolved and (in a numerical study) the vector density shown is insufficient – even though
the computational mesh resolution may be quite sufficient to delineate the flow structure
accurately. Incidentally, at higher Reynolds numbers one expects the eventual appearance
of further critical points near the bottom corners of the rib; these are not really visible
in figure 10(b) (Reh = 85), for example, but would become more so at higher Reynolds
number. Any attempt to construct the overall critical point structure in such cases would
need to satisfy the topological constraint.

Figure 13 shows the topological structure for the three KC4 cases, having H/S = 1.25,
1.6 and 1.75. It is clear that the secondary flow below z/S ≈ 0.8 is essentially independent
of H/S. Increasing H/S does lead, however, to a just perceptible rise in the location of the
saddle point above centre of the rib. The corresponding swirling strengths for these three
cases are shown in figure 14 and indicate, similarly, that H/S is not an influential parameter.
Indeed, an average of the (modulus of) the swirling strength across the span and from z = 0
to z = 2h differs by no more than approximately ±2 % across these three cases. Above
z/S ≈ 0.8 the figures emphasise the extremely small values of the cross-stream velocities.
Although figure 14 might suggest that the flow is practically homogeneous across the
span in the upper region, it is not exactly so, as is obvious from figure 13. Nonetheless,
the variations in axial velocity are sufficiently small that the dispersive stresses are, as
discussed in § 3.2 and seen in figures 4 and 5, very close to zero above z/S ≈ 0.6 (i.e.
z/H ≈ 0.5 for H/S = 1.25).
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Figure 13. Contours of log10(V
2 + W2) for the three KC4 cases – S/W = 4, Reh = 55. The colour scale

ranges from −6 (black) to −9 (white), so that critical points show up as white.
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Figure 14. Swirling strength contours with velocity vectors for the three KC4 cases.

4. Discussion and Concluding Remarks

4.1. The mean velocity profiles
The present work has shown that there are regions across the span (particularly those
close to rib walls) where the vertical profile of axial velocity (U+) is far from having
any classical shape and there is no obvious scaling which allows local profiles at different
points across the span to be closely collapsed. This is not very surprising. Nonetheless,
what is somewhat more surprising is that the spanwise-averaged profile does contain a
reasonable log–linear region. However, this lies below the classical log-law by an amount
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which depends on W/S – or, more strictly, on the difference between W/S and either zero
or unity. This region also has a different slope, which is not consistent with the classical
Kármán constant. These differences from the usual log-law are probably greatest when
W/S ≈ 0.4 (figure 7b), which is when the strength of the secondary flows is at its greatest
(figure 7a). A major conclusion of our work is that if, using an appropriate analysis (§ 3.1),
account is taken of the increase in wetted surface area and reduction in cross-sectional
area (because of the ribs), and also of an appropriate zero-plane displacement, d, then a
modified log-law can be predicted. This has different values of κ and A, the constants in
the classical log-law relation, and it fits the data quite well provided S/W is not too small.
Furthermore, d can be directly calculated using the computed frictional forces on all the
rib walls (see the Appendix A). The analysis can be extended to zero-pressure-gradient
boundary layers and this again leads to a modified log-law which fits the data reasonably
well. The analysis inevitably fails as W/S → 1.

The fit to any kind of log-law is perhaps surprising because, as argued earlier, even on
a flat surface secondary flows distort the U+ profile (e.g. Mehta & Bradshaw 1988). But
in the present case the secondary flows, although very distinctive are, compared with the
strength of the axial flow, very weak indeed. They represent a negligible contribution to
the total energy in the flow – the pointwise maximum of W2/U2, for example, nowhere
exceeds approximately 1.2 × 10−3, so it seems reasonable that these secondary motions
are not large enough significantly to negate the usual assumptions on which the appearance
of a log-law is based.

The use of a minimal domain size leads, as is well known, to artificial behaviour in both
the mean velocity and turbulence stresses in the outer region of the flow. However, in these
cases, where secondary flows are significant, we have shown that it also leads, perhaps not
surprisingly, to modification of the secondary flow structures near the ribs, so adequate
determination of the latter requires appropriately large domains, just as required for proper
characterisation of the outer flow in plane channels.

4.2. The secondary flows
Overall, in terms of the secondary flows and, in particular, the direction of the large-scale
swirling motions above and outboard of the rib, the present results are similar to those
of other investigators who have considered elevated ribs rather than changes in surface
condition. The boundary layer DNS of Hwang & Lee (2018), for example, with S/W = 4,
shows upflow over the ribs and downflow between them at the downstream location where
H/S ≈ 1.25, exactly as seen in our H/S = 1.25 (figures 9b and 14a) and 1.6 and 1.75
(figure 14b,c) cases. Likewise, the channel LES of Yang & Anderson (2018) showed
that for an H/S = 1.56, S/W = 8.5 case there was upflow over the ribs and downflow
in the spaces between them. Furthermore, the H/S = 1.1, S/W = 5.9 case studied by
Vanderwel et al. (2019) has a large-scale upflow above the ribs but with a (just) discernible
critical point just above the ribs with downflow below it. Taken with the present cases
(S/W = 4), these results suggest that S/W is not significant in setting the direction of the
large-scale secondary flows. On the other hand, Yang & Anderson (2018) also considered
an H/S = 1, S/W = 13.2 case; the visualisation (of vorticity and cross-flow velocities)
tends to suggest a large-scale downflow over the ribs and upflow between them, which
led the authors to propose a switch in orientation when H/S is somewhere between their
two cases of H/S = 1 and 1.56. It should be noted, however, that the ribs used by Yang
& Anderson (2018) were small ‘house-shaped’ obstacles, having sloping roof sides up to
a narrow top, which reduces the likelihood of separations. In addition, since the obstacles
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were three-dimensional, pressure forces would have contributed to the surface drag and
this could perhaps significantly change the topography’s generation of secondary flows.
Compared with the present scenario of smooth 2-D rectangular obstacles, their study may
well, therefore, represent an isolated case. Zampiron et al. (2020), who studied flow over
ribs in a water flume, found large-scale upflow over the ribs for all their cases, certainly
down to H/S = 0.64. Furthermore, no switch was apparent in the Vanderwel et al. (2019)
cases either. They used sharp-topped triangular ribs not too dissimilar to the ribs of Yang
& Anderson (2018) (except that they were 2-D) and these encouraged the large-scale
rotating flow near each side of the ribs to sweep up, meeting at the top of the rib and
continuing upwards. This cannot happen for flat-topped ribs with sharp corners, even if
the large-scale secondary flow still leads to upflow above the ribs. In such cases there
will always be a smaller scale region near the top of the rib, encompassing separations
at the corners with the concomitant downflow at the rib centre and thus a critical point
aloft, as shown in figure 12(b). This is exactly the situation in the H/S = 1.25 case of
Hwang & Lee (2018), the H/S = 1.1 case of Vanderwel et al. (2019) and the H/S ≈ 0.8
cases of Medjnoun et al. (2020). It should also be noted that one of the cases studied by
Hwang & Lee (2018) had H/S as low as approximately 0.4 and the present VS14 case had
H/S = 0.5; in both cases the secondary flows were in the same direction as for the larger
H/S cases. We conclude that a directional switch never occurs for 2-D ribs (of any shape)
as H/S changes. Nonetheless, in most of the visualisations of those authors mentioned
above (who used rectangular ribs) it is possible to discern, with more or less difficulty, the
critical points just above the rib centres, with very local downflow below and the larger
scale upflow above. Although the authors did not discuss these smaller-scale features, they
are very clear in all the present cases (0.5 ≤ H/S ≤ 3.45).

It would seem that in cases when the large-scale recirculations lead to upflow above the
rib (i.e. for all 2-D rib cases), whether or not there is an elevated critical point with local
downflow below will depend crucially on the shape of the rib. Indeed, Medjnoun et al.
(2020) have shown that the rib shape can be important in setting what happens to the flow
in its vicinity. In all their cases, H/S was in the range 0.8–0.87 and they only detected a
downflow over the rib centre when it was of rectangular shape and unusually wide, having
S/W of only 1.79. However, their PIV data did not always extend downwards enough
(i.e. closer to the ribs) to detect the small-scale recirculating regions which must have
existed for the larger S/W cases with rectangular ribs (i.e. cases with narrower ribs). These
regions were inevitably of significantly smaller scale because of the more limited spanwise
extent between a rib’s two corners. The data are not inconsistent with the presence of
a critical point above the rib centre, albeit too near the rib to be visible. It seems that
the recirculating regions associated with corner separations and of opposite sign to the
larger-scale motions aloft are relatively small for large enough S/W, and the larger scale
contrary circulations above and outboard become more dominant, whereas at smaller S/W
there may be insufficient room between the ribs to allow full development of the latter.
This is essentially the argument of Hwang & Lee (2018), who suggested that it is S − W
(i.e. the valley width) that determines the sizes and strength of the secondary flows; strictly,
it should presumably be a normalised parameter (e.g. (S − W)/H) which is the relevant
quantity.

Whether or not W/S is an important parameter controlling the flow just above the
rib must clearly depend on rib shape; in extreme cases, like the triangular rib cases of
Zampiron et al. (2020) and (some of) the ribs of Medjnoun et al. (2020), W is essentially
zero at the top of the rib, so small-scale separation-driven recirculations cannot occur.
The latter must always be a feature of rectangular ribs and, as Medjnoun et al. (2020)
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show, S/W can then be important. Our results (figure 7a) show that the peak strength of
the larger scale secondary flows occurs somewhere in the range 2.7 ≤ S/W ≤ 3.3 and, by
comparison with the related literature, these flows always correspond to upflow over the
ribs (the high momentum pathways, (HMP, commonly mentioned in the literature)) and
downflow between them (the low momentum pathways, (known as LMP)) for H/S ≥ 0.6
at least. We emphasise that in the present KC4 cases (S/W = 4, 1.25 ≤ H/S ≤ 1.75) the
details of the secondary flow are essentially independent of H/S (figures 13 and 14). As
mentioned in § 3.5, the swirling strength in the lower half of the flow varies very little. For
H/S lower than O(1) the situation remains uncertain.

As noted in § 1, some authors have shown that changes in surface condition without any
change in surface height also leads to significant secondary flows. Anderson et al. (2015),
for example, used LES to study channel flow containing longitudinal strips of roughness
(width W) having a higher zo (roughness length) than in the regions between them. They
had H/S = 0.32, S/W = 5.2 and varied the ratio of the high to low roughness. In all cases,
there was downflow over the high roughness regions (in the high momentum pathway
regions) and upflow between them (in the low momentum pathway regions). Willingham
et al. (2014) studied similar cases with H/S = 0.32 and in terms of the orientation of the
secondary flows the results are essentially the same, for cases with 3.1 ≤ S/W ≤ 15.7.
These findings are, therefore, contrary to those found in the present work and in all others
using physical ribs, which all show upflow above the ribs and downflow between them,
quite independently of H/S or W/S, albeit with the dominance of each matching pair of
vortices varying significantly with W/S. Vanderwel & Ganapathisubramani (2015) argued
that this difference in secondary flow direction arises because of the different way the
spanwise inhomogeneity is imposed. This could well be the case, although the issue merits
further study.

4.3. Topology and a final comment
A significant feature of the present work has been the use of topological constraints to
guide the interpretation of flow visualisations. In particular, these have helped to ensure
that the critical points in the cross-stream flow are identified properly and are consistent
with a kinematically valid flow field. It is suggested that this should always be considered
for these (and no doubt other) kinds of flows, just as recommended by Hunt et al.
(1978), whether visualisations are from laboratory experiments (typically now PIV) or
from computational studies (DNS or LES). Finally, it is worth emphasising again that
(i) the results shown in this paper only relate to the mean flow field and (ii) the cross-plane
mean velocities (i.e. V and W) are at every point very small compared with the mean axial
velocity (U) at the same point. Taking point (ii) first, the ratios V/U and W/U nowhere
exceed approximately 3.5 % and are usually much smaller, particularly nearer the top of
the domain. The local mean flow energy ratio, (V2 + W2)/U2, is thus extremely small
everywhere. Note also that it is possible that because the cross-flow velocities are relatively
so low, corner separations at the ribs might disappear at low enough Reynolds numbers.
We have not explored this; recall that the apparent lack of separation seen in figure 9(b)
has been found to be a result of the ‘fuzzy’ IBM used, rather than any Reynolds number
effect. Regarding the point (i), we emphasise that in common with all turbulent flows the
mean flow never actually exists. Figure 15 illustrates just how different the instantaneous
flow is compared with the mean. Readers may be interested to see a video from which this
snapshot was taken and which follows the flow in time; this is available at https://soton.
ac.uk/engineering/about/staff/jwk.page. The dynamics of these kinds of flows compared
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Figure 15. Instantaneous snapshot of flow in the cross-stream plane for case KC4a, H/S = 1.25, S/W = 4.
The colours indicate isocontours of the axial vorticity. Positive (clockwise) vorticity is red, lightening through
white (zero vorticity) to dark green for negative vorticity.

with those in regular channels have begun to be studied (e.g. Wangsawijaya et al. 2020;
Zampiron et al. 2020) and this is clearly a topic that merits further work.
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Appendix A. Calculating the zero-plane displacement

Jackson (1981) argued that for turbulent flow over a rough surface, the zero-plane
displacement, d, required in the usual log-law (u+ = (1/κ) ln((z − d)/zo) is essentially
the height at which the surface drag appears to act. In the present case of a smooth channel
with longitudinal smooth ribs, the surface drag is generated by the axial frictional forces on
the surfaces which, in total, must balance the applied axial pressure gradient. This differs
from the usual types of rough surface for which, in the fully rough case, the pressure
forces dominate any produced by surface friction (see Leonardi & Castro (2010), for a
full discussion). We outline below a method to deduce d in the present case, recognising
that appropriate integrations of the axial friction forces and their moments need to be
undertaken.

We consider one half of the span (S) of a repeating unit of the surface, as shown in
figure 16. (The other half will be identical, by symmetry.) There are axial, non-uniform
frictional stresses on each of the three planar surfaces shown: τo( y) on the bottom channel
surface (in the gaps between consecutive ribs); τh( y) on the top surface of the rib; and
τs(z) on the sidewall of the rib. This latter wall is split into the region above and below
the zero-plane displacement height, z = d. To determine this height, we need to consider
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z = d

y = 0 y = s/2

W/2

z = h
z

τo
τs

τh

Figure 16. Spanwise cross-section of the rib geometry. Here S is the width of the repeating span containing
one rib and the gap between ribs; one half of this span is shown. The width of the rib is W and h is its height.
The horizontal dotted line marks the zero plane displacement height, d. Here x = 0 marks the centre of the full
span and x = S/2 the halfway point of the span, coinciding with the centreline of the rib.

the force moments about that line as an axis, produced by the surface stresses, ensuring
a balance between the two integrated force moments below z = d and the two above that
line. The moments provided by the forces from the bottom surface stress and that on top
of the rib are given by

d
∫ (S−W)/2

0
τo dx = dI1 and (h − d)

∫ S/2

(S−W)/2
τh dx = (h − d)I2, (A1a,b)

respectively. These act in opposite directions about z = d. (Note that the relationships
define I1 and I2 as the two integrals.) Assuming that there is no stress on the sidewall (i.e.
τs = 0) and the stress on the horizontal surfaces is everywhere the same, then equating
these two expressions leads simply to d/h = W/S which is in fact just the average height
of the horizontal surfaces; for S/W = 2, for example, d/h = 0.5, as expected. The above
assumptions are in general untrue, of course, so one has to consider both the variation of
stress along the horizontal surfaces and the moments generated by the stress on sidewalls.
The latter are given by ∫ d

0
(d − z)τs dz and

∫ h

d
(z − d)τs dz, (A2a,b)

for the moment of the forces below and above z = d, respectively, and again, these act in
opposite directions. The appropriate balance required to ensure that z = d is the line about
which there is no resultant moment (and is thus the height at which the total drag force
acts) then becomes

dI1 +
∫ d

0
(d − z)τs dz =

∫ h

d
(z − d)τs dz + (h − d)I2. (A3)

Defining I3 and I4 by

I3 =
∫ h

0
τs dz and I4 =

∫ h

0

z
h
τs dz, (A4a,b)

respectively, and with some rearrangement of the two integrals over the sidewall – the
second and third terms in (A3) – we eventually obtain

d
h

= I2 + I4

I1 + I2 + I3
. (A5)

Given the distribution of frictional stress along all the walls from the DNS data (i.e.
τo( y), τh( y) and τs(z)) for any given case, it is straightforward to determine the values
of the four integrals and thus d/h from (A5).
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Figure 17. (a) Axial surface stress (in arbitrary units) along one span of the repeating unit within the channel.
The sidewall variation at y = (S − W)/2, between z = 0 and z = h is shown between the two red vertical
dashed lines and the sections corresponding to the four integrals I1−4 are labelled appropriately. The horizontal
dashed line shows the value of the average stress. (b) Axial velocity profile (intrinsically averaged below z = h).
The black and red lines have d/h = 0 and 0.34, respectively, and the dashed line is the modified log-law (as in
figure 2a).

In the more general case of a surface containing three-dimensional obstacles (at any
orientation), there will be additional terms to include in (A3), expressing the moments
(above and below z = d) generated by, firstly, the axial frictional components on, say,
any additional obstacle sidewalls parallel to the flow direction and, secondly, the axial
components of all the pressure forces acting on the surfaces of the obstacles. As noted
above, in such cases these latter terms will normally dominate, as shown in detail
for arrays of cubes by Leonardi & Castro (2010), who used exactly this method to
determine d.

As an example, we take the S/W = 4, H/S = 1.25 case KC4a in the present paper.
Figure 17(a) shows the variation of axial friction along the span, which has been expanded
in order to show the two sidewall stress variations at y = (S − W)/2 and (S + W)/2.
Computation of the four integrals in (A3) yield I1 = 2.28, I2 = 0.875, I3 = 0.602 and
I4 = 0.39. Equation (A5) then gives d/h = 0.34, which is somewhat above the geometrical
average surface height of 0.25 (for this S/W = 4 case). This is an expected result; it is
common for d to lie somewhere above the geometrical average surface height (Leonardi
& Castro 2010) and, for cases like the present one, the difference tends to increase
with decreasing S/W. The resulting velocity profiles with and without the inclusion of
a zero-plane displacement are shown in figure 17(b), where it is clear that using (z − d)

with d/h = 0.34 yields a much better fit to the modified log-law – better than if d/h = 0.25
were used (not shown).
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